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Abstract
With the aimof treating the local behaviour of additive functions,wedevelop analogues
of the Matomäki–Radziwiłł theorem that allow us to approximate the average of a
general additive function over a typical short interval in terms of a corresponding
long average. As part of this treatment, we use a variant of the Matomäki–Radziwiłł
theorem for divisor-bounded multiplicative functions recently proven in Mangerel
(Divisor-bounded multiplicative functions in short intervals. arXiv: 2108.11401). We
consider two sets of applications of these methods. Our first application shows that
for an additive function g:N → C any non-trivial savings in the size of the average
gap |g(n) − g(n − 1)| implies that g must have a small first centred moment i.e.
the discrepancy of g(n) from its mean is small on average. We also obtain a variant
of such a result for the second moment of the gaps. This complements results of
Elliott and of Hildebrand. As a second application, we make partial progress on an
old question of Erdős relating to characterizing constant multiples of logn as the only
almost everywhere increasing additive functions. We show that if an additive function
is almost everywhere non-decreasing then it is almost everywhere well approximated
by a constant times a logarithm.We also show that if the set {n ∈ N : g(n) < g(n−1)}
is sufficiently sparse, and if g is not extremely large too often on the primes (in a
precise sense), then g is identically equal to a constant times a logarithm.
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1 Introduction

An arithmetic function g : N → C is called additive if, whenever n,m ∈ N are
coprime, g(nm) = g(n) + g(m); it is said to be completely additive if the coprimality
condition on n,m can be ignored. Additive functions are objects of classical study
in analytic and probabilistic number theory, their study being enriched by a close
relationship with the probabilistic theory of random walks.

Much is understood about the global behaviour of general additive functions. For
instance, the orders of magnitude of all of the centred moments
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have been computed by Hildebrand [1].When k = 2, the slightly weaker but generally
sharp Turán–Kubilius inequality (see Lemma 3.2) gives an upper bound, uniform in
g, of the form
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� Bg(X)2, (1)

where we have denoted by Bg(X)2 the approximate variance defined via

Bg(X) :=
⎛

⎝
∑

pk≤X

|g(pk)|2
pk

⎞

⎠
1/2

.

When g is real-valued one can determine necessary and sufficient conditions according
to which the distribution functions FX (z) := 1

X |{n ≤ X : g(n) ≤ z}| converge to a
distribution function F as X → ∞; this is the content of the Erdős–Wintner theorem
[2]. Under certain conditions the corresponding distribution functions (with suitable
normalizations) converge to a Gaussian, a fundamental result of Erdős and Kac [3].

Much less is understood regarding the local behaviour of additive functions i.e. the
simultaneous behaviour of g at neighbouring integers. Questions of interest from this
perspective include

(i) the distribution of {g(n)}n in typical short intervals [x, x + H ], where x ∈
[X , 2X ] and H = H(X) grows slowly,

(ii) the distribution of the sequence of gaps |g(n) − g(n − 1)| between consecutive
values and

(iii) the distribution of tuples (g(n + 1), . . . , g(n + k)), for k ≥ 2.

Pervasive within this scope are questions surrounding the characterization of those
additive functions g whose local behaviour is rigid in some sense, such questions are
discussed in Sect. 1.2.
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The purpose of this paper is to consider questions of a local nature about general
additive functions.

1.1 Matomäki–Radziwiłł type theorems for additive functions

The study of additive functions is intimately connected with that of multiplicative
functions i.e. arithmetic functions f : N → C such that f (nm) = f (n) f (m) when-
ever (n,m) = 1. The mean-value theory of bounded multiplicative functions, which
provides tools for the analysis of the global behaviour of multiplicative functions, was
developed in the ’60s and ’70s in the seminal works of Wirsing [4] and Halász [5].
In contrast, the study of the local behaviour of multiplicative functions has long been
the source of intractable problems. An important example of this is Chowla’s conjec-
ture [6]. This conjecture states, among other things, that for any k ≥ 2 and any tuple
ε ∈ {−1,+1}k , the set

{n ≤ X : λ(n + 1) = ε1, . . . , λ(n + k) = εk}

has (2−k + o(1))X elements, where λ is the Liouville1 function. In other terms, the
sequence of tuples (λ(n+ 1), . . . , λ(n+ k)) equidistributes among the tuples of signs
in {−1,+1}k . The depth of this conjecture is revealed upon observing that when k = 1,
this corresponds to the statement that λ(n) takes value+1 and−1 with asymptotically
equal probability 1/2. This was shown by Landau [7] to be equivalent to the prime
number theorem.

Problems of this type have recently garnered significant interest, thanks to the
celebrated theorems of Matomäki and Radziwiłł [8]. Broadly speaking, their results
show that averages of a bounded multiplicative function in typical short intervals are
well approximated by a corresponding long average. In a strong sense, this suggests
that the local behaviour of many multiplicative functions is determined by their global
behaviour. The simplest version of their theorems to state is as follows.

Theorem (Matomäki–Radziwiłł [8]) Let f : N → [−1, 1] be multiplicative. Let
10 ≤ h ≤ X/100. Then
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� log log h

log h
+ (log X)−1/50.

This result, its natural extensions to complex-valued functions [9], and further
improvements, extensions and variants (e.g. [10]) have had profound impacts not only
in analytic number theory, but equally in combinatorics and dynamics. For instance,
Tao [11] used this result to develop technology in order to obtain estimates for the
logarithmically-averaged binary correlation sums

1 The Liouville function is the multiplicative function defined as λ(n) := (−1)�(n), where �(n) is the
number of prime factors of n, counted with multiplicity.
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1

log X

∑

n≤X

f (n) f (n + h)

n
, for multiplicative functions f : N → C, | f (n)| ≤ 1.

This was essential in his proof of the Erdős discrepancy problem [12], and also enabled
him to obtain a logarithmic density analogue of the case k = 2 of Chowla’s conjecture.
It has also been pivotal in the various developments towards Sarnak’s conjecture on
the disjointness of the Liouville function from zero entropy dynamical systems (see
[13] for a survey).
Our first main result establishes an �1-averaged comparison theorem for short and long
averages of additive functions, inspired by the theorem of Matomäki and Radziwiłł.

Theorem 1.1 Let g : N → C be an additive function. Let 10 ≤ h ≤ X/100 be an
integer.2 Then
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Bg(X).

Remark 1.2 Theorem1.1 should be compared to the “trivial bound” arising fromapply-
ing the triangle inequality, the Cauchy–Schwarz inequality and (1) (which is valid for
dyadic long averages as well) to obtain
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In contrast, Theorem1.1 gives the non-trivial bound o(Bg(X))whenever h = h(X) →
∞ as X → ∞.

To get a more precise additive function analogue of the Matomäki–Radziwiłł the-
orem, one would hope to obtain a mean square (or �2) version of Theorem 1.1. We

2 The requirement that h be an integer is possibly unnecessary, but assuming it allows us to avoid certain
pathologies associated with functions g taking very large values.
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are limited in this matter by the possibility of very large values of g. Specifically,
if |g(p)|/Bg(X) can get very large for many primes p ≤ X , it is possible for the
�2 average to be dominated by a sparse set (i.e. the multiples of these p), wherein
the discrepancy between the long and short sums is not small. We will thus work
with a specific collection of additive functions in order to preclude such pathological
behaviour.
To describe this collection we introduce the following notations. Given ε > 0 and an
additive function g, we define3

Fg(ε) := lim sup
X→∞

1

Bg(X)2

∑

p≤X
|g(p)|>ε−1Bg(X)

|g(p)|2
p

.

Roughly speaking, Fg(ε)measures the contribution to Bg(X)2 fromprime values g(p)
of very large absolute value.
Clearly, 0 ≤ Fg(ε) ≤ 1 for all ε > 0 and additive functions g. We will concern
ourselveswith functions g such that Fg(ε) → 0 as ε → 0+, a condition that is satisfied
bymany additive functions.When g is bounded on the primes e.g. when g(n) = �(n),
the number of prime factors of n counted with multiplicity, it is clear that Fg(ε) = 0
whenever ε is sufficiently small. For a different example, taking g = c log for some
c ∈ C we find Bg(X) ∼ |c|√

2
log X , so that |g(p)| ≤ (

√
2+ o(1))Bg(X) for all primes

p and hence Fg(ε) = 0 for all ε < 1/2, say.

Definition 1.3 We define the collection A to be the set of those additive functions
g : N → C such that

(a) Bg(X) → ∞, and
(b) Bg(X) is dominated by the prime values |g(p)|, in the sense that

lim sup
X→∞

1

Bg(X)2

∑

pk≤X
k≥2

|g(pk)|2
pk

= 0.

We shall see below (see Lemma 3.6a)) thatA contains all completely additive and
all strongly additive4 functions g with Bg(X) → ∞. Within A we define

As := {g ∈ A : lim
ε→0+ Fg(ε) = 0}. (2)

3 By Chebyshev’s inequality,
∑

p≤X
|g(p)|>ε−1Bg(X)

p−1 � ε2, and thus the proportion of integers divisible

by a prime p with |g(p)| > ε−1Bg(X) is sparse, namely of size O(ε2X). Nevertheless, if Fg(ε) 
 1
for all ε > 0 the values g(n)2 at multiples of such primes can have an outsized influence on the second
moment.
4 By a strongly additive function we mean an additive function g such that g(pk ) = g(p) for all primes p
and all k ≥ 1.
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1028 A. P. Mangerel

Thus, among other examples, �(n), ω(n) := ∑
p|n 1 and, for any c ∈ C, c log all

belong toAs .We show in general that whenever g ∈ As , wemay obtain an �2 analogue
of Theorem 1.1.

Theorem 1.4 Let g : N → C be an additive function in As . Let 10 ≤ h ≤ X/100 be
an integer with h = h(X) → ∞. Then
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Our proof of Theorem 1.4 relies on a variant of the Matomäki–Radziwiłł theorem
that applies to a large collection of divisor-bounded multiplicative functions, proven
in the recent paper [14]. See Theorem 5.3 for a statement relevant to the current
circumstances.

Remark 1.5 The rate of decay in this result depends implicitly on the rate at which
Fg(ε) → 0 as ε → 0+, and on the size of the contribution to Bg(X) from the prime
power values of g. We have therefore chosen to state the theorem in this qualitative
form for the sake of simplicity.

It deserves mention that the application of the Matomäki–Radziwiłł method, which
will be used in this paper, to the study of specific additive functions is not entirely
new. Goudout [15, 16] applied this technique to derive distributional information
about ω(n) in typical short intervals; for example, he proved in [15] that the Erdős–
Kac theorem holds in short intervals (x −h, x] for almost all x ∈ [X/2, X ], as long as
h = h(X) → ∞. The specific novelty of Theorems 1.1 and 1.4 lie in their generality,
and it is this aspect which will be used in the applications to follow.

1.2 Applications: gaps and rigidity problems for additive functions

Given c ∈ C, the arithmetic function n �→ c log n is completely additive. In contrast
to a typical additive function g, whose values g(n) depend on the prime factorization
of n which might vary wildly from one integer to the next, c log varies slowly and
smoothly, with very small gaps

c log(n + 1) − c log n = O(1/n) for all n ∈ N.

