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Abstract. This article reviews some results of the SAGEX programme that have

developed in the understanding of the interplay of supersymmetry and modular

covariance of scattering amplitudes in type IIB superstring theory and its holographic

image in N = 4 supersymmetric Yang–Mills theory (SYM). The first section includes

the determination of exact expressions for BPS interactions in the low-energy expansion

of type IIB superstring amplitudes. The second section concerns properties of a certain

class of integrated correlators in N = 4 SYM with arbitrary classical gauge group that

are exactly determined by supersymmetric localisation. Not only do these reproduce

known features of perturbative and non-perturbative N = 4 SYM for any classical

gauge group, but they have large-N expansions that are in accord with expectations

based on the holographic correspondence with superstring theory. The final section

focusses on modular graph functions. These are modular functions that are closely

associated with coefficients in the low-energy expansion of superstring perturbation

theory and have recently received quite a lot of interest in both the physics and

mathematics literature.
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Superstring amplitudes & Integrated correlators 3

1. Introduction

This article reviews recent developments concerning properties of superstring scattering

amplitudes and their relation to correlation functions of gauge-invariant composite

operators in N = 4 supersymmetric Yang–Mills theory (SYM). These are areas in

which there has been a large amount of recent work, but we will concentrate on rather

restricted features that are close to our own research interests and hopefully illustrate

more general principles.

Section 2 is concerned with aspects of the low-energy expansion of type IIB

superstring amplitudes which are highly constrained by maximal supersymmetry and

SL(2,Z) S-duality. Successive terms in this expansion are higher-dimension interactions

with coefficients that are modular forms that transform with specific holomorphic and

anti-holomorphic weights under SL(2,Z) transformation of the complex scalar field

τ = τ1 + iτ2 that parameterises the coset space SL(2,R)/U(1).

The interactions that contribute to the four-graviton amplitude up to mass

dimension 14 are fractional BPS terms and are proportional to d2nR4, where n ≤ 3 and

R4 is a particular contraction of four Riemann tensors that is fixed by supersymmetry.

These terms have coefficients that are modular functions of τ that are fully determined

by supersymmetry and S-duality supplemented by a boundary condition in the large-

τ2 limit, i.e. in the weak string coupling limit. The coefficients of the R4 and d4R4

interactions will be seen to satisfy Laplace eigenvalue equations in the upper-half τ

plane. The solutions of these equations are known to be non-holomorphic Eisenstein

series.

The coefficient of the d6R4 interaction satisfies an inhomogeneous Laplace

eigenvalue equation with a source term that is quadratic in non-holomorphic Eisenstein

series. This has a solution that is a ‘generalised’ non-holomorphic Eisenstein series.

We will see that there are many other BPS higher-derivative interactions that have

mass dimensions ≤ 14 that are related to the four-point amplitude. In general n-

point amplitudes with n > 4 may violate the conservation of the U(1) R-symmetry

of type IIB supergravity, due to stringy corrections. Their coefficients transform as

modular forms with holomorphic and anti-holomorphic weights (w,−w). Here we will

consider the special amplitudes that violate U(1) R-symmetry maximally, which are

known as maximal U(1)-violating (MUV) amplitudes and for which w = n − 4. The

expressions for these modular forms are determined by soft-dilaton relations combined

with supersymmetry. A summary of some mathematical properties of modular forms,

non-holomorphic Eisenstein series and generalised Eisenstein series is given in Appendix

A.

In section 3 we will consider exact properties of integrated correlators of BPS

operators in the stress tensor supermultiplet of N = 4 supersymmetric Yang–Mills

(SYM) theory with any classical gauge group, GN = SU(N), SO(2N), SO(2N + 1),

USp(2N). These integrated correlators are determined by the partition function of

the N = 2∗ SYM theory, which can be viewed as a mass deformation of the N = 4
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Superstring amplitudes & Integrated correlators 4

theory. Most of our discussion will be concerned with an integrated correlator that

is proportional to ∆τ∂
2
m logZGN (m, τ, τ̄)|m=0, where the N = 2∗ partition function,

Z(m, τ, τ̄), is determined by supersymmetric localisation on S4, the parameter m is the

hypermultiplet mass and ∆τ = 4τ 2
2∂τ∂τ̄ is the hyperbolic laplacian on the upper-half τ

plane.

We will see that this correlator can be expressed as a two-dimensional lattice sum

for any of the gauge groups. This is a well-defined expression valid for all values of N and

τ . It can also be written as a formal infinite sum of non-holomorphic Eisenstein series of

integer index with rational coefficients. The integrated correlator with GN gauge group

satisfies a rather remarkable ‘Laplace-difference’ equation that has an iterative solution

relating it to the integrated correlator with SU(2) gauge group. The perturbative and

non-perturbative instanton contributions to this integrated correlator are easy to extract

for any finite value of N and display a number of intriguing features.

For example, the planar contributions to the perturbative expansion in powers of a

suitable ’t Hooft coupling aGN are the same for all gauge groups and non-planar terms

first enter at order a4
GN

. The large-N expansion shows similarly interesting regularities.

Furthermore it has a structure that makes manifest the holographic relationship to the

low-energy expansion of type IIB superstring theory in AdS5 × S5 in the SU(N) case

and AdS5 × S5/Z2 for other classical gauge groups. Some of the large-N properties

of a second integrated correlator that is proportional to ∂4
m logZGN (m, τ, τ̄)|m=0 are

determined in section 3, where the generalisation to n-point MUV integrated correlators

is also presented. The large-N expansion of these integrated correlators will be used

to determine the low-energy expansion of superstring amplitudes in AdS5 × S5. In the

flat-space limit, these reproduce the exact results obtained in section 2 using different

methods.

Section 4 focusses on properties of modular graph functions. These modular

functions are closely associated with the low-energy expansions of the perturbative

contributions to type IIB superstring amplitudes. The contribution to the amplitude at

order g2g−2
s (where gs is the string coupling constant) is defined by a functional integral

over genus-g world-sheets. The low-energy expansion of the tree amplitudes (the g = 0

case) has been extensively studied and generates infinite series of powers of Mandelstam

invariants with coefficients that are rational multiples of single-valued multiple zeta

values. These are special values of single-valued multiple polylogarithms, which have

close connections with mathematical aspects of Feynman diagrams. Much less is known

about the general structure of n-point amplitudes at genus g ≥ 1.

In general, the integration over the positions of the punctures, i.e. the vertex

operators insertion points, cannot be done exactly but can be performed order by order

in the low-energy, α′ → 0, expansion. The result of integrating over the positions of

the punctures are functions of the world-sheet moduli. In such cases the low-energy

expansion is a series of terms with coefficients that are integrals of genus-g ‘modular

graph functions’. In section 4 we will review the structure and properties of genus-one,

g = 1, modular graph functions. These are functions of a single complex modulus which
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Superstring amplitudes & Integrated correlators 5

is the complex structure of the toroidal genus-one world-sheet.

These functions are elliptic generalisations of single-valued multiple zeta values

that may be described in terms of Feynman diagrams for free scalar fields propagating

on a two dimensional torus. Consequently the loop momenta are integers and the

diagrams are expressed as multiple lattice sums. The modular graph functions that are

generated by the low-energy expansion of the four-point genus-one amplitude form a

special subset of general genus-one modular graph functions. We will further see that a

systematic analysis of their properties requires the consideration of modular graph forms

that transform with non-trivial holomorphic and anti-holomorphic modular weights.

The genus-one modular graph functions described by two-loop Feynman diagrams are

closely related to generalised Eisenstein series defined in Appendix A. In the final part

of section 4 we will briefly describe some features of genus-two modular graph functions,

which are functions of the three complex moduli of genus-two Riemann surfaces.

We end with some brief comments in section 5.

Due to space constraints, the description of these topics is necessarily superficial.

However, our discussion points towards the relevant references for those who are keen

on understanding these results at a deeper level.

2. Supersymmetry and modular constraints on low-energy expansion

2.1. Low-energy expansion of type IIB superstring theory

In this section we will review some exact results concerning the low-energy expansion

of massless scattering amplitudes in type IIB superstring theory. The results may be

conveniently expressed in terms of an effective Lagrangian that has the form (in the

string frame)

Leff = (α′)−4g−2
s R + E( 3

2
; τ, τ̄)(α′)−1g

− 1
2

s R4 + E( 5
2
; τ, τ̄)α′g

1
2
s d

4R4

+ E( 3
2
, 3

2
; 3; τ, τ̄)(α′)2gs d

6R4 + . . . . (1)

In this expression α′ = `2
s is the square of the string length scale. The leading term

proportional to R is the Einstein-Hilbert term (where R is the Ricci scalar), which has

mass dimension 2. Together with its supersymmetric completion that involves more

bosonic and fermionic fields, it describes type IIB supergravity in ten dimensions. The

scalar field τ parameterises the coset space SL(2,R)/U(1) in the classical theory, which

is invariant under SL(2,R). However this symmetry is broken by quantum corrections

that generate an anomaly in the U(1) R-symmetry that is consistent with the breaking of

SL(2,R) to SL(2,Z) [1], which is the duality symmetry of type IIB superstring theory.

The low-energy expansion (1) is therefore invariant under SL(2,Z), and τ parameterises

a fundamental domain that may be chosen to be Fτ = {|τ1| ≤ 1
2
, |τ | ≥ 1}.

The second term in (1) is proportional to R4 [2, 3], which is a specific contraction

of four Riemann tensors that has mass dimension 8 and is 1/2-BPS, which means

it preserves 16 of the 32 supersymmetries associated with ten-dimensional maximal

supersymmetry. Similarly, the higher-derivative term d4R4 has mass dimension 12
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Superstring amplitudes & Integrated correlators 6

and is 1/4-BPS while d6R4 has mass dimension 14 and and is 1/8-BPS. Maximal

supersymmetry determines the Lorentz contractions of the tensor indices. It also forbids

the presence of R2 and R3 interactions. The ellipsis in (1) represents the suppressed

supersymmetric completion, as well as higher-order terms and terms that contribute to

n-point amplitudes with n > 4, which we will come back to later.

The four BPS terms displayed in (1) are those that contribute to the four-point

amplitude and are protected by supersymmetry. As we will see, their coefficients are

modular functions that are solutions to specific Laplace equations that are determined

by supersymmetry combined with SL(2,Z) invariance. Some properties of the modular

functions of relevance to this article are given in Appendix A. The function E(s; τ, τ̄)

is a non-holomorphic Eisenstein series, which satisfies the Laplace eigenvalue equation

(A.10). In its zero Fourier mode for τ1, this function has two terms that are power-

behaved in τ2 = 1/gs which are interpreted as perturbative contributions. The two

perturbative contributions to the coefficient of the R4 interaction, g
− 1

2
s E(3

2
; τ, τ̄) [4–6],

correspond to tree-level and genus-1 (τ 2
2 and τ 0

2 ) contributions.

Similarly the coefficient of d4R4 is g
1
2
s E( 5

2
; τ, τ̄) [7], which has perturbative terms

corresponding to tree-level and genus-2 (τ 2
2 and τ−2

2 ), but no genus-1 contribution.

The absence of higher order perturbative terms implies that R4 gets no contribution

beyond genus 1 and d4R4 gets no contribution beyond genus 2 in string perturbation

theory. The coefficient of d6R4 is the generalised non-holomorphic Eisenstein series

gs E( 3
2
, 3

2
; 3; τ, τ̄) [8], which satisfies the inhomogeneous Laplace eigenvalue equation,

(A.17). In this case its zero Fourier mode has four power-behaved terms that correspond

to contributions from genus-0 up to genus-3 in superstring perturbation theory, and no

higher-order perturbative terms.

There are many other fractional BPS terms in the effective action that have not

been explicitly displayed in (1). Many of these can be obtained by considering the

low-energy expansion of n-point amplitudes with n ≥ 5. In order to describe such

amplitudes it is important to recall that the fluctuations of the massless fields of type

IIB supergravity around their background values carry specific U(1) charges [9,10]. The

field τ has a non-zero background value, τ = τ 0, which defines the string coupling

constant. However, its fluctuation Z, defined by the Cayley transformation

Z =
τ − τ 0

τ − τ̄ 0
, (2)

carries U(1) charge −2, while its conjugate Z̄ has U(1) charge +2 [11]. A scattering

amplitude is defined with a specified value of the string coupling Im(τ0) = 1/gs and

a U(1) transformation is identified with a SL(2,Z) transformation that leaves the

background value τ0 unchanged. The 256 physical states in the type IIB supergravity

supermultiplet have U(1) charges ranging from −2 to +2 in our conventions. The total

U(1) charge violation of a n-point amplitude with massless external states is generally

non-zero and satisfies the inequality |qU(1)| ≤ 2(n− 4). It follows that the U(1) charge

is conserved in all four-point functions but may be violated when n > 4.
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Superstring amplitudes & Integrated correlators 7

One particular example of a well-studied amplitude that violates U(1) is the sixteen-

dilatino interaction. The dilatino, Λ, carries U(1) charge qU(1) = −3/2 so this interaction

violates the U(1) charge by qU(1) = −24. Using a M-theory duality argument the leading

term in the low-energy limit was found [12] to be proportional to g
− 1

2
s E12( 3

2
; τ, τ̄)Λ16

where Ew(s; τ, τ̄) is a modular form with weight (w,−w) that is defined in (A.14)by

acting on E(s; τ, τ̄) with w modular covariant derivatives.‡ This expression was also

produced by an argument based directly on the supersymmetry transformations of the

fields in type IIB supergravity [6]. We will shortly demonstrate that this argument can

be simplified and generalised by the use of a ten-dimensional spinor-helicity superspace

formalism.

The Λ16 amplitude is one example of a maximally U(1)-violating (MUV) amplitude

[13], which violates U(1) by precisely −2(n−4) units.§ For all such amplitudes the terms

up to mass dimension 14 in the low-energy expansion are BPS terms and their coefficients

are modular forms that were determined by supersymmetry in [11] using superamplitude

methods that we will now describe. The procedure uses the fact BPS coefficients

arising in the low-energy expansion of any MUV n-point amplitude are related by

supersymmetry to the coefficients in the low-energy expansion of the amplitude for

four gravitons, denoted by h, and (n− 4) complex scalars Z, 〈hhhh Z . . . Z〉︸ ︷︷ ︸
n−4

.

These amplitudes give rise to BPS interactions that have the symbolic form

(α′)−1R4Zn−4 , α′d4R4Zn−4 , (α′)2d6R4Zn−4 . (3)

Maximal supersymmetry ensures that there is a unique Lorentz scalar for R4Zn−4 and

d4R4Zn−4, respectively. However, as we will explain later making use of superamplitude

methods, there are two and only two independent Lorentz scalars that contribute tor

d6R4Zn−4 when n ≥ 6.

