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Artificial neural networks are at the heart of modern deep learning algorithms. We describe how to embed
and train a general neural network in a quantum annealer without introducing any classical element in training.
To implement the network on a state-of-the-art quantum annealer, we develop three crucial ingredients: binary
encoding the free parameters of the network; polynomial approximation of the activation function; and reduction
of binary higher-order polynomials into quadratic ones. Together, these ideas allow encoding the loss function
as an Ising model Hamiltonian. The quantum annealer then trains the network by finding the ground state. We
implement this for an elementary network and illustrate the advantages of quantum training: its consistency in
finding the global minimum of the loss function and the fact that the network training converges in a single
annealing step, which leads to short training times while maintaining a high classification performance. After
training the network using a quantum annealer, one can then use the quantum network weights in a classical
network algorithm of identical design for inference. Our approach opens an avenue for the quantum training of
general machine learning models.
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I. INTRODUCTION

Neural networks (NN) have become an important machine
learning tool, in particular for classification tasks, and there is
great interest in improving their performance using quantum
computing techniques. Indeed a NN contains three essential
features that one might seek to enhance this way, namely,

(1) an adaptable system that approximately encodes a
complicated function,

(2) a loss function in the output layer whose minimization
defines the task the NN algorithm should perform,

(3) a training algorithm that minimizes the loss function.
To date, it has been possible to enhance one or more of

these three aspects using quantum computing. For example,
the encoding in (1) can be implemented on a quantum gate
and continuous variable quantum devices [1–10]. The loss
function can also be implemented in an entirely quantum
fashion [11–13] (as a function of the network outputs), and
the minimization of the loss function can be implemented on
quantum devices in several ways, in particular using quan-
tum annealers [14–19]. The result has been hybrid quantum
or classical implementations that nevertheless often demon-
strated some improvement. However, it has to date not been
possible to encode all three of these aspects, in other words,
to implement an entire NN algorithm onto a single quantum
device with no classical elements at all.

*steve.abel@durham.ac.uk
†juan.c.criado@durham.ac.uk
‡michael.spannowsky@durham.ac.uk

The purpose of this work is to implement such a com-
pletely quantum NN to solve the task of binary classification
of certain well-known (and not so well-known) data sets and
investigate how it compares with classical devices.

Our purpose in this implementation is somewhat different
from previous studies. We envisage the NN conventionally as
simply a gigantic function that we wish to optimize during
a training phase by adjusting the weights and biases in the
network. Our objective is to achieve this training in a quantum
way in one step by encoding the network in its entirety on a
quantum device. Thus our implementation must incorporate
several aspects that have not yet been combined. Of primary
importance are the following. First, the network must include
nontrivial activation functions for the weights and biases.
These activation functions, along with the weights and biases,
must somehow be incorporated into the network by encoding
onto the quantum device. Conversely, however, to be effective
and competitive, the training stage must be able to utilize
virtually unlimited data (or at least a data set that can easily
be larger than a number of qubits on any device currently in
existence). This means that one should avoid trying to encode
the data itself onto the quantum device (otherwise, a one-step
training would not be possible) but should include all the
data directly in the loss function. We will produce practically
applicable NNs by paying attention to these two essential
requirements.

The device we utilize for this task is a quantum an-
nealer [20–32]; that choice being dictated solely by the large
numbers of qubits required to encode the NN. Indeed as we
shall see, the main limitations of the method are the number
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of qubits required to encode the network itself, which restricts
the number of features, and the number and size of hidden
layers. However, even working within these restrictions we
will be able to show that the method works effectively and
to illustrate the two main advantages of the quantum training:
that it can consistently find the global minimum of the loss
function and that this can be done in a single training step,
as opposed to the iterative procedures commonly used classi-
cally. The general method we describe here will be applicable
more generally as the technology develops.

II. QUANTUM ANNEALING AND THE ISING
MODEL ENCODING

Let us begin with a brief description of the device and the
central features for this study. Generally a quantum annealer
performs a restricted set of operations on a quantum system
described by a Hilbert space that is the tensor product of
several two-dimensional Hilbert spaces (i.e., the qubits) and
a Hamiltonian of the form

H(s) = A(s)
∑

�

σ�,x + B(s)

(∑
�

h�σ�,z +
∑
�m

J�mσ�,zσm,z

)
,

(1)

where σ�,x and σ�,z are the corresponding Pauli matrices acting
on the �th qubit, and A(s), B(s) are smooth functions such
that A(1) = B(0) = 0 and A(0) = B(1) = 1, which are used
to change the Hamiltonian during the anneal. The annealer
can perform the following operations.