In the seminal paper [17], Erdős studied various characterization problems for real-
and complex-valued additive functions relating to their local behaviour, and in so
doing found several characterizations of the logarithm as an additive function. Among
a number of results, he showed that if either

(a) g(n + 1) ≥ g(n) for all n ∈ N, or
(b) g(n + 1) − g(n) = o(1) as n → ∞,

then there exists c ∈ R such that g(n) = c log n for all n ≥ 1.
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Moreover, Erdős and later authors posited that these hypotheses could be relaxed.
Kátai [18] and independently Wirsing [19] weakened assumption (b), and proved the
above result under the averaged assumption

lim
X→∞

1

X

∑

n≤X

|g(n + 1) − g(n)| = 0.

Hildebrand [20] showed the stronger conjecture of Erdős that if g(nk+1)−g(nk) → 0
on a set {nk}k of density5 1 then g = c log; this, of course, is an almost sure version
of (b).
In a different direction, Wirsing [21] showed that for completely additive functions
g, (b) may be weakened to g(n + 1) − g(n) = o(log n) as n → ∞, and this is best
possible.
A number of these results were strengthened and generalized by Elliott [22, Ch. 11],
in particular to handle functions g with small gaps |g(an + b) − g(An + B)|, for
independent linear forms n �→ an+b and n �→ An+ B (i.e. such that aB− Ab �= 0).
Characterization problems of these kinds for both additive and multiplicative func-
tions have continued to garner interest more recently. In [23], Klurman proved a
long-standing conjecture of Kátai, showing that if a unimodular multiplicative func-
tion f : N → S1 has gaps satisfying | f (n + 1) − f (n)| → 0 on average then there
is a t ∈ R such that f (n) = nit for all n. In a later work, Klurman and the author
[24] proved a conjecture of Chudakov from the ’50s characterizing completely multi-
plicative functions having uniformly bounded partial sums. See Kátai’s survey paper
[25] for numerous prior works in this direction for both additive and multiplicative
functions.
While these multiplicative results have consequences for additive functions, they are
typically limited by the fact that if g is a real-valued additive function then the mul-
tiplicative function e2π ig is only sensitive to the values g(n) (mod 1). In particular,
considerations about e.g. the monotone behaviour of g cannot be directly addressed
by appealing to corresponding results for multiplicative functions.

1.2.1 Erdős’ conjecture for almost everywhere monotone additive functions

One still open problem stated in [17] concerns the almost sure variant of problem (a)
above. For convenience, given an additive function g : N → R we set g(0) := 0 and
define the set of decrease of g:

B := {n ∈ N : g(n) < g(n − 1)}, B(X) := B ∩ [1, X ].

Conjecture 1.6 [17] Let g : N → R be an additive function, such that

|B(X)| = o(X) as X → ∞. (3)

Then there exists c ∈ R such that g(n) = c log n for all n ∈ N.

5 Given a sequence C ⊂ N, the (natural) density of C, if it exists, is the limit dC := limX→∞ |C∩[1,X ]|
X .

123



1030 A. P. Mangerel

Thus, if g is non-decreasing except on a set of integers of natural density 0 then it
is conjectured that g must be a constant times a logarithm.
Condition (3) is necessary, as for any ε > 0 one can construct a function g, not a
constant multiple of log n, which is monotone except on a set of density at most ε.
Indeed, picking a prime p0 > 1/ε and defining g = gp0 to be the completely additive
function defined at primes by

gp0(p) :=
{
log p : p �= p0
p0 : p = p0,

one finds that gp0(n) = log n if and only if p0 � n, and that B = {mp0 + 1 : m ∈ N}.
It is easily checked that the density dB of B satisfies 0 < dB = 1/p0 < ε.
As a consequence of our results on short interval averages of additive functions, we
will prove the following partial result towards Erdős’ conjecture.

Corollary 1.7 Let g : N → R be a completely additive function that satisfies

lim
ε→0+ Fg(ε) = lim

ε→0+ lim sup
X→∞

1

Bg(X)2

∑

p≤X
|g(p)|>ε−1Bg(X)

g(p)2

p
= 0. (4)

Assume furthermore that there is a δ > 0 such that

|B(X)| � X/(log X)2+δ.

Then there is a constant c ∈ R such that g(n) = c log n for all n ∈ N.

The above corollary reflects the fact that the main difficulties involved in fully
resolving Conjecture 1.6 are

(i) the possible lack of sparseness of B beyond |B(X)| = o(X), and
(ii) the possibility of very large values |g(p)|.
More generally, we show that any function g ∈ As that satisfies |B(X)| = o(X) is
close to a constant multiple of a logarithm at prime powers.

Theorem 1.8 Let g : N → R be an additive function belonging to As , and suppose
|B(X)| = o(X). Let X ≥ 10 be large. Then there is λ = λ(X) with |λ(X)| �
Bg(X)/ log X such that

∑

pk≤X

|g(pk) − λ(X) log pk |2
pk

= o

⎛

⎝
∑

pk≤X

g(pk)2

pk

⎞

⎠ as X → ∞.

Moreover, λ is slowly varying as a function of X in the sense that for every fixed
0 < u ≤ 1,

λ(Xu) = λ(X) + o

(
Bg(X)

log X

)
.
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Finally, using a result of Elliott [26], we will prove the following approximate
version of Erdős’ conjecture under weaker conditions than in Corollary 1.7.

Theorem 1.9 Let g : N → R be an additive function, such that |B(X)| = o(X). Then
there are parameters λ = λ(X) and η = η(X) such that for all but o(X) integers
n ≤ X,

g(n) = λ log n − η + o(Bg(X)). (5)

The functions λ, η are slowly varying in the sense that for any u ∈ (0, 1) fixed,

λ(Xu) = λ(X) + o

(
Bg(X)

log X

)
, η(Xu) = η(X) + o(Bg(X)).

Remark 1.10 Note that if we knew (5) held for all three of n,m, nm ∈ [1, X ] then we
could deduce that

λ log(nm) − 2η + o(Bg(X)) = g(n) + g(m) = g(nm)

= λ log(nm) − η + o(Bg(X)),

and thus that η = o(Bg(X)). As such, (5) would be valid with η ≡ 0. Unfortunately,
we are not able to confirm this unconditionally.

1.2.2 On Elliott’s property of gaps

Gap statistics provide an important example of local properties of a sequence. Obvi-
ously, an additive function g whose values g(n) are globally close to g’s mean value
must have small gaps |g(n+1)−g(n)|. Conversely, it was observed by Elliott that the
growth of the gaps between consecutive values of g also control the typical discrepancy
of g(n) from its mean.
More precisely, given an additive function g : N → C and X ≥ 2, define

Ag(X) :=
∑

pk≤X

g(pk)

pk

(
1 − 1

p

)
. (6)

It is well known (see e.g. Lemma 3.1) that as X → ∞, Ag(X) is the asymptotic
mean value of {g(n)}n≤X . Elliott showed the following estimate relating the average
deviations |g(n) − Ag(X)| to the average gaps |g(n) − g(n − 1)|.
Theorem [22, Thm. 10.1] There is an absolute constant6 c > 0 such that for any
additive function g : N → C one has

1

X

∑

n≤X

|g(n) − Ag(X)|2 � sup
X≤y≤Xc

1

y

∑

n≤y

|g(n) − g(n − 1)|2.

6 Hildebrand [27] showed that any c > 4 is admissible.
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1032 A. P. Mangerel

Elliott’s result shows that if g has exceedingly small gaps on average, even at scales
that grow polynomially in X , then g must globally be very close to its mean.
The drawback of this result is that it is in principle possible for the upper bound to be
trivial even if the gaps |g(n) − g(n − 1)|, n ≤ X , are o(Bg(X)) on average, as long
as the average savings over n ≤ Xc is not large enough to offset the difference in size
between Bg(X) and Bg(Xc).
In Sect. 6, we obtain two results that complement Elliott’s. The first shows that for
any additive function g, any savings in the �1-averaged moment of |g(n) − g(n − 1)|
provides a savings over the trivial bound for the first centred moment. The second,
which holds whenever g ∈ As , gives the same type of information as the first but in
an �2 sense.

Theorem 1.11 Let g : N → C be an additive function.

(a) The following are equivalent:

1

X

∑

n≤X

|g(n) − g(n − 1)| = o(Bg(X)),
1

X

∑

n≤X

|g(n) − Ag(X)| = o(Bg(X)).

(b) Assume furthermore that g ∈ As . Then the following are equivalent:

1

X

∑

n≤X

|g(n) − g(n − 1)|2 = o(Bg(X)2),

1

X

∑

n≤X

|g(n) − Ag(X)|2 = o(Bg(X)2).

See Proposition 6.1, where an explicit dependence between the rates of decay of the
gap average and the first centredmoment in Theorem 1.11(a) is given as a consequence
of Theorem 1.1.
As a corollary of Theorem 1.11(b) and a second moment estimate of Ruzsa (see
Lemma 3.3), we will deduce the following.

Corollary 1.12 Let g ∈ As be an additive function. Assume that

1

X

∑

n≤X

|g(n) − g(n − 1)|2 = o(Bg(X)2).

Then there is a function λ = λ(X) such that as X → ∞,

∑

pk≤X

|g(pk) − λ log pk |2
pk

= o(Bg(X)2).

Remark 1.13 Even in the weak sense of Theorem 1.11 and even when g takes bounded
values at primes, it can be seen that having small gaps on average is a very special
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property. As a simple example, g = ω, for which Bω(X)2 ∼ log log X , satisfies

1

X

∑

n≤X

|ω(n) − ω(n − 1)|2 
 log log X ,

since by a bivariate version of the Erdős–Kac theorem (see e.g. [28]) one can find a
positive proportion of integers n ∈ [X/2, X ] such that, simultaneously,

ω(n) − log log X√
log log X

≥ 2,
ω(n − 1) − log log X√

log log X
≤ 1.

In fact, as Corollary 1.12 shows, if g ∈ As has a small �2 average gap then g must
behave like λ(X) log on average over prime powers pk ≤ X .

2 Proof ideas

In this section, we will explain the principal ideas that inform the proofs of our main
theorems.

2.1 On theMatomäki–Radziwiłł type theorems

In Theorems 1.1 and 1.4 , our objective is to estimate the averaged deviations

2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

g(m) − 2

X

∑

X/2<m≤X

g(m)

∣∣∣∣∣∣

k

, (7)

where k ∈ {1, 2}, and 10 ≤ h ≤ X/10 with h ∈ Z. Though our result applies to any
complex-valued additive function g, by considering first Re(g) and Im(g) separately it
is always possible to restrict to g(n) ∈ R for all n, which we shall assume henceforth.
The key idea underlying the results for both k = 1, 2 involves the fact that for n ∈ N

and z ∈ C\{0} the function7 n �→ zg(n) is multiplicative in the n-aspect and analytic
in the z-aspect. In the case of Theorem 1.1, for t ∈ R the corresponding function
Gt (n) := e2π i tg(n) takes values on the unit circle S1. Moreover, by replacing Gt (n)

by its constant (in n) multiple G̃t (n) := e2π i t(g(n)−Ag(X)) (see (6) for the definition of
Ag), we see that for r = 1, 2,

dr

dtr

⎛

⎝1

h

∑

n−h<m≤n

G̃t (m)

⎞

⎠
∣∣∣∣
t=0

= (2π i)r
1

h

∑

n−h<m≤n

(g(m) − Ag(X))r .