In the next subsection we will show that the coefficient of (α′)−1R4Zn−4 is

proportional to En−4( 3
2
; τ, τ̄), and the coefficient of α′d4R4Zn−4 is proportional to

En−4( 5
2
; τ, τ̄). In the case of d6R4Zn−4 there are two invariant tensor structures when

n ≥ 6. The coefficient associated with one of these is simply En−4( 3
2
, 3

2
; 3; τ, τ̄) defined

in (A.19), but the coefficient of the other structure is a new modular form, which will

be described in the following.

2.2. Superamplitudes and low-energy expansion

The methods we will use for studying these higher-derivative terms were first introduced

in [14], which applied modern amplitude techniques to rederive the results of [4–8] for

the four-point interactions that are explicitly displayed in (1). We will follow closely

‡ Some relevant properties of modular forms are briefly described in Appendix A. They have

holomorphic and anti-holomorphic modular weights (w,−w).
§ Note that a ‘minimally U(1)-violating amplitude’ violates the U(1) charge by qU(1) = 2(n − 4)

units. This sign convention ensures that the coefficient function multiplying a maximally/minimally

U(1)-violating amplitude has maximal/minimal holomorphic weight w = ±(n− 4).
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Superstring amplitudes & Integrated correlators 8

the discussion given in [11], which treats n-point MUV interactions uniformly, with

the four-point interactions as a special case by setting n = 4. It proves very useful

to introduce a ten-dimensional spinor-helicity formalism [15], which is the analogue of

the more familiar four-dimensional formalism. This expresses the momentum kµ of any

massless state in ten dimensions in terms of chiral bosonic spinors λAa ,

kBA := (γµ)BA kµ = λBaλAa , (4)

where A = 1, . . . , 16 labels the components of a SO(9, 1) chiral spinor, a = 1, . . . , 8

labels the components of a SO(8) spinor of the little group of massless states, and

(γµ)BA are ten-dimensional gamma matrices. The Grassmann variables ηa encode type

IIB supersymmetry, where the supercharges are expressed as [15]

qAi = λAi,a η
a
i , q̄Bi = λB,ai

∂

∂ηai
, (5)

satisfying the on-shell super-algebra

{q̄Bi , qAi } = λBai λAi,a = pBAi , (6)

and the index i = 1, 2, . . . , n labels the n particles scattered.

The massless physical states are packaged into a superfield that has the following

expansion in powers of ηi

Φ(ηi) = Z + ηai Λa +
1

2!
ηai η

b
iφab + · · ·+ 1

8!
(ηi)

8Z̄ . (7)

The superfield Φ(ηi) is assigned a U(1) charge qΦ = −2, and η is assigned U(1) charge

qη = −1/2. Therefore a component field with m SO(8) spinor indices has a charge

qm = −2 +m/2. For instance, the scalar field Z has charge −2, and the graviton h, has

U(1) charge 0.

A n-point superamplitude then is a function of λi, ηi, with i = 1, 2, · · · , n, and

supersymmetry implies that the superamplitude should take the form,

An(λi, ηi) = δ10

(
n∑
i=1

ki

)
δ16(Qn) Ân(λi, ηi) , with Q̄B

n Ân = 0 , (8)

where QB
n =

∑n
i=1 q

B
i and Q̄B

n =
∑n

i=1 q̄
B
i (with B = 1, 2, · · · , 16) are the total

supercharges. The formula (8) ensures that the superamplitude An is annihilated by

the thirty-two supersymmetries.

Apart from the three-particle on-shell amplitude, which has degenerate kinematics,

these conditions imply that scattering amplitudes vanish unless the total number of η’s

from external states is at least 16. Amplitudes in which there are exactly sixteen η

variables are those for which qU = −2(n− 4) – they are MUV amplitudes. In this case

the quantity Ân contains no factors of η. Therefore it is a function of the Mandelstam

variables, sij = −α′/4 (ki + kj)
2, that encodes the α′-dependence characteristic of string

theory, as well as the dependence on the complex coupling constant, τ .

In considering the low-energy expansion of amplitudes it is important to take into

account non-analytic features that come from the effects of higher genus contributions
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Superstring amplitudes & Integrated correlators 9

and non-perturbative effects. Although this is very complicated in general, the first

three terms in the low-energy expansion of the ten-dimensional amplitude, which are

protected by supersymmetry, are analytic in the Mandelstam invariants. These terms

correspond to the first three terms of the α′ expansion of Ân, which are symmetric

polynomials of degree p = 0, p = 2 and p = 3 in the Mandelstam invariants, since

maximal U(1)-violating amplitudes cannot have poles in momenta and the case p = 1

vanishes identically
∑

i<j sij = 0.

This consideration leads to BPS terms in the low-energy limits of n-particle

superstring amplitudes in the form,‖
A(p)
n (λi, ηi) = F

(p)
n−4(τ, τ̄) δ16(Qn) Â(p)

n (sij) , (9)

where the subscript (n − 4) indicates the U(1) weight, w = n − 4. In this expression,

which includes amplitudes of the form (8), the factor Â
(p)
n (sij) is simply a symmetric

homogeneous degree-p polynomial of Mandelstam invariants. The case p = 0,

Â(0)
n (sij) = 1 , (10)

is identified with R4Zn−4 and its supersymmetric completion in the effective Lagrangian.

Note that δ16(Qn) has power counting as δ16(Qn) ∼ (λ)16 ∼ k8, which indeed has 8

derivatives, just as R4Zn−4. A
(2)
n is identified with d4R4Zn−4 and its supersymmetric

completion, with

Â(2)
n (sij) ≡ O(2)

n (sij) =
1

2

∑
i<j

s2
ij . (11)

Finally, A
(3)
n is identified with d6R4Zn−4 and its supersymmetric completion. As

anticipated earlier, there are two independent structures at the order d6R4Zn−4 when

n ≥ 6, which the superamplitude description makes very explicit. This follows from the

fact that there are two independent degree-3 symmetric polynomials,

Â
(3)
n,1(sij) =

∑
i<j

s3
ij , or Â

(3)
n,2(sij) =

∑
i<j<k

s3
ijk , (12)

with sijk = −α′/4 (ki + kj + kk)
2, each of which is associated with a coupling-dependent

coefficient F
(3)
n−4,r(τ, τ̄) for r = 1, 2. Note that for n = 4 we have Â

(3)
4,2(sij) = 0, while for

n = 5 Â
(3)
5,2(sij) = Â

(3)
5,1(sij), so that Â

(3)
n,2(sij) only plays a rôle from n = 6 onwards.

The coefficient functions F
(p)
n−4(τ, τ̄) with p = 0, 2, 3 contain the full non-perturbative

dependence on the complex type IIB coupling constant. When n = 4, these are the

modular functions reviewed in the previous section, so that F
(0)
0 (τ, τ̄) ∝ E( 3

2
; τ, τ̄),

F
(2)
0 (τ, τ̄) ∝ E( 5

2
; τ, τ̄), and F

(3)
0 (τ, τ̄) ∝ E( 3

2
, 3

2
; 3; τ, τ̄).

Terms of higher order in the low-energy expansion – i.e. of mass dimension ≥ 16 (or

p ≥ 4) – are D-terms and they can be written in terms of a function f(λ, η) multiplied by

‖ The amplitude is defined in a given background τ = τ0. Here and in what follows, to simplify the

notation we will drop the superscript 0 of the background field (or equivalently the coupling) τ0 and

denote it by τ .
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Superstring amplitudes & Integrated correlators 10

all 32 supercharges. For example if Â
(4)
n (sij) is a symmetric polynomial in Mandelstam

invariants of degree 4 it can be expressed in the schematic form

Â(4)
n (sij) ∼

∑
permutations

(Q̄)16η8
i η

8
j . (13)

This is simply a consequence of power counting since (Q̄)16 is of order s4
ij. By

construction, Â
(4)
n given above is annihilated by all 16 Q̄’s. As we will see later such terms

are, unsurprisingly, unconstrained and do not appear to be protected by supersymmetry.

2.3. Soft-dilaton constraints

The behaviour of amplitudes in limits in which one or more of the momenta of the

scattering particles is zero (soft limits) is intimately related to symmetry properties

of the theory. A prototype is the Adler zero [16], which refers to the vanishing of

amplitudes for scattering of Goldstone bosons in the chiral non-linear sigma model as

one of the momenta is taken to be soft. Similarly, taking the soft limit of a dilaton Z,

with momentum pn, in type IIB supergravity gives

ASGn (X,Z(kn))
∣∣∣
kn→0

= 0 , (14)

where SG indicates a supergravity amplitude and X denotes the remaining (n − 1)

scattered fields. This soft behaviour reflects the coset structure SL(2,R)/U(1) of type

IIB supergravity. However, stringy effects break the U(1) symmetry and the soft-dilaton

limit of string amplitudes no longer vanishes.¶ The result is [11],

An(X,Z(kn))
∣∣∣
kn→0

= 2DwAn−1(X) , An(X, Z̄(kn))
∣∣∣
kn→0

= 2D̄−wAn−1(X) , (15)

where w is the U(1) weight of the lower-point amplitude An−1(X). In supergravity, all

the amplitudes have zero U(1) weights, therefore the above soft dilaton relations reduce

to (14). Furthermore, one may consider the sum of the two soft dilaton relations in (15),

which projects out the Ramond–Ramond pseudoscalar (i.e. the axion field) and leads

to a soft relation for the real dilaton [17–19],

An(X,Z(kn) + Z̄(kn))
∣∣∣
kn→0

= 2
(
Dw + D̄−w

)
An−1(X) . (16)

Applying the relations (15) to the low-energy expansion of MUV amplitudes given in

(9), we find

F
(p)
n−4(τ, τ̄) δ16(Qn) Â(p)

n (sij)
∣∣∣
kn→0

= 2Dn−5F
(p)
n−5(τ, τ̄) δ16(Qn−1) Â

(p)
n−1(sij) , (17)

where we have used the fact w in (15) is n− 5 for the MUV amplitudes. Since Z is the

top component of the on-shell superfield (7) without any η factors, we see that δ16(Qn)

reduces to δ16(Qn−1) directly in the soft-dilaton limit, therefore,

F
(p)
n−4(τ, τ̄) Â(p)

n (sij)
∣∣∣
kn→0

= 2Dn−5F
(p)
n−5(τ, τ̄) Â

(p)
n−1(sij) . (18)

¶ Since Z is a combination of axion and dilation, we are really considering both the axion and the

dilation to be soft, even though we are calling this a soft-dilaton condition.
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Superstring amplitudes & Integrated correlators 11

We will discuss this relation for values of p ≤ 3. In the case p = 0, Â
(0)
n (sij) = 1, so

the soft limit is trivial and we obtain

F
(0)
n−4(τ, τ̄) = 2Dn−5F

(0)
n−5(τ, τ̄) . (19)

In the case of p = 2, it is easy to see Â
(2)
n (sij)

∣∣∣
kn→0

= Â
(2)
n−1(sij), we again obtain

F
(2)
n−4(τ, τ̄) = 2Dn−5F

(2)
n−5(τ, τ̄) . (20)

Therefore, recalling that F
(0)
0 (τ, τ̄) = E( 3

2
; τ, τ̄) and F

(2)
0 (τ, τ̄) = E( 5

2
; τ, τ̄), the above

relations uniquely determine F
(0)
n−4(τ, τ̄) and F

(2)
n−4(τ, τ̄) for any n.

As shown in (12), the story becomes more interesting for p = 3, in which case there

are two independent polynomials when n ≥ 6. As was argued in [11], it is important to

choose particular linear combinations of Â
(3)
n,1(sij) and Â

(3)
n,2(sij) to form the basis for the

amplitude A
(3)
n . In particular, we choose,

O(3)
n,1 =

1

32

[
(28− 3n)Â

(3)
n,1(sij) + 3Â

(3)
n,2(sij)

]
,

O(3)
n,2 = (n− 4)Â

(3)
n,1(sij)− Â(3)

n,2(sij) , (21)

so the amplitude is given by

A(3)
n = δ16(Qn)

[
F

(3)
n−4,1(τ, τ̄)O(3)

n,1(sij) + F
(3)
n−4,2(τ, τ̄)O(3)

n,2(sij)
]
. (22)

With this particular linear combination, when n = 6 the term involving

O(3)
6,1 =

1

32

(
10
∑

1≤i<j≤6

s3
ij + 3

∑
1≤i<j<k≤6

s3
ijk

)
, (23)

is identified with the term of mass dimension 14 in the low-energy expansion of the six-

point MUV tree-level amplitude from explicit computation as given in (27). Hence the

coefficient F
(3)
2,2 (τ, τ̄) of the second linear combination O(3)

6,2 does not receive any tree-level

contribution but only contains terms originating from higher-genus string amplitudes.

Furthermore, O(3)
n,2 vanishes for n = 4 and n = 5, while for n = 6, O(3)

6,2 ∼
∑

perm s12s34s56

vanishes in the soft limit, which has important consequences as we will discuss later.

The preceding argument leads to expressions for O(3)
n,1 and O(3)

n,2 for all values of n.

They are determined uniquely by the following soft limits,

O(3)
n,1(sij)

∣∣∣
kn→0

= O(3)
n−1,1(sij) , O(3)

n,2(sij)
∣∣∣
kn→0

= O(3)
n−1,2(sij) , (24)

which give

O(3)
n,1(sij) =

1

32

[
(28− 3n)

∑
i<j

s3
ij + 3

∑
i<j<k

s3
ijk

]
,

O(3)
n,2(sij) = (n− 4)

∑
i<j

s3
ij −

∑
i<j<k

s3
ijk . (25)

These properties and the soft-dilaton conditions imply that the coefficients F
(3)
n−4,1(τ, τ̄),

and F
(3)
n−4,2(τ, τ̄) obey the following relations,

F
(3)
n−4,1(τ, τ̄) = 2Dn−5F

(3)
n−5,1(τ, τ̄) , F

(3)
n−4,2(τ, τ̄) = 2Dn−5F

(3)
n−5,2(τ, τ̄) . (26)
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Superstring amplitudes & Integrated correlators 12

Importantly, the second equation only applies to the cases with n > 6. Therefore,

F
(3)
n−4,1(τ, τ̄) is determined recursively by F

(3)
0,1 (τ, τ̄), which is the coefficient of d6R4 that

is given by the generalised non-holomorphic Eisenstein series E( 3
2
, 3

2
; 3; τ, τ̄). The other

coefficient F
(3)
n−4,2(τ, τ̄) is new, and will be determined separately.

It is instructive to have explicit results of the low-energy expansion of the relevant

string amplitudes. At tree-level, these are relatively easy to determine. For example,

the coefficients of the low-energy expansion of, tree-level MUV amplitudes with up to

six particles and up to 14 derivatives are given by [11]

Â4(sij) = 2τ
3
2

2 ζ(3) + τ
5
2

2 ζ(5)O(2)
4 (sij) +

2

3
τ 3

2 ζ(3)2O(3)
4,1(sij) ,

Â5(sij) = 3τ
3
2

2 ζ(3) +
5

2
τ

5
2

2 ζ(5)O(2)
5 (sij) + 2τ 3

2 ζ(3)2O(3)
5,1(sij) ,

Â6(sij) =
15

2
τ

3
2

2 ζ(3) +
35

4
τ

5
2

2 ζ(5)O(2)
6 (sij) + 8τ 3

2 ζ(3)2O(3)
6,1(sij) . (27)

These tree-level results provide useful data for determining parameters in the differential

equations arising from supersymmetry constraints that will be discussed in the next

section.

