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1. Introduction

This article reviews recent developments concerning properties of superstring scattering
amplitudes and their relation to correlation functions of gauge-invariant :composite
operators in N' = 4 supersymmetric Yang-Mills theory (SYM). These are areas in
which there has been a large amount of recent work, but we will coneentrate on rather
restricted features that are close to our own research interests and hopefully illustrate
more general principles.

Section [2] is concerned with aspects of the low-energy/ expamsion of type IIB
superstring amplitudes which are highly constrained by maximal supersymmetry and
SL(2,7Z) S-duality. Successive terms in this expansion are highersdimension interactions
with coefficients that are modular forms that transform“with specific holomorphic and
anti-holomorphic weights under SL(2,Z) transformation, of the complex scalar field
T = T + iTp that parameterises the coset space SL(2;R)/U(1)

The interactions that contribute to the feur-graviton amplitude up to mass
dimension 14 are fractional BPS terms and are proportional to d*" R*, where n < 3 and
R* is a particular contraction of four Riemann tensors that is fixed by supersymmetry.
These terms have coefficients that are modular functions of 7 that are fully determined
by supersymmetry and S-duality supplemented by a boundary condition in the large-
7, limit, i.e. in the weak string coupling limit. The coefficients of the R* and d*R*
interactions will be seen to satisfy Laplace eigenvalue equations in the upper-half 7
plane. The solutions of theserequations are,known to be non-holomorphic Eisenstein
series.

The coefficient of the (d°R* interaction satisfies an inhomogeneous Laplace
eigenvalue equation with a source term that is quadratic in non-holomorphic Eisenstein
series. This has a solution that is a ‘generalised’ non-holomorphic Eisenstein series.
We will see that there aredmany other BPS higher-derivative interactions that have
mass dimensions < 14 that are related to the four-point amplitude. In general n-
point amplitudes with,n >.4 may violate the conservation of the U(1) R-symmetry
of type IIB supergravity, \due to stringy corrections. Their coefficients transform as
modular forms-withyholomorphic and anti-holomorphic weights (w, —w). Here we will
consider the specdial amplitudes that violate U(1) R-symmetry maximally, which are
known as maximal U(1)-violating (MUV) amplitudes and for which w = n — 4. The
expressions for these modular forms are determined by soft-dilaton relations combined
with supersymmetry. A summary of some mathematical properties of modular forms,
nop-holomorphic Eisenstein series and generalised Eisenstein series is given in
(Al

Insection 3] we will consider exact properties of integrated correlators of BPS
operators in the stress tensor supermultiplet of A/ = 4 supersymmetric Yang—Mills
(SYM) theory with any classical gauge group, Gy = SU(N), SO(2N), SO(2N + 1),
USp(2N). These integrated correlators are determined by the partition function of
the A/ = 2* SYM theory, which can be viewed as a mass deformation of the N' = 4
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theory. Most of our discussion will be concerned with an integrated correlator that
is proportional to A,92 log Zg, (m, T, 7)|m=0, where the N/ = 2* partitionafunction,
Z(m,T,7), is determined by supersymmetric localisation on S?, the parameter m isthe
hypermultiplet mass and A, = 4770,0; is the hyperbolic laplacian on the upper-half'¢
plane.

We will see that this correlator can be expressed as a two-dimensional lattice sum
for any of the gauge groups. This is a well-defined expression valid for all valties of N and
7. It can also be written as a formal infinite sum of non-holomorphic Eisenstein series of
integer index with rational coefficients. The integrated correlator with G N gauge group
satisfies a rather remarkable ‘Laplace-difference’ equation that has an_iterative solution
relating it to the integrated correlator with SU(2) gauge group. The perturbative and
non-perturbative instanton contributions to this integrated ¢errelator are easy to extract
for any finite value of N and display a number of intriguing, features.

For example, the planar contributions to the pérturbative expansion in powers of a
suitable 't Hooft coupling a¢, are the same for all'gauge groups and non-planar terms
first enter at order a‘éN. The large-N expansion shows sim?larly interesting regularities.
Furthermore it has a structure that makés,manifest the holographic relationship to the
low-energy expansion of type IIB superstringitheory in AdSs x S° in the SU(N) case
and AdSs x S°/Z, for other classical gauge, groups. Some of the large-N properties
of a second integrated correlator ‘that¥isyproportional to 9} log Zg, (m, T, 7)|m=o are
determined in section [3, where the generalisation to n-point MUV integrated correlators
is also presented. The large<N,expansion of these integrated correlators will be used
to determine the low-energy expangion of superstring amplitudes in AdSs x S®. In the
flat-space limit, these reproduce the exact results obtained in section [2| using different
methods. N

Section | focusses on propetties of modular graph functions. These modular
functions are closely associated swith the low-energy expansions of the perturbative

contributions to type B, superstring amplitudes. The contribution to the amplitude at

29—2

2972 (wherg ¢, isithe string coupling constant) is defined by a functional integral

order g
over genus-g world-sheets. The low-energy expansion of the tree amplitudes (the g =0
case) has beenrextensively studied and generates infinite series of powers of Mandelstam
invariants with Goefficients that are rational multiples of single-valued multiple zeta
values. These are special values of single-valued multiple polylogarithms, which have
close connections with mathematical aspects of Feynman diagrams. Much less is known
about.the general structure of n-point amplitudes at genus g > 1.

In general, the integration over the positions of the punctures, i.e. the vertex
operators insertion points, cannot be done exactly but can be performed order by order
in the low-energy, o/ — 0, expansion. The result of integrating over the positions of
thepunctures are functions of the world-sheet moduli. In such cases the low-energy
expansion is a series of terms with coefficients that are integrals of genus-g ‘modular
graph functions’. In section 4| we will review the structure and properties of genus-one,
g = 1, modular graph functions. These are functions of a single complex modulus which

Page 4 of 46
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is the complex structure of the toroidal genus-one world-sheet.

These functions are elliptic generalisations of single-valued multiple zéta values
that may be described in terms of Feynman diagrams for free scalar fields, propagating
on a two dimensional torus. Consequently the loop momenta are integersnand the
diagrams are expressed as multiple lattice sums. The modular graph functions that are
generated by the low-energy expansion of the four-point genus-ones@amplitude form a
special subset of general genus-one modular graph functions. We will furthér see that a
systematic analysis of their properties requires the consideration.of modular/graph forms
that transform with non-trivial holomorphic and anti-holomorphic modular weights.
The genus-one modular graph functions described by two-léop Feynman diagrams are
closely related to generalised Eisenstein series defined in [Appendix Al In the final part
of section [4] we will briefly describe some features of genus-two modular graph functions,
which are functions of the three complex moduli of genus-two Riemann surfaces.

We end with some brief comments in section [5)

Due to space constraints, the description offthése topics is necessarily superficial.
However, our discussion points towards the relevant reférénces for those who are keen
on understanding these results at a deepér level.

2. Supersymmetry and modular constraints on low-energy expansion

2.1. Low-enerqy expansion of type I1B superstring theory

In this section we will review some exact results concerning the low-energy expansion
of massless scattering amplitudes in type II1B superstring theory. The results may be
conveniently expressed in terms of an effective Lagrangian that has the form (in the

string frame) >

Log =(a) Hgi" R4 E(3;7, 7")(0/)_1g;%R4 + E(3;7,7) o/gs%d‘lR4

+&(2,2:3,7,7) () g, d°R + ... . (1)
In this expression o/ =2 is the square of the string length scale. The leading term
proportional to“R is the Einstein-Hilbert term (where R is the Ricci scalar), which has
mass dimension 2. Together with its supersymmetric completion that involves more
bosonic and fermionic fields, it describes type IIB supergravity in ten dimensions. The
scalar field7 paraméterises the coset space SL(2,R)/U(1) in the classical theory, which
is invariant under SL(2,R). However this symmetry is broken by quantum corrections
that.generate an anomaly in the U(1) R-symmetry that is consistent with the breaking of
SL(2,R) te.SL(2,7Z) [1], which is the duality symmetry of type IIB superstring theory.
The low-energy expansion is therefore invariant under SL(2,7Z), and T parameterises
a fundamental domain that may be chosen to be F; = {|n| < 3, |7| > 1}.

The second term in is proportional to R?* [2[3], which is a specific contraction
of four Riemann tensors that has mass dimension 8 and is 1/2-BPS, which means
it preserves 16 of the 32 supersymmetries associated with ten-dimensional maximal
supersymmetry. Similarly, the higher-derivative term d*R* has mass dimension 12
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and is 1/4-BPS while d°R* has mass dimension 14 and and is 1/8-BPS. Maximial
supersymmetry determines the Lorentz contractions of the tensor indices. It also forbids
the presence of R? and R? interactions. The ellipsis in represents the suppressed
supersymmetric completion, as well as higher-order terms and terms that, contribute to
n-point amplitudes with n > 4, which we will come back to later.

The four BPS terms displayed in are those that contribute®e thefour-point
amplitude and are protected by supersymmetry. As we will see, their coéfficients are
modular functions that are solutions to specific Laplace equations that, are determined
by supersymmetry combined with SL(2,7Z) invariance. Some properti% of the modular
functions of relevance to this article are given in The function E(s;7,7)
is a non-holomorphic Eisenstein series, which satisfies the Laplace eigenvalue equation
(A.10). In its zero Fourier mode for 7y, this function hasstwo terms that are power-
behaved in 75 = 1/gs which are interpreted as perturbative eontributions. The two

1
perturbative contributions to the coefficient of the"R* interaction, gs 2E(g; T,7) |4H6],
correspond to tree-level and genus-1 (77 and 73) contributions.

Similarly the coefficient of d*R* is gsé E(5%7,7) |7]; which has perturbative terms
corresponding to tree-level and genus-2 (7 and'75.%), but no genus-1 contribution.
The absence of higher order perturbative terms implies that R?* gets no contribution
beyond genus 1 and d*R* gets no contribution beyond genus 2 in string perturbation
theory. The coefficient of d®°R* is the generalised non-holomorphic Eisenstein series
gsE(2,3;3;7,7) 8], which satisfies the inhomogeneous Laplace eigenvalue equation,
. In this case its zero Fourier mode has four power-behaved terms that correspond
to contributions from genus-0 4p to genus-3 in superstring perturbation theory, and no
higher-order perturbative terms.

There are many othef fractional BPS terms in the effective action that have not
been explicitly displayed in . Many of these can be obtained by considering the
low-energy expansion/of n-peint amplitudes with n > 5. In order to describe such
amplitudes it is important to,recall that the fluctuations of the massless fields of type
IIB supergravity around sheir background values carry specific U(1) charges [9,10]. The
field 7 has a néh-zero background value, 7 = 7°, which defines the string coupling

constant. However, its fluctuation Z, defined by the Cayley transformation
= 70

bi = @
carries U(1) charge —2, while its conjugate Z has U(1) charge +2 [11]. A scattering
amplitude issdefined with a specified value of the string coupling Im(m) = 1/gs and
a U(1) tramsformation is identified with a SL(2,Z) transformation that leaves the
background value 7y unchanged. The 256 physical states in the type IIB supergravity
supermultiplet have U(1) charges ranging from —2 to 42 in our conventions. The total
U(1) charge violation of a n-point amplitude with massless external states is generally
non-zero and satisfies the inequality |gya)| < 2(n —4). It follows that the U(1) charge

is conserved in all four-point functions but may be violated when n > 4.

Page 6 of 46
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One particular example of a well-studied amplitude that violates U(1) is theSixteen-
dilatino interaction. The dilatino, A, carries U(1) charge g1y = —3/2 so this interaction
violates the U(1) charge by qyn) = —24. Using a M-theory duality argument the leading

term in the low-energy limit was found [12] to be proportional to g;%Elg(g;T, 7)A'
where E,(s;7,7) is a modular form with weight (w, —w) that is defined in (AT4)by
acting on E(s;7,7) with w modular covariant derivativesff] This expression, was also
produced by an argument based directly on the supersymmetry transformations of the
fields in type IIB supergravity [6]. We will shortly demonstratehat this.argument can
be simplified and generalised by the use of a ten-dimensional spiner-helicity superspace
formalism.
The A'S amplitude is one example of a maximally U (1)-violating (MUV) amplitude
[13], which violates U(1) by precisely —2(n—4) unitsf§ For albsuch amplitudes the terms
up to mass dimension 14 in the low-energy expansion are BPS,terms and their coefficients
are modular forms that were determined by supersymmetry in |11] using superamplitude
methods that we will now describe. The procedure uses the fact BPS coefficients
arising in the low-energy expansion of any MUV n-point amplitude are related by
supersymmetry to the coefficients in the low-energy #expansion of the amplitude for
four gravitons, denoted by h, and (n — 4) complex scalars Z, (hhhh Z ... Z).
———

n—4
These amplitudes give rise to BPS‘interactions that have the symbolic form

(O/>—1R4Zn—4 7 a/d4R4Zn—4 7 (O/)2d6R4Zn_4 ' (3)
Maximal supersymmetry ensures that there is a unique Lorentz scalar for R*Z"~* and
d*R*Z" 4, respectively. However, as wezwill explain later making use of superamplitude
methods, there are two and OIQ}/ two/independent Lorentz scalars that contribute tor
dSR*Z"* when n > 6.