7 We may always choose a suitable branch of logarithm to ensure that this is well defined.
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Taylor expanding G̃t (m) = Gt (m)e−2π i t Ag(X) to second order around t = 0 for each
m leads to

1

h

∑

n−h<m≤n

Gt (m)

= e2π i t Ag(X)

⎛

⎝1 + 2π i t

h

∑

n−h<m≤n

(g(m) − Ag(X))

⎞

⎠

+ (2π i)2e2π i t Ag(X)

∫ t

0

⎛

⎝1

h

∑

n−h<m≤n

(g(m) − Ag(X))2G̃u(m)

⎞

⎠ u du. (8)

As the sum of g(m) − Ag(X) over a medium-length interval (n − h∗, n], where
h∗ = X/(log X)c for a small constant c > 0, is well approximated by the sum over
[X/2, X ] (see Lemma 4.1), it suffices to compare the short averages over (n−h, n] to
those over (n − h∗, n]. Using the Turán–Kubilius inequality to treat the integral error
term in (8), the above allows us to approximate, for t close to 0, the average in (7)
with k = 1 by the corresponding average

2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

Gt (m) − 1

h∗
∑

n−h∗<m≤n

Gt (m)

∣∣∣∣∣∣
,

where now our summands are, crucially, values of a bounded multiplicative function.
After passing to the mean square by the Cauchy–Schwarz inequality, we may estimate
these averages using the work of Matomäki and Radziwiłł [10] (and their joint work
with Tao [8]), along with some additional ideas from pretentious number theory relat-
ing to the possible correlations of Gt (n) with the so-called Archimedean characters
niλ for λ ∈ R.
The above strategy fails to work in the case k = 2 for the important reason that the
integral error term in (8), when squared and then averaged over n, cannot be controlled
by an �2 moment of g(n) − Ag(X), but rather only by an �4 moment. This can be far
larger than Bg(X)4, especially if g takes irregularly large values on prime powers.
In place of the Taylor approximation argument given above, we instead use Cauchy’s
integral formula to obtain an expression for short averages of g without an error term,
namely8 for ρ ∈ (0, 1),

1

h

∑

n−h<m≤n

g(m) = d

dz

⎛

⎝1

h

∑

n−h<m≤n

zg(m)

⎞

⎠
∣∣∣∣
z=1

= 1

2π i

∫

|z−1|=ρ

⎛

⎝1

h

∑

n−h<m≤n

zg(m)

⎞

⎠ dz

(z − 1)2
.

8 Strictly speaking, we actually work with zg(n)/Bg(X), but for the convenience of exposition we omit the
normalization by Bg(X) in the exponent here.
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Though this manoeuvre has eliminated the problematic error term and still introduced
multiplicative functions into the game, it has also introduced a different issue in that
the path of integration9 intersects the region |z| > 1. Any point in that region yields a
function n �→ zg(n) that is unbounded whenever g takes unbounded, positive values,
say.
While this issue prevents us from obtaining an �2 result for arbitrary additive func-
tions g, we may still succeed if we impose restrictions on the growth of g. Indeed,
as shown in [14], the work of Matomäki and Radziwiłł can be generalized to cover
certain collections of unbounded multiplicative functions of controlled growth. This
includes most natural multiplicative functions f that are uniformly bounded on the
primes and not too large on average at prime powers. Assuming the hypothesis g ∈ As

and modifying g on a small set of prime powers, it can be shown that the resulting
multiplicative function zg(n)/Bg(X) satisfies the necessary hypotheses for the general-
ization of the Matomäki–Radziwiłł theorem in [14] to be applicable, which is crucial
to the proof of Theorem 1.4.

2.2 On gaps between consecutive values of additive functions

Theorem 1.11 establishes that for suitable additive functions g, having a small kth
moment of gaps is equivalent to having a small kth centred moment, for k ∈ {1, 2}.
Since the proof follows similar lines in each of the cases k = 1, 2, we will confine
ourselves mainly to explaining the case k = 1 here.
By the triangle inequality,

1

X

∑

n≤X

|g(n) − g(n − 1)| ≤ 1

X

∑

n≤X

(|g(n) − Ag(X)| + |g(n − 1) − Ag(X)|),

which implies that if the first centred moment is o(Bg(X)) then the average gap is also
o(Bg(X)).
The converse is more delicate. The main idea here is to note that if h = h(X) is slowly
growing then as h < n ≤ X varies the average gap |g(n)− g(n− 1)| controls the size
of typical differences between g(n) and its length h averages:

g(n) − 1

h

∑

n−h<m≤n

g(m) =
∑

0≤ j≤h−2

(
1 − j + 1

h

)
(g(n − j) − g(n − j − 1)).

(9)

Thus, if we assume that g has gaps |g(n)−g(n−1)| of size o(Bg(X)) on average, then
(by selecting h growing sufficiently slowly) the left-hand side of (9) will also typically
be small. Now, Theorem 1.1 allows us to conclude that for almost all n ∈ [X , 2X ],

9 This would still be true if we replaced the circle |z − 1| = ρ by any other path containing 1 in its interior
component.

123



1036 A. P. Mangerel

∣∣∣∣∣∣
g(n) − 1

h

∑

n−h<m≤n

g(m)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
g(n) − 2

X

∑

X/2<n≤X

g(n)

∣∣∣∣∣∣
+ o(Bg(X))

= |g(n) − Ag(X)| + o(Bg(X)),

and in this way we deduce that |g(n) − Ag(X)| is also o(Bg(X)) on average.
The corresponding result comparing the 2nd moments is analogous, but relies on our
Theorem 1.4 instead of Theorem 1.1. For this reason, we must assume that g ∈ As in
Theorem 1.11(b).

2.3 On the Erdős monotonicity problem

Our application to Erdős’ problem, Conjecture 1.6, was the original motivation for this
paper. The connection between our short interval average results and this conjecture
arose from the observation that if g is a real-valued additive function that is non-
decreasing outside of a set B of density 0, then the average of the gaps of {g(n)}n is
nearly a telescoping sum, that is

1

X

∑

n≤X

|g(n) − g(n − 1)| = 1

X

∑

n≤X

(g(n) − g(n − 1)) + 2

X

∑

n∈B(X)

(g(n − 1) − g(n))

= g(�X�)
X

+ 2

X

∑

n∈B(X)

(g(n − 1) − g(n)), (10)

since g(0) = 0 by definition. It can be shown (see Lemma 3.5) that |g(�X�)|/X =
o(Bg(X)); via the Cauchy–Schwarz inequality, the sparseness of B results in the
second expression also being o(Bg(X)). By Theorem 1.11(a), which, as just dis-
cussed, is a consequence of Theorem 1.1, the first centred moment thus also satisfies
1
X

∑
n≤X |g(n) − Ag(X)| = o(Bg(X)).

A classical second moment estimate of Ruzsa (see Lemma 3.3) shows that if,
instead, we could obtain savings over O(Bg(X)2) for the second centred moment
1
X

∑
n≤X |g(n) − Ag(X)|2, then we could conclude the existence of a slowly-varying

function λ = λ(X) such that gλ = g − λ log takes smaller values on average over
prime powers than g does. That is, λ log n approximates g(n) in a precise sense.
Achieving such savings in the second centred moment is the objective of the proof of
Theorem 1.8.
In analogy to the treatment of the first moment of the gaps in (10), the bulk of the work
towards Theorem 1.8 involves obtaining savings over Bg(X)2 on sparsely-supported
�2 sums of the shape

1

X

∑

n∈S(X)

|g(n) − Ag(X)|2,

where S ⊂ N and S(X) := S ∩ [1, X ] satisfies |S(X)| = o(X), as X → ∞. Having
no recourse to Hölder’s inequality for savings in �2, we instead use the large sieve
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(see Proposition 7.1), together with some ideas due to Elliott, to show that either this
sparse average is o(Bg(X)2), or else S contains many multiples of a sparse set of
primes p where |g(p)| is extremely large (in a precise sense). As g ∈ As , this latter
set is provably empty, and consequently we obtain the required savings. It would be
interesting to understandwhether a similar conclusion could be obtained under weaker
conditions on g.
The slow variation of λ i.e. λ(Xu) = (1 + o(1))λ(X) for fixed 0 < u ≤ 1 is a
key property that we exploit in the proof of Corollary 1.7. Though we do not need
to directly invoke the general theory of slowly-varying functions due to Karamata
(see e.g. [29, Ch. 1]), his representation theorem informs our proof that λ is slowly
growing in X i.e. λ(X) ∈ [(log X)−ε, (log X)ε] for any ε > 0 (see Lemma 8.6). Given
that, provably, Bg(X) � λ(X) log X here, we find that Bg(X) = (log X)1+o(1). For
reference, as noted above we have Bg(X) ∼ |c|√

2
log X whenever g = c log.

Corollary 1.7 follows readily from this conclusion, since if |B(X)| � X/(log X)2+δ

for some δ > 0, then by Cauchy–Schwarz we have

1

X

∑

n∈B(X)

|g(n) − g(n − 1)| �
( |B(X)|

X

)1/2

Bg(X) = o(1).

Since g(�X�)/X = o(Bg(X)/(log X)2) = o(1), the right-hand side in (10) is thus
o(1), and so the Kátai–Wirsing theorem mentioned in the introduction (see also The-
orem 3.7 for a statement) implies that g = c log exactly, for some c ∈ R. Without
this additional sparseness assumption on B, however, it is not clear how to proceed
further. It would be interesting to obtain the bound 1

X

∑
n≤X |g(n)−g(n−1)| = o(1),

even assuming g ∈ As , under weaker hypotheses on the rate of decay of |B(X)|/X ,
or perhaps assuming to begin with that Bg(X) = (log X)1+o(1).

3 Auxiliary lemmas

In this section, we record several results that will be used repeatedly in the sequel. For
the convenience of the reader, we recall that for an additive function g : N → C and
X ≥ 2,

Ag(X) :=
∑

pk≤X

g(pk)

pk

(
1 − 1

p

)
, Bg(X)2 :=

∑

pk≤X

|g(pk)|2
pk

.

Lemma 3.1 Let g : N → C be additive. Then for any Y ≥ 3,

1

Y

∑

n≤Y

g(n) = Ag(Y ) + O

(
Bg(Y )√
log Y

)
.
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Proof As g(n) = ∑
pk‖n g(pk), we have

1

Y

∑

n≤Y

g(n) − Ag(Y ) = 1

Y

∑

pk≤Y

g(pk)
∑

n≤Y
pk‖n

1 −
∑

pk≤Y

g(pk)

pk

(
1 − 1

p

)

=
∑

pk≤Y

g(pk)

(
Y−1

(⌊
Y

pk

⌋
−

⌊
Y

pk+1

⌋)
− 1

pk
(1 − 1/p)

)

� 1

Y

∑

pk≤Y

|g(pk)| ≤ Y−1/2
∑

pk≤Y

|g(pk)|p−k/2

� Bg(Y )(π(Y )/Y )1/2 � Bg(Y )√
log Y

,

using the Cauchy–Schwarz inequality and Chebyshev’s estimate π(Y ) � Y/ log Y in
the last two steps. ��
Lemma 3.2 (Turán–Kubilius Inequality) Let X ≥ 3. Uniformly over all additive
functions g : N → C,

1

X

∑

n≤X

|g(n) − Ag(X)|2 � Bg(X)2.