2.4. Superamplitude constraints and differential equations

We have seen that the soft-dilaton constraints relate coefficients in the low-energy

expansion of MUV amplitudes since F
(p)
w+1(τ, τ̄) ∼ DwF (p)

w (τ, τ̄). Following [11], we will

now show that conjugate first order differential equations involving D̄ are determined by

supersymmetry constraints generalising the procedure of [14,20–23]. The key ingredient

in this procedure, which has been checked in many examples, is that supersymmetric

contact terms of mass dimension ≤ 14 are not allowed for non-maximal U(1)-violating

processes.+ This fact implies that the low-energy expansion of a sueramplitude up to

mass dimension 14 is uniquely determined by lower-point amplitudes via factorisation

using tree-level unitarity. In this section we will simply denote by D and D̄ the action

of the holomorphic and anti-holomorphic covariant derivatives Dw, D̄−w (given in (A.3))

on a modular function with weight (w,−w) as to avoid cluttering the notation. Given

the fact that all of the coefficients F
(p)
n−4 have modular weights (w,−w), with w = n− 4

it should be clear which specific covariant derivatives D, D̄ are acting on them.

Cases p = 0 and p = 2. We will illustrate the idea by considering a six-point amplitude

with four gravitons, together with a Z and a Z̄, which is a U(1)-conserving amplitude.

The diagrams that contribute to this amplitude are sketched in Fig. 1, which contains

three factorisation diagrams and one contact diagram. As emphasised earlier, the

contact term alone is inconsistent with supersymmetry, therefore it must be linearly

related to the factorisation diagrams. In other words, the absence of a non-MUV

+ If there are more than 14 derivatives, one can then construct supersymmetric contact terms. One of

such examples is given in (13).
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Superstring amplitudes & Integrated correlators 13

Z

Z̄

D̄F (p)
1 (τ, τ̄)

(a)

Z̄

Z

F
(p)
0 (τ, τ̄)

(b)

Z̄

Z

F
(p)
0 (τ, τ̄)

(c)

Z

Z̄

F
(p−1)
R5 (τ, τ̄)

(d)

Figure 1. The diagrams that contribute to the six-point amplitude A6(h, h, h, h, Z, Z̄)

at order R4 or d4R4, with h being the graviton (represented by the straight lines) and

Z, Z̄ the axion-dilaton field and its conjugate (represented by the wavy lines). In (a)

F
(p)
1 (τ, τ̄) is the coefficient of the interaction d2pR4Z. In (b) F

(p)
0 (τ, τ̄) is the coefficient

of the interaction d2pR4 (and its supersymmetric relative in (c)). In (d) F
(p−1)
R5 (τ, τ̄)

is the coefficient of the interaction d2p−2R5.

supersymmetric contact term implies a linear relation among all these terms, and

consequently a linear relation of the corresponding coefficients,

D̄F (p)
1 (τ, τ̄) + a1 F

(p)
0 (τ, τ̄) + a2 F

(p−1)

R5 (τ, τ̄) = 0 , (28)

where the coefficients a1 and a2 are in principle computable by explicit evaluation of

the contributions in figure 1. However, that is very complicated and so in the following

the coefficients will be fixed by comparison with string perturbation theory.

Note, if p = 0 (i.e. at order R4), the contribution of the R5 vertex in figure 1-(d)

vanishes. If p = 2, one can further relate the R5 coefficient, F
(p−1)

R5 (τ, τ̄), to F
(p)
0 (τ, τ̄) by

considering the five-graviton amplitude, which is a non maximal U(1)-violating process.

It receives contributions from d2p−2R5 (with coefficient F
(p−1)

R5 (τ, τ̄)) and pole terms

arising from attaching a three-graviton vertex to d2pR4 (with coefficient F
(p)
0 (τ, τ̄)). By

the same argument, this leads to a linear relation between their coefficients

F
(p−1)

R5 (τ, τ̄) + a3 F
(p)
0 (τ, τ̄) = 0 , (29)

that is in agreement with [24]. By combining (28) and (29), we arrive at

D̄F (p)
1 (τ, τ̄) + a4 F

(p)
0 (τ, τ̄) = 0 , (30)

which, together with (19) or (20), leads to the Laplace equation

∆τF
(p)
0 (τ, τ̄) + 2a4 F

(p)
0 (τ, τ̄) = 0 . (31)

Although the constant a4 is computable, in principle, this is not straightforward. As we

commented earlier, however, it can also be determined from knowledge of the tree-level

behaviour of the string amplitudes, which implies F
(0)
0 (τ, τ̄) ∼ τ

3
2

2 and F
(2)
0 (τ, τ̄) ∼ τ

5
2

2 .
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Superstring amplitudes & Integrated correlators 14

Z̄

Z

Z

D̄F (3)
2,1 (τ, τ̄)

(a)

Z̄

Z

Z

D̄F (3)
2,2 (τ, τ̄)

(b)

F
(3)
1 (τ, τ̄)

Z

Z

Z̄

(c)

F
(0)
0 (τ, τ̄)

Z̄

F
(0)
1 (τ, τ̄)

ZZ

(d)

Figure 2. The diagrams that contribute to the seven-point amplitude

A7(h, h, h, h, Z, Z, Z̄) at order d6R4.

Therefore, (
∆− 3

4

)
F

(0)
0 (τ, τ̄) = 0 ,

(
∆− 15

4

)
F

(2)
0 (τ, τ̄) = 0 , (32)

reproducing the Laplace equations for non-holomorphic Eisenstein series. We therefore

find F
(0)
0 (τ, τ̄) = E( 3

2
; τ, τ̄) and F

(2)
0 (τ, τ̄) = 1

2
E( 5

2
; τ, τ̄). Once F

(p)
0 (τ, τ̄) is determined,

(19) and (20) fix all the F
(p)
n−4(τ, τ̄) for any n. These results have been confirmed by

explicit perturbative string theory calculations at genus-one and genus-two as described

in the next section, as well as by a leading order D-instanton calculation in the case of

R4 term [25,26].

Case p = 3. In the p = 3 case additional diagrams contribute to the amplitude, see

shown in figure 2. In addition to diagrams that are similar to those in figure 1, a new

type of diagram arises consisting of two p = 0 higher-derivative vertices connected with

a propagator shown in figure 2-(d). The supersymmetry constraint that implies the

absence of contact terms leads to the relation

D̄F (3)
1 (τ, τ̄) + aF

(3)
0 (τ, τ̄) + b (F

(0)
0 (τ, τ̄))2 = 0 , (33)

where for n < 6 F
(3)
n−4(τ, τ̄) ≡ F

(3)
n−4,1(τ, τ̄) since, as discussed below (22), the coefficient

F
(3)
n−4,2(τ, τ̄) makes its first appearance at n = 6. Combining this equation with the first

equation in (26) (since we are considering the case n = 4 only the first equation in (26)

applies) leads to the Laplace equation for a generalised non-homomorphic Eisenstein

series, after fixing the constants a, b using perturbative superstring amplitude,

(∆− 12)F
(3)
0 (τ, τ̄) = −(F

(0)
0 (τ, τ̄))2 . (34)

Using the fact that F
(0)
0 (τ, τ̄) = E( 3

2
; τ, τ̄), we see that F

(3)
0 (τ, τ̄) = E( 3

2
, 3

2
; 3; τ, τ̄). We

can then use the first equation in (26) to determine all the coefficients F
(3)
n−4,1(τ, τ̄) with

n > 4 associated with the higher-derivative terms O(3)
n−4,1(sij).
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Superstring amplitudes & Integrated correlators 15

The constraints on the coefficient F
(3)
n−4,2(τ, τ̄), which is associated with the higher-

derivative term O(3)
n−4,2(sij), have to be determined separately. These follow from the

structure of the non-MUV seven-point amplitude with four gravitons, two Z’s and

one Z̄. The contributions to the amplitude are shown in figure 2. The absence of

supersymmetric contact terms implies that the coefficient of each contact vertex (namely,

D̄F (3)
2,1 (τ, τ̄) and D̄F (3)

2,2 (τ, τ̄)) is linearly related to the coefficients of the factorising terms.

Therefore we have the following differential equations

D̄F (3)
2,1 (τ, τ̄) + a1 F

(3)
1 (τ, τ̄) + a2 F

(0)
0 (τ, τ̄)F

(0)
1 (τ, τ̄) = 0 , (35)

and

D̄F (3)
2,2 (τ, τ̄) + b1 F

(3)
1 (τ, τ̄) + b2 F

(0)
0 (τ, τ̄)F

(0)
1 (τ, τ̄) = 0 . (36)

Equation (35) involving F
(3)
2,1 (τ, τ̄) does not give new information, and is consistent

with the result obtained earlier. Equation (36) determines the new modular function

F
(3)
2,2 (τ, τ̄) that we anticipated earlier. Note that, by applying D to (35) and using (26),

we can obtain an inhomogeneous Laplace eigenvalue equation for F
(3)
2,1 (τ, τ̄)

(∆(−) − 10)F
(3)
2,1 (τ, τ̄) = −15

2

(
E0( 3

2
; τ, τ̄)E2( 3

2
, τ, τ̄) +

3

5
E1( 3

2
, τ, τ̄)2

)
, (37)

with ∆(−) the suitable Laplace operator (A.6), and where the specific values of the

constants a1 = −5, a2 = 1 were fixed in [11].

From the construction of the higher-derivative terms, O(3)
n,1 and O(3)

n,2, we know that

F
(3)
2,2 (τ, τ̄) should vanish at tree-level, which allows us to fix the relative ratio between

b1 and b2, leading to

D̄F (3)
2,2 (τ, τ̄) + b1

[
F

(3)
1 (τ, τ̄)− 1

3
F

(0)
0 (τ, τ̄)F

(0)
1 (τ, τ̄)

]
= 0 , (38)

where we have used the expressions of the perturbative part of F
(0)
0 (τ, τ̄), F

(0)
1 (τ, τ̄) and

F
(3)
1 (τ, τ̄). This leaves one undetermined constant, b1, which can be fixed by a one-loop

calculation of the six-point MUV amplitude to the same order as d6R4.∗
Furthermore using (35) together with F

(0)
0 (τ, τ̄)F

(0)
1 (τ, τ̄) = 3D̄

[
(E1( 3

2
; τ, τ̄))2

]
we

arrive at

F
(3)
2,2 (τ, τ̄) =

b1

5

[
F

(3)
2,1 (τ, τ̄)− 2E1( 3

2
; τ, τ̄)2

]
, (39)

which, thanks to (37), leads to an inhomogeneous Laplace eigenvalue equation for

F
(3)
2,2 (τ, τ̄)

(∆(−) − 10)F
(3)
2,2 (τ, τ̄) = −5b1

2

(
E0( 3

2
; τ, τ̄)E2( 3

2
; τ, τ̄)− E1( 3

2
; τ, τ̄)E1( 3

2
; τ, τ̄)

)
. (40)

The perturbative part of F
(3)
2,2 (τ, τ̄) takes the following form

F
(3)
2,2 (τ, τ̄) =

8b1

3

[
ζ(2)ζ(3)τ2 −

4

15
ζ(2)2τ−1

2 +
1

15
ζ(6)τ−3

2

]
+O(e−2πτ2) .(41)

∗ The constant b1 has recently been determined to be 9/32 by computing the one D-instanton

contribution to the amplitude [27].
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Superstring amplitudes & Integrated correlators 16

The result predicts the precise ratios of the perturbative contribution to the higher-

derivative term O(3)
6,2(sij) at genus one, two and three. Once F

(3)
2,2 (τ, τ̄) is determined, all

higher-point coefficients F
(3)
n−4,2(τ, τ̄) with n > 6 are then also fixed by (26).

3. Exact results for integrated correlators in N = 4 SYM

This section will review some recent exact results concerning correlation functions in

N = 4 SYM [28] and their connections with superstring amplitudes. The most studied

example of gauge/gravity duality is the holographic relationship between N = 4 SYM

with SU(N) gauge group and type IIB superstring theory in AdS5 × S5. According

to this duality, correlation functions in N = 4 SYM are the images of scattering

amplitudes of type IIB superstring theory. In particular, the large-N expansions of

N = 4 correlators should reproduce the low-energy expansion of superstring amplitudes.

However, we will determine exact results that are valid for any finite value of N , as well

as in the large-N limit. We will also study correlators of N = 4 SYM with general

classical gauge groups, and correlators of more than four operators that are dual to the

MUV amplitudes that we met in the last section.

Our emphasis will be on integrated correlators of operators in the stress tensor

supermultiplet. That is, correlators of 1/2-BPS operators that are integrated over the

positions of the operators with particular measures that are chosen to preserve some

of the supersymmetry. We will see that such integrated correlators, introduced in [29],

can be explicitly determined by supersymmetric localisation. Not only do the large-

N expansions of these correlators make contact with the dual type IIB superstring

amplitudes, but their properties at finiteN reproduce and generalise features determined

directly from Yang–Mills perturbation theory.

3.1. Integrated correlators in N = 4 SYM

We are interested in the correlation function of four superconformal primaries in the

stress energy tensor supermultiplet, as well as ‘maximal U(1)-violating correlators’ of

more than four operators. Explicitly, the four-point correlator in N = 4 SYM with

arbitrary gauge group is given as

〈O2(x1, Y1) . . .O2(x4, Y4)〉 =
1

x4
12x

4
34

[Tfree(U, V ;Yi) + I4(U, V ;Yi)T (U, V )] , (42)

where the conformal invariant cross ratios U, V are defined as

U =
x2

12x
2
34

x2
13x

2
24

, V =
x2

14x
2
23

x2
13x

2
24

, (43)

andO2(xi, Yi) is the superconformal primary operator in the stress tensor supermultiplet

of N = 4 SYM, which is defined as

O2(xi, Yi) = tr(φI(xi)φJ(xi))Y
I
i Y

J
i , (44)
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Superstring amplitudes & Integrated correlators 17

where φI is a scalar field in N = 4 SYM, and O2 has conformal dimension ∆ = 2. Here

I, J = 1, 2, . . . , 6 are the R-symmetry SO(6) indices and Yi is a null polarization vector

Yi ·Yi = 0. In writing down (42), we have used the partial non-renormalisation theorem

of the correlator [30,31]. This theorem implies that after separating out the free-theory

contribution Tfree, the remaining part can be further factorised into a universal factor

I4(U, V ;Yi), which is fixed by the symmetries, and corresponds to the supercharge δ16(Q)

in the superstring amplitude. All the non-trivial dynamics of the correlator is contained

in T (U, V ).

Many properties of T (U, V ) have been studied. In perturbation theory, it was

evaluated at one and two loops in [32–36], and at three loops in [37]. The planar loop

integrands have been constructed up to ten loops [38,39], and non-planar contributions

first appear at four loops. The non-planar four-loop integrand was determined in [40].