(1) Set an initial state that is either the ground state of
H(0) (known as forward annealing) or any eigenstate of⊗

� σ�,z (backward annealing).
(2) Fix the internal parameters h� and J�m of the Hamilto-

nian H(s).
(3) Allow the system to evolve quantum mechanically

while controlling s as a piecewise-linear function s(t ) of time
t , with s(tfinal ) = 1, and s(tinit ) = 0 for forward annealing, or
s(tinit ) = 1 for backward annealing, where tinit and tfinal are the
initial and final times. The function s(t ) is called the annealing
schedule.

(4) Measure the observable
⊗

� σ�,z at t = tfinal.
Typically one chooses an annealing schedule such that the

machine returns the ground state of the Ising-model Hamil-
tonian H(1). This allows one to use it to solve optimization
problems that can be formulated as the minimization of a
quadratic function H of spin variables σ� = ±1:

H (σ�) =
∑

�

h�σ� +
∑
�m

J�mσ�σm. (2)

To differentiate between the physical system and the embed-
ded abstract problem, we will refer to the elements of the
physical system H(σ�,z ) as qubits and to the ones of the
abstract system H (σ�) as spins. Note that the classical spin
values σ� do not carry a z index. The objective is usually that
the minimization of the physical Hamiltonian H(σ�,z ) should
yield a solution to the problem encoded by the minimization
of the problem Hamiltonian H (σ�).

Two crucial practical elements will need to be tackled to
proceed with the encoding of a NN. The first is that Eq. (2)

describes a generalized Ising model, but in practice, the
quantum-annealing device only allows the setting of a limited
number of nonvanishing couplings J�m between qubits. Let us
be specific to the architecture we will be using in this work,
namely D-Wave’s [32] ADVANTAGE_SYSTEM4.1: this annealer
contains 5627 qubits, connected in a PEGASUS structure, but
only has a total of 40 279 couplings between them. Ising
models with a higher degree of connectivity (more couplings)
must be embedded into the physical system by chaining sev-
eral qubits together with large couplings between them and
treating the chain as if it were a single qubit. This step is
carried out by an embedding algorithm.

The second aspect that we will need to address to treat NNs
is the fact that the functions we will need to optimize [i.e., our
problem Hamiltonians H (σ�)] are polynomial in spins, but the
Ising model is only quadratic. Routines to reduce polynomial
spin models to quadratic ones using auxiliary qubits (such
as MAKE_QUADRATIC) do exist in the DIMOD package, but
our experience with these was limited. Being able to treat
higher-order problems is an essential extension to quantum
annealers: therefore, in the Appendix, we prove that the issue
of minimizing any higher-order polynomial in binary vari-
ables can be transformed into the minimization problem of a
generalized quadratic Ising model of the form in Eq. (2), and
is thus in principle solvable by a quantum annealer.

III. ENCODING A QUANTUM NEURAL NETWORK

A. Neural networks and classical training

A NN is a highly versatile machine-learning model built
as a composition of functions with a vector input and output,
known as layers. Each layer consists of a linear transformation
followed by element-wise application of nonlinear functions
g, known as the activation function. The ith component of the
output of a layer L is thus given by

Li(x) = g

(∑
j

wi jx j + bi

)
, (3)

where the wi j and bi are free parameters, the so-called weights
and biases. Each function Li of the vector input and scalar
output is known as a unit. A NN is then defined by a collection
of layers L(k) through

Y = L(n) ◦ . . . ◦ L(0). (4)

A schematic representation of the NN structure is displayed
in Fig. 1. The depth of a NN is the number of layers n,
while its width is the number of units per layer (or in the
largest layer if the layers vary in size). The various versions
of the universal approximation theorem [33–35] ensure that
NNs that are either sufficiently deep or sufficiently wide can
approximate any function with arbitrary precision. This makes
them suitable for general regression and classification tasks,
on which they have proven to be an efficient parametrization.