In the next subsection we/will show that the coefficient of («/)"'R*Z"™* is
proportional to E,4(%;7,7), and the coefficient of o/d*R*Z"~* is proportional to
E,_4(2;7,7). In théteasc of.d°R*Z"* there are two invariant tensor structures when
n > 6. The coefficient associated with one of these is simply &,_4(2, 2;3;7,7) defined
in , but.the coeffigient of the other structure is a new modular form, which will
be described in the following.

2.2. Superamplitudes and low-energy expansion

Theamethods we will use for studying these higher-derivative terms were first introduced
in ([14], which applied modern amplitude techniques to rederive the results of [4-§] for
the four-point interactions that are explicitly displayed in . We will follow closely

I»Some relevant properties of modular forms are briefly described in They have
holomorphic and anti-holomorphic modular weights (w, —w).

§ Note that a ‘minimally U(1)-violating amplitude’ violates the U(1) charge by qun) = 2(n — 4)
units. This sign convention ensures that the coefficient function multiplying a maximally /minimally
U(1)-violating amplitude has maximal/minimal holomorphic weight w = +(n — 4).
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the discussion given in [11], which treats n-point MUV interactions uniformly, with
the four-point interactions as a special case by setting n = 4. It proves véry useful
to introduce a ten-dimensional spinor-helicity formalism [15], which is*the analogue-of
the more familiar four-dimensional formalism. This expresses the momentum k, of any
massless state in ten dimensions in terms of chiral bosonic spinors A2,

k‘BA = (,YM)BA ku — )\Ba)\g& 7 (4)

where A = 1,...,16 labels the components of a SO(9,1) chiralgspinor, a = 1,...,8
labels the components of a SO(8) spinor of the little group/of massless states, and
(v*)P, are ten-dimensional gamma matrices. The Grassmanm variables 7* encode type
IIB supersymmetry, where the supercharges are expressed as [15]

0

)‘zanz ) (sz = )\iB,a anq ) (5)
satisfying the on-shell super-algebra
{Qz ) qA} )\Ba)\ BA7 & (6)
and the index 1 = 1,2,...,n labels the nsparticles/scattered.

The massless physical states are packaged into a superfield that has the following

expansion in powers of n;
1 1
() = Z + 1 Mo + S Sab s - + 2 (m:)"Z (7)

The superfield ®(n;) is assigned.a U(1) charge go = —2, and 7 is assigned U(1) charge

¢, = —1/2. Therefore a compenent field with m SO(8) spinor indices has a charge
¢m = —2+m/2. For instance; the scalar field Z has charge —2, and the graviton h, has
U(1) charge 0. ~

A n-point superamplitude then is a function of A\;,n;, with ¢ = 1,2,--- . n, and

supersymmetry implies, that the superamplitude should take the form,
A (X5 — 022 (Z k:) 51%(Qn) Ap(N\iymi),  with QPBA, =0,  (8)

where Q8 =" 1gP and Q8 = Y  gP (with B = 1,2,---,16) are the total
supercharges. The formula ensures that the superamplitude A, is annihilated by
the thirty-twesupersymmetries.

Apart from. the three-particle on-shell amplitude, which has degenerate kinematics,
these conditions imply that scattering amplitudes vanish unless the total number of ’s
from external states is at least 16. Amplitudes in which there are exactly sixteen n
variables are those for which gy = —2(n — 4) — they are MUV amplitudes. In this case
the quantity A,, contains no factors of 1. Therefore it is a function of the Mandelstam
variables, s;; = —a’/4 (k; + k;)?, that encodes the o/-dependence characteristic of string
theory, as well as the dependence on the complex coupling constant, 7.

In considering the low-energy expansion of amplitudes it is important to take into
account non-analytic features that come from the effects of higher genus contributions

Page 8 of 46
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and non-perturbative effects. Although this is very complicated in general, the first
three terms in the low-energy expansion of the ten-dimensional amplitude, avhich are
protected by supersymmetry, are analytic in the Mandelstam invariants. These terms
correspond to the first three terms of the o/ expansion of A,, which are Symmetrie
polynomials of degree p = 0, p = 2 and p = 3 in the Mandelstam dnvariants; since
maximal U (1)-violating amplitudes cannot have poles in momenta and thecase p = 1
vanishes identically 3, _; si; = 0.

This consideration leads to BPS terms in the low-energy hnnts of n-particle

superstring amplitudes in the form,[ﬂ

AP Ny me) = FLy(7,7) 81(Qu) AP (s15) (9)
where the subscript (n — 4) indicates the U(1) weight, wi= n — 4." In this expression,
which includes amplitudes of the form , the factof AL )(sij) is simply a symmetric
homogeneous degree-p polynomial of Mandelstam invariants. The case p = 0,

A0 (sy) =1, 3 (10)

is identified with R*Z"~* and its supersymmetrie completion in the effective Lagrangian.
Note that §'°(Q,,) has power counting as §1(Q, )~ ()¢ ~ k¥ which indeed has 8
derivatives, just as R4Z" 4. AP is identified With d*R*Z"* and its supersymmetric
completion, with

AP (s) = 0P (s5) = 29055 (1)

i<j
Finally, A is identified with d®R:Z"* and its supersymmetric completion. As
anticipated earlier, there are two independent structures at the order d®R*Z"~* when
n > 6, which the superamplitude deséription makes very explicit. This follows from the
fact that there are two independent degree-3 symmetric polynomials,
ARGPED W o ANy = Y shy (12)
1< i<j<k

with s, = —a/ /4 (k; + k4 ki )?, each of which is associated with a Coupling—dependent
coefficient F*) “gw(7,7) forr = 1,2. Note that for n = 4 we have A42(SU) = 0, while for
n=>5 A(S)( ¥) + flg(sij) so that An Q(Sij) only plays a role from n = 6 onwards.

The coefficient functions £, ® )4(7 7) with p = 0, 2, 3 contain the full non-perturbative
dependence on the complex type IIB coupling constant. When n = 4, these are the
modular functions reviewed in the previous section, so that Féo)(T, T) < E(3;7,7),
F(r,7) < B(3;7,7), and Fy)(7,7) oc £(2,3;3; 7, 7).

Terms/of higher order in the low-energy expansion —i.e. of mass dimension > 16 (or

27 27

p > 4)=are D-terms and they can be written in terms of a function f (A, n) multiplied by

|l The amplitude is defined in a given background 7 = 7°. Here and in what follows, to simplify the
notation we will drop the superscript 0 of the background field (or equivalently the coupling) 7° and
denote it by 7.
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all 32 supercharges. For example if A%)(sij) is a symmetric polynomial in Mandelstam
invariants of degree 4 it can be expressed in the schematic form

AP (i)~ > (@) (13)

permutations

This is simply a consequence of power counting since (Q)'® is of erder s}, By

construction, AW given above is annihilated by all 16 Q’s. As we will'see later stich terms

are, unsurprisingly, unconstrained and do not appear to be protected by supersymmetry.
~

2.3. Soft-dilaton constraints

The behaviour of amplitudes in limits in which one or, more of ‘the momenta of the
scattering particles is zero (soft limits) is intimately related to/symmetry properties
of the theory. A prototype is the Adler zero [16],/which, refers to the vanishing of
amplitudes for scattering of Goldstone bosons in the chiral non-linear sigma model as
one of the momenta is taken to be soft. Similarly, takmg the soft limit of a dilaton Z,
with momentum p,,, in type IIB supergravity gives

AYC(X, Z(ky)) =0, (14)

n—>

where SG indicates a supergravity amplitude and X denotes the remaining (n — 1)
scattered fields. This soft behaviour refléets,the coset structure SL(2,R)/U(1) of type
[IB supergravity. However, stringy effectgbreak the U(1) symmetry and the soft-dilaton
limit of string amplitudes no lenger vanishes{q] The result is [11],

AX.Z0)| = 2D M (R A(X,Z(k))|  =2D_, A (X)), (15)

kn—0

where w is the U(1) weight'of the.lower-point amplitude A,_1(X). In supergravity, all
the amplitudes have zero U (1) weights, therefore the above soft dilaton relations reduce
to . Furthermore, 6ne may consider the sum of the two soft dilaton relations in (15)),
which projects out the Ramond-Ramond pseudoscalar (i.e. the axion field) and leads
to a soft relation for thewrcal'dilaton [17-19),

An(X, 7 (k) + Z (k) =2 (Dy + D_u) Ap_1(X). (16)

kn—0

Applying the relations to the low-energy expansion of MUV amplitudes given in
@, we find

ED . 7) 8% (Qu) AP (s4)|,

where we have used the fact w in (15)) is n — 5 for the MUV amplitudes. Since Z is the
top ecemponent of the on-shell superfield without any 7 factors, we see that §'(Q,,)
reduces to §'°(Q,_1) directly in the soft-dilaton limit, therefore,

=D, SEP (1, 7) 8(Qur) AP (555 , (17)

n

A

= 2D, sFP;(r,7) AP (s) . (18)

kn—0

F® (r,7) AP)(s,;)

n

€ Since Z is a combination of axion and dilation, we are really considering both the axion and the
dilation to be soft, even though we are calling this a soft-dilaton condition.
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We will discuss this relation for values of p < 3. In the case p = 0, A;O)(sij) = 1,80
the soft limit is trivial and we obtain

FO,(7,7) = 2D, s FV4(1,7). @9)
In the case of p = 2, it is easy to see Ag)(sij) = flgl(sij), we agail obtain
kn—0
F?,(7,7) = 2D, s F24(1,7). (20)
Therefore, recalling that F (0) ( T) = E(;T, f) and F(z)( T) =wF(8; 7, 7), the above

relations uniquely determine F( 9,(r,7) and F?,(r,7) for any/n. -

As shown in , the story becomes more interesting foryp =3, inavhich case there
are two independent polynomials when n > 6. As was argued in [L1]; it is important to
choose particular linear combinations of An 1(slj) and An 2(SU) to form the basis for the

amplitude AY In particular, we choose,

o) = 312 (28 = 3n) A (s15) + 3AgAs)] |

n,l —
O} = (n— AT (si) — AD)(s), 4 (21)
so the amplitude is given by
AP = 6%(Qu) [ R4 (7, 1) OQ St P07, )OS (s17)| (22)

With this particular linear combinationgwhen n = 6 the term involving

O =5 (10 s +3 S sh). (23)

1<i<5<6 1<i<j<k<6

is identified with the term of mass dimension 14 in the low-energy expansion of the six-
point MUYV tree-level amplitude from/explicit computation as given in . Hence the
coefficient F2(32) (7, 7) of the second dinear combination (9((5‘?2) does not receive any tree-level
contribution but only gontains terms originating from higher-genus string amplitudes.
Furthermore, (9( 5 vamishes for n = 4 and n = 5, while for n = 6, (9(3) Zperm 512834556
vanishes in the soff limit, which has important consequences as we Wlll discuss later.
The preceding argument leads to expressions for (’)ﬁ and (’)S’% for all values of n.

They are determinedsunicquely by the following soft limits,
3 3 3
OGP W =0 1(s0).  Ohsy)| =0 ia(s5),  (24)

1
& Ky —0 "

n

which give

1
O (s15) = 55 [(28—371)25% +3 ) sijk] ,

i<j i<j<k

O)(si) = (n—4)> s — Y sy (25)

1<J i<j<k
These properties and the soft-dilaton conditions imply that the coefficients F,(L )4 (7, 7),

and Fn_472(7, 7) obey the following relations,

Fy(L?)—)4,1(Ta T) = 2Dn_5F753_)571(7', ), F’rg,3—)4,2(7_’ T) = 2Dn_5F753_)5’2(7', 7). (26)
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Importantly, the second equation only applies to the cases with n > 6. Therefore,
F£3)4 L(7,7) is determined recursively by Fo(31) (7,7), which is the coefficient of @®R* that
is given by the generalised non-holomorphic Eisenstein series £(2, ¢;3;7, 7). The other
coefficient F( “42(7,7) is new, and will be determined separately.

It is instructive to have explicit results of the low-energy expansiomof the relevant
string amplitudes. At tree-level, these are relatively easy to determine. For example,
the coeflicients of the low-energy expansion of, tree-level MUV amplitudes with up to

six particles and up to 14 derivatives are given by [11]
~

A 3 5 2
Au(siy) = 275C(3) + 75 C(5) 0 (s) + ¢ (32 OWsy)

" 3 5 5 3

As(sij) = e (@ + 576 5)057 (s15) + 2736 (3 O

N 35 5

Ag(sig) = 575 C3) + 2 CB)OL (31 PR CBEOL (5:1). (27)
These tree-level results prov1de useful data for determining parameters in the differential
equations arising from supersymmetry constraints that vzﬂl be discussed in the next
section.