These very high order results for the integrands were made possible by the discovery

of a hidden permutation symmetry [41, 42]. In the strong coupling limit, the tree-

level Witten diagrams for this correlator were computed in early days of AdS/CFT

duality [43–45] [46–49], and the one-loop contribution in the supergravity limit was

studied more recently [50–53].]

However, we are interested in the correlator at finite complex Yang–Mills coupling

τ = θ/(2π) + 4πi/g2
YM

, which is important for making manifest SL(2,Z) self-duality of

the theory and for the understanding its relation to the exact results of superstring

amplitudes that were discussed in the previous section. Although evaluating a

non-trivial correlation function at finite coupling is generally challenging, powerful

methods have recently been developed for determining integrated correlators based on

supersymmetric localisation. This utilises the fact that N = 4 SYM can be expressed as

the m→ 0 limit of N = 2∗ SYM, a massive deformation of the N = 4 theory where the

hypermultiplet is given a mass m. Using this fact the integral of the N = 4 SYM four-

point correlator (42) over the positions of the operators, xi, with a particular measure

can be expressed in terms of properties of the partition function of N = 2∗ SYM on

S4, which was evaluated some time ago using supersymmetric localisation [55]. More

explicitly, the following are two examples of integrated correlators that are determined

by the m→ 0 limit of derivatives of the N = 2∗ partition function Z(τ, τ̄ ,m) [29, 56].

1

4
∆τ∂

2
m logZ(τ, τ̄ ,m)

∣∣∣
m=0

= − 8

π

∫ ∞
0

dr

∫ π

0

dθ
r3 sin2(θ)

U2
T (U, V ) , (45)

and

∂4
m logZ(τ,τ̄ ,m)

∣∣∣
m=0

(46)

= −32

π

∫ ∞
0

dr

∫ π

0

dθ
r3 sin2(θ)

U2
(1 + U + V )D̄1111(U, V )T (U, V ) + 48ζ(3)c ,

where r2 = V , 1 − 2r cos(θ) + r2 = U , D̄1111 is the so-called D-function appearing in

the computation of contact Witten diagrams (see e.g. the appendix D of [57]), and c

] See [54] (chapter 8 of this SAGEX Review) for more details of related topics.
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Superstring amplitudes & Integrated correlators 18

denotes the central charge of the theory. Roughly speaking, the four derivatives bring

down four integrated operators, and setting m = 0 at the end is necessary for reducing

N = 2∗ back to N = 4 SYM.

The localisation expression for Z(τ, τ̄ ,m) is given by a N -dimensional matrix model

integral where the integrand consists of the matrix model measure multiplying the

product of two factors. One factor is simply the one-loop determinant of the N = 2∗

theory, which leads to the perturbative sector of the integrated correlators. The other

factor is the Nekrasov partition function that leads to the instanton contributions.

The k-instanton contribution can be expressed as a k-dimensional contour integral

[58,59]. Determining the explicit properties of Z(τ, τ̄ ,m) is generally very complicated,

especially at finite τ and for general values of N . However, the expressions for the

integrated N = 4 SYM correlators (45) and (46) depend only on the coefficients of the

terms of order m2 and order m4 in the expansion of Z(τ, τ̄ ,m) in powers of m. This

considerably simplifies some aspects of the analysis, but it is still very difficult to obtain

the explicit results that display both the τ dependence and the N dependence of the

integrated correlators. However, there are a number of results that address the large-N

expansion, both with fixed ’t Hooft coupling and with fixed g
YM

[29, 56, 60, 61]. In the

large-N ’t Hooft limit the instantons are exponentially suppressed, which obscures the

SL(2,Z) symmetry, but the large-N expansion with fixed g
YM

accounts for Yang–Mills

instantons and makes SL(2,Z) explicit.

Here we will review the arguments in [62,63], in which the first integrated correlator

(45) is expressed as a two-dimensional lattice sum, which is an explicitly modular

invariant function of function of τ for all values of N . We will also review the

generalisation to N = 4 SYM with an arbitrary classical gauge group [64] (which made

use of the analysis of the perturbative sector in [65]).

We will also review results for the second integrated correlator (46) which are less

complete since they only account for several low-lying terms in the large-N expansion

that were determined in [61].

The study of integrated correlators in N = 4 SYM has been further extended to

maximal U(1)Y -violating (MUV) integrated correlators [66, 67], which are holographic

duals of MUV amplitudes in type IIB superstring theory in an AdS5 × S5 background

that were discussed in the last section. Here U(1)Y is the bonus U(1) [68], of the gauge

theory, which is a true symmetry of the free theory but more generally is broken to

a Z4 automorphism of the supergroup PSU(2, 2|4) and is dual to the (broken) U(1)

R-symmetry of the type IIB superstring.

An example of an unintegrated MUV correlator is

〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn)〉 , (47)

where Oτ is the chiral Lagrangian of N = 4 SYM. Other types of MUV correlators are

related to this one by supersymmetry and superconformal symmetry. This transforms

with weight (n− 4, 4− n).†† The chiral Lagrangian Oτ is dual to the dilaton, and the

††Note that the modular weights of MUV correlators have the opposite signs to the modular weights
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Superstring amplitudes & Integrated correlators 19

holographic version of the soft-dilaton condition (15) takes the form of

Dn−5〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn−1)〉 (48)

=
1

2

∫
d4xn〈O2(x1, Y1) . . .O2(x4, Y4)Oτ (x5) . . .Oτ (xn−1)Oτ (xn)〉 .

When considering the perturbative contributions of the correlators this relation leads to

a very efficient method for constructing loop integrands for the four-point correlator [67],

which was utilised in [38–42] for calculating the four-point correlator at high orders.

3.2. Exact results for integrated correlators

We will now discuss the exact structure of the integrated correlator (45) that is

proportional to ∆τ∂
2
m logZGN (τ, τ̄ ,m)|m=0. We have introduced the subscript GN to

the partition function to indicate that we are considering the gauge group to be any

classical Lie group, so GN = SU(N) (as in [62,63]) or SO(2N), SO(2N + 1), USp(2N)

(as in [64]).

Montonen–Olive duality† [70–72] implies that when the gauge group is simply-laced

(SU(N) or SO(2N)) correlators must be invariant under SL(2,Z). This is generated

by the transformations S : τ → −1/τ and T : τ → τ + 1. For the non simply-laced

gauge groups, SO(2N + 1) and USp(2N), duality is generated by the transformations

Ŝ : τ → −1/(2τ) and T : τ + 1. The action of Ŝ transforms SO(2N + 1) into USp(2N)

and vice versa, so it is not a self-duality. The transformations Ŝ T Ŝ and T generate

the congruence subgroup Γ0(2) ⊂ SL(2,Z). An element γ=( a bc d )∈SL(2,Z) belongs to

Γ0(2) if c = 0 mod 2. So Γ0(2) is the self-duality group when the gauge groups are non

simply-laced classical groups.

In [64], it was found that the integrated correlators for any classical Lie group can

be expressed in the compact and unified form,

CGN (τ, τ̄) ≡ 1

4
∆τ∂

2
m logZGN (τ, τ̄ ,m)

∣∣∣
m=0

(49)

=
∑

(m,n)∈Z2

∫ ∞
0

dt

(
B1
GN

(t)e
−tπ |m+nτ |2

τ2 +B2
GN

(t)e
−tπ |m+2nτ |2

2τ2

)
,

where B1
GN

(t) and B2
GN

(t) are rational functions of t. In the simply-laced cases

B2
GN

(t) = 0, and hence CGN (τ, τ̄) is SL(2,Z) invariant. The rational function BSU(N)(t)

was constructed in [62,63] and it is explicitly given by

BSU(N)(t) =
QSU(N)(t)

(t+ 1)2N+1
, (50)

of the holographic dual MUV amplitudes.
† The term ‘Montonen–Olive’ duality is often used interchangeably with ‘Goddard–Nuyts–Olive’

(GNO) duality [69]. GNO demonstrated that in a Yang–Mills theory that has magnetic monopoles

and gauge group G, the magnetic charges are associated with points on the weight lattice of the dual

group LG. The superscript L indicates that the dual group is the Langlands group. Since here we

consider only correlators of local operators, these depend only from the Lie algebra gN and its dual,
LgN , and so global features of this duality are not relevant in this article.
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Superstring amplitudes & Integrated correlators 20

and QSU(N)(t) is a polynomial of degree (2N − 1) that takes the form

QSU(N)(t) = −1

4
N(N − 1)(1− t)N−1(1 + t)N+1 (51){

(3 + (8N + 3t− 6) t)P
(1,−2)
N

(
1 + t2

1− t2
)

+
1

1 + t

(
3t2 − 8Nt− 3

)
P

(1,−1)
N

(
1 + t2

1− t2
)}

,

with P
(α,β)
N (z) being a Jacobi polynomial. The function BSU(N)(t) satisfies several

interesting relations

BSU(N)(t) = t−1BSU(N)(t
−1) , (52)∫ ∞

0

BSU(N)(t)dt =
N(N − 1)

8
,

∫ ∞
0

1√
t
BSU(N)(t)dt = 0 . (53)

The first of these equations is an inversion relation that follows automatically from the

lattice sum definition of the integrated correlator (49), as was pointed out in [73] (where

the lattice sum was re-expressed in terms of a modular invariant spectral represnetation).

For the non simply-laced cases, GNO duality interchanges the SO(2N + 1) theory

with the USp(2N) theory. This is a property of the expression (49) by virtue of the fact

that for these groups the coefficient functions satisfy the relations

B1
SO(2N+1)(t) = B2

USp(2N)(t) , B2
SO(2N+1)(t) = B1

USp(2N)(t) , (54)

which ensure that the action of Ŝ interchanges the two terms, and therefore relates

CSO(2N+1)(τ, τ̄) with CUSp(2N)(τ, τ̄).

It is also notable that BSU(−N)(t) = BSU(N)(−t) which is directly connected to the

relation CSU(N)(τ, τ̄) = CSU(−N)(−τ,−τ̄). Exact expressions for all B1
GN

(t), B2
GN

(t) can

be found in [64], however, as we will shortly argue, CSO(n) and CUSp(2N) can be expressible

in terms of rational linear combinations of CSU(m). Furthermore, we will also see that

CSU(m) can be expressed in terms of CSU(2).

Using the definition of the non-holomorphic Eisenstein series (A.14) the integrated

correlator can be written as the formal expansion

CGN (τ, τ̄) = −bGN (0) +
∞∑
s=2

[
b1
GN

(s)E(s; τ, τ̄) + b2
GN

(s)E(s; 2τ, 2τ̄)
]
, (55)

where the coefficients b1
GN

(s) and b2
GN

(s) are rational numbers that are determined by

the power series expansion of Bi
GN

(t) in the form

Bi
GN

(t) =
∞∑
s=2

biGN (s)

Γ(s)
ts−1 , i = 1, 2 , (56)

and we defined bGN (0) = b1
GN

(0) + b2
GN

(0).

Again for the simply-laced cases b2
GN

(s) = 0, and for the non simply-laced cases

b1
SO(2N+1)(s) = b2

USp(2N)(s) , b2
SO(2N+1)(s) = b1

USp(2N)(s) , (57)

which manifest GNO duality. In [73] the formal expansion (55) was expressed in terms

of a spectral decomposition for CSU(N), and a similar expression was given for general

CGN in [64].
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Superstring amplitudes & Integrated correlators 21

Remarkably, the integrated correlators satisfy Laplace-difference equations that

relate correlators of different gauge groups. In the case of SU(N), this takes the form

∆τCSU(N)(τ, τ̄)− 4cSU(N)

[
CSU(N+1)(τ, τ̄)− 2CSU(N)(τ, τ̄) + CSU(N−1)(τ, τ̄)

]
− (N + 1)CSU(N−1)(τ, τ̄) + (N − 1)CSU(N+1)(τ, τ̄) = 0 , (58)

where cSU(N) = (N2 − 1)/4 is the central charge. This is a powerful equation that

determines CSU(N)(τ, τ̄) for general values of N in terms of CSU(2)(τ, τ̄), once the

boundary condition CSU(1)(τ, τ̄) = 0 is imposed.

The equations for other gauge groups take similar forms, Thus, the Laplace-

difference equation for the SO(n) correlator (where n = 2N or 2N + 1) is given by

∆τCSO(n)(τ, τ̄)− 2cSO(n)

[
CSO(n+2)(τ, τ̄)− 2CSO(n)(τ, τ̄) + CSO(n−2)(τ, τ̄)

]
− n CSU(n−1)(τ, τ̄) + (n− 1)CSU(n)(τ, τ̄) = 0 , (59)

where cSO(n) = n(n− 1)/8 is the central charge for SO(n). This equation relates SO(n)

and SU(n) correlators. The SO(3) case is an exception since the Dynkin index of SO(n)

is discontinuous as n = 3, hence in that case the integrated correlator is actually given

by CSO(3)(
τ
2
, τ̄

2
) (rather than CSO(3)(τ, τ̄)), which agrees with the result of supersymmetric

localisation [65]. For USp(n) correlators (where n = 2N), we have

∆τCUSp(n)(τ, τ̄)− 2cUSp(n)

[
CUSp(n−2)(τ, τ̄)− 2CUSp(n)(τ, τ̄) + CUSp(n+2)(τ, τ̄)

]
+ n CSU(n+1)(2τ, 2τ̄)− (n+ 1)CSU(n)(2τ, 2τ̄) = 0 , (60)

where cUSp(n) = n(n + 1)/8 is the central charge for USp(n). This equation relates

USp(n) and SU(n) correlators. The localisation expression for the correlator can be

used to show that

CSO(3)

(τ
2
,
τ̄

2

)
= CUSp(2)(τ, τ̄) = CSU(2)(τ, τ̄) , (61)

which is consistent with the isomorphism of the corresponding Lie algebras. Combining

this initial condition with the fact that CSU(N)(τ, τ̄) is determined by (58), it is then

straightforward to show that the Laplace-difference equations (59) and (60) determine

CSO(n) and CUSp(n) in terms of finite rational linear combinations of CSU(m) correlators.

For example,

CSO(4)(τ, τ̄) = 2 CSU(2)(τ, τ̄) , CSO(6)(τ, τ̄) = CSU(4)(τ, τ̄) , (62)

CSO(8)(τ, τ̄) =

−2 CSU(2)(τ, τ̄) +
8

3
CSU(3)(τ, τ̄)− 2 CSU(4)(τ, τ̄) +

4

5
CSU(5)(τ, τ̄) +

2

3
CSU(6)(τ, τ̄) .

Since CSU(m)(τ, τ̄) is invariant under SL(2,Z) for all m ∈ N, it follows that CSO(2N)(τ, τ̄)

is also invariant under SL(2,Z), as expected from GNO duality for SO(2N).