The training of a NN is the procedure by which its internal
parameters w

(k)
i j and b(k)

i are adjusted so that it solves the
problem at hand. This is done utilising a loss function L(Y ),
chosen such that a NN with the desired properties sits at its
minimum. Typically a classical training algorithm will imple-
ment an improved version of gradient descent on L filled with
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FIG. 1. Schematic representation of a NN with two inputs and
three layers L(1), L(2), and L(3), with four, five, and three units, re-
spectively. The inputs and units are shown as blue circles. The arrows
represent the action of the layers, which are affine transformations
followed by the element-wise application of the activation function,
as displayed in Eq. (3). The outputs of layers L(1) and L(2) are denoted
z(1) and z(2)

training data to find this optimum configuration of weights
and biases.

In the supervised learning framework, the input data for the
training consists of a collection of Nd data points xa ∈ RNf

and a collection of the Nd corresponding outputs ya ∈ RNo

to be reproduced as ya � Y (xa). The dimension Nf of the
input data-point space is known as the number of features.
In general, when the outputs ya are arbitrary points in a vector
space RNo, the problem to be solved is a regression one. In the
particular case in which ya takes values in a discrete set, then
one has a classification problem, but the set of abstract labels
can still be encoded as a set of isolated points in RNo. For
example if we seek a set of No yes or no decisions then the
outputs live in ya ∈ (Z2)No ⊂ RNo. Thus both kinds of prob-
lems can be treated within the general framework described
here.

A typical loss function for supervised learning is the mean
squared error (MSE) for the outputs

L(Y ) = 1

Nd

∑
a

|ya − Y (xa)|2. (5)

This is widely used for general regression problems. It is also
a viable candidate for classification, although, depending on
the training method, other loss functions, such as the binary
or categorical cross entropy, can be more effective.

B. Training a NN in a quantum annealer

Let us now consider the task at hand, namely how to en-
code and train such a NN on a quantum annealer. Since the
purpose of an annealer is to find the minimum of a function,
the Hamiltonian, we aim to write the loss function L as an
Ising-model Hamiltonian. Then, we expect the final state of
the annealing process to give the optimal NN for the problem
under consideration.

The loss is ultimately a function of the internal parameters
of the NN, the weights wi j , and biases bi. Meanwhile the

Ising-model Hamiltonian H (σ�) is a function of the Ising-
model spins σ�. Therefore, as a first step, we need a translation
between the wi j , bi parameters and the σ� spins. It is simpler
for this purpose to use a quadratic unconstrained binary op-
timization (QUBO) encoding, related to the spin encoding as

τ� = 1
2 (σ� + 1), (6)

where τ� = 0, 1. Then, each of the parameters p ∼ w
(k)
i j , b(k)

i
is encoded in a binary fashion in terms of the annealer spins
as

p = −1 + 1

1 − 2−Nb

Nb−1∑
α=0

2−ατ p
α . (7)

We will use a superindex p on the τ to indicate which partic-
ular block of Nb qubits (labeled by α = 0 . . . Nb − 1) is being
used to encode that weight or bias. The above encoding yields
p ∈ [−1, 1].

Using Eq. (7), we can write the loss as a function of the
Ising model spins τ . In general, this will not take the form
of an Ising-model Hamiltonian [defined in Eq. (2)], so the
next step is to transform it into one. For this purpose, we
first approximate the activation function by a polynomial.
Since the weights and biases are bounded in this approach,
the input to the activation is bounded, and therefore a poly-
nomial can approximate it arbitrarily well in the input range.
Some polynomial approximations to standard loss functions
are shown in Fig. 2. The use of polynomials as activation
functions is a delicate issue because some versions of the
universal approximation theorem require the activation to be
nonpolynomial. In the present context, this need not concern
us, however, since the boundedness of the input implies here
that there is boundedness of the output, and this, together
with nonlinearity, is enough to guarantee universal approxi-
mation for NNs with a single hidden layer [34]. Moreover,
the nonlinearity of the activation functions is sufficient for the
universal approximation property to hold for neural networks
of fixed width and arbitrary depth [36]. More generally, given
any traditional NN, it can be approximated to arbitrarily good
precision within our framework by increasing the number of
spins per parameter and the degree of the polynomial activa-
tions. Thus, any universal approximation result for the given
NN will similarly hold for its approximate version.