2.4. Superamplitude constraints and differentiabequations

We have seen that the soft-dilatonteenstraints relate coefficients in the low-energy
expansion of MUV amplitudes since qufgl(r, T) ~ D, FP (1,7). Following |11], we will
now show that conjugate firstéorder differential equations involving D are determined by
supersymmetry constraints generalising the procedure of [14,20H23]. The key ingredient
in this procedure, which has been cheeked in many examples, is that supersymmetric
contact terms of mass dimension < 14 are not allowed for non-maximal U (1)-violating
processes[T| This fact implies hat the low-energy expansion of a sueramplitude up to
mass dimension 14 is uniquély determined by lower-point amplitudes via factorisation
using tree-level unitarity. In this section we will simply denote by D and D the action
of the holomorphig@fid.anti=h6lomorphic covariant derivatives D, D_,, (given in (A.3)))
on a modular function with weight (w, —w) as to avoid cluttering the notation. Given
the fact that allsof the coefficients F,(fi)4 have modular weights (w, —w), with w =n —4
it should be/clear whichispecific covariant derivatives D, D are acting on them.

Cases p'=0 and p= 2. We will illustrate the idea by considering a six-point amplitude

with four gravitons, together with a Z and a Z, which is a U(1)-conserving amplitude.
The diagrams that contribute to this amplitude are sketched in Fig. (I, which contains
three factorisation diagrams and one contact diagram. As emphasised earlier, the
contactitérm alone is inconsistent with supersymmetry, therefore it must be linearly
related to the factorisation diagrams. In other words, the absence of a non-MUV

F If there are more than 14 derivatives, one can then construct supersymmetric contact terms. One of
such examples is given in ([13]).

Page 12 of 46
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4
5
° DF (7, 7) 4 R (7,7) z
z

8
9 Z
10 (a) (b)
11 7
12
13 Z
12 FP(7,7) Z F&(r,7) o
16
17 d
18 () (d)
19
20 Figure 1. The diagrams that contribute to thesix*point amplitude Ag(h, h, h, h, Z, Z)
21 at order R* or d*R*, with h being the graviton (represénted by the straight lines) and
;g Z, 7 the axion-dilaton field and its conjugate (xepresented by the wavy lines). In (a)
2 Fl(p) (,7) is the coefficient of the interaction d??R*Z. In (b) EEP)(T, 7) is the coefficient
25 of the interaction d?’ R* (and its supersymmetric Felative in (c)). In (d) Fg;fl)(f, 7)
26 is the coefficient of the interaction d??—2R?.
27
28
gg supersymmetric contact term implies.a linear relation among all these terms, and
31 consequently a linear relation of the eorresponding coefficients,
32 - _ _ — _
33 DFl(p)<7', T) + ay Fép)(T, 7) + a9 F]({; 1)(7, 7)=0, (28)
gg where the coefficients a; and &, arein principle computable by explicit evaluation of
36 the contributions in figure [I However; that is very complicated and so in the following
37 the coefficients will be fixed by§omparison with string perturbation theory.
gg Note, if p = 0 (i.e. at order R*), the contribution of the R vertex in figure [1}(d)
40 vanishes. If p = 2, one can further relate the R’ coefficient, F}({;_l)(T, T), to Fép) (1,7) by
41 considering the five-graviton amplitude, which is a non maximal U (1)-violating process.
fé It receives contributionsifrom d*~?R°® (with coefficient F ]({;_1)(7', 7)) and pole terms
44 arising from attaching a three-graviton vertex to d?R* (with coefficient F.")(r,7)). By
45 the same argtiment, this leads to a linear relation between their coefficients
46
47 AP (0 7) + ag FP (r,7) =0, (29)
48
49 that is in agreefhent with [24]. By combining and (29)), we arrive at
50 y
o DE" (1,7) + as B (1,7) = 0, (30)
gg which, together with or , leads to the Laplace equation
o A FP (7, 7) + 204 FP (1,7) = 0. (31)
56 Although the constant ay is computable, in principle, this is not straightforward. As we
g; commented earlier, however, it can also be determined from knowledge of the tree-level

3 5
59 behaviour of the string amplitudes, which implies Féo)(r, T) ~ 15 and Fo(z) (1,7) ~ T3
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z z
Z A
DY (r,7) DFY (r,7)
z z
(a) (0)
Z Z A
z
F(r,7) 4 R (r,7) B (r.7)
~
7
(c) (d)
Figure 2. The diagrams that contribute “to, the/ seven-point amplitude

Az(h,h,h,h,Z,Z,7Z) at order d°R*.

Therefore, y

(A _ Z) FO(r.7) =0, (A - 14—5) FO(r.7) =0, (32)

reproducing the Laplace equations for non-helomorphic Eisenstein series. We therefore
find Féo) (1,7) = E(%;7,7) and Fé2)(7', TV=wE(s;7,7). Once Fo(p)(T, 7) is determined,
and fix all the F'”),(7,7) for @my n. These results have been confirmed by
explicit perturbative string theory calculations at genus-one and genus-two as described
in the next section, as well as by aleading order D-instanton calculation in the case of
R* term [25]26].

N

Case p=3. In the p =3 case additional diagrams contribute to the amplitude, see

shown in figure 2] Tn.addition, te diagrams that are similar to those in figure [T, a new
type of diagram arises eomsisting of two p = 0 higher-derivative vertices connected with
a propagator shown in figure (d) The supersymmetry constraint that implies the
absence of contact .terms leads to the relation

DEP (17 + a BV (1, 7) + b (FO(7,7)) =0, (33)

where for.m, <6 Fé?i)‘l(T, T) = FT(L?LJ(T, 7) since, as discussed below (22), the coefficient
F,E‘g_)4’2(7', 7) makes its first appearance at n = 6. Combining this equation with the first
equation in (26)) (since we are considering the case n = 4 only the first equation in ([26))
applies) leads to the Laplace equation for a generalised non-homomorphic Eisenstein
series, after fixing the constants a, b using perturbative superstring amplitude,

(A =12) FY (r,7) = =(1)"(7,7))". (34)
Using the fact that Féo)(T, T) = E(3;7,7), we see that Fég)(T, T)=E(3,%,3;71,7). We
can then use the first equation in 1) to determine all the coefficients Fn(z,l(T, 7) with

n > 4 associated with the higher-derivative terms (951)471(sij).
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The constraints on the coeflicient FTES—)4,2(7U 7), which is associated with the‘higher-

derivative term (’)7(2472(32-]-), have to be determined separately. These follow' from the
structure of the non-MUV seven-point amplitude with four gravitons, two Z’s and
one Z. The contributions to the amplitude are shown in figure 2l The absence of
supersymmetric contact terms implies that the coefficient of each contactvertex (namely,
@Fﬁ) (7,7) and @FQ(?Q) (7,7)) is linearly related to the coefficients of the'factorising terms.
Therefore we have the following differential equations

DE(1,7) + a1 B (1,7) + ap B (1, F) (1, 7)/= 0, (35)
and
DE) (1, 7) + by E (1, 7) + by FO (7, 7) FLO (7, 7) =0, (36)

Equation involving Fg(i)(r, 7) does not give newginformation, and is consistent
with the result obtained earlier. Equation detérmines the new modular function
F2(32) (7,7) that we anticipated earlier. Note that, by applying D to and using ,

we can obtain an inhomogeneous Laplace eigenvalue equagion for FQ(?’l) (1,7)

15 3
(A —10F(r,7) = =2 (Blasz, ) Baadm. ) + S B m 7)), (37)
with A(_y the suitable Laplace operator (A.6), and where the specific values of the
constants a; = —5,as = 1 were fixed in {11}
(3)

2, We know that

From the construction of the higher-derivative terms, (97(13% and O
Fg(?;) (7,7) should vanish at treeslevel, which allows us to fix the relative ratio between

b and by, leading to
_ 1
DFQ(,BQ) (7—7 77_) + bl 1(3) (7-’ 7j) - g 0(0) (Ta 77—)‘}71(0) (7—7 7—):| = 07 (38)

where we have used the expressions of the perturbative part of Féo) (1,7), FI(O) (7,7) and
F 1(3) (7,7). This leaves ene undetermined constant, by, which can be fixed by a one-loop
calculation of the sixepoint: MUV amplitude to the same order as d6R4E-]
Furthermore using together with Féo)(T, f)Fl(O)(T, 7) = 3D[(Ei(2;7,7))?] we
arrive at
B)(r,7) = %[Féi) (r.7) = 2B (377, (39)

which, thanks te , leads to an inhomogeneous Laplace eigenvalue equation for
F (3)(7' 7)
2,2 )
5by

(A Al0) P (7, 7) = —7(Eo(%m T)Ea(3;7,7) — Ea(3;7, T En (37, ?)) - (40)

The perturbative part of F2(32) (7,7) takes the following form

T [c@)@Im - soc@ + O] + O ) a1

* The constant b; has recently been determined to be 9/32 by computing the one D-instanton
contribution to the amplitude [27].

3 _
) (r,7) =
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The result predicts the precise ratios of the perturbative contribution to thefhighex-
derivative term Oé‘g (si;) at genus one, two and three. Once F2(?2)(7', 7) is determined, all

higher-point coefficients F,(L?’_)4’2(7', 7) with n > 6 are then also fixed by .

3. Exact results for integrated correlators in A’ =4 SYM

This section will review some recent exact results concerning correlation 4unctions in
N =4 SYM [2§] and their connections with superstring amplitudes: The most studied
example of gauge/gravity duality is the holographic relationship hefween N = 4 SYM
with SU(N) gauge group and type IIB superstring theoryfin AdSs X S°. According
to this duality, correlation functions in N' = 4 SYM are thenimages of scattering
amplitudes of type IIB superstring theory. In particularjithe large-NV expansions of
N = 4 correlators should reproduce the low-energy expansion of superstring amplitudes.
However, we will determine exact results that are valid for any finite value of NV, as well
as in the large-INV limit. We will also study corfelatorsiof N' = 4 SYM with general
classical gauge groups, and correlators of more than four O%erators that are dual to the
MUYV amplitudes that we met in the lastisection.

Our emphasis will be on integrated eorrelators of operators in the stress tensor
supermultiplet. That is, correlators of 1/2-BPS eperators that are integrated over the
positions of the operators with particular.ameasures that are chosen to preserve some
of the supersymmetry. We will see thatisuch integrated correlators, introduced in [29],
can be explicitly determined‘by supersymmetric localisation. Not only do the large-
N expansions of these correlators make contact with the dual type IIB superstring
amplitudes, but their properties at finiteV reproduce and generalise features determined
directly from Yang—Mills pertusbation theory.

3.1. Integrated correlatorsin N =4 SYM

We are interested imsthe eorrelation function of four superconformal primaries in the
stress energy tensor supermultiplet, as well as ‘maximal U(1)-violating correlators’ of
more than four operators. Explicitly, the four-point correlator in N' = 4 SYM with
arbitrary gauge group is given as

1

1 4
L19T34

<02($1, Yl) ce 02@47 Y4)> = [ﬁree(Uv Vi Yi) +I4(U, V; Y;)’T(U, V)] ) (42)

wheré the cenformal invariant cross ratios U,V are defined as

2 2 2 2
T19T34 T14%33

2 2 7 Vi=—7 (43)
T2.T T.T
13L24 13%24

U:

and Os(x;,Y;) is the superconformal primary operator in the stress tensor supermultiplet

of N =4 SYM, which is defined as

O3, Vi) = (¢ (1) 9 (i)Y', (44)
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where ¢7 is a scalar field in A = 4 SYM, and O, has conformal dimension A =2. Here
I,J=1,2,...,6 are the R-symmetry SO(6) indices and Y; is a null polarization vector
Y;-Y; = 0. In writing down (42)), we have used the partial non-renormalisation theorem
of the correlator [30,31]. This theorem implies that after separating out ghe free-theory
contribution Tgee, the remaining part can be further factorised into aduniversal factor
Z,(U,V;Y;), which is fixed by the symmetries, and corresponds to the stipercharge §'°(Q)
in the superstring amplitude. All the non-trivial dynamics of the correlatords contained
in T(U,V).

Many properties of T(U,V) have been studied. In perturbati(B theory, it was
evaluated at one and two loops in [32H36], and at three loops,in [37].4/The planar loop
integrands have been constructed up to ten loops [38,39], and non=planar contributions
first appear at four loops. The non-planar four-loop integrand was determined in [40].
These very high order results for the integrands were made possible by the discovery
of a hidden permutation symmetry [41,/42]. In the strong €oupling limit, the tree-
level Witten diagrams for this correlator were ©Gomputed in early days of AdS/CFT
duality [43H45] [46-49], and the one-loop confribufion’in the supergravity limit was
studied more recently [50H53] [

However, we are interested in the correlater at finite complex Yang—Mills coupling
T =0/(2r) +4mi/g> , which is important for making manifest SL(2,Z) self-duality of
the theory and for the understanding itssrelation to the exact results of superstring
amplitudes that were discussed in the, previous section. Although evaluating a
non-trivial correlation functiom, at finite coupling is generally challenging, powerful
methods have recently been developed for determining integrated correlators based on
supersymmetric localisation. This utilises the fact that A/ = 4 SYM can be expressed as
the m — 0 limit of N' = 2*8¥Mja massive deformation of the N' = 4 theory where the
hypermultiplet is given a/mas$ m¢ Using this fact the integral of the N'=4 SYM four-
point correlator (42f) over the positions of the operators, x;, with a particular measure
can be expressed in‘terms of properties of the partition function of N' = 2* SYM on
S* which was evaluatéd soie time ago using supersymmetric localisation [55]. More
explicitly, the following are two examples of integrated correlators that are determined
by the m — Qdimit of derivatives of the ' = 2* partition function Z(7, 7, m) [29,50].