Similarly,

CSO(5)(τ, τ̄) =

[
−2 CSU(2)(τ, τ̄) +

4

3
CSU(3)(τ, τ̄)

]
+

[
−2 CSU(2)(2τ, 2τ̄) +

4

3
CSU(3)(2τ, 2τ̄)

]
,

(63)
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Superstring amplitudes & Integrated correlators 22

with an identical result for CUSp(4)(τ, τ̄), reflecting the fact that USp(4) ∼= SO(5). It is

instructive to compare CSO(7) and CUSp(6), in order to get some insight into the way in

which GNO duality that relates CSO(2N+1) and CUSp(2N) is realised. From (59) we find

CSO(7)(τ, τ̄) =

[
8

5
CSU(2)(τ, τ̄)− 12

5
CSU(3)(τ, τ̄) +

3

5
CSU(4)(τ, τ̄) +

4

5
CSU(5)(τ, τ̄)

]
+

[
3

5
CSU(2)(2τ, 2τ̄)− 12

5
CSU(3)(2τ, 2τ̄) +

8

5
CSU(4)(2τ, 2τ̄)

]
, (64)

and from (60),

CUSp(6)(τ, τ̄) =

[
8

5
CSU(2)(2τ, 2τ̄)− 12

5
CSU(3)(2τ, 2τ̄) +

3

5
CSU(4)(2τ, 2τ̄) +

4

5
CSU(5)(2τ, 2τ̄)

]
+

[
3

5
CSU(2)(τ, τ̄)− 12

5
CSU(3)(τ, τ̄) +

8

5
CSU(4)(τ, τ̄)

]
. (65)

Since CSU(N)(τ, τ̄) = CSU(N)(− 1
τ
,− 1

τ̄
) and CSU(N)(2τ, 2τ̄) = CSU(N)(− 1

2τ
,− 1

2τ̄
), it follows

from (64) and (65) that under the transformation Ŝ : τ → −1/(2τ), CSO(7)(τ, τ̄)

transforms into CUSp(6)(τ, τ̄). More generally, by induction, using the Laplace-difference

equations (59) and (60), one can prove

CSO(2N+1)(τ, τ̄) = CUSp(2N)

(
− 1

2τ
,− 1

2τ̄

)
, (66)

which is the statement of GNO duality (recalling our previous comment that for N = 1

the localised correlator equals CSO(3)(
τ
2
, τ̄

2
), which also coincides with the integrated

correlators CSU(2)(τ, τ̄) = CUSp(2)(τ, τ̄).

3.3. SYM perturbation theory

Starting from our basic expression (49) for CGN (τ, τ̄) it is straightforward to evaluate

the perturbation expansion CpertGN
(τ2) in the region τ2 = 4π/g2

YM → ∞, which agrees

with the localisation result originally derived in [65]. This perturbative expansion can

be organised in a striking manner by defining suitable expansion parameters, aGN , for

each gauge group. These generalisations of the ’t Hooft coupling are given by

aSU(N) =
Ng2

YM

4π2
, aSO(n) =

(n− 2)g2
YM

4π2
, aUSp(n) =

(n+ 2)g2
YM

8π2
, (67)

where n = 2N or 2N + 1 for SO(n), and n = 2N for USp(n). The SU(N) coupling

is the standard ’t Hooft parameter (rescaled by 4π2), while aSO(n) and aUSp(n) are the

generalisations for SO(n) and USp(n) theory (see also [74]). Note the parameters aG

defined in (67) can be rewritten in a unified form aG =
h∨Gg

2
YM

4π2 , with h∨G the dual Coxeter

number for the group G. The appearance of the dual Coxeter number is natural since

in N = 4 SYM all fields belong to the adjoint representation. †
† As already mentioned the case of SO(3) is special and one needs to rescale g

Y M
→
√

2 g
Y M

and

define aSO(3) = g2
Y M

/(2π2) so that aSO(3) = aSU(2) = aUSp(2). We furthermore have aSU(4) = aSO(6)

and aUSp(4) = aSO(5), consistent with the isomorphic relations among the corresponding algebras.
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Superstring amplitudes & Integrated correlators 23

In terms of these parameters we find that the perturbative expansion of all the

integrated correlators can be expressed in the following form,

CpertGN
(τ2) = −4cGN

[
3 ζ(3)aGN

2
− 75 ζ(5)a2

GN

8
+

735 ζ(7)a3
GN

16
− 6615 ζ(9) (1 + PGN ,1) a4

GN

32

+
114345 ζ(11) (1 + PGN ,2) a5

GN

128
+O(a6

GN
)

]
. (68)

A striking feature is that the first three perturbative contributions are universal and

their dependence on N is contained entirely within the central charge cGN and aGN .

Explicit “non-planar” factors, PGN ,i, where i = ` − 3 and ` is the loop number, first

enter at four loops and the first few examples are listed below:

PSU(N),1 =
2

7N2
, PSU(N),2 =

1

N2
,

PSO(n),1 = −n
2 − 14n+ 32

14(n− 2)3
, PSO(n),2 = −n

2 − 14n+ 32

8(n− 2)3
,

PUSp(n),1 =
n2 + 14n+ 32

14(n+ 2)3
, PUSp(n),2 =

n2 + 14n+ 32

8(n+ 2)3
, (69)

and further details and higher-order terms are given in [64].

From (69) we see that for SU(N) (69) is the well-known genus-expansion in powers

of 1/N2 and aSU(N) [75]. However there seems to be no systematic analysis of the

analogous expansions for SO(n) and USp(n) (see [74] for some limited results). Given

the expressions in (69), as well as higher orders presented in [64], we see that the large-N

expansions for SO(n) (with n = 2N or n = 2N + 1) and USp(n) (with n = 2N) are

expressed purely in powers of 1/(n− 2) and 1/(n+ 2), respectively.

From (68) we see that the planar contribution is the same for all gauge groups,

while the non-planar contributions only enter at ` ≥ 4 loops. This property is consistent

with the construction of perturbative loop integrands using the methods in [41,42], and

provides important information concerning large-N expansions.

We note that the precise coefficients of the perturbative expansion (68) can be

verified using standard Feynman diagram computations. In particular the first two

loops were computed in [63] while the planar terms up to order O(a4
GN

) were derived

in [76] by understanding that the Feynman integrals associated with the integrated

correlator are simply periods of certain conformal Feynman graphs, for which special

calculational techniques are available. These results make use of the perturbative loop

integrands constructed in [38, 39, 41, 42] and the precise expression for the integrated

correlator (45).

The perturbative expansion (68) and the non-planar expressions (69) are consistent

with certain symmetries. In particular, for SU(N) we have

cSU(N) = cSU(−N) , aSU(N) = aSU(−N) , PSU(N),i = PSU(−N),i , (70)

hence

CpertSU(N)(g
2
YM

) = CpertSU(−N)(−g2
YM

) . (71)
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Superstring amplitudes & Integrated correlators 24

Similarly for SO(2N) and USp(2N) we notice

cSO(2N) = cUSp(−2N) , aSO(2N) = 2aUSp(−2N) , PSO(2N),i = PUSp(−2N),i , (72)

which lead to

CpertSO(2N)(g
2
YM

) = CpertUSp(−2N)(−2g2
YM

) . (73)

These relations have been further checked at higher orders and are furthermore

consistent with the Laplace-difference equations (58), (59), and (60).

The relations (71) and (73) also hold for the perturbative expansion of the

other localised integrated correlator that was defined in (46) and is proportional to

∂4
m logZGN (m, τ, τ̄)

∣∣
m=0

. And the perturbative terms of this integrated correlator have

also been verified to match the explicit Feynman diagram calculations [76].

3.4. Maximal U(1)Y -violating correlators

Given the exact results for the integrated four-point correlators (49), the n-point

maximal U(1)Y -violating correlators defined in (47) can be obtained for any classical

gauge group by acting on CGN (τ, τ̄) with modular covariant derivatives defined in (A.3).

An integrated version of the MUV correlators, can be obtained starting from the

integrated correlator (45) CGN (τ, τ̄) ≡ C(0)
GN

(τ, τ̄) and inserting multiple factors of the

integrated chiral Lagrangian,
∫
dxOτ (x). Such insertions are obtained by applying

multiple covariant derivatives Dw to CGN (τ, τ̄). The resulting expression is a (w,−w)

modular form given by

C(w)
GN

(τ, τ̄) = 2wDw−1Dw−2 · · · D0 C(0)
GN

(τ, τ̄) . (74)

Given that the Laplacian operators ∆(∓)w, defined in (A.6) are Casimir operators on

the vector space of modular forms Mw,−w, they commute with the covariant derivatives

Dw. Furthermore, since these Laplacians reduce to the standard one ∆0 = ∆τ , on the

space of modular invariant functions M0,0 we can use (58) to derive a system of Laplace-

difference equations satisfied by maximally U(1)Y -violating integrated correlators. With

the help of the explicit forms of ∆(∓)w in (A.6), we obtain the two equivalent Laplace-

difference equations. To illustrate the idea, we will focus on the SU(N) case in the

following discussion. In particular, we find the SU(N) MUV integrated correlators

obey the following Laplace-difference equations,(
4Dw−1D̄−w + w(w − 1)

)
C(w)
SU(N) − 4cSU(N)

(
C(w)
SU(N+1) − 2C(w)

SU(N) + C(w)
SU(N−1)

)
− (N + 1)C(w)

SU(N−1) + (N − 1)C(w)
SU(N+1) = 0 , (75)

and(
4D̄−w−1Dw + w(w + 1)

)
C(w)
SU(N) − 4cSU(N)

(
C(w)
SU(N+1) − 2C(w)

SU(N) + C(w)
SU(N−1)

)
− (N + 1)C(w)

SU(N−1) + (N − 1)C(w)
SU(N+1) = 0 . (76)
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Superstring amplitudes & Integrated correlators 25

The structure of the instanton and anti-instanton contributions is of particular

interest [67]. Starting from the exact expression (49) for C(0)
SU(N) it is fairly

straightforward to obtain the k-instanton and k-anti-instanton sectors of C(w)
SU(N). Since

for w > 0 we know that C(w)
SU(N) has modular weight (w,−w), it follows that the k-

instanton and k-anti-instanton contributions do not coincide (whereas they do in the

w = 0 case).

The precise results obtained for various values of N in [67] are in accord with

expectations from the analysis of semi-classical instanton contributions to MUV

correlators in special cases treated in, for example, [12, 77, 78], These references are

all restricted to leading orders in the 1/N expansion of N = 4 SYM correlators or to

the holographically related terms in the low-energy expansion of superstring amplitudes.

However, the present results go far beyond the semi-classical approximation and apply

to any value of N ≥ 2, but nevertheless some general features are explained by the

leading order calculations.

For example, the fact that the leading power of g2
YM
∼ τ−1

2 in the instanton

background is of order τw2 is a direct reflection of the presence of 16 superconformal zero

modes. The counting of powers of τ2 to leading order in 1/τ2 is as follows. The instanton

profile of each operator insertion involves the product of (2∆−4w) fermionic zero modes

(where ∆ is the dimension of the operator), each contributing a power τ
−1/4
2 , in addition

to the power of τ2 in the normalisation of each operator. The leading order instanton

contribution to the n-point correlator necessarily absorbs all 16 superconformal fermion

zero modes and is therefore of order τ
n−16×1/4
2 = τw2 as τ2 → ∞. More explicitly, the

instanton profile of the operator O2(x) (∆ = 2, w = 0) has four fermionic zero modes,

while Oτ (x) (∆ = 4, w = 2) has no fermionic zero modes, and so the k-instanton sector

for C(w)
SU(N) behaves as

〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (xw+4)〉 ∼ e2πikττw2 . (77)

A similar, albeit slightly more involved argument, allows us to deduce that instead

the k-anti-instanton sector for C(w)
SU(N) behaves as

〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (xw+4)〉 ∼ e−2πikτ̄τ−w2 . (78)

Thanks to our exact formula (49) specialised to (74), both of these statements can be

verified for general values of N .

3.5. N = 4 SYM correlators at large-N and superstring amplitudes

The large-N expansion of N = 4 SU(N) SYM correlators makes contact with type IIB

superstring theory in an AdS5×S5 background. From the string theory perspective this

background is identified with the near-horizon limit of N coincident D3-branes in the

large-N limit. The Yang–Mills parameters are identified with the type IIB superstring

parameters by the relations

gs =
g2
YM

4π
,

(α′)2

L4
=

1

g2
YM
N
. (79)
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Superstring amplitudes & Integrated correlators 26

For N = 4 SYM with GN gauge group, where GN is SO(2N), SO(2N + 1) or

USp(2N) the large-N theory is holographically dual to type IIB superstring theory in

AdS5 × RP 5. This background is the near-horizon geometry of an orientifold of N

coincident D3-branes in the large-N limit that are also coincident with an O3-plane,

In this background string world-sheets are non-orientable. There are various types of

O3-plane that carry different amounts of Neveu–Schwarz Neveu–Schwarz and Ramond-

Ramond flux. Depending on the choice of O3-brane the dual gauge theory has gauge

group SO(2N), SO(2N + 1) or USp(2N). The RR five-form flux associated with the

various backgrounds is

ÑSU(N) := N , ÑSO(n) :=
n

2
− 1

4
, ÑUSp(n) :=

n

2
+

1

4
, (80)

where n = 2N or 2N + 1 for SO(n) and n = 2N for USp(n).

Two versions of the large-N limit are of interest:

(a) The ’t Hooft limit in which λGn = g2
YM

ÑGN is fixed. In this limit Yang–

Mills instantons are suppressed exponentially in N . The 1/N expansion generalises

the conventional ’t Hooft genus expansion and corresponds to the string perturbation

expansion in the holographically dual string theory. This expansion is presented in detail

in [64], and can be used to obtain non-perturbative string corrections similar to [79–81],

but we will not review it here.

(b) The large-N fixed-τ expansion in which Yang–Mills instantons are not

suppressed and play a crucial role in making S-duality manifest. In this case the

expansion in powers of 1/N correspond to the low-energy expansion in the dual type

IIB string theory. In other words, the leading term, which is of order N2 is the dual

of the supergravity term, the next term is of order N
1
2 and is the dual of the R4 term

and so on. We will now consider the holographic interpretation of this expansion of the

integrated correlators in more detail.

Integrated correlators carry much less detailed information than unintegrated

correlators since they have no space-time dependence. However, the constraints of

maximal supersymmetry are so strong that one can reconstruct some aspects of the

large-N expansion of an unintegrated correlator (with its spacetime dependence) from

knowledge of the large-N expansions of integrated correlators. As a result, it is possible

to check the holographic correspondence with the low-energy expansion of type IIB

superstring amplitudes for the first few orders in the large-N expansion as will now be

explained.