Apart from their universal approximation properties, acti-
vation functions are commonly selected because they generate
well-behaved gradients, which are crucial for classical train-
ing algorithms. In our case, these properties are irrelevant
since the gradients are not used in any way.

The loss function L of the output value Y (x) of the NN
can either be a polynomial, as in Eq. (5), or not. In the case it
is not, we make use again of the boundedness of Y (x): if we
make an approximation for L(Y ), it only needs to be valid in
a bounded domain. It follows that polynomials are enough for
this approximation to achieve arbitrary precision. Finally, we
show a polynomial approximation to a typical loss function
for classification: the logistic loss, at the bottom plot of Fig. 2.
We arrive, therefore, with the polynomial activation functions
at a loss function that is a polynomial in the Ising-model spins.
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FIG. 2. Polynomial approximations to the popular ReLU (top)
and sigmoid (middle) activation functions, and to the logistic loss
function L (bottom). The logistic loss is defined here as L(y,Y ) =
−y log p(Y ) − (1 − y) log[1 − p(Y )], where p(x) = 1/(1 + e−10x ).

The final step is to transform this polynomial into a
quadratic, which would then match the form of the Ising-
model Hamiltonian defined in Eq. (2). To do this, we may
now employ the reduction method derived in the Appendix,

which can, in principle, be used to reduce a polynomial of any
degree to a quadratic. The reduction method makes iterated
use of the following quadratic polynomial in binary variables
x, y, z = 0, 1:

Q(z; x, y) = �[xy − 2z(x + y) + 3z]. (8)

As discussed in the Appendix, this polynomial has degenerate
global minima, which are achieved for every possible value
of the (x, y) pair, if and only if z = xy, and one can check
that Q(xy; x, y) = 0 at these minima. Thus Q can be used as a
constraint Hamiltonian because reaching its minimum implies
that the z = xy constraint is satisfied, at which point there is no
net contribution to the Hamiltonian. We can then, in principle,
reduce the degree of the loss function polynomial by replacing
products xy of spins with auxiliary spins z and simultaneously
adding Q(z; x, y) to the Hamiltonian with a sufficiently large
value of �.

This completes the general method for encoding the loss
function into an Ising-model Hamiltonian. Before we consider
specific examples let us summarize the steps we took in the
encoding.

(1) Write the loss as a function of the Ising model spins by
means of Eq. (7).

(2) Rewrite it as a general polynomial in the spins by
approximating the activation functions (and possibly the final
operation in the loss function) by polynomials.

(3) Transform it to a quadratic polynomial by introducing
auxiliary variables and adding copies of the constraint Hamil-
tonian defined in Eq. (A2).

Following these steps provides an Ising-model Hamilto-
nian whose ground state corresponds to the global minimum
of the loss function. A quantum annealer can then be used to
find its ground state. The weights of the corresponding classi-
cal NN can be recovered from the ground state using Eq. (7).
One can then use the resulting NN for classical inference.
For its activation functions, either one can directly use the
polynomials that appear in the encoding, which guarantees
that the NN is the optimal one for the given dataset, or one
can apply the original nonpolynomial activation functions,
in which case optimality depends on the quality of the ap-
proximation. Finally, we remark that, although the training
is quantum, inference can be performed purely classically.
In particular, properties such as universal approximation are
unaffected by the quantum nature of the training and depend
only on the classical approximations made.