1. _ 8 [ ™ r3sin?(f)
ZATE)m logZ(T,T,m))m:O = —%/0 d?“/o dQTT(U, V), (45)
and
oflog Z (1,7, m)‘ (46)

m

=0
o] ™ 3 ain2
= —%/ dr/ de%i(e)(l + U+ V)Dyuui (U, V)T (U, V) + 48¢(3)c,
0 0

where 72 = V, 1 — 2rcos(f) + r? = U, Dyyy; is the so-called D-function appearing in
the computation of contact Witten diagrams (see e.g. the appendix D of [57]), and ¢

1 See |54] (chapter 8 of this SAGEX Review) for more details of related topics.
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denotes the central charge of the theory. Roughly speaking, the four derivativés bring
down four integrated operators, and setting m = 0 at the end is necessary forireducing
N = 2* back to N' =4 SYM.

The localisation expression for Z(7, 7, m) is given by a N-dimensional,matrix model
integral where the integrand consists of the matrix model measuredmultiplying the
product of two factors. One factor is simply the one-loop determinanit’ of the N = 2*
theory, which leads to the perturbative sector of the integrated correlators., The other
factor is the Nekrasov partition function that leads to the instamton centributions.

The k-instanton contribution can be expressed as a k-dimensiefial contour integral
[58,59]. Determining the explicit properties of Z (7,7, m) is generally very complicated,
especially at finite 7 and for general values of N. However, the expressions for the
integrated ' = 4 SYM correlators (45]) and depend only on the coefficients of the
terms of order m? and order m* in the expansion of Z(73F, m) in powers of m. This
considerably simplifies some aspects of the analysis{but it is still very difficult to obtain
the explicit results that display both the 7 dependence and the N dependence of the
integrated correlators. However, there are a number of réstlts that address the large-N
expansion, both with fixed 't Hooft coupling and with/fixed g,.,, [29}56},60,61]. In the
large-N 't Hooft limit the instantons are expomentially suppressed, which obscures the
SL(2,7) symmetry, but the large-N expansion with fixed g,.,, accounts for Yang—Mills
instantons and makes SL(2,Z) explicit.

Here we will review the arguments im]62.,63], in which the first integrated correlator
is expressed as a two-dimensional lattice sum, which is an explicitly modular
invariant function of functionsof z for all values of N. We will also review the
generalisation to N' = 4 SYM with an arbitrary classical gauge group [64] (which made
use of the analysis of the pertusbative sector in [65]).

We will also review results for the second integrated correlator (46)) which are less
complete since theyponly account for several low-lying terms in the large-/N expansion
that were determined im[61].

The study ofdintegrated correlators in N' = 4 SYM has been further extended to
maximal U(1)y#violating (MUV) integrated correlators [66,/67], which are holographic
duals of MU Vsamplitudes in type IIB superstring theory in an AdSs x S° background
that were discussed in the last section. Here U(1)y is the bonus U(1) [68], of the gauge
theory, which is a true symmetry of the free theory but more generally is broken to
a Z4 automorphism of the supergroup PSU(2,2|4) and is dual to the (broken) U(1)
R-symmetry of the type IIB superstring.

An example of an unintegrated MUV correlator is

(Oa(21,Y1) ... Oa(x4, Yy) Or(5) ... Or(24)) (47)

where O, is the chiral Lagrangian of N'= 4 SYM. Other types of MUV correlators are
related to this one by supersymmetry and superconformal symmetry. This transforms
with weight (n — 4,4 — n)[i{] The chiral Lagrangian O, is dual to the dilaton, and the

T1 Note that the modular weights of MUV correlators have the opposite signs to the modular weights
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holographic version of the soft-dilaton condition takes the form of
Dy 5(0a(x1, Y1) - .. Oa(24, Ya) Or(25) . .. Or(T01)) (48)

]‘ 4
- 5/4 2 (Oa(1, Y1) - O(24, V) Ou(5) - .- On(n 1) O- (A

When considering the perturbative contributions of the correlators this'relation leads to
a very efficient method for constructing loop integrands for the four-point correlator |67,
which was utilised in [38-42] for calculating the four-point correlator at high orders.

~
3.2. Exact results for integrated correlators

We will now discuss the exact structure of the integrated correlator that is
proportional to A,92 log Zg, (7,7, m)|m=0. We have iritteduced| the subscript Gy to
the partition function to indicate that we are considering, thesgauge group to be any
classical Lie group, so Gy = SU(N) (as in [62,63])0r SO(2N), SO(2N + 1), USp(2N)
(as in [64]).

Montonen—Olive dualit [70-72] implies that when tle gauge group is simply-laced
(SU(N) or SO(2N)) correlators must be, invariant under SL(2,7Z). This is generated
by the transformations S : 7 — —1/7 and T.: 7 =7 + 1. For the non simply-laced
gauge groups, SO(2N + 1) and USp(2N), duality is generated by the transformations
S: 71— —1/(27r) and T : 7+ 1. THetaetion ofiS transforms SO(2N+ 1) into USp(2N)
and vice versa, so it is not a self-duality. The transformations STS and T generate
the congruence subgroup I'g(2),C SL(2,Z)3An element y=(¢5%) e SL(2,Z) belongs to
[o(2) if ¢ = 0mod 2. So T'y(2) 18 the self-duality group when the gauge groups are non
simply-laced classical groups.

In [64], it was found that th integrated correlators for any classical Lie group can
be expressed in the compact and unified form,

1
Con(r,7) S I loglay (7. 7,m)| (49)
> g It ? gy Imt2nT?
SIS (B e 0
(m,n)eZ? 0

where B (t) and Bgy(t) are rational functions of ¢. In the simply-laced cases
Bz, (t) = 0,'and hence Cg, (7, 7) is SL(2,Z) invariant. The rational function By (t)
was constructed in [62,63] and it is explicitly given by

Qsuw)(t)

(t+ 12N+ (50)

Bsu)(t) =
of the holographic dual MUV amplitudes.
1t The term ‘Montonen—Olive’ duality is often used interchangeably with ‘Goddard-Nuyts—Olive’
(GNO),duality [69]. GNO demonstrated that in a Yang-Mills theory that has magnetic monopoles
and gauge group G, the magnetic charges are associated with points on the weight lattice of the dual
group “G. The superscript © indicates that the dual group is the Langlands group. Since here we
consider only correlators of local operators, these depend only from the Lie algebra gyx and its dual,
Egn, and so global features of this duality are not relevant in this article.
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and Qgy(ny(t) is a polynomial of degree (2N — 1) that takes the form
1

Qsu(v)(t) = —ZN(N— D(1 = )N 11 4 )N (51)
o 1+t 1 o T
N +3t—6)¢t) P 2 _ 8Nt — 3) ph—1
{(3+(8 +3t —6)t) Py T +1+t(3 8 3) Py T

with P,(VO‘”B )(2) being a Jacobi polynomial. The function Bsyny(t) satisfies several
interesting relations

~
Bsuvy(t) =t Bspan)(t™), (52)
S N(N — 1) ©
Bayon (f)dt = 2~ 1) = Ba@®df=0. 53
/O s (t) 3 i suw)(t) (53)

The first of these equations is an inversion relation that follows:automatically from the
lattice sum definition of the integrated correlator (49)), as was'pointed out in [73] (where
the lattice sum was re-expressed in terms of a modular invariant spectral represnetation).

For the non simply-laced cases, GNO duality interchanges the SO(2N + 1) theory
with the USp(2N) theory. This is a property of thé expression by virtue of the fact
that for these groups the coefficient functions,satisfy the relations

Bsoen+1y(t) = Bhsyem (1), Bioun+1) () = Birsyem (1), (54)
which ensure that the action of S interchanges the two terms, and therefore relates
CSO(2N+1) (T, 7_') with CUSp(2N) (7', 7_').

It is also notable that Bsiaw(t) = Bsuv)(—t) which is directly connected to the
relation Cgy(n)(7,7) = Csu(—py(—7,=@). Exact expressions for all By, (t), B (t) can
be found in [64], however, as wewill shortly argue, Cso(,) and Cysp2n) can be expressible
in terms of rational linear/combinations of Csu(m)- Furthermore, we will also see that
Csu(m) can be expressed in terms of Csy (o).

Using the definition of the.non-holomorphic Eisenstein series the integrated
correlator can be written as the formal expansion

Cén(r.7) = ey (0) + > [bgs, () E(s;7,7) + b (s) E(s: 27, 27)] , (55)

5=2
where the coefficients bp(s) and b7 (s) are rational numbers that are determined by
the power.series expansion of BEN (t) in the form

o0

By, (=) ?Z—S()S) L i=1,2, (56)

and we defined b, (0) = bg,, (0) + b, (0).
Again for the simply-laced cases bch(s) = 0, and for the non simply-laced cases
béO(2N+1)(S) = bQUSp(2N)(S) ) b%O(2N+1)(S) = b(1]Sp(2N)(S) ) (57)
which manifest GNO duality. In [73] the formal expansion (55| was expressed in terms

of a spectral decomposition for Csy (), and a similar expression was given for general
CGN in [64]
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Remarkably, the integrated correlators satisfy Laplace-difference equations that
relate correlators of different gauge groups. In the case of SU(N), this takeshe form

A-Csun) (T, 7) — desuwy [Csuvany (T, 7) = 2Csun) (T, 7) + Csuv—H(T, 7)]
— (N -+ 1)CSU(N—1)<7-7 7_') + (N - 1)CSU(N+1)(7—7 7_—) = 07 (58)

where cspvy = (N? — 1)/4 is the central charge. This is a powerful equation that
determines Csy(n)(7,7) for general values of N in terms of Cgp(o)(7,7), once the
boundary condition Csy1)(7,7) = 0 is imposed.

The equations for other gauge groups take similar forms, Thus, the Laplace-
difference equation for the SO(n) correlator (where n = 2Ngor 2N + 1) is given by

A:Csom) (T, T) = 2¢30(n) [Csom+2) (T, T) — 2Cs0m)(T, T) + Coo(n—2) (T, 7)]
- nCSU(nfl)(’B 77—) + (n - 1)CSU(n)(7—7 77—) =0 ) (59)

where c¢go(m) = n(n—1)/8 is the central charge for SO(n). This equation relates SO(n)
and SU(n) correlators. The SO(3) case is an exceptionsince the Dynkin index of SO(n)
is discontinuous as n = 3, hence in that case the integrated correlator is actually given
by Cso) (%, 5) (rather than Cgos)(7, 7)), which agrées with the result of supersymmetric
localisation [65]. For USp(n) correlators (where n =2 ), we have

ATCUSP(TL) (7-7 71) - 2CUSp(n) [CUSp(n—Q) (7-7 7__) - 2CU5’p(n) (T7 71) + CUSp(n+2) (7-7 7_—):|
+ nCSU(n+1)(2T, 27‘) — (n —+ 1)C5U(n)(27', 277') =0, (60)
where cygpm) = n(n + 1)/8 is the central charge for USp(n). This equation relates
USp(n) and SU(n) correlators.yThe localisation expression for the correlator can be

used to show that
T T

Cso3) (57 5) = Qsp(z)(ﬂ T) = Csu(2) (T, T) (61)

which is consistent with the isomorphism of the corresponding Lie algebras. Combining
this initial condition, with the fact that Csy(v)(7,7) is determined by (58], it is then
straightforward to show that the Laplace-difference equations and determine
Csom) and Cygp(ny I terms of finite rational linear combinations of Cgy(m correlators.
For example,

Csow (T, 7) & 2€su@)(T,7) » Cso) (7 T) = Csua)(7,7), (62)
Cso@l7, T )=

8 4 2
—2 CSU(Q)(T, T)+ gCSU(?,\) (1,7) — 265(](4) (1,7) + gCSU@ (1,7) + gCSU(G) (1,7) .