Focusing for brevity just on large-N expansion of the SU(N) theory, the

unintegrated four-point correlator has the following simple analytic structure in Mellin

space. The Mellin amplitude M(s, t) is defined as [82,83],

T (U, V ) =

∫ i∞

−i∞

dsdt

(4πi)2
U

s
2V

u
2
−2Γ

[
2− s

2

]2

Γ

[
2− t

2

]2

Γ
[
2− u

2

]2

M(s, t) , (81)

where u = 4 − s − t.‡ The large-N expansion or large-central charge expansion of the

‡ The Mellin variables s, t, u should not be confused with the Mandelstam variables in the previous
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Superstring amplitudes & Integrated correlators 27

Mellin amplitude takes the following simple form,§

M(s, t) = (82)

N2 f̃0

(s− 2)(t− 2)(u− 2)
+N

1
2f1 +MSG(s, t) +N−

1
2

[
f2,1(s2 + t2 + u2) + f2,2

]
+N−1

[
f3,1stu+ f3,2(s2 + t2 + u2) + f3,3

]
+O(N−

3
2 ) .

The leading term is proportional to N2 (or alternatively c the central charge) and

corresponds to the tree-level supergravity contribution in AdS5 × S5, and MSG(s, t)

is the one-loop supergravity. These terms are independent of τ . We are interested in

terms proportional to N
1
2 , N−

1
2 and N−1 that are stringy higher-derivative corrections

proportional to R4, d4R4 and d6R4, respectively. The coefficients of these string

corrections f1, f2,i and f3,i are non-trivial (non-holomorphic) functions of the coupling

τ , and, as we will show later, these may be fixed using the large-N expansion of the

integrated correlators will discussed in the following.

The large-N expansion of CSU(N) at fixed τ . The first few terms in the large-N

expansion of the first integrated correlator (45) with fixed τ was first studied for the

SU(N) case in [60] and then to any prescribed order in 1/N by making use of the exact

expression or by solving the Laplace-difference equation (58) [63], giving

CSU(N)(τ, τ̄) ∼ N2

4
− 3N

1
2

24
E( 3

2
; τ, τ̄) +

45N−
1
2

28
E( 5

2
; τ, τ̄) (83)

+N−
3
2

[4725

215
E( 7

2
; τ, τ̄)− 39

213
E( 3

2
; τ, τ̄)

]
+N−

5
2

[99225

218
E( 9

2
; τ, τ̄)− 1125

216
E( 5

2
; τ, τ̄)

]
+N−

7
2

[245581875

227
E( 11

2
; τ, τ̄)− 2811375

225
E( 7

2
; τ, τ̄) +

4599

222
E( 3

2
; τ, τ̄)

]
+N−

9
2

[29499294825

231
E( 13

2
; τ, τ̄)− 39590775

226
E( 9

2
; τ, τ̄) +

1548855

227
E( 5

2
; τ, τ̄)

]
+N−

11
2

[40266537436125

238
E( 15

2
; τ, τ̄)− 397105891875

236
E( 11

2
; τ, τ̄) +

2029052025

234
E( 7

2
; τ, τ̄)

− 3611751

232
E( 3

2
; τ, τ̄)

]
+O(N−

13
2 ) .

The corresponding expansions for general classical gauge groups based on the large-N

expansion of (49) were presented in [64], and will not be reproduced here.

The first few terms in the large-N expansion of the second integrated correlator

section. In the flat-space limit [83], in which s, t, u→∞, they do become the Mandelstam variables of

scattering amplitudes after a suitable rescaling.
§ Here we have simply written down the most general expression with permutation symmetry at each

order according to its power counting from its holographic dual. For instance, the N−
1
2 term is dual

to d4R4 in AdS5 × S5, which has four derivatives (note we have removed R4 part by factoring out

I4(U, V ;Yi) in (42)). The corresponding Mellin amplitude is then given by linear combination of

s2 + t2 + u2 and a constant [83].
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(46) was presented in [61] and the result is

∂4
m logZSU(N)

∣∣
m=0
∼ 6N2 + 6N

1
2E( 3

2
; τ, τ̄) + C0 −

9

2N
1
2

E( 5
2
; τ, τ̄)− 27

23N
E( 3

2
, 3

2
; 3; τ, τ̄)

+
9

N
3
2

[
13

28
E( 3

2
; τ, τ̄)− 375

210
E( 7

2
; τ, τ̄)

]
+

405

704N2
[C1 + 35E( 5

2
, 3

2
; 6; τ, τ̄)− 24E( 5

2
, 3

2
; 4; τ, τ̄)]

+
675

N
5
2

[
1

210
E( 5

2
; τ, τ̄)− 49

212
E( 9

2
; τ, τ̄)

]
+

1

N3

[
α3 E( 3

2
, 3

2
; 3; τ, τ̄)

+
∑
r=5,7,9

[αr E( 3
2
, 3

2
; r; τ, τ̄) + βrE( 5

2
, 5

2
; r; τ, τ̄) + γrE( 7

2
, 3

2
; r; τ, τ̄)]

]
+O(N−

7
2 ) , (84)

where the rational numbers αr, βr and γr can be found in [61]. The expansion in this case

involves both half-integer and integer powers of 1/N (whereas only half-integer powers

appeared in (83)). Strikingly, the coefficients of the integer powers of 1/N involve sums

of non-holomorphic generalised Eisenstein series. The corresponding expansion for other

classical gauge groups has not been determined.

The preceding two expressions provide two constraints on the unknown coefficients

in the ansatz (82) for the unintegrated correlator at each order of the large-N expansion.

Explicitly, these constraints lead to the values

f̃0 = 2 , f1 =
15E( 3

2
; τ, τ̄)

8
, f2,1 = −1

3
f2,2 =

315E( 5
2
; τ, τ̄)

128
. (85)

Rather strikingly we see that terms in the low-energy expansion of type IIB superstring

theory in an AdS5 × S5 background up to order d4R4 have been determined in this

manner.

Furthermore, the ten-dimensional flat Minkowski-space limit can be obtained,

according to [83], by taking the limit s, t, u→∞. In this limit (82) reproduces precisely

the same coefficients for the R4 and d4R4 terms in the low-energy expansion of type IIB

superstring amplitudes as described in section 2.1.

However, two constraints from the integrated correlators (45) and (46) are not

enough to fix the three functions f3,1, f3,2, f3,3 appearing at order of N−1. But if we

include the flat-space result for the d6R4 coefficient given in (1 as an input, together with

the two constraints from the large-N expansions (83) and (84) the unknown constants

in the Mellin amplitude at this order are determined, and we find,

f3,1 = −4f3,2 = −1

4
f3,3 =

945E( 3
2
, 3

2
; 3; τ)

32
. (86)

Although this argument inputs the flat-space string theory d6R4 coefficient, it is non-

trivial that all three coefficients at order N−1 in (82) have been determined. This

adds further information concerning terms in the low-energy expansion of the type IIB

superstring action in AdS5 × S5.

Once the four-point correlator is determined, we can use equation (48), which is

valid for all values of N and τ , to obtain information on MUV correlators. We may now

construct higher-point MUV correlators recursively using the expression for the Mellin

amplitude of the four-point correlator (82) and solving the recursion relation order by

order in the large-N expansion. This leads to the large-N expansion of n-point MUV
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Superstring amplitudes & Integrated correlators 29

correlator with finite coupling τ [66]. In the flat-space limit, the results at order N
1
2 and

N−
1
2 again match with the superstring low-energy expansion (9) when p = 0, 2. As with

the four-point correlator, at order N−1 there are insufficient constraints from integrated

correlators to determine all the unknown coefficients in the low-energy expansion on

AdS5 × S5. Inputting the p = 3 flat-space result from (22) once again determines all

the coefficients in the Mellin amplitude at this order.

4. Modular graph forms and superstring perturbation theory

In this section we will review another context in which modularity plays an important

rôle. The subject originated in the study of the low-energy expansion of superstring

perturbation theory, but it has broader connections to areas of algebraic geometry

and number theory. Much of the literature focuses on genus-one modular graph forms

[84–87], which are closely related to elliptic generalisations of multiple zeta-values, but

there are obvious possible extensions to higher genus, which we have no space to cover

in this article.

This is a subject in which there have been many recent developments both in the

theoretical physics literature [84–114] and the mathematics literature [115–123]. See

also the reviews [124] and [125], which cover much more of the literature than we can in

this article, [126] for a Mathematica implementation and [127–135] for generalisations

to higher genus.

4.1. Superstring perturbation theory

In the previous sections we have discussed SL(2,Z) S-duality of type IIB superstring

theory and its connection with Montonen–Olive duality in N = 4 SYM. However,

a different manifestation of modularity arises in string perturbation theory. The

perturbation expansion of a string theory amplitude is a power series in g2
s in which

a term of order g2g−2
s is associated with a functional integral over a genus-g world-sheet.

For example, the perturbative expansion of a n-point massless scattering amplitude in

ten-dimensional type IIB superstring theories has the form

A(n)(εi, ki; gs) =
∞∑
g=0

g2g−2
s A(n)

g (εi, ki) , (87)

where (εi, ki) denotes the polarisations and momenta of the scattered massless particles

(with i = 1, 2, . . . , n). The Mandelstam variables are defined by sij = −α′(ki+kj)
2/4 as

in section 2.2. In the case of the 4-point function that is the main focus of this section

the standard convention is to define s := s12 = s34 , t := s13 = s24 , u := s14 = s23,

which satisfy the condition s + t + u = 0. Note that the perturbative part of the

string amplitude (87) only depends on Im τ = 1/gs, whereas the full amplitude has

non-perturbative contributions, such as the contributions of D-instantons, that depend

on τ = τ1 + iτ2.
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Superstring amplitudes & Integrated correlators 30

The g-loop contribution, A(n)
g (εi, ki), is, in principle, given by a functional integral

over all genus-g (super) Riemann surfaces with n punctures that represent the scattering

particles. This includes integration over the fermionic supermoduli and summing over

fermionic spin structures. However, there are technical obstacles in integrating over

the fermionic moduli, which have so far prevented the explicit evaluation of the four-

graviton amplitude with g ≥ 3.† Nevertheless, analysis of the degeneration limits of

arbitrary genus super-Riemann surfaces has demonstrated the ultra-violet finiteness of

these amplitudes. For our purposes it will be sufficient to restrict considerations to

g ≤ 2, in which cases the resulting expressions are expressed as integrals over the world-

sheet moduli, as well as over the positions of punctures on the world-sheet, that carry

the information about the momenta and polarisations of the scattering particles.

For concreteness, let us focus our attention to the well-studied case of the 10-

dimensional four-graviton scattering amplitude in type IIB superstring theory. A

general consequence of type IIB supersymmetry is that the four-graviton amplitude

has a prefactor of R4, which denotes the particular scalar contraction of four linearised

Riemann curvature tensors, which we met in (1). This means that the genus-g term in

(87) has the form

A(4)
g (εi, ki) = κ2

10R
4 Tg(s, t, u) , (88)

where κ2
10 is the ten-dimensional Newton constant, and R4 (and its supersymmetric

completion) may be expressed as δ16(Q4) using the spinor-helicity formalism given in

section 2.2. The function Tg(s, t, u) is a scalar function of the Mandelstam invariants

that contains all of the non-trivial dynamical structure of the amplitude.

The main emphasis in the following is the g = 1 case, but we will first very briefly

review the structure of the four-graviton tree (g = 0) amplitude, which is determined

by a functional integral over world-sheets of spherical topology and has the form

A(4)
g=0(ε, ki) =

κ2
10R

4

stu

Γ(1− s)Γ(1− t)Γ(1− u)

Γ(1 + s)Γ(1 + t)Γ(1 + u)
, (89)

=
κ2

10R
4

stu
exp

[ ∞∑
n=1

2ζ(2n+ 1)

2n+ 1
(s2n+1 + t2n+1 + u2n+1)

]
.

The expression on the second line makes it obvious that the amplitude can be expanded

as an infinite series of powers of s, t and u with coefficients that are rational multiples

of products of odd Riemann zeta-values. It is also obvious that although products of

zeta-values arise in this series there are no multiple zeta-values.

However, it has proved possible to analyse the expansion of tree-level n-point

functions for all n ∈ N and to all orders in the low-energy expansion, see e.g. [136]. In the

case of open superstrings this is an expansion in monomials of Mandelstam invariants

with rational coefficients multiplying multiple zeta-values, while in the case of closed

superstring amplitudes the coefficients are proportional to single-valued multiple zeta-

values. These multiple zeta-values and single-valued multiple zeta-values appear when

† The pure spinor formalism has no world-sheet spinors, but has other technical obstacles when g ≥ 3.
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Superstring amplitudes & Integrated correlators 31

n > 4, and the single-valued multiple zeta-values are defined as values of single-valued

multiple polylogarithms when its arguments are set equal to 1 [137–139].

4.2. The genus-one amplitude

We will now focus on properties of the (g = 1) four-point amplitude although our

considerations should generalise to an arbitrary amplitude for scattering of massless

states at arbitrary order in the genus expansion. A genus-one world-sheet, Στττ , has the

topology of a torus, which is diffeomorphic to R2/Λ, where the lattice Λ = τττZ + Z
defines the shape of the torus. This is parameterised by the complex structure,

τττ = τττ 1 + iτττ 2‡, which takes values in the upper-half complex plane τττ 2 > 0, modulo

discrete identifications that are associated with large diffeomorphisms associated with

the modular group, SL(2,Z).

After performing the functional integral described above, the amplitudeA(4)
g=1(εi , ki)

is expressed as an integral over the positions of the four punctures§ and an integral over

τττ in a single fundamental domain of SL(2,Z). This is often chosen, for convenience, to

be the domain F = {|τττ 1| ≤ 1
2
, |τττ | ≥ 1}, After further integrating over the positions of

the punctures the resulting g = 1 amplitude takes the form‖

A(4)
g=1(εi, ki) = 2πκ2

10R
4

∫
F

d2τττ

τττ 2
2

I4(sij;τττ) , (90)

where I4(sij;τττ) is a modular function that results from the integral

I4(sij;τττ) =

∫
Στττ

( 4∏
i=2

d2zi
τττ 2

)
exp

( 4∑
1≤i<j

sijG(zi − zj|τττ)
)
. (91)

Here G(z|τττ) denotes the scalar Green function on the torus Στττ , which is defined to

satisfy

∆zG(z|τττ) = −4πδ(2)(z) +
4π

τττ 2

,

∫
Στττ

d2z G(z|τττ) = 0 , (92)

where ∆z = 4∂z̄∂z, which has the solution

G(z|τττ) = − log
∣∣∣ϑ1(z|τττ)

ϑ′1(0|τττ)

∣∣∣2 − π

2τττ 2

(z − z̄)2 , (93)

and ϑ1(z|τττ) is a Jacobi function. After changing from z to Cartesian coordinates on Στττ ,

defined by z = u+ vτττ , the Green function can be written as the Fourier series

G(z|τττ) =
∑

(m,n)6=(0,0)

τττ 2

π|nτττ +m|2 e
2πi(nu−mv) , (94)

‡ In this section we are using a bold-faced symbol τττ for the complex structure of the g = 1 world-sheet

in order not to confuse it with the complex scalar, τ , of ten-dimensional type IIB superstring.
§ Translation invariance means that there are only three integrals over the relative positions.
‖ In writing (90) we have assumed that the integration over the positions of the punctures can be

performed before the τττ integral. However, this ignores the presence of branch cuts in s, t, u that arise

from the region τττ2 →∞. For most of this section we are only interested in properties of the integrand

I4(sij ;τττ). Where necessary we will cut off the τττ integral at large τττ2 in a consistent manner [84].
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Superstring amplitudes & Integrated correlators 32

where (m,n) are integer-valued momentum components conjugate to (v, u).