C. Example encoding

Let us now illustrate the procedure outlined with a concrete
example. We consider a binary classification problem, with
labels y = ±1. We will use a NN with a single hidden layer
(two layers in total) without an activation function for the last
layer to classify any input data. In detail, such a NN produces a
classification output from the inputs, which, following Eq. (3),
is as follows:

Yv,w(x j ) = vig(wi jx j ) + v0, (9)

where the wi j and vi are the weights for first and second layers,
respectively; summation over the i, j indices is implicit; and
i = 1 . . . Nh labels the Nh units in the hidden layer. The x j are
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assumed to contain a constant feature incorporated by adding
a 0 index for biases, so that wi0 is the bias in the first layer, and
v0 is the bias in the hidden layer, while wi j are the weights. To
reduce clutter we can also express the hidden layer bias v0 by
adding a w00 weight as well, so that the combined system of
weights and biases is encompassed by simply extending all the
sums to i = 0 . . . Nh, i = 0 . . . Nf . With this shorthand being
understood, we will therefore write

Yv,w(x j ) = vig(wi jx j ). (10)

A given state of the NN has a certain w and v, and the result
of inputting data x j is a single output Yv,w(x j ) that is used to
decide its classification. The prediction is y = 1 if Yv,w(x) > 0
and y = −1 otherwise. (Or, to put it another way, there is a
final Heaviside activation function, y = 2ϑ[Yv,w(x)] − 1 feed-
ing into the binary classification y.)

As mentioned, the crux of the matter is now to optimize v

and w by training the NN on data. To perform this optimiza-
tion, we need to feed into the NN a set of input data xai, where
a labels the data points, and to optimize the weights and biases
to give the best match with the known classifications ya = ±1
that correspond to this data. We will use Eq. (5) as the loss
function.

For the activation function, consider the simple approxima-
tion to the rectified linear activation (ReLU) function (shown
in Fig. 2) given by g(x) = (1 + x)2/4. We first use Eq. (7) to
encode the weights, and then this results in a loss function
that is sextic in spins. Since it is a total square, it is more
straightforward to reduce the loss function to a quadratic by
eliminating pairs of spins in

Yv,w(x) = ya − 1
4 − 1

2viwi jxa j − 1
4viwi jwi j′xa jxa j′ , (11)

with the use of auxiliary variables as described in Sec. III B,
until Yv,w(x) becomes a linear function of the spins.

To replace the viwi j term, for example, for every quadruple
αi; β j we trade the pairs of binary variables that appear in the
product with auxilliary variables by adding

Hvw =
∑
i, j

Q(τ (i j)
αβ ; τ vi

α τ
wi j

β ). (12)

This requires

Nvw = (Nh + 1)(Nf + 1)N2
b

auxiliary qubits, so that, for example, Nh = Nf = 2 and
Nb = 1 requires only nine auxiliary qubits. We may then go on
to replace the terms in viwi jwi j′ , by adding for every sextuple
αi; β j; γ j′ the constraint Hamiltonian

Hvww =
∑
i, j, j′

Q
(
τ

(i j j′ )
αβγ ; τ (i j)

αβ τ
wi j
γ

)
, (13)

requiring a further

Nvww = (Nh + 1)(Nf + 1)2N3
b

auxiliary qubits, and so forth for higher terms in the approxi-
mated activation function if included. It should be noted that
the number of qubits grows geometrically with the degree of
the term being reduced.

IV. IMPLEMENTATION AND RESULTS

Let us now demonstrate that using the encoding discussed
in Sec. III one can train a NN in a D-Wave quantum annealer.
Since the encoding requires a high degree of connectivity
between spins, only small networks can be currently imple-
mented. To reduce the number of qubits needed to embed the
network in the annealer, we fix the biases for the first layer to
zero and set the activation function to g(x) = x2. The resulting
model retains all the building blocks described in Sec. III:
binary encoding of the network parameters; polynomial acti-
vation function; and encoding of products through a constraint
Hamiltonian.

As the embedding is a function of the connectedness of
the final model, and therefore rather hard to quantify, we first
perform a scan over the number of features Nf , the number
of hidden units Nh, and the number of spins per network
parameter Nb, to record the number of abstract spins required
by the encoding in Sec. III and the corresponding number
of qubits of the embedded model. The results are shown in
Fig. 3. Networks of this kind with up to ∼180 spins can thus
be embedded in the currently available annealers.

In practice, we find that the annealer performs best when
the number of spins is well below its maximum capacity.
Therefore, in this study we pick a network with Nf = Nh = 2
and Nb = 1 for testing the performance of the training. The
expressiveness of this network is limited, of course, but it is
already enough to accurately classify samples in the following
datasets (shown in Fig. 4).

(1) Circles. Points in a noisy circle around the origin la-
beled y = 1, together with points in a blob inside the circle
labeled y = −1.