Since Csy () (7, 7) is invariant under SL(2, Z) for all m € N, it follows that Cson) (T, T)
is alsoyinvariant under SL(2,7Z), as expected from GNO duality for SO(2N).
Similarly,

4 4
Csos) (r,7) = -2 Csu(2) (1,7) + gCSU(B) (T, 7_')} + {—2 CSU(Q)(QT, 27) + §CSU(3)(2T, 27) |,
(63)
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with an identical result for Cygpa) (7, 7), reflecting the fact that USp(4) = SO(5). s
instructive to compare Cso(7) and Cygps), in order to get some insight into the way in
which GNO duality that relates Cso@n-1) and Cyspen) is realised. From we find

8 12 3 4 _
Csom)(T,T) = |:ECSU(2)(7—a T) — ECSU(?)) (7,7) + gCSU(4) (7,7) + 5CSU(5)(T, 7)}

3 12 8
+ [Resvaien2n - Zeswizn2m)+ Sewwefzn] 47 6

~

and from ((60)),

_ 8 N 12 N 3 _ 4 _
CUSp(ﬁ) (T, T) = lgCSU(Q) (27’, 27') - FCSU(g) (27’, 27') + 565[](4)(27’, 27’) + 565(](5)(27’, 27’):|

3 12 8
+ |:SCSU(2)(7—7 T) — ECSU(?)) (1,7) + 5CSU(4) (7 f)} : (65)

Since CSU(N)(T7 7_'> = CSU(N)(_%7 —%) and CSU(N)(27_7 27_') B CSU(N)(_%a —%), it follows

from and that under the transformation SW¥r — —1/(27), Cso(r)(T,7)
transforms into Cygp(e) (7, 7). More generally, by induction, using the Laplace-difference

equations and , one can prove
1 1

Cso@en+1)(T4T)= CUSp(2N)( 50 _E> ; (66)

which is the statement of GNO duality (reealling our previous comment that for N = 1
the localised correlator equals Cso(g)(%, g), which also coincides with the integrated
correlators Csy(2) (T, T) = Cusyfe) (T, T):

3.3. SYM perturbation theory 2

Starting from our hasie expression for Cq\ (7, 7) it is straightforward to evaluate
the perturbation expamsion Cge;t(ﬁ) in the region 7, = 47/g%,; — 00, which agrees
with the localisation result originally derived in [65]. This perturbative expansion can
be organised ins striking manner by defining suitable expansion parameters, ag, , for
each gauge group. These generalisations of the 't Hooft coupling are given by

Ng; (n—2)g? (n+2)g2
ASU(N) = ?YQM, aso(n) = Tma aysSp(n) = TYM ) (67)

where n = 2N dr 2N + 1 for SO(n), and n = 2N for USp(n). The SU(N) coupling
is thesstandard/’t Hooft parameter (rescaled by 47%), while aso(n) and ayspn) are the
generalisations for SO(n) and USp(n) theory (see also [74]). Note the parameters ag

h
defined in can be rewritten in a unified form ag = “$25 | with hY, the dual Coxeter

4m?
number for the group G. The appearance of the dual Coxeter number is natural since

in M=4 SYM all fields belong to the adjoint representation. [f]

T As already mentioned the case of SO(3) is special and one needs to rescale g,.,, — V2g,,, and
define ago(s) = g2,,/(2%) so that asos) = asu(e) = ausp2)- We furthermore have agy 1) = aso(s)
and aysp4) = aso(s), consistent with the isomorphic relations among the corresponding algebras.
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In terms of these parameters we find that the perturbative expansion of all the
integrated correlators can be expressed in the following form,

3¢(3)agy B 75((5)aéN N 735((7)&%N B 6615 ¢(9) (14 PGN’l)a‘éN

Cex (1) = —dcay 2 8 16 32
114345 C(11) (1 + Pa. o) a®
1 d )1<28 G 2) SN 4+ 0(af,,)| - (68)

A striking feature is that the first three perturbative contributions are universal and
their dependence on N is contained entirely within the central chérge cc, and ag, .
Explicit “non-planar” factors, Pg, ;, where ¢« = ¢ — 3 and #,is the loop number, first
enter at four loops and the first few examples are listed below:

2 1
P - P . -
SU(N),I 7N2 3 SU(N),Z N2 9
n? — 14n + 32 n? — 14n + 32
PSO(n),l = _W7 PSO(n),2 = —W )
n? + 14n + 32 Y on?4 14n+ 32
PUSp(n),l = W ) PUSp(n),2 = 8(n—+2)3 ) (69)

and further details and higher-order terms aregiven in [64].

From we see that for SU (V) is the well-known genus-expansion in powers
of 1/N? and agy(ny [75]. However theré'seems to be no systematic analysis of the
analogous expansions for SO(n) and USp(n) (see [74] for some limited results). Given
the expressions in , as well agshigher orders presented in [64], we see that the large- IV
expansions for SO(n) (with n#=2Nyor n = 2N + 1) and USp(n) (with n = 2N) are
expressed purely in powers of 1/(n — 2) and 1/(n + 2), respectively.

From we see that théplanar contribution is the same for all gauge groups,
while the non-planar contributions only enter at ¢ > 4 loops. This property is consistent
with the constructionof perturbative loop integrands using the methods in [41},|42], and
provides important information concerning large-/N expansions.

We note that the precise coefficients of the perturbative expansion can be
verified using standard Keynman diagram computations. In particular the first two
loops were computed in“[63] while the planar terms up to order O(ag;, ) were derived
in [76] by understanding what the Feynman integrals associated with the integrated
correlatorrare simply periods of certain conformal Feynman graphs, for which special
calculational techniques are available. These results make use of the perturbative loop
integrandsyconstructed in [38,[39,41,42] and the precise expression for the integrated
correlator .

The perturbative expansion and the non-planar expressions are consistent
with certain symmetries. In particular, for SU (V) we have

CSU(N) = CSU(~N) » asy(N)y = ASU(-N) » Psu(nyi = Psu(-nyi s (70)

hence
ert 2 ert 2
CgU(N)(gYAl) - CgU(fN)(_gY]\/[) ) <71)
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Similarly for SO(2N) and USp(2N) we notice

CSO(2N) = CUSp(=2N) » aso2N) = 2ausp(—2N) Pso@ny: = Pudp—any,i» a(72)

which lead to

C?Z%QN) (9}2/1W> - CEZ.;(—2N)<_2932/NI) ’ (73)
These relations have been further checked at higher orders and are furthermore
consistent with the Laplace-difference equations , , and .

The relations and also hold for the perturbativefexpansion of the
other localised integrated correlator that was defined in (46)) and is/proportional to
o log Zg, (m, T, f)‘mzo. And the perturbative terms of this integrated correlator have
also been verified to match the explicit Feynman diagram ealculations [76].

3.4. Mazimal U(1)y-violating correlators

Given the exact results for the integrated four-point cprrelators , the m-point
maximal U(1)y-violating correlators defined in canl be obtained for any classical
gauge group by acting on Cg (7, 7) with@modular covariant derivatives defined in ({A.3]).

An integrated version of the MUV correlators, can be obtained starting from the
integrated correlator Can (T, Th= Cg)l)v (7, 7) and inserting multiple factors of the
integrated chiral Lagrangian, [dz @z(r).""Such insertions are obtained by applying
multiple covariant derivatives D,, to Cq (&, 7). The resulting expression is a (w, —w)
modular form given by

Co)(7,8) = 2" D1 Dyys - - Do Cov) (7, 7) . (74)

Given that the Laplacian o;erators A(z)w, defined in are Casimir operators on
the vector space of modulardforms M,, _,,, they commute with the covariant derivatives
D,,. Furthermore, since these Laplacians reduce to the standard one Ay = A,, on the
space of modular invariant functions M, we can use to derive a system of Laplace-
difference equations satisfied by maximally U(1)y-violating integrated correlators. With
the help of thesexplicit forms of A4y, in , we obtain the two equivalent Laplace-
difference equations.. To, illustrate the idea, we will focus on the SU(N) case in the
following diseussion, In particular, we find the SU(N) MUV integrated correlators
obey the following Laplace-difference equations,

= (w) (w) (w) (w)
(4Dw71D—w + w(w — 1)>CSU(N) — 4csu(w) (CSU(NJrl) — 20wy + CSU(NA))
= (N + 1)62?1)(]\1—1) +(N - 1>C591(l)J)(N+1) =0, (75)
and

= (w) (w) (w) (w)
<4D_w_1Dw + w(w + 1))CSU(N) — 4csu(w) <CSU(N+1) - 2CSU(N) + CSU(N—I))

- (N + 1)CA(S?IUJ)(N71) +(N - 1)ng)(1v+1) =0. (76)
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The structure of the instanton and anti-instanton contributions is of particular
interest [67].  Starting from the exact expression for ng(N) itais fairly

straightforward to obtain the k-instanton and k-anti-instanton sectors of Cgf])( N Since

for w > 0 we know that CéwU)(N) has modular weight (w, —w), it follows thatythe k-
instanton and k-anti-instanton contributions do not coincide (whereas they do in the
w = 0 case).

The precise results obtained for various values of N in [67] are in accord with
expectations from the analysis of semi-classical instanton gontributions to MUV
correlators in special cases treated in, for example, [12|77,|78};«These references are
all restricted to leading orders in the 1/N expansion of N' =4 SYM correlators or to
the holographically related terms in the low-energy expansion of superstring amplitudes.
However, the present results go far beyond the semi-classicaliapproximation and apply
to any value of N > 2, but nevertheless some general features are explained by the
leading order calculations.

For example, the fact that the leading power of giM ~ 7, in the instanton
background is of order 73’ is a direct reflection of the presence of 16 superconformal zero
modes. The counting of powers of 7 to léading orderin’l /7 is as follows. The instanton
profile of each operator insertion involves the product of (2A —4w) fermionic zero modes

Y 4, in addition

(where A is the dimension of the operator), each contributing a power 7,
to the power of 75 in the normalisation of each operator. The leading order instanton
contribution to the n-point correlator neeessarily absorbs all 16 superconformal fermion
zero modes and is therefore of Grder 7, -1 Ty as T — 00. More explicitly, the
instanton profile of the operatér Os(&) (A = 2, w = 0) has four fermionic zero modes,
while O, (z) (A =4, w = 2) has no fermionic zero modes, and so the k-instanton sector

for Cgf])( ) behaves as
(Oa (1, Y1) et Oa (4, Vi) Or(5) - - Or(X4544)) ~ €775 (77)

A similar, albeit'slightly more involved argument, allows us to deduce that instead
the k-anti-instanton sector for Cg‘g,)( ) behaves as

<O2(£L'1, le) y A 02(x47 Yzl) OT($5) T OT(xw+4)> ~ e—2m‘k7"7_2—w : (78)

Thanks to our exactdormula (49) specialised to , both of these statements can be
verified for general values of V.

3.5. N'=4 SYM correlators at large-N and superstring amplitudes

The large-&V expansion of N' =4 SU(N) SYM correlators makes contact with type I1IB
supetstring theory in an AdSs x S® background. From the string theory perspective this
background is identified with the near-horizon limit of N coincident D3-branes in the
large-IV limit. The Yang—Mills parameters are identified with the type IIB superstring
parameters by the relations
Iyw (@) 1
932E7 I: ggMN‘ (79)
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For N' = 4 SYM with Gy gauge group, where Gy is SO(2N), SO(2N/&4+ 1) or
USp(2N) the large-N theory is holographically dual to type IIB superstringitheory in
AdSs x RP®. This background is the near-horizon geometry of an orientifold of <V
coincident D3-branes in the large-/N limit that are also coincident with, an ©@3-plane,
In this background string world-sheets are non-orientable. There aredarious types of
O3-plane that carry different amounts of Neveu—-Schwarz Neveu—Schwarz and. Ramond-
Ramond flux. Depending on the choice of O3-brane the dual gauge theory has gauge
group SO(2N), SO(2N + 1) or USp(2N). The RR five-form flux associated with the

. . ~
various backgrounds is

Nsuny =N, Nsowm) = g - i, Nusplay, = g +
where n = 2N or 2N + 1 for SO(n) and n = 2N for USp(n):
Two versions of the large-N limit are of interest:
(a) The 't Hooft limit in which \g, = g2 N, is fixed. In this limit Yang-

Mills instantons are suppressed exponentially in N. Thg 1/N expansion generalises

o

the conventional 't Hooft genus expansion and eorresponds to the string perturbation
expansion in the holographically dual string:theory."Fhis expansion is presented in detail
in [64], and can be used to obtain non-perturbative string corrections similar to [79-81],
but we will not review it here.

(b) The large-N fixed-T expamsion“imy which Yang-Mills instantons are not
suppressed and play a crucial role in making S-duality manifest. In this case the
expansion in powers of 1/N correspond to the low-energy expansion in the dual type
IIB string theory. In other wotds, the leading term, which is of order N? is the dual
of the supergravity term, the'next term is of order N 2 and is the dual of the R* term
and so on. We will now cofisider*thediolographic interpretation of this expansion of the
integrated correlators in more detail.

Integrated cortrelators carry much less detailed information than unintegrated
correlators since they have no space-time dependence. However, the constraints of
maximal supersymmetry,are so strong that one can reconstruct some aspects of the
large-N expansion,of an unintegrated correlator (with its spacetime dependence) from
knowledge ofihe large=N" expansions of integrated correlators. As a result, it is possible
to check the helographie eorrespondence with the low-energy expansion of type IIB
superstring amplitudes for the first few orders in the large-N expansion as will now be
explained.