Proof This is e.g. [22, Lem. 1.5] (taking σ = 0). ��
The following estimate due toRuzsa,which sharpens theTurán–Kubilius inequality,

gives an order of magnitude estimate for the second centred moment of a general
additive function.

Lemma 3.3 [30] Let g : N → C be an additive function. Then

1

X

∑

n≤X

|g(n) − Ag(X)|2 � min
λ∈R

(Bgλ(X)2 + |λ|2) � Bgλ0
(X)2 + |λ0|2,

where for λ ∈ R and n ∈ N we set gλ(n) := g(n) − λ log n, and λ0 = λ0(X) is given
by

λ0(X) := 2

(log X)2

∑

p≤X

g(p) log p

p
.

Lemma 3.4 Let g : N → C be additive, and let z ≥ y ≥ 2. Then

Ag(y) = Ag(z) + O

(
Bg(z)

√
log

( log z
log y

))
.
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In particular, if y ∈ (z/2, z] then

Ag(y) = Ag(z) + O

(
Bg(z)√
log z

)
.

Proof By Mertens’ theorem,

|Ag(z) − Ag(y)| ≤
∑

y<pk≤z

|g(pk)|
pk

≤ Bg(z)

⎛

⎝
∑

y<pk≤z

1

pk

⎞

⎠
1/2

� Bg(z)
√
log( log zlog y ).

The second claim follows immediately from this. ��
Lemma 3.5 Let X ≥ 3 and let n ∈ (X/2, X ]. Then |g(n)|

n � Bg(X) log X√
X

.

Proof Observe that whenever pk ≤ X we have |g(pk)|/pk/2 ≤ Bg(X). It follows
from the triangle inequality and the bound ω(n) � log n for all n ≥ 2 that

|g(n)|
n

≤ ω(n)

n
max
pk ||n

|g(pk)| ≤ ω(n)√
n

max
pk ||n

|g(pk)|
pk/2

� log X√
X

Bg(X),

as claimed. ��
Working within the collectionA (see Definition 1.3), the following properties will

be useful.

Lemma 3.6 (a) Let g : N → C be an additive function satisfying Bg(X) → ∞. If g
is either completely or strongly additive then g ∈ A.
(b) Let g ∈ A. Then there is a strongly additive function g∗ such that g(p) = g∗(p)
for all primes p, and Bg−g∗(X) = o(Bg(X)) as X → ∞.

Proof (a) Let g be either strongly or completely additive. We put θg := 1 if g is
completely additive, and θg := 0 otherwise. Then g(pk) = kθg g(p) for any prime
power pk , and thus

∑

pk≤X
k≥2

|g(pk)|2
pk

≤
∑

p≤X

|g(p)|2
p

∑

k≥2

k2θg

pk−1 �
∑

p≤X

|g(p)|2
p2

.

Since Bg(X) → ∞, choosing M = M(X) tending to infinity arbitrarily slowly we
see that

∑

p≤X

|g(p)|2
p2

≤
∑

p≤M

|g(p)|2
p

+ 1

M

∑

M<p≤X

|g(p)|2
p

≤ Bg(M)2 + Bg(X)2

M
= o(Bg(X)2).
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It follows that g ∈ A, as required.
(b) We define g∗ to be an additive function defined by g∗(pk) := g(p) for all primes
p and k ≥ 1. Thus, g∗ is strongly additive. Moreover, if (g− g∗)(pk) �= 0 then k ≥ 2,
for any p. By assumption and part (a), g, g∗ ∈ A, and thus

∑

pk≤X
k≥2

|h(pk)|2
pk

�
∑

p≤X

|h(pk)|2
p2

= o(Bg(X)2)

for both h = g and h = g∗. By the Cauchy–Schwarz inequality,

Bg−g∗(X)2 �
∑

pk≤X
k≥2

|g(pk)|2
pk

+
∑

pk≤X
k≥2

|g∗(pk)|2
pk

= o(Bg(X)2),

as required. ��
Finally, we record the characterization result of Kátai and Wirsing, mentioned in

the introduction.

Theorem 3.7 [18, 21] Let g : N → C be an additive function such that as X → ∞,

1

X

∑

n≤X

|g(n) − g(n − 1)| = o(1).

Then there is c ∈ C such that g(n) = c log n for all n ∈ N.

4 TheMatomäki–Radziwiłł theorem for additive functions: �1 variant

In this section, we prove Theorem 1.1.
We begin with the following simple observation, amounting to the fact that the mean
value of an additive function changes little when passing from a long interval of length
� X to a medium-sized one of length X/(log X)c, for c > 0 sufficiently small.

Lemma 4.1 Let g : N → C be additive and let X be large. Let X/2 < x ≤ X, and let
X/(log X)1/3 ≤ h ≤ X/3. Then

2

X

∑

X/2<n≤X

g(n) = 1

h

∑

x−h≤n≤x

g(n) + O

(
Bg(X)

(log X)1/6

)
.

Proof Applying Lemma 3.1 with Y = X/2, X , x − h and x , we obtain

2

X

∑

X/2<n≤X

g(n) = 2Ag(X) − Ag(X/2) + O

(
Bg(X)√
log X

)
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1

h

∑

x−h<n≤x

g(n) = x

h
Ag(x) −

( x
h

− 1
)
Ag(x − h) + O

(
XBg(X)

h
√
log X

)
.

Since h ≥ X/(log X)1/3, the error term in the second line is � Bg(X)

(log X)1/6
. By

Lemma 3.4,

2Ag(X) − Ag(X/2) = Ag(X) + O(|Ag(X) − Ag(X/2)|) = Ag(X) + O

(
Bg(X)√
log X

)

for the main term in the first equation, and also

x

h
|Ag(x) − Ag(x − h)| � (log X)1/3 · Bg(x)√

log x
� Bg(X)

(log X)1/6
,

so that by a second application of Lemma 3.4,

x

h
Ag(x) −

( x
h

− 1
)
Ag(x − h) = Ag(x) + O

( x
h

|Ag(x) − Ag(x − h)|
)

= Ag(X) + O

(
Bg(X)

(log X)1/6

)
.

Combining these estimates, we may conclude that

∣∣∣∣∣∣
2

X

∑

X/2<n≤X

g(n) − 1

h

∑

x−h<n≤x

g(n)

∣∣∣∣∣∣
� Bg(X)

(log X)1/6
,

as claimed. ��
In light of the above lemma, to prove Theorem 1.1 it suffices to prove the following:
if h′ = X/(log X)1/3 and 10 ≤ h ≤ h′ then

2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h

∑

m−h<n≤m

g(n) − 1

h′
∑

m−h′<n≤m

g(n)

∣∣∣∣∣∣

� Bg(X)

(√
log log h

log h
+ (log X)−1/800

)
.

Splitting g = Re(g) + iIm(g), and noting that both Re(g) and Im(g) are real-valued
additive functions, we may assume that g is itself real-valued, after which the general
case will follow by the triangle inequality.
Let 10 ≤ h ≤ X/3, with X large. Following [8], fix η ∈ (0, 1/12), parameters
Q1 = h, P1 = (log h)40/η, and define further parameters Pj , Q j by

Pj := exp
(
j4 j (log Q1)

j−1 log P1
)

, Q j := exp
(
j4 j+2(log Q1)

j
)

,
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for all j ≤ J , where J is chosen maximally subject to QJ ≤ exp(
√
log X). We then

define

S = SX ,P1,Q1 := {n ≤ X : ω[Pj ,Q j ](n) ≥ 1 for all 1 ≤ j ≤ J },

where for any set S ⊂ N we write ωS(n) := ∑
p|n 1S(p).

The following key step in the proof of Theorem 1.1 allows us to pass from comparing
averages of the additive g to averages of a corresponding multiplicative function,
supported on S.

Lemma 4.2 Let g : N → R be an additive function. Let 10 ≤ h ≤ h′, where h′ :=
X

(log X)1/3
and h ∈ Z, and (log X)−1/6 < t < 1. Then

2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h′
∑

m−h′<n≤m

g(n) − 1

h

∑

m−h<n≤m

g(n)

∣∣∣∣∣∣

� Bg(X)

t
· 1

X

∫ X

X/2

∣∣∣∣∣∣∣∣

1

h′
∑

x−h′<n≤x
n∈S

e(t g̃(n; X)) − 1

h

∑

x−h<n≤x
n∈S

e(t g̃(n; X))

∣∣∣∣∣∣∣∣
dx

+ Bg(X)

(
t + log log h

t log h

)
,

where g̃(n; X) := Bg(X)−1(g(n) − Ag(X)) for all n ∈ N.

Proof In view of Lemma 3.5, at the cost of an error term of size maxX/2<n≤X |g(n)|/h′
� Bg(X)X−1/4, we may assume that both h, h′ ∈ Z (else replace h′ by

⌊
h′⌋). Given

u ∈ [0, 1], x ∈ [X/2, X ] ∩ Z and an integer 1 ≤ H ≤ h′, define

SH (u; x) := 1

H

∑

x−H<n≤x

e(ug̃(n; X)),

which is clearly an analytic function of u. Fix x ∈ [X/2, X ] ∩ Z, and observe that
Sh′(0; x) = 1 = Sh(0; x). By Taylor expansion in t ,

Sh′(t; x) − Sh(t; x) = t(S′
h′(0; x) − S′

h(0; x)) +
∫ t

0
(S′′

h′(u; x) − S′′
h (u; x))u du,

(11)

wherein we have

S′
h′(0; x) − S′

h(0; x) (12)

= 2π i

Bg(X)

⎛

⎝ 1

h′
∑

x−h′<n≤x

(g(n) − Ag(X)) − 1

h

∑

x−h<n≤x

(g(n) − Ag(X))

⎞

⎠
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= 2π i

Bg(X)

⎛

⎝ 1

h′
∑

x−h′<n≤x

g(n) − 1

h

∑

x−h<n≤x

g(n)

⎞

⎠ . (13)

By inserting the expression (13) into (11), rearranging the latter and then taking abso-
lute values and averaging over x ∈ [X/2, X ] ∩ Z, we find

2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h′
∑

m−h′<n≤m

g(n) − 1

h

∑

m−h<n≤m

g(n)

∣∣∣∣∣∣

� Bg(X)t−1 · 1

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h′
∑

m−h′<n≤m

e(t g̃(n; X)) − 1

h

∑

m−h<n≤m

e(t g̃(n; X))

∣∣∣∣∣∣

+ Bg(X)t−1 · t
2

X

∑

X/2<m≤X

max
0≤u≤t

| 1
h′

∑

m−h′<n≤m

g̃(n; X)2e(ug̃(n; X))

− 1

h

∑

m−h<n≤m

g̃(n; X)2e(ug̃(n; X))|.

Since g is real-valued by assumption, |e(ug̃(n; X))| = 1 for all n. Thus, applying the
triangle inequality and Lemma 3.2, we may bound the last expression above by

� t Bg(X)
1

X

∑

X/2<m≤X

∑

H∈{h,h′}

1

H

∑

m−H<n≤m

(
g(n) − Ag(X)

Bg(X)

)2

� t Bg(X) · 1

X

∑

X/2−h′<n≤X

(
g(n) − Ag(X)

Bg(X)

)2

·
∑

H∈{h,h′}

1

H

∑

X/2<m≤X

1[n,n+H ](m)

� t Bg(X).