(2) Quadrants. Uniformly distributed points in a around
the origin, labeled y = −1 if in the first or third quadrand, and
y = 1 otherwise.

(3) Bands. Three partially overlapping bands, parallel to
the x2 = x1 direction, with labels y = 1, y = −1, and y = 1,
respectively.

(4) ttbar. A set of events generated by simulations of
proton-proton collisions at the large hadron collider (LHC)
with final state containing two top quarks (see Ref. [13]).
The label y = 1 (the signal) indicates that the two tops are
the decay products of a hypothetical new particle Z ′ [37].
The label y = −1 (the background) means they arise from
the known Standard Model of physics. The features x0 and x1

correspond to the highest transverse momentum of a b jet and
the missing energy, respectively. Separating the signal from
the background is relevant for experimental searches in this
context [38–40].

These datasets are best fitted with a smaller last-layer
bias than ±1. We thus modify Eq. (7) for v0 so that it
takes the values −1/2 or 0 instead. We use the D-Wave
ADVANTAGE_SYSTEM4.1 annealer to train the network with an
annealing schedule given by

s(t ) =

⎧⎪⎨⎪⎩
sq

t
20 if 0 � t < 20,

sq if 20 � t < 80,

sq + (1 − sq) t−80
20 if 80 � t < 100,

(14)
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FIG. 3. Left: Number of physical qubits needed to embed the quantum NN as a function of the number of spins in its abstract encoding, for
varying values of the number of features Nf = 2–4, the number of units in the hidden layer Nh = 2–4 and the number of spins per parameter
Nb = 1–3. The graph shows that the number of physical qubits only depends on these parameters through the number of abstract spins, which
is a function of them. Right: Number of qubits as function of Nh, for each value of Nf and fixed Nb = 1.

FIG. 4. Decision boundary obtained with the quantum NN for each dataset, together with the points in the dataset. Points labeled as signal
and background are shown in blue and red, respectively. The decision boundary, displayed as a black line, is the set of points for which the
network prediction is Yv,w (x) = 0.
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FIG. 5. Schematic representation of the loss function. Depending
on the starting point and training method, classical training may
end up in any local minima, such as the red one. Quantum training
can tunnel from any of these minima to the global one, shown in
green.

where t is given in microseconds and sq = 0.2. Since the more
expensive part of the computation is the preparation of the
annealer for the desired model, it is customary to run it several
times once this is done to reduce noise in the output. We
perform 300 runs and pick the final state with the least energy.
In Fig. 4 we show the decision boundary Y (x) = 0 obtained
for each dataset using this procedure.

To measure the network’s performance, we use the area
under the receiver operating characteristic (ROC) curve. To
generate the ROC curve, a threshold parameter is introduced.
Each output of the NN is then interpreted as a prediction for
y = 1 (signal) if it is above the threshold and for y = −1
(background) if it is below. The ROC curve is then the one
described in the space of the true positive rate versus false
positive rate, as one varies the threshold. The value of the
area under this curve is perfect (100% area under ROC) for
the circles and quadrant datasets, 92% for the bands, and
78% (close to the best attainable by other methods [13]) for
ttbar.

The advantage of quantum training is twofold. First, it
can be performed in a single step instead of the incremen-
tal gradient-descent procedure used customarily in classical
training. Future annealers will be able to represent more ex-
tensive networks, which usually require large training times.
The quantum annealing procedure will be able to reduce
them significantly. Second, the quantum evolution can tunnel
through barriers in the loss function to escape local minima,
as depicted schematically in Fig. 5. By contrast, classical
algorithms must somehow surmount the barriers to find the
global minimum. Depending on the size of the barriers and
on the hyperparameters of the training, classical methods may
quickly become trapped in a local minimum and thus be
unable to find the best solution to the problem. This advantage
of quantum optimization was studied in Ref. [41], where var-
ious nonconvex loss functions were optimized with different
methods, including quantum annealing and several classical
algorithms. The quantum annealer found the global minimum
more consistently than all the other methods.

FIG. 6. Comparison of the results of the quantum NN to its
classical analog. Each bar gives the median of ten training runs. The
error bars show the percentiles 20 and 80.