Focusing for brevity just on large-N expansion of the SU(N) theory, the
unintegratéd four-point correlator has the following simple analytic structure in Mellin
spaces, The Mellin amplitude M(s, t) is defined as [82,83],

0 dsdt

T(U,V)z/ WUSVZ—Z’F[2—%}21“[2—%]21“[2—%]2/\4(5,75), (81)

where u = 4 — s — t[}] The large-N expansion or large-central charge expansion of the

—100

T The Mellin variables s, t,u should not be confused with the Mandelstam variables in the previous

Page 26 of 46



Page 27 of 46

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-117502.R2

Superstring amplitudes & Integrated correlators 27

Mellin amplitude takes the following simple form g

M(S,t) = (82)
2 fo

N i -2wu—2)

+ N7 [ fanstu+ faa(s?+ 12 +u?) + fag] + O(N72).

+ NZfy+ MSC(5,8) + N3 [fon(s? + 62 +02) + fo)

The leading term is proportional to N? (or alternatively ¢ thé'central charge) and
corresponds to the tree-level supergravity contribution in AdS5 x S? and M5C(s, 1)
is the one-loop supergravity. These terms are independent<of. 7. We are interested in
terms proportional to N %, N—2 and N~! that are stringy higher=derivative corrections
proportional to R?*, d*R* and d°R*, respectively. Thebeoefficients of these string
corrections fi, fo; and f3, are non-trivial (non-holomorphic) functions of the coupling
7, and, as we will show later, these may be fixed @sing the large-/N expansion of the
integrated correlators will discussed in the following:
L

The large-N expansion of Csyny at fized 7. The first few terms in the large-N
expansion of the first integrated correlator (45]) with fixed 7 was first studied for the
SU(N) case in [60] and then to any prescribed order in 1/N by making use of the exact
expression or by solving the Laplace-difference equation [63], giving

Cavon () ~ 20— 3 p ) + 0% i (53)
+N2 :4271255E(;;7', T)— %E(g;ﬂ f)] o+ N3 [92?§5E(2;T, T) — 1211265E(3;7', 7")]
o N[ 2T g ) S s 2y B i)
N :294992%15(?; TR %E(B; T T)+ Wgﬁﬂz; 7, f)]

" [4026655;436125 . 39710;338691875 E(ir.7) + 2029;)3542025 (n7)
- %?E(g;f, ApON ).

The corresponding expansions for general classical gauge groups based on the large-N
expansion of were presented in [64], and will not be reproduced here.
The first few terms in the large-N expansion of the second integrated correlator

section. In the flat-space limit 83|, in which s,¢,u — oo, they do become the Mandelstam variables of
scattering amplitudes after a suitable rescaling.

§ Here wehave simply written down the most general expression with permutation symmetry at each
order according to its power counting from its holographic dual. For instance, the N ~2 term is dual
to d*R* in AdSs x S°, which has four derivatives (note we have removed R* part by factoring out
Z,(U,V;Y;) in ) The corresponding Mellin amplitude is then given by linear combination of
52 + 12 + u? and a constant [83).
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(46|) was presented in [61] and the result is

T EG. 1%,

\w
\h
N—

4 2 1 . _
amlogZSU(N)‘m:ONGN +6N2E(%77—77-)+CO__ )— 23N

9 13, . 375 . 405 )
NE {%E@;ﬂ 7) - WE(%;T T)] 704N2 [C1 +35E(3,3;6;7,7) - 24€(5, 934 7, 7)]
675 | 1 ~ 49 - 1
e [ﬁE(ém )= o BT ﬂ] + 3 [0435@, $;3;7,7)

+ Z [CYTS(%, %,7",7', 7_) + Brg(%, %;7";7', ’7') -+ ’)/7«5(%, %;T’;T, 77')}] -+ O(]V\_%) , (84)
r=5,7,9

where the rational numbers ., 8, and 7, can be found in [61)¢The expansion in this case
involves both half-integer and integer powers of 1/N (whereas only. half-integer powers
appeared in ) Strikingly, the coefficients of the integer powers of 1/N involve sums
of non-holomorphic generalised Eisenstein series. The'corresponding expansion for other
classical gauge groups has not been determined.

The preceding two expressions provide two gonstraints on the unknown coefficients
in the ansatz for the unintegrated correlator atach order of the large- N expansion.
Explicitly, these constraints lead to the values

_ 15E(2;71,7) 1 315E(3;7,7)
2 PRI 2y Ty
fo=2, fi= —8 ) f2,1 = ——3f2,2 = —128

Rather strikingly we see that terms'in thetlow-energy expansion of type IIB superstring

(85)

theory in an AdSs x S® background upnto order d*R* have been determined in this
manner.

Furthermore, the ten-dimensional flat Minkowski-space limit can be obtained,
according to [83], by taking the limit s,¢;u — oo. In this limit reproduces precisely
the same coefficients for the'R*and d*R* terms in the low-energy expansion of type 1IB
superstring amplitudes as degeribéd in section

However, two ¢emstraints from the integrated correlators (45) and are not
enough to fix the threedfunctions f31, f32, f33 appearing at order of N~'. But if we
include the flat-space result for the d® R* coefficient given in ((1|as an input, together with
the two constraints from the large-/N expansions and the unknown constants
in the Mellindamplitude-at this order are determined, and we find,

1 945E (2, 3:3; 17
iy =Pap¥= L gy, = WELEIT)

27 2

32
Although this dkgument inputs the flat-space string theory d°R* coefficient, it is non-
trivialsthat, all/three coefficients at order N~1 in have been determined. This
adds furtheér information concerning terms in the low-energy expansion of the type 1B

(86)

supetstring action in AdSs x S°.

Once the four-point correlator is determined, we can use equation , which is
valid for all values of NV and 7, to obtain information on MUYV correlators. We may now
construct higher-point MUV correlators recursively using the expression for the Mellin
amplitude of the four-point correlator and solving the recursion relation order by
order in the large-N expansion. This leads to the large-IN expansion of n-point MUV
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correlator with finite coupling 7 [66]. In the flat-space limit, the results at order4V 7 and
N—2 again match with the superstring low-energy expansion @ when p = 0, 20 As with
the four-point correlator, at order N~! there are insufficient constraintsfrom integtated
correlators to determine all the unknown coefficients in the low-energy, expansion on
AdSs x S°. Inputting the p = 3 flat-space result from (22)) once agaift determines all
the coefficients in the Mellin amplitude at this order.

4. Modular graph forms and superstring perturbation theor&

In this section we will review another context in which modularity plays an important
role. The subject originated in the study of the low-energy expansion of superstring
perturbation theory, but it has broader connections to areas of algebraic geometry
and number theory. Much of the literature focuses on genus-one modular graph forms
[84-87], which are closely related to elliptic generalisations of multiple zeta-values, but
there are obvious possible extensions to higher gentis, which we have no space to cover
in this article. y

This is a subject in which there have been many recent developments both in the
theoretical physics literature [84-114] and the mathematics literature [115-123]. See
also the reviews [124] and [125], which cover muchiumore of the literature than we can in
this article, [126] for a Mathematica implementation and [127-135] for generalisations

to higher genus.

4.1. Superstring perturbation theory

In the previous sections we have discussed SL(2,7Z) S-duality of type IIB superstring
theory and its connection with MofitonenOlive duality in N/ = 4 SYM. However,
a different manifestation of' modularity arises in string perturbation theory. The
perturbation expansion of a string theory amplitude is a power series in g2 in which

29-2 j5 associated with a functional integral over a genus-g world-sheet.

a term of order g;
For example, the/perturbative expansion of a n-point massless scattering amplitude in

ten-dimensional type 1B superstring theories has the form
A (€5, kis gs) = 2929 2A (61, k) (87)

where (€:pk;) denotes the polarisations and momenta of the scattered massless particles
(with < = 1,2,...,n). The Mandelstam variables are defined by s;; = —a/(k; +k;)?/4 as
in section [2.2] In the case of the 4-point function that is the main focus of this section
the standard convention is to define s := s19 = S34, 1 := S13 = Sou, U := S14 = So3,
which, satisfy the condition s + ¢ + u = 0. Note that the perturbative part of the
string amplitude only depends on Im7 = 1/g,, whereas the full amplitude has
non-perturbative contributions, such as the contributions of D-instantons, that depend
onT=rT +17y.
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The g-loop contribution, A(gn) (€, k;), is, in principle, given by a functional integral
over all genus-g (super) Riemann surfaces with n punctures that represent the§cattering
particles. This includes integration over the fermionic supermoduli and summing ever
fermionic spin structures. However, there are technical obstacles in integrating over
the fermionic moduli, which have so far prevented the explicit evaluation of the four-
graviton amplitude with g > 3[f| Nevertheless, analysis of the degeneération limits of
arbitrary genus super-Riemann surfaces has demonstrated the ultra-violetiniteness of
these amplitudes. For our purposes it will be sufficient to resfrict eonsiderations to
g < 2, in which cases the resulting expressions are expressed as integragover the world-
sheet moduli, as well as over the positions of punctures on $he world-sheet, that carry
the information about the momenta and polarisations of the scattering particles.

For concreteness, let us focus our attention to the well-studied case of the 10-
dimensional four-graviton scattering amplitude in gype LLB“superstring theory. A
general consequence of type IIB supersymmetry i§ that the four-graviton amplitude
has a prefactor of R*, which denotes the particular sealar.contraction of four linearised
Riemann curvature tensors, which we met in . This mieans that the genus-¢g term in

has the form
AP (€, ki) = k7o R Ty (s, t, w)y (88)

g
where 1%, is the ten-dimensional Newton constant, and R* (and its supersymmetric
completion) may be expressed as 0'%(Qy) using the spinor-helicity formalism given in
section . The function Tj(s, ¢, u) is a scalar function of the Mandelstam invariants
that contains all of the non-triviabhdynamical structure of the amplitude.

The main emphasis in the following is the g = 1 case, but we will first very briefly
review the structure of the foursgraviton tree (¢ = 0) amplitude, which is determined

by a functional integral over world-sheets of spherical topology and has the form

KigR' L1 — s)T(1 — t)['(1 — u)

(4) |
Ag:0(67 kl) stu F(l + S)F(l —+ t)F(l -+ u) ’

(89)
2 p4 00
Ko [ 2¢(2n +1) 2n41 241 241
=Gl S T t
stu oXp Z 2n+1 (S + tu )

The expression on the second line makes it obvious that the amplitude can be expanded
as an infinite series of powers of s, ¢ and u with coefficients that are rational multiples
of products of edd Riemann zeta-values. It is also obvious that although products of
zeta-values arise in this series there are no multiple zeta-values.

However, it has proved possible to analyse the expansion of tree-level n-point
funetions for all n € N and to all orders in the low-energy expansion, see e.g. [136]. In the
case of @pen superstrings this is an expansion in monomials of Mandelstam invariants
with,rational coefficients multiplying multiple zeta-values, while in the case of closed
superstring amplitudes the coefficients are proportional to single-valued multiple zeta-
values. These multiple zeta-values and single-valued multiple zeta-values appear when

T The pure spinor formalism has no world-sheet spinors, but has other technical obstacles when g > 3.
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n > 4, and the single-valued multiple zeta-values are defined as values of single-valued
multiple polylogarithms when its arguments are set equal to 1 [137-139].

4.2. The genus-one amplitude

We will now focus on properties of the (¢ = 1) four-point amplitude although our
considerations should generalise to an arbitrary amplitude for scattering .ofimassless
states at arbitrary order in the genus expansion. A genus-one world-sheet, ¥, has the
topology of a torus, which is diffeomorphic to R?/A, where the lattice™A = 77 + Z
defines the shape of the torus. This is parameterised by the complex structure,
T = 71 + i7Jff} which takes values in the upper-half complexiplane’T, > 0, modulo
discrete identifications that are associated with large diffeomorphisms associated with
the modular group, SL(2,Z).

After performing the functional integral described above, the amplitude Aﬁl (€;, k)
is expressed as an integral over the positions of the four,punctured§| and an integral over
T in a single fundamental domain of SL(2,7Z). Thisis often chosen, for convenience, to
be the domain F = {|71| < , || > 1}, After further integrating over the positions of
the punctures the resulting ¢ = 1 amplitude takes the formm

d’t
Aggl (Ei, ]{,’1) = QW/Q%ORLL/ ?14(81']';7') s (90)
F 12

where Z4(s;;;T) is a modular function that results from the integral

Ti(siyi7) = /2 T (f[ djj’) exp ( S Gl —ln). (1)

1<i<j

Here G(z|T) denotes the gealai*Greén function on the torus X, which is defined to

satisfy
4
ALG(Zr)= —476@) (2) + T—W , / d*2G(z|T) =0, (92)
2 T
where A, = 40;04, which has the solution
Vi(zfr)2 12
G =1 ——(z— 93
(i) = 1o |l = - 92, (93)

and ¥ (z|T) is\a Jacobi function. After changing from z to Cartesian coordinates on ¥,
defined /by z = u 4 vr, the Green function can be written as the Fourier series

G(Z‘T) _ Z Le%ﬂ(nu—mv) : (94)

2
700 7|nT + m|

I In'this section we are using a bold-faced symbol 7 for the complex structure of the g = 1 world-sheet
in order not to confuse it with the complex scalar, 7, of ten-dimensional type IIB superstring.