We now split

SH (t; x) = 1

H

∑

x−H<n≤x
n∈S

e(t g̃(n; X)) + 1

H

∑

x−H<n≤x
n /∈S

e(t g̃(n; X))

=: S(S)
H (t; x) + S(Sc)

H (t; x),

with H ∈ {h, h′}. By the triangle inequality, we have

2

X

∑

X/2<x≤X

|S(Sc)
H (t; x)| ≤ 1

HX

∑

X/2<x≤X

|Sc ∩ (x − H , x]| ≤ 1

X

∑

X/3<n≤X

1Sc (n).
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1044 A. P. Mangerel

Since PJ ≤ exp(
√
log X), the union bound and the fundamental lemma of the sieve

(see [31, Remark after Lem. 6.3]) yield

|Sc ∩ [X/3, X ]| � X
∑

1≤ j≤J

∏

Pj≤p≤Q j

(
1 − 1

p

)
� X

∑

1≤ j≤J

log Pj

log Q j

= X
log P1
log Q1

∑

1≤ j≤J

1

j2
� X

log log h

log h
. (14)

We thus find by the triangle inequality that

2

X

∑

X/2<n≤X

|Sh(t; n) − Sh′(t; n)| � 2

X

∑

X/2<n≤X

∣∣∣S(S)
h (t; n) − S(S)

h′ (t; n)

∣∣∣ + log log h

log h
.

Finally, if n ∈ [X/2, X ]∩Z and x ∈ [n, n+1) then S(S)
H (t; x) = S(S)

H (t; n)+O(1/H),
and thus

2

X

∑

X/2<n≤X

|S(S)
h (t; n) − S(S)

h′ (t; n)| ≤ 2

X

∫ X

X/2
|S(S)

h (t; x) − S(S)

h′ (t; x)|dx + O(1/h).

Combined with the preceding estimates, we obtain

2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h′
∑

m−h′<n≤m

g(n) − 1

h

∑

m−h<n≤m

g(n)

∣∣∣∣∣∣

� t−1Bg(X)

(
2

X

∫ X

X/2

∣∣∣S(S)
h (t; x) − S(S)

h′ (t; x)
∣∣∣ dx + log log h

log h

)
+ t Bg(X),

which implies the claim. ��
Define the multiplicative function

Gt,X (n) := e(tg(n)/Bg(X)) = e(t g̃(n; X))e(t Ag(X)/Bg(X)).

In light of Lemma 4.2, the proof of Theorem 1.1 essentially boils down to the following
comparison result for short- and medium-length interval averages of Gt,X .

Lemma 4.3 Let g : N → R be an additive function. Let X ≥ 3 be large, (log X)−1/6 <

t ≤ 1/100 be small and let 10 ≤ h1 ≤ h2 where h2 = X/(log X)1/3. Then

2

X

∫ X

X/2

∣∣∣∣∣∣∣∣

1

h1

∑

x−h1<n≤x
n∈S

Gt,X (n) − 1

h2

∑

x−h2<n≤x
n∈S

Gt,X (n)

∣∣∣∣∣∣∣∣
dx (15)

� Bg(X)

(
log log h1
log h1

+ (log X)−1/400
)

. (16)
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To prove Lemma 4.3wewill appeal to some ideas from pretentious analytic number
theory. Let U := {z ∈ C : |z| ≤ 1}. In what follows, given multiplicative functions
f , g : N → U and parameters 1 ≤ T ≤ X , we introduce the pretentious distance of
Granville and Soundararajan:

D( f , g; X)2 :=
∑

p≤X

1 − Re( f (p)g(p))

p
,

M f (X; T ) := min|λ|≤T
D( f , niλ; X)2.

For multiplicative functions f , g, h taking values in U, it is well known (see e.g. [32,
Lem 3.1]) that D satisfies the triangle inequality

D( f , h; X) ≤ D( f , g; X) + D(g, h; X). (17)

For each t ∈ [0, 1], select λt,X ∈ [−X , X ] such that MGt,X (X; X) = D(Gt,X , niλt,X ;
X)2 (if there are multiple such minimizers, pick any one of them).

Lemma 4.4 Let 0 < t ≤ 1/100 be sufficiently small. Then either

(i) MGt,X (X; X) ≥ 1
25 log log X, or else

(ii) |λt,X | = O(1).

Proof Assume (i) fails. Then by assumption, D(Gt,X , niλt,X ; X)2 ≤ 1
25 log log X . We

claim that there is also λ̃t,X = O(1) such that

D(Gt,X , ni λ̃t,X ; X) � 1. (18)

To see that this is sufficient to prove (ii), we apply (17) to obtain

D(niλt,X , ni λ̃t,X ; X) ≤ O(1) + 1

5

√
log log X ≤ √

0.3 log log X

for large enough X . Now, if |λt,X − λ̃t,X | ≥ 100 then as |λt,X |, |λ̃t,X | ≤ X the
Vinogradov–Korobov zero-free region for ζ (see e.g. [9, (1.12)]) gives

D(niλt,X , ni λ̃t,X ; X)2 = log log X − log|ζ(1 + 1/ log X + i(λt,X − λ̃t,X ))| + O(1)

≥ 0.33 log log X ,

which is a contradiction. It follows that

|λt,X | ≤ |λ̃t,X | + 100 = O(1),

as required.
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1046 A. P. Mangerel

It thus remains to prove that (18) holds. By Lemma 3.2, we obtain

|{n ≤ X : |g̃(n; X)| > t−1/2}| ≤ t
∑

n≤X

g̃(n; X)2 � t X .

It follows from Taylor expansion that

∑

n≤X

e(t g̃(n; X)) =
∑

n≤X

(
1 + O(

√
t)
)

+ O(t X) = (1 + O(
√
t))X .

On the other hand, by Halász’ theorem in the form of Granville and Soundararajan
[33, Thm. 1],

∣∣∣∣∣∣

∑

n≤X

e(t g̃(n; X))

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

n≤X

Gt,X (n)

∣∣∣∣∣∣
� MGt,X (X;U )e−MGt,X (X;U )X + X

U
,

where 1 ≤ U ≤ log X is a parameter of our choice. If U is a suitably large absolute
constant and t is sufficiently small in an absolute sense, we obtain MGt,X (X;U ) � 1,
and therefore there is a λ̃t,X ∈ [−U ,U ] (thus of size O(1)) such that

D(Gt,X , ni λ̃t,X ; X) � 1,

as claimed. ��
Proof of Lemma 4.3 Set ε = (log X)−1/100. If MGt,X (X; X) ≥ 4 log(1/ε) then by the
triangle inequality, Cauchy–Schwarz and [9, Theorem A.2], the LHS of (15) is

�
∑

j=1,2

⎛

⎜⎜⎝
1

X

∫ X

X/2

∣∣∣∣∣∣∣∣

1

h j

∑

x−h j<n≤x
n∈S

Gt,X (n)

∣∣∣∣∣∣∣∣

2

dx

⎞

⎟⎟⎠

1/2

� exp

(
−1

2
MGt,X (X; X)

)
MGt,X (X; X)1/2 + (log h1)1/6

P1/12−η/2
1

+ (log X)−1/200

� ε2(log(1/ε))1/2 + (log h1)
−1 + (log X)−1/200

� (log h1)
−1 + (log X)−1/200.

Next, assume that MGt,X (X; X) < 4 log(1/ε). For λ ∈ R and h ≥ 1 define

I (x; λ, h) := h−1
∫ x

x−h
uiλdu.

By Lemma 4.4 we have λt,X = O(1), so that with h ∈ {h1, h2},

123



Additive functions in short intervals. . . 1047

I (x; λt,X , h) = xiλt,X
(
1 − (1 − h/x)1+iλt,X

(1 + iλt,X )h/x

)
= xiλt,X

(
1 + O

(
|λt,X | h

X

))

= xiλt,X
(
1 + O

(
h

X

))
,

and thus for each x ∈ [X/2, X ] and j = 1, 2,

xiλt,X
2

X

∑

X/2<n≤X
n∈S

Gt,X (n)n−iλt,X

= I (x; λt,X , h j ) · 2

X

∑

X/2<n≤X
n∈S

Gt,X (n)n−iλt,X + O
( h j
X

)
. (19)

Reinstating the n /∈ S and using the arguments surrounding (14), we also note that

2

X

∫ X

X/2

∣∣∣∣∣∣∣∣

1

h j

∑

x−h j<n≤x
n∈S

Gt,X (n) − xiλt,X
2

X

∑

X/2<n≤X
n∈S

Gt,X (n)n−iλt,X

∣∣∣∣∣∣∣∣
dx

� 2

X

∫ X

X/2

∣∣∣∣∣∣
1

h j

∑

x−h j<n≤x

Gt,X (n) − xiλt,X
2

X

∑

X/2<n≤X

Gt,X (n)n−iλt,X

∣∣∣∣∣∣
dx

+ log log h1
log h1

.

Adding and subtracting the expression on the LHS of (19) inside the absolute values
bars in (15), we obtain the upper bound

� T1 + T2 + h2
X

,

where we have set

T j := 2

X

∫ X

X/2

∣∣∣∣∣∣∣∣
I (x; λt,X , h j )

2

X

∑

X/2<n≤X
n∈S

Gt,X (n)n−iλt,X − 1

h j

∑

x−h j<n≤x
n∈S

Gt,X (n)

∣∣∣∣∣∣∣∣
.

If j = 2 then as just noted we also have

T2 � 1

X

∫ X

X/2

∣∣∣∣∣∣
1

h2

∑

x−h2<n≤x

Gt,X (n) − I (x; λt,X , h2)
2

X

∑

X/2<n≤X

Gt,X (n)n−λt,X

∣∣∣∣∣∣
dx

+ log log h1
log h1

,
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1048 A. P. Mangerel

and so by Cauchy–Schwarz and [34, Theorem 1.6] (taking Q = 1 and ε =
(log X)−1/200 there), we have

T2 �
⎛

⎜⎝
2

X

∫ X

X/2

∣∣∣∣∣∣
I (x; λt,X , h2)

2

X

∑

X/2<n≤X

Gt,X (n)n−iλt,X − 1

h2

∑

x−h2<n≤x

Gt,X (n)

∣∣∣∣∣∣

2

dx

⎞

⎟⎠

1
2

+ log log h1
log h1

� (log X)−1/400 + log log h1
log h1

.

In the same way, when h1 >
√
X we obtain the same bound T1 � (log X)−1/400 +

log log h1
log h1

as well.

Thus, assume that 10 ≤ h1 ≤ √
X . Combining Cauchy–Schwarz with [10, Theorem

9.2(ii)] (taking δ = (log h1)1/3P
−1/6+η
1 , ν1 = 1/20 and ν2 = 1/12, there), we then

get

T1 �
(

(log h1)4/3

P1/12−η
1

+ (log X)−1/200

)1/2

� (log h1)
−1 + (log X)−1/400.