The genus-one four-point amplitude is a complicated non-analytic function of sij.

This non-analyticity is indicated in integration over τττ in (90), which generates branch

cuts associated with unitarity in a well-understood fashion. However, its low-energy

expansion can be treated by a systematic diagrammatic expansion [84–87, 91]. In

particular, the integrand I4(sij;τττ) can be expanded as a power series in s, t, u by

expanding the exponential term in (91) (the Koba-Nielsen factor), giving

I4(sij;τττ) =
∞∑
w=0

1

w!

∫
Στττ

( 4∏
i=2

d2zi
τττ 2

)( ∑
1≤i<j≤4

sijG(zi − zj|τττ)
)w

. (95)

This expression is a contribution of order (α′)w to the low-energy expansion. This means

it is a contribution to the type IIB effective action of order d2wR4 where the pattern of

contractions of the derivatives is specified by the powers of s, t and u. More precisely,

given that I4(s, t, u;τττ) in (95) is a symmetric function of s, t, u, subject to s+ t+u = 0.

This means that, in the α′ expansion, I4(s, t, u;τττ) can be expressed

I4(s, t, u;τττ) =
∑
p,q≥0

Fp,q(τττ)(s2 + t2 + u2)p(s3 + t3 + u3)q , (96)

where 2p + 3q = w and the coefficients Fp,q(τττ) are sums of modular objects called

modular graph functions for reasons that will shortly be clear.

Each coefficient Fp,q(τττ) is the sum of terms in which w Green functions join pairs

of points labelled by the zi. This can be represented by a sum of Feynman diagrams on

the two-torus. Each diagram consists of the product of Green functions joining pairs of

points at positions zi and zj, which are integrated over Στττ . It is convenient to represent

the diagram in momentum space, where the momentum-space propagator is given by

τττ 2/(π |p|2), with p = nτττ + m ∈ Λ \ {0}, as follows from the expression for the Green

function in (94).

A general diagram has `ij propagators joining any pair of vertices labelled i and

j, where i, j ∈ {1, 2, 3, 4}. There are therefore six (i, j) pairs so a general diagram has

`1, . . . , `6 propagators. This notation is summarized by the following diagram:

• •

• •

`1

`2

`3

`4

`5

`6
= D`1,`2,`3,`4;`5,`6

where the label ` on the link • •` indicates the product of ` propagators joining

the corresponding pair of vertices. This diagram is a tetrahedron that is symmetric

in all edges and vertices and its weight, w, is given by the number of propagators, so

that w =
∑6

r=1 `r, where 0 ≤ `r.¶ When `r = 0 for particular values of r, the diagram

¶ This weight should not be confused with the modular weight, which vanishes for the modular-graph

functions.
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Superstring amplitudes & Integrated correlators 33

degenerates to a simpler diagram. In such cases, we shall omit the index that vanishes.+

The integral over the positions of the vertices, zi can be easily performed thanks to

the Fourier series representation (94), leading to the general momentum-space expression

for a modular graph function:

IΓ(τττ , τ̄ττ) =
′∑

p1,...,pw∈Λ

w∏
α=1

τττ 2

π|pα|2
N∏
i=1

δ

(
w∑
α=1

Ciαpα

)
, (97)

where Γ denotes the connectivity of the graph and we have generalised the rules to

include N vertices (where N is an arbitrary integer) even though only four vertices

are involved in the expansion of the four-particle amplitude. In this expression

pα = nατττ+mα ∈ Λ labels the momentum in the link labelled α and the prime above the

summation symbol indicates that the sums over pα exclude the value 0. The Kronecker

δ symbol enforces momentum conservation at each vertex – it takes the value 1 when

its argument vanishes and zero otherwise; the coefficients Ciα are given as follows

Ciα =


±1 if edge α ends on vertex i

0 otherwise

(98)

the sign being determined by the orientation of the momenta.

We stress that the expression (97) is a multiple sum that generalises the non-

holomorphic Eisenstein series and is manifestly invariant under SL(2,Z) transformations

acting on τττ .

Although the analysis of the properties of general modular graph functions is

presently rather rudimentary we turn now to consider a special class of such functions

about which a great deal is known. These are modular graph functions that are defined

by graphs that have one or two loops and any number of vertices.

One-loop modular graph functions

Since the zero mode of the Green function vanishes (92), it is obvious that a graph has to

consist of closed loops of propagators. The simplest class of such functions is therefore

represented by one-loop graphs. A one-loop modular graph function with a vertices is

represented by

• •
•

••

•

•

•
= E(a;τττ , τ̄ττ) =

∑′
p∈Λ

(
τττ2
π|p|2

)a

and is simply a non-holomorphic Eisenstein series.

+ For example D`1,`2,`3,`4;0,0 = D`1,`2,`3,`4 , while D`,0,0,0,;0,0 = D`, etc.
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Superstring amplitudes & Integrated correlators 34

4.3. Two-loop modular graph functions

The two-loop modular graph functions are much less familiar so we will discuss their

properties in some detail. They are represented by graphs with three chains and are

denoted Ca,b,c(τττ , τ̄ττ). They are represented pictorially by

• •
a

b
c

= • • • • •
• • •

• • •
= Ca,b,c(τττ , τ̄ττ)

The integers a, b, c are the number of propagators that are joined end to end along each

chain.

It follows from the preceding graphical rules that the expression for the function

represented by the above graph is

Ca,b,c(τττ , τ̄ττ) =
(τττ 2

π

)a+b+c
′∑

p1,p2,p3∈Λ

δ(p1 + p2 + p3)

|p1|2a|p2|2b|p3|2c
, (99)

with a, b, c ∈ N. In [86] it was shown that the Ca,b,c satisfy a closed system of

inhomogeneous Laplace equations. The simplest example, C1,1,1(τττ , τ̄ττ) has weight w = 3

and contributes to the d6R4 term in low-energy expansion of the genus-one amplitude

[84]. It satisfies the equation

∆τττC1,1,1(τττ , τ̄ττ) = 6E(3;τττ , τ̄ττ) , (100)

which has solution C1,1,1(τττ , τ̄ττ) = E(3;τττ , τ̄ττ) + ζ(3) where the constant ζ(3) is determined

by a boundary condition that is obtained by computing the asymptotic behaviour of

the lattice sum (99) at the cusp τττ 2 →∞ (as in [86]). It can also be calculated directly

from the lattice sum [140].

Although our primary interest in this section is in modular properties of the

integrand I4(sij;τττ) at this point we will comment on the evaluation of its τττ integral in

(90). From (95), one can easily see that the complete contribution at this order is

1

3!

∫
Στττ

( 4∏
i=2

d2zi
τττ 2

)( ∑
1≤i<j≤4

sijG(zi − zj|τττ)
)3

=
s3 + t3 + u3

3!

[
8E(3;τττ , τ̄ττ) + 2C1,1,1(τττ , τ̄ττ)

]
.

(101)

Making use of C1,1,1(τττ , τ̄ττ) = E(3;τττ , τ̄ττ)+ζ(3), and after integrating over the fundamental

domain F [84]∗, the value of the genus-one contribution at order d6R4 is found to be

4

3
ζ(2)ζ(3) (s3 + t3 + u3) . (102)

∗ More precisely, since the integral diverges a cut-off is introduced at τττ2 = L � 1 and the integral is

restricted to the cut-off fundamental domain, FL. The dependence on L cancels after careful analysis

of the non-analytic threshold contributions, so we have effectively
∫
F d

2τττ/τττ22E(s;τττ , τ̄ττ) ∼ 0 (which is in

accord with the mathematical observations in [141]).
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Superstring amplitudes & Integrated correlators 35

This is the precise value contained in the zero mode of the non-perturbative d6R4

coefficient function gs E( 3
2
, 3

2
; 3; τ, τ̄) that was derived in [8] (and is displayed in (A.18)).

Another simple example is

∆τττC2,2,1(τττ , τ̄ττ) = 8E(5;τττ , τ̄ττ) , (103)

with solution C2,2,1(τττ , τ̄ττ) = 2E(5;τττ , τ̄ττ)/5 + ζ(5)/30.

More complicated examples have source terms that are quadratic in non-

holomorphic Eisenstein series. For example,

(∆τττ − 2)C2,1,1(τττ , τ̄ττ) = 9E(4;τττ , τ̄ττ)− E(2;τττ , τ̄ττ)2 , (104)

(∆τττ − 6)C3,1,1(τττ , τ̄ττ) =
86

5
E(5;τττ , τ̄ττ)− 4E(2;τττ , τ̄ττ)E(3;τττ , τ̄ττ) +

ζ(5)

10
. (105)

Both of these examples arise in the low-energy expansion of the four-point amplitude,

at order d8R4 and d10R4, respectively.

More generally, in [108, 110] a generating series was introduced, to produce all

integrals over world-sheet tori which appear in closed-string one-loop amplitudes. Using

these results, in [142,143] it was proved that all depth-two] Ca,b,c can be obtained from

the generalised Eisenstein series

(∆τττ − r(r + 1))E(m, k; r;τττ , τ̄ττ) = −E(m;τττ , τ̄ττ)E(k;τττ , τ̄ττ) , (106)

with m, k ∈ N and m, k ≥ 2, and spectrum r ∈ {|k −m| + 1, |k −m| + 3, . . . , k + m−
5, k +m− 3}, where the generalised Eisenstein E(m, k; r;τττ , τ̄ττ) corresponds to −F

+ (r−1)
m,k

in those references. In particular, it was shown that any Ca,b,c with weight w = a+b+c,

is given by rational linear combinations of finitely many E(m, k; r;τττ , τ̄ττ) with w = k+m,

modulo the addition of a rational multiple of a non-holomorphic Eisenstein E(w;τττ , τ̄ττ)

and, in the case of odd weight w, a rational multiple of ζ(w).

For example we have

C2,1,1(τττ , τ̄ττ) = E(2, 2; 1;τττ , τ̄ττ) +
9

10
E(4;τττ , τ̄ττ) , (107)

C3,1,1(τττ , τ̄ττ) = 4 E(2, 3; 2;τττ , τ̄ττ) +
43

35
E(5;τττ , τ̄ττ)− ζ(5)

60
, (108)

which can be shown to be consistent with the Laplace equations (104)-(105).

We should stress that, generically, the space of generalised Eisenstein series,

E(m, k; r;τττ , τ̄ττ), defined above is larger that the space of Ca,b,c (modulo single Eisenstein

series and constant terms). We now compare the dimensions of the vector space of

generalised Eisenstein series (106) with the dimension of the vector space of Ca,b,c
(modulo single Eisenstein series and constants). Denoting the dimensions of these

spaces by dimVE(w, r) and dimVC(w, r), respectively, where the weights are fixed to

] Here the depth of a modular graph function is defined to be the maximum depth of the multiple zeta

values that arise as coefficients of powers of τττ2 in its Laurent polynomial.
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be w = k +m = a+ b+ c and the eigenvalues are r(r + 1), we have [142]

dimVE(w, r)−dimVC(w, r) = dimS2(r+1) =


⌊

2(r+1)
12

⌋
− 1 : 2(r + 1) ≡ 2 mod 12 ,⌊

2(r+1)
12

⌋
: otherwise

(109)

where S2(r+1) denotes the vector space of holomorphic cusp forms with modular weight

2(r + 1).

This appearance of holomorphic cusp forms is not a mere coincidence. In [143] it

was shown that special completed L-values of holomorphic cusp forms appear in the

non-zero modes of the Fourier series decomposition of E(m, k; r;τττ , τ̄ττ) with respect to τττ 1

precisely when dimVE(w, r) > dimVC(w, r). They arise as a consequence of modularity.

This mixing with holomorphic cusp forms becomes more manifest once we choose to

represent the generalised Eisenstein series as particular combinations of iterated integrals

of holomorphic Eisenstein series [98, 142–145]. The Eichler-Shimura theorem [146, 147]

and the work of Brown [115, 117, 118, 148] on iterated integrals of general holomorphic

modular forms makes it very plausible that holomorphic cusp forms make an appearance.

However, the generating series [108, 110] for modular forms arising in closed-

string one-loop amplitudes contains conjectural matrix representations of Tsunogai’s

derivation algebra [149]. Relations in this algebra are known to be related to holomorphic

cusp forms [150], and, precisely due to these special selection rules governed by

Tsunogai’s derivation algebra, only the combinations of generalised Eisensteins series

for which the cusp forms drop out are the ones appearing in the generating series for all

the building blocks of one-loop type II superstring amplitudes.

Furthermore, knowing how to decompose modular graph functions into a basis of

modular objects satisfying inhomogeneous Laplace equations, such as (106), is useful

for specific calculations, such as the evaluation of the integral (90) over the modular

parameter τττ on the fundamental domain F .

General results for the Laurent polynomials of Ca,b,c, i.e. the perturbative expansion

at the cusp in the zero-Fourier mode sector, where obtained in [119] starting from the

lattice sum representation (99). Similarly, in [99, 102, 103] a Poincaré series approach

was used to obtain consistent expressions. The complete asymptotic behaviour of

E(m, k; r;τττ , τ̄ττ) with m, k ∈ N and m, k ≥ 2, and r ∈ {|k − m| + 1, |k − m| +

3, . . . , k + m − 5, k + m − 3} was derived in [142], making use of the Poincaré series.

In general both Ca,b,c(τττ , τ̄ττ) and E(m, k; r;τττ , τ̄ττ) have a Laurent polynomial consistent

with uniform trascendentality, meaning that if we assign trascendentality 1 to y = πτττ 2

and trascendentality k to ζ(k), then each monomial in the Laurent polynomials of both

Ca,b,c(τττ , τ̄ττ) and E(m, k; r;τττ , τ̄ττ) has trascendentality w = a+ b+ c = k+m. For example,

C2,1,1(τττ , τ̄ττ) =
2y4

14175
+
ζ(3)y

45
+

5ζ(5)

12y
− ζ(3)2

4y2
+

9ζ(7)

16y3
+O(q, q̄) , (110)

C3,1,1(τττ , τ̄ττ) =
2y5

155925
+

2ζ(3)y2

945
− ζ(5)

180
+

7ζ(7)

16y2
− ζ(3)ζ(5)

2y3
+

43ζ(9)

64y4
+O(q, q̄) , (111)
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where q = e2πiτττ , q̄ = e−2πi τ̄ττ . Therefore O(q, q̄) represents exponentially decaying terms.

4.4. Some further comments concerning genus-one modular graph functions

We here note some further general points that we have no space to elaborate on.

• Modular graph functions satisfy a host of very impressive identities [86,89]. These

are analogous to identities that relate multiple zeta-values of a given weight. Among

the many such relationships that have been discovered are several that have proved

important for evaluating the coefficients in the low-energy expansion of the genus-

one four-point amplitude. These coefficients involve integration of a combination

of modular graph functions over τττ .