To compare the effectiveness in finding the global mini-
mum with classical algorithms, we trained a network with
the same structure and activation function, using the ADAM

version of the (classical) gradient descent algorithm. When the
network parameters are continuous, we obtained results with
similar scores for the area under the ROC curve as with the
quantum training. However, such a network has much greater
freedom than the one implemented in the annealer in which
the parameters are only allowed to take two different values.
To make the comparison more equitable, we mimicked this by
adding

ω
∑

p

(p − 1)2(p + 1)2, (15)

to the classical loss function, where the sum is over all pa-
rameters (weights and biases) p. When ω is sufficiently large,
the weights and biases are forced to adopt the same p = ±1
values available to the quantum annealer.

We find that classical training constrained in this way fails
to reach the optimal solution most of the time with any of
the four datasets, a practical manifestation of the situation
sketched in Fig. 5. A comparison between the results of the
quantum and constrained classical training is shown in Fig. 6.
Apart from having a lower score on average, the classical
training exhibits a significant variance in the results due to
its becoming trapped in different local minima.

A finer discretization of the input data and network weights
(that is, an encoding of each variable that uses more spins)
will be made possible by future quantum annealers as they are
expected to have more qubits with more couplings between
them. Moreover, the above comparison suggests that quan-
tum annealers can operate and train NNs, even with coarsely
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discretized weights and biases, where classical training would
fail. This indicates that quantum training may quite rapidly be
able to achieve better accuracy and do so more consistently
than classical algorithms. In this regard it is also worth men-
tioning that there are techniques open to quantum annealers
such as diabatic annealing that have the potential to avoid
anneal times increasing exponentially with the difficulty of
the problem [42,43], an issue that is seen in both adiabatic
quantum annealing and in simulated annealing. Such tech-
niques cannot be efficiently simulated classically. A related
issue is the possible effects of dissipation. This was studied
in, for example, Refs. [42,44], which provided evidence for
robustness. Although an in-depth discussion of this issue is
beyond the scope of the paper, it is worth mentioning that its
effects can, in some circumstances, even be beneficial [45].

We note that the global minimum of the loss function is
found more reliably using a quantum approach does not mean
that it will be more likely to overfit. Overfitting will become
important once larger NNs can be embedded in quantum an-
nealers. The measures to prevent it should be taken at the level
of the NN and loss function design. They should be similar
to those of classical approaches, with a parameter space and
global minimum that avoid the possibility of learning features
specific to the training data as much as possible. The usual
training, test, or validation split approach should be applied
for this purpose. A typical example of an overfitting preven-
tion measure is introducing a regularization term in the loss
function that is proportional to the MSE of the weights and
biases. This can be trivially implemented in our approach as it
becomes a sum of quadratic terms in the spins after the binary
encoding has been applied.

V. CONCLUSION

We presented a method for training NNs purely in a quan-
tum annealing device. The result of the quantum training was
the optimal set of values for the NN weights, which can
then be used for inference with a classical NN. Our method
involved encoding the free parameters of the network in
terms of binary variables, approximating activation functions
through polynomials, and reducing general binary polynomi-
als to quadratic ones. All these techniques are applicable in a
general setting, allowing for encoding any NN structure with
any activation function and any loss function to be encoded as
an Ising-model Hamiltonian.

The current quantum annealing technology only provides a
limited number of qubits with sparse connections. This means
that only relatively small NNs can be embedded in quantum
annealers today. However, we were able to implement our
method for the training of such a NN and shown that it learns
to classify several datasets in one annealing run.

The advantage of quantum optimization algorithms is that
quantum tunneling processes can escape local minima. In the
example we consider, we showed that the quantum training
with our method consistently performs better than its classical
analog. This suggests that, when larger quantum annealing de-
vices are available in future applications, the quantum training
algorithm we present may be used to train NNs more robustly
than classical algorithms in real-life applications.
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APPENDIX: ENCODING BINARY HIGHER-DEGREE
POLYNOMIALS AS QUADRATIC ONES

We prove here that, for any polynomial in binary spin
variables σ� = ±1, there exists a quadratic polynomial in an
extended set of variables that includes auxiliary spins, such
that the values of σ� at the global minima in the new system
coincide with those in the old system.