Combining these estimates, we obtain that the LHS of (15) is

� (log h1)
−1 + (log X)−1/400 + log log h1

log h1
+ h2

X
� (log X)−1/400 + log log h1

log h1
,

as claimed. ��
Proof of Theorem 1.1 Set h1 := h and h2 := X/(log X)1/3. As mentioned, we may
assume that g is real-valued (otherwise the result follows for complex-valued g by
applying the theorem to Re(g) and Im(g) and applying the triangle inequality). By
Lemma 4.1, we have

2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h1

∑

m−h1<n≤m

g(n) − 2

X

∑

X/2<n≤X

g(n)

∣∣∣∣∣∣

� 2

X

∑

X/2<m≤X

∣∣∣∣∣∣
1

h1

∑

m−h1<n≤m

g(n) − 1

h2

∑

m−h2<n≤m

g(n)

∣∣∣∣∣∣
+ Bg(X)

(log X)1/6
. (20)

By Lemma 4.2, the latter is
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� Bg(X)

t
· 1

X

∫ X

X/2
|S(S)

h1
(t; x) − S(S)

h2
(t; x)|dx

+Bg(X)

(
t + log log h

t log h
+ (log X)

− 1
6

)
. (21)

Observe next that for any x ∈ [X/2, X ] and t ∈ (0, 1),

S(S)
h1

(t; x) − S(S)
h2

(t; x) = 1

h1

∑

x−h1<n≤x
n∈S

e(t g̃(n; X)) − 1

h2

∑

x−h2<n≤x
n∈S

e(t g̃(n; X))

= e(−t
Ag(X)

Bg(X)
) ·

⎛

⎜⎜⎝
1

h1

∑

x−h1<n≤x
n∈S

Gt,X (n) − 1

h2

∑

x−h2<n≤x
n∈S

Gt,X (n)

⎞

⎟⎟⎠ .

Taking t := max
{√ log log h1

log h1
, (log X)−1/800

}
, Theorem 1.1 now follows on combining

this last expression with Lemma 4.3 and inserting the resulting bound into (21) . ��

5 TheMatomäki–Radziwiłł theorem for additive functions: �2 variant

In this section, we will prove Theorem 1.4.
Let g ∈ As , so that Bg(X) → ∞, and the conditions

lim
δ→0+ Fg(δ) = lim

δ→0+ lim sup
X→∞

1

Bg(X)2

∑

p≤X
|g(p)|>δ−1Bg(X)

|g(p)|2
p

= 0, (22)

lim sup
X→∞

1

Bg(X)2

∑

pk≤X
k≥2

|g(pk)|2
pk

= 0. (23)

both hold. We seek to show that

�g(X , h) := 2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

g(m) − 2

X

∑

X/2<m≤X

g(m)

∣∣∣∣∣∣

2

= o(Bg(X)2),

(24)

whenever 10 ≤ h ≤ X/10 is an integer that satisfies h = h(X) → ∞ as X → ∞.
We begin by making the following convenient reduction.

Lemma 5.1 Suppose that Theorem 1.4 holds for any non-negative, strongly additive
function g ∈ As . Then Theorem 1.4 holds for any g ∈ As .
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1050 A. P. Mangerel

Proof By splitting g = Re(g) + iIm(g), and separately decomposing

Re(g) = Re(g)+ − Re(g)−, Im(g) = Im(g)+ − Im(g)−,

where, for an additive function h we define the non-negative additive functions h± on
prime powers via

h+(pk) := max{h(pk), 0}, h−(pk) := max{0,−h(pk)},

the Cauchy–Schwarz inequality implies that if (24) holds for non-negative g satisfying
(22) and (23) then it holds for all additive g satisfying those conditions.
Therefore, we may assume that g is non-negative. Now, by Lemma 3.6, we can find
a strongly additive function g∗, satisfying g(p) = g∗(p) for all p, such that upon
setting G := g − g∗ we have BG(X) = o(Bg(X)). If we write, for a non-negative
additive function h,

F̃h(δ; X) := 1

Bh(X)2

∑

p≤X
h(p)>δ−1Bh(X)

h(p)2

p

then we see that when X is large enough,

F̃g∗(δ/2; X) ≤ 2F̃g(δ; X) ≤ 4F̃g∗(2δ; X).

Taking limsups as X → ∞ in these inequalities, it follows that g∗ satisfies (22)
whenever g does; that g∗ also satisfies (23) is an immediate consequence ofLemma3.6.
Moreover, we see by the Cauchy–Schwarz inequality and Lemma 3.2 that

2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

(G(m) − AG(X))

∣∣∣∣∣∣

2

≤ 1

Xh

∑

X/2<n≤X

∑

n−h<m≤n

|G(m) − AG(X)|2

� 1

X

∑

X/3<m≤X

|G(m) − AG(X)|2 � BG(X)2 = o(Bg(X)2).

Using the estimate 2
X

∑
X/2<n≤X G(n) = AG(X) + o(Bg(X)) by Lemmas 3.1 and

3.4 (as in the proof of Lemma 4.1), we see that

�g(X , h) � �g∗(X , h) + �G(X , h) = �g∗(X , h) + o(Bg(X)),

so that if (24) holds for strongly additive g∗ ∈ As then it also holds for all g ∈ As .
This completes the proof. ��
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Until further noticewemay thus assume that g is non-negative and strongly additive.
For a fixed small parameter ε > 0, let δ ∈ (0, 1/100) be chosen such that Fg(δ) < ε.
Let X be a scale chosen sufficiently large so that

∑

p≤X
g(p)>δ−1Bg(X)

g(p)2

p
≤ 2Fg(δ)Bg(X)2 < 2εBg(X)2, (25)

∑

pk≤X
k≥2

g(pk)2

pk
=

∑

pk≤X
k≥2

g(p)2

pk
< εBg(X)2. (26)

With these data, define

C = C(X , δ) := {p ≤ X : g(p) ≤ δ−1Bg(X)}.

We decompose g as

g = gC + gP\C,

where gC and gP\C are strongly additive functions defined at primes by

gC(p) :=
{
g(p) if p ∈ C
0 if p /∈ C.

gP\C(p) :=
{
0 if p ∈ C
g(p) if p /∈ C.

We will consider the mean-squared errors

2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

gA(m) − 2

X

∑

X/2<m≤X

gA(m)

∣∣∣∣∣∣

2

for A ∈ {C,P\C}, separately. The fact that g ∈ As means, in particular, that gP\C
contributes little to �g(X , h).

Lemma 5.2 Let g ∈ As be a non-negative, strongly additive function. Assume that X
and δ are chosen such that (25) and (26) both hold. Then we have

�g(X , h) � �gC (X , h) + εBg(X)2,

where C = C(X , δ).

Proof Arguing as in the proof of Lemma 5.1, we obtain from (25) and (26) that

�gP\C (X , h) � BgP\C (X)2 < 3εBg(X)2.
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1052 A. P. Mangerel

Thus, by the Cauchy–Schwarz inequality, we obtain

�g(X , h) � �gC (X , h) + �gP\C (X , h) � �gC (X , h) + εBg(X)2,

as claimed. ��
In analogy to thework of the previous section,wewill reduce the estimation of�gC (X)

to that of the variance of short- and long-interval averages of certain multiplicative
functions determined by gC . These are defined as follows.
Fix r ∈ (0, δ2]. Given z ∈ C satisfying |z − 1| = r , define

Fz(n) := zgC(n)/Bg(X) for all n ∈ N.

Since gC is strongly additive and satisfies 0 ≤ gC(p) ≤ δ−1Bg(X) for all p ≤ X , we
have

|Fz(pk)| = |Fz(p)| ≤ (1 + δ2)δ
−1 ≤ 2 (27)

for all pk ≤ X , and thus also

|Fz(n)| ≤
(
max
p|n |Fz(p)|

)ω(n)

≤ 2ω(n) ≤ d(n), (28)

where d(n) is the divisor function. Furthermore, as δ ∈ (0, 1/100), for any 2 ≤ u ≤
v ≤ X we get

∑

u<p≤v

|Fz(p)|
p

≥ (1 − δ2)δ
−1 ∑

u<p≤v

1

p
≥ 0.98

∑

u<p≤v

1

p
. (29)

Our treatment of short sums of gC will entail an analysis of corresponding short sums
of Fz , for z lying in a small neighbourhood of 1. In preparation to apply a relevant result
from the recent paper [14], we introduce some further notation. Given a multiplicative
function f : N → C set

H( f ; X) :=
∏

p≤X

(
1 + (| f (p)| − 1)2

p

)
, P f (X) :=

∏

p≤X

(
1 + | f (p)| − 1

p

)
.

We also define the following variant of the pretentious distance:

ρ( f , nit ; X)2 :=
∑

p≤X

| f (p)| − Re( f (p)p−i t )

p
.

We let t0 = t0( f , X) denote a real number t ∈ [−X , X ] that minimizes t �→
ρ( f , nit ; X)2.
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Theorem 5.3 [14, Thm. 2.1] Let 0 < A ≤ 2, and let X be large. Let f : N → C be a
multiplicative function that satisfies

(i) | f (n)| ≤ d(n) for all n ≤ X, and in particular | f (p)| ≤ 2 for all p ≤ X,
(ii) for any 2 ≤ u ≤ v ≤ X,

∑

u<p≤v

| f (p)|
p

≥ A
∑

u<p≤v

1

p
− O

(
1

log u

)
.

Let 10 ≤ h0 ≤ X/(10H( f ; X)), and put h1 := h0H( f ; X) and t0 = t0( f , X). Then
there are constants c1, c2 ∈ (0, 1/3), depending only on A, such that if X/(log X)c1 <

h2 ≤ X,

2

X

∫ X

X/2

∣∣∣∣∣∣
1

h1

∑

x−h1<n≤x

f (n) − 1

h1

∫ x

x−h1
uit0du · 1

h2

∑

x−h2<n≤x

f (n)n−i t0

∣∣∣∣∣∣

2

dx

�A

((
log log h0
log h0

)A

+
(
log log X

(log X)c2

)min{1,A})
P f (X)2.

Let c1 ∈ (0, 1/3) be the constant from Theorem 5.3, applied with A = 0.98. By
Lemma 4.1, if h2 = �X/(log X)c1� then for any x ∈ (X/2, X ]

1

h2

∑

x−h2<n≤x

gC(n) = 2

X

∑

X/2<n≤X

gC(n) + O

(
Bg(X)

(log X)1/6

)
. (30)

In view of Lemma 5.2, in order to prove Theorem 1.4 it suffices to show that as
X → ∞,

�gC (X; h1, h2) := 2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h1

∑

n−h1<m≤x

gC(m) − 1

h2

∑

n−h2<m≤n

gC(m)

∣∣∣∣∣∣

2

= o(Bg(X)2),

where h1 = h and h2 = �X/(log X)c1�.
Using Theorem 5.3, we will prove the following.

Corollary 5.4 Let 10 ≤ h1 ≤ X/10 be an integer and h2 := �X/(log X)c1� as above.
Then there is a constant γ > 0 such that

�gC (X; h1, h2) � δ−4

((
log log h

log h

)0.98

+ (log X)−γ

)
Bg(X)2.

The conditions (i) and (ii) of Theorem 5.3 were verified for f = Fz in (27), (28)
and (29) (with A = 0.98), and it remains to elucidate information about t0(Fz, X),
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1054 A. P. Mangerel

H(Fz; X) and the size of the Euler product PFz (X). This is provided by the following
lemma.

Lemma 5.5 Fix r ∈ (0, δ2] and let z ∈ C satisfy |z − 1| = r . Then

(a) t0(Fz, X) � 1/ log X,
(b) H(Fz; X) � 1 and

(c) PFz (X)2 � ∏
p≤X

(
1 + |Fz(p)|2−1

p

)
.