§ Tramslation invariance means that there are only three integrals over the relative positions.

|| In writing we have assumed that the integration over the positions of the punctures can be
performed before the 7 integral. However, this ignores the presence of branch cuts in s,t,u that arise
from the region 79 — oo. For most of this section we are only interested in properties of the integrand
Z4(s;5;T). Where necessary we will cut off the 7 integral at large T2 in a consistent manner [84].
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where (m,n) are integer-valued momentum components conjugate to (v, u).

The genus-one four-point amplitude is a complicated non-analytic function of s;;.
This non-analyticity is indicated in integration over 7 in (90)), which generates branch
cuts associated with unitarity in a well-understood fashion. However, 4its low-energy
expansion can be treated by a systematic diagrammatic expansiond[84-87,91): In
particular, the integrand Zy(s;;;T) can be expanded as a power series nys, ¢, u by
expanding the exponential term in 1} (the Koba-Nielsen factor),/giving

a(sij5T Zw'/ § dzl ( Z sijG(zi—zj]'r)jw. (95)

1<i<j<4

This expression is a contribution of order (/)" to the lowsenergy expansion. This means
it is a contribution to the type IIB effective action of erder d**R* where the pattern of
contractions of the derivatives is specified by the powers of s, t and u. More precisely,
given that Z,(s,t,u;T) in is a symmetric function ef s, t, u, subject to s +t+u = 0.
This means that, in the o expansion, Z,(s, ¢, uyT) canibe gxpressed

Zy(s, t,u;T) ZFM (82 + 2 Fu)2(s® +° +u?)?, (96)
p.a>0
where 2p + 3¢ = w and the coefficients Fj,,(T) are sums of modular objects called
modular graph functions for reasons that will.shortly be clear.

Each coefficient F), ,(7) is the sum ofiterms in which w Green functions join pairs
of points labelled by the z;. This,can be represented by a sum of Feynman diagrams on
the two-torus. Each diagram consists,of the product of Green functions joining pairs of
points at positions z; and z;, which are integrated over ;. It is convenient to represent
the diagram in momentum’spacepwhere the momentum-space propagator is given by
7o/(m |p?), with p = nt'+ mi€ A\ {0}, as follows from the expression for the Green
function in (94)).

A general diagram has ¢;; propagators joining any pair of vertices labelled 7 and
J, where i, 7 € {142, 3,4}. There are therefore six (i, ) pairs so a general diagram has
(1, ..., lg propagators. This notation is summarized by the following diagram:

@,
@E‘;@{@

where the label ¢ on the link @ indicates the product of ¢ propagators joining
the corresponding pair of vertices. This diagram is a tetrahedron that is symmetric

- D€1,€2,€3,f4;f5,f6

in allvedges and vertices and its weight, w, is given by the number of propagators, so
that w = Zle .., where 0 < & When ¢, = 0 for particular values of r, the diagram

€ This weight should not be confused with the modular weight, which vanishes for the modular-graph
functions.
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degenerates to a simpler diagram. In such cases, we shall omit the index that Vanishesf_F]

The integral over the positions of the vertices, z; can be easily performeddhanks to
the Fourier series representation , leading to the general momentum-spage expression
for a modular graph function:

In(r,7) = Z H ’p 71 Ha (Zcmpa) : (97)

LPwEA a=1

where ' denotes the connectivity of the graph and we have/generalised the rules to
include N vertices (where N is an arbitrary integer) evensthough only four vertices
are involved in the expansion of the four-particle amplitude: “In this expression
Pa = NaT +mgy € A labels the momentum in the link labélled o and the prime above the
summation symbol indicates that the sums over p,, ex¢lude thewalue 0. The Kronecker
0 symbol enforces momentum conservation at each,vertex —it takes the value 1 when
its argument vanishes and zero otherwise; the coefficients C;, are given as follows

+1 if edge o ends on vertex :
Oia = (98)
0 otherwise

the sign being determined by the orientation ef the momenta.

We stress that the expression @ is“armultiple sum that generalises the non-
holomorphic Eisenstein series and is manifestly invariant under SL(2,Z) transformations
acting on 7.

Although the analysis of the properties of general modular graph functions is
presently rather rudimentary ‘we turn now to consider a special class of such functions
about which a great deal is knownmThese are modular graph functions that are defined
by graphs that have one or two loops and any number of vertices.

One-loop modular graph functions

Since the zero mede of the Green function vanishes , it is obvious that a graph has to
consist of closediloops. of propagators. The simplest class of such functions is therefore
represented by one-lgop graphs. A one-loop modular graph function with a vertices is
represented. by

and'isssimply a non-holomorphic Eisenstein series.

+ For example Dghg%g&gmo 0= D[l lol3.0y5 Whlle D[ 0.0.0.:0.0 = Dg, etc.

777777
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4.8. Two-loop modular graph functions

The two-loop modular graph functions are much less familiar so we will discuss, their
properties in some detail. They are represented by graphs with three chains and axe
denoted C,p.(7,7). They are represented pictorially by

’ €> Cos o)

~

The integers a, b, ¢ are the number of propagators that are joined end to end along each
chain.

It follows from the preceding graphical rules that the expression for the function
represented by the above graph is

_ To\atbre (p1+ p2 + p3)
Capelr.7) = () , 9
(T, T) - Z [PV s 20 ps 2 (99)

P1,p2/P3EA

with a,b0,¢c € N. In [86] it was shown that then@,,. satisfy a closed system of
inhomogeneous Laplace equations. The simplestiexample, C; ;1 1(7,7) has weight w = 3
and contributes to the d®R* term in low-energy expansion of the genus-one amplitude
[84]. It satisfies the equation

ArCraa(T,7T) =6E(3;7,7) (100)

which has solution C (7, 7) =E(337,7) + ((3) where the constant ((3) is determined
by a boundary condition that is obtained by computing the asymptotic behaviour of
the lattice sum (99)) at thefeuspsra,— oo (as in [86]). It can also be calculated directly
from the lattice sum [140].

Although our primary interest in this section is in modular properties of the
integrand Z,(s;;;7) at this point we will comment on the evaluation of its 7 integral in
. From , one can,casily see that the complete contribution at this order is

4
1 A’ A AR _ _
5 . <H - ) < Z SijG<ZZ' — Zj|7')> = T 8E<3,T,T) + 20171’1(7',7')
T =2 1<i<j<4
(101)
Making use of @4 11(7,7) = E(3;7,7)+((3), and after integrating over the fundamental
domain, F [84]E|, the value of the genus-one contribution at order d°R* is found to be

%g(z)g(:’)) (% + 1 +u?). (102)

*More precisely, since the integral diverges a cut-off is introduced at 7o = L >> 1 and the integral is
restricted to the cut-off fundamental domain, Fr. The dependence on L cancels after careful analysis
of the non-analytic threshold contributions, so we have effectively [ F d*1 /73 E(s;7,7) ~ 0 (which is in
accord with the mathematical observations in |141]).
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This is the precise value contained in the zero mode of the non-perturbative d®R*
coefficient function gs £(2, 2;3;7,7) that was derived in [8] (and is displayed i (|A.18))):
Another simple example is

ArCopa(T,T) = 8E(57,7), (103)

with solution Cy o1 (7,7) = 2E(5;7,7)/5 + ((5)/30.
More complicated examples have source terms that are/quadragic in non-
holomorphic Eisenstein series. For example,

(A; —2)Cy1 4 (7,7) = 9E(4;7,7) — E(2;7,7)°, (104)
(A = 6)Cs14(7,7) = 8—56E(5;T,T) —4E(2;7,7)E(3;708), + %) . (105)

Both of these examples arise in the low-energy expansion of the four-point amplitude,
at order d®R* and d'°R*, respectively.

More generally, in [108,|110] a generating series was introduced, to produce all
integrals over world-sheet tori which appear in closed—string one-loop amplitudes. Using
these results, in [142,/143] it was proved that all depth—tw Cap,e can be obtained from
the generalised Eisenstein series

(Ar —r(r+1)E(mykyrs7,7) = —E(m;7,7)E(k;T,7) (106)

with m, k € N and m, k > 2, and spectromr € {|k —m|+ 1,|k—m|+3,....,k+m —
5,k +m — 3}, where the generalised Eisenstein £(m, k;r;T,T) corresponds to —anf,:‘”
in those references. In particular, it was shown that any C, ;. with weight w = a+b+c,
is given by rational linear combinations of finitely many &(m, k;r;7,7) with w = k+m,
modulo the addition of a, ratio?al multiple of a non-holomorphic Eisenstein E(w;T,T)
and, in the case of odd weight w, a rational multiple of {(w).

For example we have

Con Bor) = £(2,2:1:7,7) + %E(4;T,'l"), (107)
4
Csai(r,7) =48(2,3;2;7,7) + 3—§E(5;T,T) — % , (108)

which cansbe shewn'to be consistent with the Laplace equations -.

We shouldstress that, generically, the space of generalised Eisenstein series,
E(mykiyry®, T),/defined above is larger that the space of C, . (modulo single Eisenstein
series and sconstant terms). We now compare the dimensions of the vector space of
generalised Eisenstein series with the dimension of the vector space of C,p.
(modulo single Eisenstein series and constants). Denoting the dimensions of these
spacespby dimVe(w,r) and dimVe(w,r), respectively, where the weights are fixed to

# Here the depth of a modular graph function is defined to be the maximum depth of the multiple zeta
values that arise as coefficients of powers of 75 in its Laurent polynomial.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-117502.R2

Superstring amplitudes & Integrated correlators 36

be w =k +m = a+ b+ c and the eigenvalues are r(r + 1), we have [142]

F(TH)J —1 : 2(r+ 19=2 modyl2,

dim Ve (w, r) —dim Ve (w, ) = dim Sy y1) = 2(:1) :
LTJ : otherwise

(109)
where Sy(,41) denotes the vector space of holomorphic cusp forms with modular weight
2(r +1).

This appearance of holomorphic cusp forms is not a mere/coincidenée. In [143] it
was shown that special completed L-values of holomorphic, cusp’ forms appear in the
non-zero modes of the Fourier series decomposition of £(m, k;#3a, T)swith respect to 74
precisely when dimVe(w,r) > dimVo(w, ). They arise aga consequence of modularity.

This mixing with holomorphic cusp forms becomesmmore manifest once we choose to
represent the generalised Eisenstein series as particular combinations of iterated integrals
of holomorphic Eisenstein series [98,|142H145]. The Eichler-Shimura theorem [146,/147]
and the work of Brown [115,/117,118,|148| on iterated integrals of general holomorphic
modular forms makes it very plausible that holomorphic gusp forms make an appearance.

However, the generating series [108, 110] for modular forms arising in closed-
string one-loop amplitudes contains conjecturalymatrix representations of Tsunogai’s
derivation algebra [149]. Relations insthis algebra are known to be related to holomorphic
cusp forms [150], and, precisely due, to these special selection rules governed by
Tsunogai’s derivation algebra, only the eombinations of generalised Eisensteins series
for which the cusp forms drop outiare the ones appearing in the generating series for all
the building blocks of one-loop type Il superstring amplitudes.

Furthermore, knowing how, to decompose modular graph functions into a basis of
modular objects satisfying inh}mogeneous Laplace equations, such as , is useful
for specific calculations, such as the evaluation of the integral over the modular
parameter 7 on the fundamental domain F.

General resultsdor the Laurent polynomials of Cy ., i.e. the perturbative expansion
at the cusp in the zero-Fourler mode sector, where obtained in [119] starting from the
lattice sum representation . Similarly, in [99,[102,/103] a Poincaré series approach
was used tofobtain comnsistent expressions. The complete asymptotic behaviour of
E(m, k;r;T,T) avith 'm, ke N and m,k > 2, and r € {|k — m| + 1,|k — m| +
3,..., k&4 m —5pk™+ m — 3} was derived in [142], making use of the Poincaré series.
In general both C,;.(7,7) and E(m,k;r;7,7) have a Laurent polynomial consistent
withfuniform trascendentality, meaning that if we assign trascendentality 1 to y = 775
and trascendentality & to ((k), then each monomial in the Laurent polynomials of both
Copelr,T)and E(m, k;r;7,7) has trascendentality w = a+b+ ¢ = k+ m. For example,

2yt CB)y | 5¢(5)  ¢(3)*, 9¢(7)

C ) = - O(q.q 110
2110 T) = Tt s 125 42 168 T (9,2) (110)

2 203)y*  C(5) |, 7¢(7)  ((3)¢(5) | 43¢(9)
Cona(T7) = Teoos * 015~ 10 162 27 64yt

+0(q,q), (111)
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where ¢ = €?™7 q = e *™T. Therefore O(q, q) represents exponentially decaying terms.

4.4. Some further comments concerning genus-one modular graph functions

We here note some further general points that we have no space to elaberate on:

e Modular graph functions satisfy a host of very impressive identities [86,89]. These
are analogous to identities that relate multiple zeta-values of a given weight. Among
the many such relationships that have been discovered are séveral @at have proved
important for evaluating the coefficients in the low-energy expansion of the genus-
one four-point amplitude. These coefficients involve integration of a combination
of modular graph functions over 7.