Here we will simply mention two of these identities. The following weight-4 identity

is important for evaluating the coefficient at order d8R4:

D4(τττ , τ̄ττ) = 24C2,1,1(τττ , τ̄ττ)− 18E(4;τττ , τ̄ττ) + 3E(2;τττ , τ̄ττ)2 , (112)

where, following the footnote preceding (97), the modular graph function D4 ≡
D4,0,0,0;0,0. Expressing D4 in terms of C2,1,1 and Eisenstein series in this way is

the key to integrating over τττ that is necessary for evaluating the coefficients in the

low-energy expansion at order d8R4.

The evaluation of the coefficient of order d10R4 makes use of several highly non-

trivial weight-5 identities. One of these is

D5(τττ , τ̄ττ) = 60C3,1,1(τττ , τ̄ττ) + 10E(2;τττ , τ̄ττ)C1,1,1(τττ , τ̄ττ)− 48E(5;τττ , τ̄ττ) + 16ζ(5) . (113)

This relation between D5 and C3,1,1, together with other identities that relate D3,1,1

and D2,2,1 to C3,1,1 and Eisenstein series again provide the basis for evaluating the

integral over τττ .

• The Laurent polynomial of a modular graph function of weight w (the zero Fourier

mode) is a series of terms with integer powers of y = πτττ 2 ranging from yw to y1−w.

The coefficients of the terms in this series were argued in [87, 116] to be rational

multiples of single-valued multiple zeta-values. The first example of an irreducible

multiple zeta value arising as a coefficient in a Laurent series was found in [116]

where the coefficient of the y−4 term in the Laurent polynomial of D5,1,1 was found

to be the weight-11 single-valued multiple zeta-value,

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5) , (114)

and ζ(i, j) and ζ(i, j, k) are non single-valued multiple zeta-values.

• Modular graph functions are related to elliptical generalisations of single-valued

multiple polylogarithms in much the same way as as single-valued multiple zeta-

values are related to single-valued multiple polylogarithms [87].

• The expression (97) does not describe the most general modular graph functions

that contribute to the low-energy expansion of the n-point amplitude when n > 4.

The more general contributions that first enter at n = 5 [88] are modular functions
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Superstring amplitudes & Integrated correlators 38

in which there are ‘holomorphic’ propagators of the form τττ 2/p and anti-holomorphic

propagators of the form τττ 2/p̄. In order for the total modular weight to vanish there

must be equal numbers of holomorphic and anti-holomorphic propagators in any

graph.

• More generally still, in considering relationships between modular graph functions

it is important to include modular graph forms, which transform with non-zero total

modular weight. These have unequal numbers of holomorphic and anti-holomorphic

propagators and are related to each other by multiple applications of the Cauchy–

Riemann operator [91,95].

4.5. Genus-two modular graph functions

Much less is known about higher-genus modular graph functions. The genus-two

four-point amplitude in type II superstring theory was evaluated explicitly in the

Ramond–Neveu–Schwarz formalism in [151,152] and later in the pure spinor formulation

in [153, 154]. It is given by an integral over the moduli space M2 ≈ H2/Sp(4,Z)

of genus-two Riemann surfaces Σ, where H2 is the Siegel upper half space, which is

parameterised by the 2 × 2 period matrix, Ω. As at genus-one the integrand is an

integral over four points on Σ, corresponding to the four gravitons. The low-energy

expansion of the integral over the points, without integrating over M2, now gives rise

to Sp(4,Z)-invariant functions, which are genus-two modular graph functions [130].

It is interesting to consider the behaviour of these functions in the limit that a

handle on the genus-two world-sheet degenerates. The non-separating degeneration can

be parameterised by a suitably chosen real variable t. In the limit t → ∞ the surface

reduces to a genus-one surface with two marked points separated by a distance v in

suitable coordinates (in addition to the four that correspond to the external particles).

In the degeneration limit, a genus-two modular graph function has the form of a Laurent

polynomial in t with exponentially small corrections

Zi(Ω) =
w∑

n=−w

(πt)n z
(n)
i (v|τττ) +O(e−2πt) , (115)

where τττ is the complex structure of the residual torus. The coefficients z
(n)
i (v|τττ) are

non-holomorphic Jacobi forms, which are elliptic functions closely related to genus-one

modular graph functions. This is reminiscent of the pattern of coefficients of powers

of (π τττ 2) in the Laurent expansion of genus-one modular graph functions, which are

multiple zeta-values.

The low-energy expansion of the two-loop amplitude starts with the effective

interaction d4R4 with a constant coefficient that is proportional to the volume of genus-

two moduli space. The value of this constant matches the predictions of S-duality in

Type IIB string theory [155] which comes from the genus-two term in the zero mode of

E( 5
2
; τ, τ̄) in (1). The next term in the low-energy expansion is d6R4, which is obtained by

bringing down a single Green function inside the genus-two integrand. Its coefficient is a
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Superstring amplitudes & Integrated correlators 39

non-trivial Sp(4,Z)-invariant function [127], known as the Kawazumi–Zhang invariant,

which satisfies a Laplace eigenvalue equation on H2 [128], and which has an elegant

representation as a generalised theta-lift [129]. Its integral over M2 was computed

using the Laplace equation and also matches a prediction of S-duality, which is given

by the coefficient of the genus-two term in the zero mode of E( 3
2
, 3

2
; 3; τ, τ̄) in (1).

The next order in the low-energy expansion involves integrating the product of

two Green functions and contributes the genus-two coefficient of the d8R4 interaction.

Detailed properties of this modular graph function may be found in [131]. However, its

integral over genus-two moduli space has not been carried out yet.

There are no explicit expressions for type II superstring loop amplitudes of genus

higher than two although an impressive calculation [156] determined the leading low-

energy behaviour of the genus-three four-point amplitude, which is of order d6R4. Its

value again agrees with the S-duality prediction, which is the coefficient of the genus-

three component of the zero Fourier mode of E( 3
2
, 3

2
; 3; τ, τ̄) in (1). Further analysis of

the genus-three amplitude is given in [157].

5. Coda

This article has surveyed recent developments in three interrelated areas of string theory

and quantum field theory that have several themes in common. These topics all involve

the strong constraints of maximal supersymmetry – ten-dimensional type IIB in the

context of the superstring discussions in sections 2 and 4, and four-dimensional N = 4

supersymmetry and superconformal symmetry in the context of integrated correlators

in section 3. Another common theme is that of the strong constraints imposed by

duality, which is target-space SL(2,Z) invariance of type IIB superstring, Montonen–

Olive duality in the case of N = 4 SYM, and world-sheet duality in the case of genus-one

or genus-two string perturbation theory.

These constraints are so strong that they lead to remarkably detailed expressions

in each of these areas. These results not only shed light on areas of direct interest in

theoretical physics, but they have led to interesting avenues of significant mathematical

interest. However, we have focussed on particular special examples and it would be

interesting to extend the ideas and methods covered in this article to more general

physical observables as well as more general systems.
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Appendix A. Some properties of non-holomorphic modular forms

In this appendix we will briefly review the mathematics of non-holomorphic modular

forms. Recall that SL(2,Z) acts on the scalar field τ = τ1 + iτ2 (or equivalently on the

worldsheet torus complex structure τττ in section 4) as

τ → γ · τ =
aτ + b

cτ + d
, (A.1)

with γ = ( a bc d ) ∈ SL(2,Z) so that a, b, c, d ∈ Z and det γ = ad− bc = 1.

An element f (w,ŵ)(τ, τ̄) of the vector space Mw,ŵ of non-holomorphic modular

forms with holomorphic and anti-holomorphic modular weights (w, ŵ), transforms under

SL(2,Z) as

f (w,ŵ)(γ · τ, γ · τ̄) = (cτ + d)w (cτ̄ + d)ŵ f (w,ŵ)(τ, τ̄) . (A.2)

Modular covariant derivatives are defined by

Dw = i

(
τ2
∂

∂τ
− i w

2

)
, D̄ŵ = −i

(
τ2
∂

∂τ̄
+ i

ŵ

2

)
, (A.3)

where Dw transforms a modular form with weights (w, ŵ) to a new modular form

with (w + 1, ŵ − 1) and D̄ŵ changes weights by (w, ŵ) → (w − 1, ŵ + 1), i.e.

Dw : Mw,ŵ 7→Mw+1,ŵ−1 and similarly D̄ŵ : Mw,ŵ 7→Mw−1,ŵ+1. In other words,

Dw f (w,ŵ)(τ, τ̄) := f (w+1,ŵ−1)(τ, τ̄) , D̄ŵ f (w,ŵ)(τ, τ̄) := f (w−1,ŵ+1)(τ, τ̄) . (A.4)

Non-holomorphic forms for which ŵ = −w, are particularly relevant to our discussion

and transform by a phase characterised by a U(1) charge, q = 2w, as is evident from

(A.2). It is useful to note that the action of Dw on a power of Imτ = τ2 = 1/gs is given

by

Dwτα2 =
1

2

(
τ2

∂

∂τ2

+ w

)
τα2 =

1

2

(
−gs

∂

∂gs
+ w

)
g−αs . (A.5)

The operators Dw, D̄ŵ, together with the Cartan operator Hw,ŵ = (w − ŵ)/2 :

Mw,ŵ 7→ Mw,ŵ, form a representation of the sl(2) algebra on Mw,ŵ. The Casimir

operator for this representation yields Laplace-like differential operators which map

Mw,ŵ into itself. In particular, restricting to the case ŵ = −w, we have the Laplacians

∆(−)w := 4Dw−1D̄−w , (A.6)

∆(+)w := 4D̄−w−1Dw . (A.7)

Note that in the modular invariant case M0,0 these reduce to the standard Laplacian

∆(−)0 = ∆(+)0 := ∆τ = 4τ 2
2∂τ∂τ̄ .

Homogeneous (and inhomogenous) Laplace eigenvalue equations on the space

Mw,−w arise at various stages in this review. These have the equivalent forms

∆(−)w f
(w,−w)
s (τ, τ̄) = (s(s− 1)− w(w − 1)) f (w,−w)

s (τ, τ̄) ,

∆(+)w f
(w,−w)
s (τ, τ̄) = (s(s− 1)− w(w + 1)) f (w,−w)

s (τ, τ̄) , (A.8)
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where s ∈ C. These equations have a unique solution in Mw,ŵ, for functions satisfying

the physically required boundary condition of moderate growth (power behaviour) in

the large-τ2 limit (the weak-coupling limit).

A basic ingredient in our discussion is the modular invariant non-holomorphic

Eisenstein series, which is defined by

E(s; τ, τ̄) =
1

πs

∑
(m,n)6=(0,0)

τ s2
|m+ nτ |2s , E(s; τ, τ̄) ∈M0,0 , (A.9)

and satisfies the homogeneous Laplace eigenvalue equation

[∆τ − s(s− 1)]E(s; τ, τ̄) = 0 . (A.10)

It has a well-known Fourier mode decomposition,

E(s; τ, τ̄) =
∑
k∈Z

Fk(s; τ2)e2πikτ1 , (A.11)

where zero mode (or equivalently the perturbative term) is given by

F0(s; τ2) =
2ζ(2s)

πs
τ s2 +

2
√
πΓ(s− 1

2
)ζ(2s− 1)

πsΓ(s)
τ 1−s

2 , (A.12)

and the non-zero modes are given by

Fk(s; τ2) =
4

Γ(s)
|k|s− 1

2σ1−2s(|k|)
√
τ2Ks− 1

2
(2π|k|τ2) , k 6= 0 , (A.13)

where the divisor sum is defined by σν(k) =
∑

d|k d
ν . The non-zero mode Fk represents

the k-instanton contribution.

Our discussion also involves non-holomorphic (w,−w)-forms, Ew(s; τ, τ̄) ∈ Mw,−w,

that are defined by

Ew(s; τ, τ̄) =
2wΓ(s)

Γ(s+ w)
Dw−1 · · · D0E(s; τ, τ̄) ,

=
1

πs

∑
(m,n)6=(0,0)

(
m+ nτ̄

m+ nτ

)w
τ s2

|m+ nτ |2s , (A.14)

(where E0(s; τ, τ̄) = E(s; τ, τ̄)) which satisfy the recursion relations,

DwEw(s; τ, τ̄) =
s+ w

2
Ew+1(s; τ, τ̄) , (A.15)

D̄−wEw(s; τ, τ̄) =
s− w

2
Ew−1(s; τ, τ̄) . (A.16)

Another type of modular function that plays an important rôle in this article is the

generalised non-holomorphic Eisenstein series, which satisfies the inhomogenous Laplace

eigenvalue equation,

[∆τ − r(r + 1)] E(s1, s2; r; τ, τ̄) = −E(s1; τ, τ̄)E(s2; τ, τ̄) . (A.17)

This equation again has a unique SL(2,Z)-invariant solution given appropriate

boundary conditions. The prototype of this equation arises in considering the coefficient

of d6R4 in the effective type IIB action (1) where s1 = s2 = 3/2 and r = 3 [8,158]. The
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complete solutions of this equation for generic s1, s2, r ∈ C are not known, although a

spectral decomposition has been studied [159].

However, more is known about the solutions to (A.17) when s1, s2 are integers or

when they are half-integers. Both of these cases are of special relevance to this article.

The complete perturbative and non-perturbative expansions were obtained in [142,143]

when s1, s2 ∈ N, which plays a rôle in the study of the low-energy expansion of genus-

one Type II superstring amplitudes, here discussed in section 4. Similarly, cases with

s1, s2 ∈ N+1/2 (which includes the special case, E( 3
2
, 3

2
; 3; τ)) were discussed in [158,160].

For illustrative purposes, as well as because of its relevance to (1), we will sketch

the form of E( 3
2
, 3

2
; 3; τ, τ̄), which differs significantly from that of a non-holomorphic

Eisenstein series. Its zero Fourier mode is given by

E( 3
2
, 3

2
; 3; τ, τ̄)|zero mode

=
2

3
ζ(3)2τ 3

2 +
4

3
ζ(2)ζ(3)τ2 +

8

5
ζ(2)2τ−1

2 +
4

27
ζ(6)τ−3

2 +O(e−4πτ2) , (A.18)

where O(e−4πτ2) indicates the presence of an infinite series of powers of (qq̄), where

q = e2πiτ (and recalling that τ2 = 1/gs, where gs is the string coupling constant). These

terms are interpreted as contributions of instanton anti-instanton pairs. The power-

behaved terms are interpreted as coefficients of perturbative contributions in the d6R4

term in the low-energy expansion of four-point amplitude in the superstring theory.

Finally, we note that, starting from E(s1, s2; r; τ, τ̄) one can construct weight-

(w,−w) modular forms, which also play a rôle in this article, by acting with covariant

derivatives

Ew(s1, s2; r; τ, τ̄) ≡ 1

2w
Dw−1 · · · D1D0 E(s1, s2; r; τ, τ̄) , (A.19)

similar to (A.14).
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