Proof (a) Applying [14, (7)] with A = 0.98, B = 2 and C = 1 (which is a straight-
forward consequence of [10, Lem. 5.1(i)]), we see that if (log X)|t0(Fz; X)| ≥ D for
a suitably large constant D > 0 then by minimality of t0,

ρ(Fz, 1; X)2 ≥ σ min{log log X , 3 log(|t0(Fz; X)| log X + 1)} + O(1) ≥ 100,

say, where σ > 0 is an absolute constant.
To obtain a contradiction, observe next that for any z = re(θ) with θ ∈ [0, 1], we
have already shown that |Fz(p)| ≤ 2 for δ ∈ (0, 1/100). Thus, writing Fz(p) =
|Fz(p)|e(θgC(p)/Bg(X)) and applying the inequality 0 ≤ 1 − cos x ≤ x2/2 for all
x ≥ 0, we find

ρ(Fz, 1; X)2 =
∑

p≤X

|Fz(p)|1 − cos(2πθgC(p)/Bg(X))

p

≤ 4π2

Bg(X)2

∑

p≤X

g(p)2

p
≤ 4π2.

This contradiction implies that |t0(Fz; X)| log X ≤ D for some constant D, and the
claim follows.
(b) By Taylor expansion, |z|gC(p)/Bg(X) = 1 + O(δg(p)/Bg(X)), and thus

H(Fz; X) � exp

⎛

⎝
∑

p≤X

(|z|gC(p)/Bg(X) − 1)2

p

⎞

⎠

= exp

⎛

⎝O

⎛

⎝ δ2

Bg(X)2

∑

p≤X

g(p)2

p

⎞

⎠

⎞

⎠ � 1.

The corresponding lower bound is trivial from the definition of H(Fz; X).
(c) Since |Fz(p)| ≤ 2 for all p ≤ X , we have the upper bounds

PFz (X)2 �
∏

p≤X

(
1 + 2(|Fz(p)| − 1)

p

)
≤

∏

p≤X

(
1 + |Fz(p)|2 − 1

p

)
,

the latter of which arises from (|Fz(p)| − 1)2 ≥ 0 for all p. ��
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Lemma 5.6 Let g be non-negative and strongly additive. Let r ∈ (0, δ2], and set
h1 = h and h2 = �X/(log X)c1� as above. Then there is z0 ∈ C with |z0 − 1| = r
such that as X → ∞,

�gC (X; h1, h2)

� Bg(X)2

r2
|z0|−2

Ag (X)

Bg (X)

· 2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h1

∑

n−h1<m≤n

Fz0(m) − I (n; t0, h1) · 1

h2

∑

n−h2<m≤n

Fz0(m)m−i t0

∣∣∣∣∣∣

2

+ Bg(X)2

r2
(log X)−c1+o(1),

where t0 = t0(Fz0 , X) and I (x; t, h) := 1
h

∫ x
x−h u

itdu as in the previous section.

Proof For each n ∈ (X/2, X ], z ∈ C and j = 1, 2, define the maps

φn(z; h j ) := 1

h j

∑

n−h j<m≤n

z(gC(m)−AgC (X))/Bg(X),

which are analytic in z. Note that

1

h j

∑

n−h j<m≤n

(
gC(m) − AgC (X)

Bg(X)

)
= d

dz
φn(z; h j )

∣∣∣
z=1

.

Recall that h1, h2 ∈ Z. Thus, by Cauchy’s integral formula we have

1

h1

∑

n−h1<m≤n

gC(m) − 1

h2

∑

n−h2<m≤n

gC(m)

= 1

h1

∑

n−h1<m≤n

(gC(m) − AgC (X)) − 1

h2

∑

n−h2<m≤n

(gC(m) − AgC (X))

= Bg(X)

2π i

∫

|z−1|=r
(φn(z; h1) − φn(z; h2)) dz

(z − 1)2
.

By Cauchy–Schwarz and the definition of Fz , we obtain

�gC (X; h1, h2) � Bg(X)2

r2
max|z−1|=r

2

X

∑

X/2<n≤X

|φn(z; h1) − φn(z; h2)|2

= Bg(X)2

r2
|z0|−2

AgC (X)

Bg (X)
2

X

∑

X/2<n≤X

∣∣∣∣∣∣
1

h1

∑

n−h1<m≤n

Fz0(m) − 1

h2

∑

n−h2<m≤n

Fz0(m)

∣∣∣∣∣∣

2

,
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for some z0 ∈ C with |z0 − 1| = r . To complete the proof, note that by Taylor
expansion and Lemma 5.5(a),

1

h1

∫ n

n−h1
uit0du = nit0

1 − (1 − h1/n)1+i t0

(1 + i t0)h1/n
= nit0 + O(h1/X),

and also

m−i t0 = n−i t0 + O(|t0| log(n/m)) = n−i t0 + O(h2/X)

uniformly in n − h2 < m ≤ n. It follows that

1

h2

∑

n−h2<m≤n

Fz0(m) = I (n; t0, h1) · 1

h2

∑

n−h2<m≤n

Fz0(m)m−i t0

+ O

⎛

⎝ 1

X

∑

n−h2<m≤n

|Fz0(m)|
⎞

⎠ .

The error term is, by Shiu’s theorem [35, Thm. 1] and the Cauchy–Schwarz inequality,

� h2
X

exp

⎛

⎝
∑

p≤X

|Fz0(p)| − 1

p

⎞

⎠ � h2
X

exp

⎛

⎝ 2r

Bg(X)

∑

p≤X

g(p)

p

⎞

⎠

� h2
X

exp
(
2
√
log log X

)
,

which suffices to prove the claim. ��
We are now in a position to apply Theorem 5.3 in order to prove Corollary 5.4.

Proof of Corollary 5.4 Let z0 be chosen as in Lemma 5.6. Since h1, h2 ∈ Z we may
replace the discrete average in Lemma 5.6 by an integral average at the cost of an error
term of size

� Bg(X)2

r2
max

x∈[X/2,X ]

⎛

⎝|I (x; t0, h1) − I (�x�; t0, h1)| · 1

h2

∑

�x�−h2<n≤�x�
|Fz0(n)|

⎞

⎠
2

� Bg(X)2

h21r
2

|z0|−2
AgC (X)

Bg (X) PFz0
(X)2,

again by Shiu’s bound [35, Thm. 1]. Using the data from Lemma 5.5, Theorem 5.3
therefore yields
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�gC (X; h1, h2) � Bg(X)2

δ4

((
log log h1
log h1

)0.98

+
(
log log X

(log X)c2

)0.98
)

(31)

· |z0|−2
AgC (X)

Bg (X)
∏

p≤X

(
1 + |Fz0(p)|2 − 1

p

)
. (32)

As g is strongly additive,

AgC (X) =
∑

p≤X

gC(p)

p
+ O

⎛

⎝
∑

p≤X

g(p)

p2

⎞

⎠ =
∑

p≤X

gC(p)

p
+ O(Bg(X)),

the bound in the error term arising from the Cauchy–Schwarz inequality. Now put
ρ := log|z0| ∈ (−10δ2, 10δ2), say. Using the estimates log(1+ x) = x + O(x2) and
|ex − 1 − x | ≤ 1

2 |x |2 for |x | ≤ 1/2, the factors in (32) can be estimated as

� exp

⎛

⎝
∑

p≤X

(
−2ρ

p

gC(p)

Bg(X)
+ log

(
1 + e2ρgC(p)/Bg(X) − 1

p

))⎞

⎠

� exp

⎛

⎝
∑

p≤X

1

p

(
e2ρgC(p)/Bg(X) − 1 − 2ρ

gC(p)

Bg(X)

)⎞

⎠

≤ exp

⎛

⎝ 2ρ2

Bg(X)2

∑

p≤X

gC(p)2

p

⎞

⎠ � 1.

The claimed bound now follows with any 0 < γ < 0.98c2 (changing the implicit
constant as needed). ��
Proof of Theorem 1.4 Let g ∈ As . By Lemma 5.1 we may assume that g is non-
negative and strongly additive. Let ε > 0 and pick δ > 0 and X0 = X0(δ) such that
if X ≥ X0 then (25) and (26) both hold, and also define C as above. Set also h1 = h

and h2 :=
⌈

X
(log X)c1

⌉
as above. Combining Lemma 5.2 and (30), we have

�g(X , h) � �gC (X , h) + εBg(X)2 � �gC (X; h1, h2) + (
ε + (log X)−1/6) Bg(X)2.

Applying Corollary 5.4 in this estimate, we find that there is a γ ∈ (0, 1/6) for which

�g(X , h) �
(

ε + δ−4

((
log log h

log h

)0.98

+ (log X)−γ

))
Bg(X)2.

Selecting h ≥ exp
(
δ−5ε−2 log(1/(δε))

)
, picking X0 larger if necessary, we deduce

that �g(X , h) � εBg(X). Since ε was arbitrary, we deduce that �g(X , h) =
o(Bg(X)), as claimed. ��
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6 Gaps andmoments

In this section, we will prove Theorem 1.11.

6.1 Small gaps and small first moments are equivalent: proof of Theorem 1.11(a)

We start by proving the following quantitative �1 gap result.

Proposition 6.1 Let 0 < ε < 1/3 and let X be large. Let g : N → C be an additive
function. Assume that

1

Y

∑

n≤Y

|g(n) − g(n − 1)| � εBg(X) (33)

for all X/ log X < Y ≤ X. Then we have

1

X

∑

n≤X

|g(n) − Ag(X)| �
(√

log log(1/ε)

log(1/ε)
+ (log X)−1/800

)
Bg(X).

Proof Let h = ⌊
min{X/(2 log X), ε−1/2}⌋, and let X/ log X < Y ≤ X . By the

triangle inequality and (33), for any 1 ≤ m ≤ h we obtain

1

Y

∑

h<n≤Y

|g(n) − g(n − m)| ≤ 1

Y

∑

0≤ j≤m−1

∑

j<n≤Y

|g(n − j) − g(n − j − 1)|

� h

Y

∑

1≤n≤Y

|g(n) − g(n − 1)| � ε1/2Bg(X).

Averaging over 1 ≤ m ≤ h and then applying the triangle inequality once again, we
obtain

1

Y

∑

Y/2<n≤Y

∣∣∣∣∣∣
g(n) − 1

h

∑

1≤m≤h

g(n − m)

∣∣∣∣∣∣

≤ 1

Y

∑

h<n≤Y

∣∣∣∣∣∣
g(n) − 1

h

∑

1≤m≤h

g(n − m)

∣∣∣∣∣∣
� h−1Bg(X).

Applying Theorem 1.1, we deduce from this that

1

Y

∑

Y/2<n≤Y

∣∣∣∣∣∣
g(n) − 2

Y

∑

Y/2<m≤Y

g(m)

∣∣∣∣∣∣
� Bg(X)

(√
log log h

log h
+ (log X)−1/800

)
.
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Now, for each such Y , Lemmas 3.1 and 3.4 combine to yield

2

Y

∑

Y/2<m≤Y

g(m) = 2Ag(Y ) − Ag(Y/2) + O

(
Bg(Y )√
log Y

)

= Ag(X) + O

(
Bg(X)

√
log log X

log X

)
,

and thus combining this estimate into the previous expression and summing over all
dyadic subintervals of [X/ log X , X ], we obtain
1

X

∑

X
log X <n≤X

|g(n) − Ag(X)| ≤
∑

X
log X <Y=X/2 j≤X

Y

2X
· 2

Y

∑

Y/2<n≤Y

|g(n) − Ag(X)|

� Bg(X)

(√
log log h

log h
+ (log X)−1/800

)
.