The proof is by induction. Consider a polynomial of degree
n, in a system with m spin variables σ�=1...m. This can have
many terms, but it is sufficient to focus on the terms of degree
n. In general, we can write these terms in the polynomial as
follows:

Pn(λκ ) ≡
∑
W n

κ

λκW n
κ , (A1)

where W n
κ ≡ σ�1σ�2 . . . σ�n are all the words (that is monomials

in which each spin can appear only once) of length n that can
be made from m spins. Since m � n there are mCn of them
labeled by κ with couplings λκ (some of which may be zero).

Consider a single pair of spins, say σ1 and σ2. Words
containing the product σ1σ2 can be reduced by first converting
to binary variables with σ� = 2τ� − 1, where τ� = 0, 1. Thus
all such pairs translate as

σ1σ2 ≡ 4τ1τ1 − 2τ1 − 2τ2 + 1.

The linear and constant terms are contributions to the degree
n − 1 polynomial already and the reduction task is therefore
equivalent to reducing the τ1τ2 pair of binary variables.

Consider adding to the polynomial a quadratic term involv-
ing the binary variables together with a new auxiliary variable
τ12, which is of the form

Q(τ12; τ1, τ2) = �[τ1τ2 − 2τ12(τ1 + τ2) + 3τ12], (A2)

where the overall coupling � is chosen to be sufficiently large
and positive. This Hamiltonian can, of course, be translated
back into σ�, however it is easier in QUBO format to check
that it forces τ12 = τ1τ2. Indeed if τ1 = τ2 = 0 then Q =
3�τ12 and if only one of τ1 or τ2 is zero then Q = �τ12. In
both cases the minimum is at τ12 = 0 and Q = 0. Meanwhile
if τ1 = τ2 = 1 then Q = �(1 − τ12) and the minimum is at
τ12 = 1 and Q = 0.

Thus adding Q(τ12; τ1, τ2) allows us to reduce all the words
in Pn that contain the product τ1τ2 by replacing the pair of
binary variables with the single variable τ12. We note that the
combined polynomial

P̂(τ12, σ1, σ2 . . .) = P1̂2 + Q(τ12; τ1, τ2), (A3)

in which P1̂2 is the original polynomial with the replacement
τ1τ2 → τ12 in the W n

κ words, preserves the global minimum
in σ1, . . . , σm.

We then choose further pairs until the degrees of all the
W n

κ words are reduced, resulting in a degree n − 1 polynomial
with the same global minimum as the original. Note that to
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reduce all the words, the same spin may need to appear in
more than one pair. This does not disrupt the proof, however,
because the minima generated by Q are degenerate and do not
favor any value of τ1 or τ2 but simply fix τ12 to their product,
which can then be replaced throughout. Having established
that the degree of the polynomial can be reduced by one unit
while preserving the global minimum, as required, the final
step in the induction is to reduce the words of length n = 3 to
n = 2, which follows in the same manner as for general n.

Finally, let us verify that the reduction works correctly
with a simple specific example, namely that provided by the
Hamiltonian

H = σ1σ2σ3

≡ 8τ1τ2τ3 − 4τ1τ2 − 4τ1τ3 − 4τ2τ3 + 2τ1 + 2τ2 + 2τ3,

(A4)

where we drop the constant −1 in translating to the binary
variables. This example is interesting because the degeneracy

of the global minima is lower than in the generic case: there
are only four solutions to σ1σ2σ3 = −1 (which corresponds
in binary language to any one of the τ� being zero, or all of
them), as opposed to the seven solutions to τ1τ2τ3 = 0. One
might therefore be concerned that new degenerate minima
may appear, but this is not the case. As usual we now reduce
the trilinear term by trading τ1τ2 for an auxilliary binary τ12 by
adding the Hamiltonian Q(τ12; τ1, τ2), and replacing the pair
in H : that is, the new QUBO Hamiltonian becomes

H = Q(τ12; τ1, τ2) + 8τ12τ3 − 4τ12 − 4τ1τ3 − 4τ2τ3

+ 2τ1 + 2τ2 + 2τ3. (A5)

It is easy to check that provided � > 2 the original four
degenerate solutions hold in the new combined Hamiltonian
as required.
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