Here we will simply mention two of these identities. Thefollowing weight-4 identity
is important for evaluating the coefficient at order d®R*:

Dy(1,7) = 24Co 1 1(1,7) — 18E(d;797) + 3E(2;7,7)%, (112)

where, following the footnote preceding , the m6dular graph function Dy =
Dyo,0,000- Expressing Dy in termsgof Cy 1, land Fisenstein series in this way is
the key to integrating over 7 that is necessary for evaluating the coefficients in the
low-energy expansion at order d®R*.

The evaluation of the coefficiéntofrorder’d'® R* makes use of several highly non-
trivial weight-5 identities. One of these is

D5(T,’7_') =60 03’171<T,7_') < 10 E(Q,T,’l_') 0171’1(7',7_') — 48 E(5,T,7_') + 16C(5) . (113)

This relation between Dsfand C5 1y, together with other identities that relate Ds 1,
and Dy5; to U551 and Ei@nstein series again provide the basis for evaluating the
integral over 7.

e The Laurent polynomial of a/modular graph function of weight w (the zero Fourier
mode) is a series of.terms with integer powers of y = 77, ranging from y* to y'=*.
The coefficients’of . thexterms in this series were argued in [87,/116] to be rational
multiples of single-valued multiple zeta-values. The first example of an irreducible
multiple zeta value arising as a coefficient in a Laurent series was found in [116]
where the coefficient,of the y=* term in the Laurent polynomial of Ds;; was found
to be theweight-11 single-valued multiple zeta-value,

¢™(3,5,3) = 2¢(3,5,3) — 2¢(3)¢(3,5) — 10¢(3)*¢(5), (114)
and ((iyg) and ((i, j, k) are non single-valued multiple zeta-values.

e Modular graph functions are related to elliptical generalisations of single-valued
multiple polylogarithms in much the same way as as single-valued multiple zeta-
values are related to single-valued multiple polylogarithms [87].

e The expression does not describe the most general modular graph functions

that contribute to the low-energy expansion of the n-point amplitude when n > 4.
The more general contributions that first enter at n = 5 [88] are modular functions
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in which there are ‘holomorphic’ propagators of the form 75 /p and anti-holomorphic
propagators of the form 79/p. In order for the total modular weight to vamish there
must be equal numbers of holomorphic and anti-holomorphic propagators inany
graph.

e More generally still, in considering relationships between modular‘graph funetions
it is important to include modular graph forms, which transformewith non=zero total
modular weight. These have unequal numbers of holomorphic and anti-helomorphic
propagators and are related to each other by multiple applicationsef#he Cauchy—
Riemann operator [91195].

4.5. Genus-two modular graph functions

Much less is known about higher-genus modular graph, funetions. The genus-two
four-point amplitude in type II superstring theory was evaluated explicitly in the
Ramond—Neveu—Schwarz formalism in [151}/152] andylater in the pure spinor formulation
in [153,|154]. It is given by an integral over/the amoduli space My ~ Ho/Sp(4,7Z)
of genus-two Riemann surfaces >, where H, is the Siegel upper half space, which is
parameterised by the 2 x 2 period matrix, 2. As at genus-one the integrand is an
integral over four points on X, corresponding tonthe four gravitons. The low-energy
expansion of the integral over the points, without integrating over My, now gives rise
to Sp(4, Z)-invariant functions, which‘are genus-two modular graph functions [130].

It is interesting to consider the behawiour of these functions in the limit that a
handle on the genus-two world-sheet degenerates. The non-separating degeneration can
be parameterised by a suitably chosemireal variable ¢. In the limit ¢ — oo the surface
reduces to a genus-one surface\with two marked points separated by a distance v in
suitable coordinates (in addition to the four that correspond to the external particles).
In the degeneration limit, agenus-two modular graph function has the form of a Laurent
polynomial in ¢ with exponentially small corrections

w.

Z(0) =30 (xt)" 5" (wlr) + O(e™), (115)

n=—w

where 7 is the complexistructure of the residual torus. The coefficients 52@)(@]7) are
non-holomorphic Jacobi forms, which are elliptic functions closely related to genus-one
modular graph functions. This is reminiscent of the pattern of coefficients of powers
of (mTg)in the Laurent expansion of genus-one modular graph functions, which are
mudbiple zetasvalues.

The low-energy expansion of the two-loop amplitude starts with the effective
interaction d*R* with a constant coefficient that is proportional to the volume of genus-
two. moduli space. The value of this constant matches the predictions of S-duality in
Type IIB string theory [155] which comes from the genus-two term in the zero mode of
E(3;7,7)in (). The next term in the low-energy expansion is d® R*, which is obtained by

bringing down a single Green function inside the genus-two integrand. Its coefficient is a
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non-trivial Sp(4, Z)-invariant function [127], known as the Kawazumi-Zhang invariant,
which satisfies a Laplace eigenvalue equation on Hy [128|, and which has an elegant
representation as a generalised theta-lift [129]. Its integral over My was computed
using the Laplace equation and also matches a prediction of S-duality, awhich,is given
by the coefficient of the genus-two term in the zero mode of £(2, 8; 3; m7) in (1))

The next order in the low-energy expansion involves integrating’the product of
two Green functions and contributes the genus-two coefficient of the d®R*(interaction.
Detailed properties of this modular graph function may be found“in {131]. However, its
integral over genus-two moduli space has not been carried out] yet.

There are no explicit expressions for type II superstringsloop amplitudes of genus
higher than two although an impressive calculation [156] determined the leading low-
energy behaviour of the genus-three four-point amplitude,swhich'is of order d®R*. Its
value again agrees with the S-duality prediction, which is:the eoefficient of the genus-
three component of the zero Fourier mode of £(2,433;7,7) in . Further analysis of
the genus-three amplitude is given in [157]. )

5. Coda

This article has surveyed recent developments in three interrelated areas of string theory
and quantum field theory that have several themes in common. These topics all involve
the strong constraints of maximal supersymmetry — ten-dimensional type IIB in the
context of the superstring dis€ussions in seetions [2 and [4] and four-dimensional N = 4
supersymmetry and superconformal symmetry in the context of integrated correlators
in section [3] Another commeon themeyis that of the strong constraints imposed by
duality, which is target-spacerSL(2, Z) invariance of type IIB superstring, Montonen-
Olive duality in the case of N & 4 SYM, and world-sheet duality in the case of genus-one
or genus-two string perturbation theory.

These constraints are so strong that they lead to remarkably detailed expressions
in each of these areas.;nThese results not only shed light on areas of direct interest in
theoretical physics, but they have led to interesting avenues of significant mathematical
interest. Howewer, we have focussed on particular special examples and it would be
interesting to extend the ideas and methods covered in this article to more general
physical observables/as well as more general systems.
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Appendix A. Some properties of non-holomorphic modular forms

In this appendix we will briefly review the mathematics of non-holomorphic modular
forms. Recall that SL(2,7Z) acts on the scalar field 7 = 71 + ity (or equiyalently on the
worldsheet torus complex structure 7 in section |4)) as

ar +b

el (A1)

T—=7y-T=

with v = (¢%) € SL(2,Z) so that a,b,c,d € Z and dety = ad & bc =1
An element f(® (7, 7) of the vector space M, of snom=holomorphic modular
forms with holomorphic and anti-holomorphic modular weights (w, w); transforms under

SL(2,7Z) as

FOD (- 7) = (em + d)" (o7 + d)int ") (A.2)
Modular covariant derivatives are defined by
: 0 w = . 0 W
D, =1 (TQE —1 5) , Do =41 (7'2:,)—7_ + ZE) , (A.3)

where D, transforms a modular form withiweights (w,w) to a new modular form
with (w + 1,% — 1) and D, changes weightsiby (w,w) — (w — 1,%w + 1), i.e.
Dy : My = Myi1,5—1 and similatly Dy My — My—1.49+1. In other words,

Dy, [ (7,7) = [T R, 7), Dy f (7, 7) o= fUT 0 (7, 7) . (A4)

Non-holomorphic forms for which w = —w, are particularly relevant to our discussion
and transform by a phase characterised by a U(1) charge, ¢ = 2w, as is evident from
(A2). It is useful to note ghat theraetion of D,, on a power of Imr = 7, = 1/g, is given

by
o ¥ d o 1 0 o
D1y = 5 (7'28—7_2 + w) =5 (_gsa_gs + w) 9s - (A.5)

The operatots D,,, Dy, together with the Cartan operator H,, = (w — w)/2 :
Mys — My, form a representation of the sl(2) algebra on M, ;. The Casimir
operator for/this représentation yields Laplace-like differential operators which map

M,,  into itselfd In particular, restricting to the case w = —w, we have the Laplacians
A(_)w = 4Dw_12_)_w s (AG)
A(_;,_)w = 4@_w_1Dw . (A7)

Note that in the modular invariant case My these reduce to the standard Laplacian
Ay =RAG =A, = 47320,0:.

Homogeneous (and inhomogenous) Laplace eigenvalue equations on the space
M., ., arise at various stages in this review. These have the equivalent forms

Ay {771, 7) = (s(s = 1) —w(w = 1)) fi7(r,7),

S S

Ay [0 (7, 7) = (s(s = 1) —w(w + 1)) f7(7,7), (A.8)

S
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where s € C. These equations have a unique solution in M, ;, for functions satisfying
the physically required boundary condition of moderate growth (power behaviour) in
the large-7 limit (the weak-coupling limit).

A basic ingredient in our discussion is the modular invariant nom-helemorphi¢
Eisenstein series, which is defined by

_ 1 75 _
E(S,T,T) = ; Z |7n_{_—n7-|25’ E(S,T7T> GM(),(), (Ag)
(m,n)#(0,0)

and satisfies the homogeneous Laplace eigenvalue equation ~

A, —s(s— 1) E(s;7,7) =0. (A.10)
It has a well-known Fourier mode decomposition,

E(s;7,7) = Z]:k(s; )2 (A.11)

kEZ

where zero mode (or equivalently the perturbativesterm) is given by

2(2s) ,  2/7l(s A)geel
Fo(s;m) = T2 + 7TSF2(8) T F, (A.12)
and the non-zero modes are given by
4 1
Fi(s;m2) = m]k\5*501_25(|k|)\/r_2[(57%(27r|k\7'2) , k#0, (A.13)

where the divisor sum is defined by o, (k)i= >, d”. The non-zero mode Fj, represents
the k-instanton contribution.

Our discussion also involyés nom=holomorphic (w, —w)-forms, E,(s;7,7) € My, _w,
that are defined by

Q“’T(s)

Eu(s;7,7) = i+ w>Dw_1 - DoE(s;7,T),
_ B (Tt (A.14)
78 m+nt) |m+nt|?’ '
(m,n)#(0,0)

(where Ey(s; T, %) = E(s; T, 7)) which satisfy the recursion relations,

D Fu(si7,7) = SL B (557.7) (A.15)
D_Eyu(s;7,7) = i _2 wEw_l(s; T, 7). (A.16)

Another type of modular function that plays an important role in this article is the
generalised non-holomorphic Eisenstein series, which satisfies the inhomogenous Laplace
eigenvalue‘equation,

A, —r(r+ 1) E(s1, 80,757, 7) = —E(s1;7,T)E(s2; 7,7) . (A.17)
This equation again has a unique SL(2,Z)-invariant solution given appropriate

boundary conditions. The prototype of this equation arises in considering the coefficient
of d°R* in the effective type IIB action where s; = s5 = 3/2 and r = 3 [8,[158]. The
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complete solutions of this equation for generic s, so,7 € C are not known, althoughra
spectral decomposition has been studied [159].

However, more is known about the solutions to (A.17) when sq, s3 are integers.or
when they are half-integers. Both of these cases are of special relevanceso this article:
The complete perturbative and non-perturbative expansions were obtained in [142;|143]
when s, s € N; which plays a role in the study of the low-energy expansion of genus-
one Type II superstring amplitudes, here discussed in section [d Similarly; cases with
s1, 82 € N41/2 (which includes the special case, £(2, 2; 3; 7)) were'diseusseddin [158,(160].

For illustrative purposes, as well as because of its relevance to (1)), we will sketch
the form of £(2,3;3;7,7), which differs significantly from 4hat of a_son-holomorphic
Eisenstein series. Its zero Fourier mode is given by

E(3, 437, e moi

2

= 2037 + 50U + 0@+ o) RO, (A1)

where O(e~*"™) indicates the presence of an infinitéserjes of powers of (¢g), where
2miT
q=e"(

terms are interpreted as contributions 6f instantomsanti-instanton pairs. The power-

and recalling that 7, = 1/gs, where g is ghe string coupling constant). These

behaved terms are interpreted as coefficients ofsperturbative contributions in the d®R*

term in the low-energy expansion of four-point amplitude in the superstring theory.
Finally, we note that, starting from “&(sy, s2;7;7,7) one can construct weight-

(w, —w) modular forms, which also play awole in this article, by acting with covariant

derivatives
1
Ew(s1, 80357, T) = 5w D - DiDg E(s1, 89,77, 7), (A.19)
similar to ((A.14]). >
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