Applying Lemma 3.2 and the Cauchy–Schwarz inequality on [1, X/ log X ], we obtain

1

X

∑

1≤n≤ X
log X

|g(n) − Ag(X)| ≤ 1√
log X

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|2
⎞

⎠

1
2

� Bg(X)√
log X

.

The latter two estimates together imply the claim. ��
Proof of Theorem 1.11(a) By the triangle inequality, we see that if

1

X

∑

n≤X

|g(n) − Ag(X)| = o(Bg(X))

then, consequently,

1

X

∑

n≤X

|g(n) − g(n − 1)| ≤ 1

X

∑

n≤X

|g(n) − Ag(X)| + 1

X

∑

m≤X−1

|g(m) − Ag(X)|

= o(Bg(X)).

The converse implication follows immediately from Proposition 6.1. ��

6.2 A gap theorem for the secondmoment

In parallel to the results of the previous subsection, we will apply Theorem 1.4 to
prove the following result.
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Proposition 6.2 Let g ∈ As Then for any integer 10 ≤ h ≤ X
10 log X we have

1

X

∑

n≤X

|g(n) − Ag(X)|2 � h2

X

∑

n≤X

|g(n) − g(n − 1)|2 + oh→∞(Bg(X)2).

Proof Given our assumptions about g, we may apply Theorem 1.4 to obtain

∑

Y/2<n≤Y

∣∣∣∣∣∣
1

h

∑

n−h<m≤n

g(m) − 2

Y

∑

Y/2<m≤Y

g(m)

∣∣∣∣∣∣

2

= oh→∞(Y Bg(X)2),

for any X/ log X < Y ≤ X . Applying Lemmas 3.1 and 3.4, we deduce that

1

X

∑

Y/2<n≤Y

|g(n) − Ag(Y )|2

� 1

X

∑

Y/2<n≤Y

∣∣∣∣∣∣
g(n) − 1

h

∑

n−h<m≤n

g(m)

∣∣∣∣∣∣

2

+ oh→∞
(
Y

X
Bg(X)2

)
.

By telescoping,

g(n) − 1

h

∑

n−h<m≤n

g(m) = 1

h

∑

0≤ j≤h−1

(g(n) − g(n − j))

=
∑

0≤ j≤h−2

(
1 − j + 1

h

)
(g(n − j) − g(n − j − 1)).

Squaring both sides and applying Cauchy–Schwarz, we obtain

1

X

∑

Y/2<n≤Y

∣∣∣∣∣∣
g(n) − 1

h

∑

n−h<m≤n

g(m)

∣∣∣∣∣∣

2

� h

X

∑

0≤ j≤h−2

∑

Y/2<n≤Y

(g(n − j) − g(n − j − 1))2

≤ h2

X

∑

Y
2 −h<n≤Y<n≤Y

(g(n) − g(n − 1))2.

Combined with the previous estimates, we obtain
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1

X

∑

Y/2<n≤Y

|g(n) − Ag(Y )|2

� h2

X

∑

Y
2 −h<n≤Y

|g(n) − g(n − 1)|2 + oh→∞
(
Y

X
Bg(X)2

)
.

By Lemma 3.4, for each X/ log X < Y ≤ X we have

|Ag(X) − Ag(Y )| � Bg(X)

√
log log X

log X
,

so that, summing over dyadic subintervals of [X/ log X , X ] and noting that by our
assumption h ≤ X/(10 log X) at most two dyadic intervals contain any point of

⋃

X
log X <Y=X/2 j≤X

[Y/2 − h,Y ],

we find

1

X

∑

X
log X <n≤X

|g(n) − Ag(X)|2

�
∑

X
log X <Y=X/2 j≤X

1

X

∑

Y/2<n≤Y

(
|g(n) − Ag(Y )|2 + Bg(X)2 · log log X

log X

)

� h2

X

∑

X
4 log X <n≤X

|g(n) − g(n − 1)|2 + oh→∞(Bg(X)2).

Applying Lemma 3.2 trivially to the segment [1, X/ log X ] gives

1

X

∑

n≤ X
log X

|g(n) − Ag(X)|2 � Bg(X)2

log X
,

so combining these two estimates implies the claim. ��
Proof of Theorem 1.11(b) To obtain the theorem, we note first the trivial estimate

1

X

∑

n≤X

|g(n) − g(n − 1)|2 � 1

X

∑

n≤X

|g(n) − Ag(X)|2 + 1

X

∑

m≤X−1

|g(m) − Ag(X)|2

� 1

X

∑

n≤X

|g(n) − Ag(X)|2,
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so that if the RHS is o(Bg(X)2) then so is the LHS.
Conversely, suppose that

1

X

∑

n≤X

|g(n) − g(n − 1)|2 ≤ ξ(X)Bg(X)2,

for some function ξ(Y ) → 0 as Y → ∞. Set h := �ξ(X)−1/3�. By Proposition 6.2,

1

X

∑

n≤X

|g(n) − Ag(X)|2 � ξ(X)−2/3 · ξ(X)Bg(X)2 + o(Bg(X)2) = o(Bg(X)2)

as X → ∞, as required. ��
Proof of Corollary 1.12 Let g ∈ As and suppose that

1

X

∑

n≤X

|g(n) − g(n − 1)|2 = o(Bg(X)2).

By Theorem 1.11(b), we obtain that

1

X

∑

n≤X

|g(n) − Ag(X)|2 = o(Bg(X)2).

Now, by Lemma 3.3, this implies that there is λ = λ(X) ∈ R such that

Bgλ(X)2 + |λ|2 = o(Bg(X)2),

where gλ = g − λ log. Since the left-hand side is ≥ Bgλ(X)2, the claim follows
immediately. ��

7 Erdős’ almost everywheremonotonicity problem

Let g : N → R be additive. For convenience, set g(0) := 0, and recall the definitions

B := {n ∈ N : g(n) < g(n − 1)}, B(X) := B ∩ [1, X ].

In this and the following section, we will study functions g such that |B(X)| = o(X).

7.1 The secondmoment along sparse subsets

To prove Theorem 1.8 we will eventually need control over a sparsely-supported sum
such as

1

X

∑

n∈B(X)

|g(n) − Ag(X)|2,
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with the objective of obtaining savings over the trivial bound O(Bg(X)2) from
Lemma 3.2. The purpose of this subsection is to determine sufficient conditions in
order to achieve a non-trivial estimate of this kind.
Given a set of positive integers S, a positive real number X ≥ 1 and a prime power
pk ≤ X , write S(X) := S ∩ [1, X ] and Spk (X) := {n ∈ S(X) : pk | n}.
Proposition 7.1 Let g : N → C be an additive function belonging to A. Let S be a
set of integers with |S(X)| = o(X), and let ε ∈ (0, 1) satisfy the conditions

|S(X)| < ε
2 X ,

∑

pk≤X
k≥2

|g(p)|2 + |g(pk)|2
pk

< εBg(X)2.

Then the following bound holds:

1

X

∑

n∈S(X)

|g(n) − Ag(X)|2 � Bg(X)2

(
ε + ε−1

( |S(X)|
X

)1/2
)

+
∑

p≤X
|Sp(X)|>εX/p

|g(p)|2
p

.

Moreover, we have

∑

p≤X
|Sp(X)|>εX/p

1

p
� ε−2 |S(X)|

X
. (34)

Remark 7.2 Proposition 7.1 states that if the bulk of the contribution to the variance of
g(n) occurs along a sparse subset S(X) ⊆ [1, X ] then Bg(X) is dominated by primes
p of which S(X) has manymultiples≤ X . For sufficiently small primes p this is ruled
out by the sparseness of S(X), but it may occur for large enough primes.

Our proof will proceed by applying variants of the large sieve and Turán–Kubilius
inequalities. The first of these is due to Elliott.

Lemma 7.3 (Elliott’sDual Turán–Kubilius Inequality) Let {a(n)}n ⊂ C be a sequence
and let X ≥ 2. Then

∑

p≤X

p

∣∣∣∣∣∣∣∣

∑

n≤X
p|n

a(n) − 1

p

∑

n≤X

a(n)

∣∣∣∣∣∣∣∣

2

� X
∑

n≤X

|a(n)|2.

Proof This is [22, Lemma 5.2] (taking σ = 0 there). ��
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1064 A. P. Mangerel

A variant of the latter result, for divisibility by products of two large primes, is as
follows.

Lemma 7.4 (Variant of Dual Turán–Kubilius) Let {a(n)}n ⊂ C. Then

∑

X1/4<p,q≤X
p �=q

pq

∣∣∣∣∣∣∣∣

∑

n≤X
pq|n

a(n) − 1

pq

∑

n≤X

a(n)

∣∣∣∣∣∣∣∣

2

� X
∑

n≤X

|a(n)|2.

Proof By including the factor pq into the square, we observe that this establishes an
�2 → �2 operator norm for the matrix with entries

M =
(
(pq)1/21pq|n − (pq)−1/2

)
X1/4<p,q≤X ,p �=q

n≤X

.

Thus, by the duality principle [31, Sec. 7.1] it suffices to show that for any sequence
{b(p, q)}p,q prime ⊂ C we have

∑

n≤X

∣∣∣∣∣∣∣∣∣

∑

X1/4<p,q≤X
p �=q

b(p, q)

pq
(pq1pq|n − 1)

∣∣∣∣∣∣∣∣∣

2

� X
∑

X1/4<p,q≤X
p �=q

|b(p, q)|2
pq

. (35)

Expanding the square on the LHS and swapping orders of summation, we obtain

∑

X1/4<p1,p2,q1,q2≤X
p j �=q j
j=1,2

b(p1, q1)b(p2, q2)

p1q1 p2q2

·
∑

n≤X

(
p1q1 p2q21p1q1|n1p2q2|n − p1q11p1q1|n − p2q21p2q2|n + 1

)
.

Fix the quadruple (p1, q1, p2, q2) for the moment, and consider the inner sum over
n ≤ X . If (p1q1, p2q2) = 1 then as p1q1 p2q2 > X the sum is

� p1q1

⌊
X

p1q1

⌋
+ p2q2

⌊
X

p2q2

⌋
+ X � X .

If (p1q1, p2q2) = p1 (so that q1 �= q2), say, then the sum is

� p21q1q2

⌊
X

p1q1q2

⌋
+ p1q1

⌊
X

p1q1

⌋
+ p2q2

⌊
X

p2q2

⌋
+ X � p1X .
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By symmetry, the analogous result holds if (p1q1, p2q2) = q1. Finally, if p1q1 = p2q2
then similarly the bound is � p1q1X . We thus obtain from these cases that the LHS
in (35) is bounded above by

� X
∑

X1/4<p1,q1,p2,q2≤X
p1 �=q1,p2 �=q2
(p1q1,p2q2)=1

|b(p1, q1)||b(p2, q2)|
p1 p2q1q2

+
∑

X1/4<p,q,r≤X
p �=q,p �=r ,q �=r

|b(p, q)|(|b(p, r)| + |b(r , q)|)
pqr

+ X
∑

X1/4<p,q≤X
p �=q

|b(p, q)|(|b(p, q)| + |b(q, p)|)
pq

.

By the AM–GM inequality we simply have 2|b(p, q)||b(p′, q ′)| ≤ |b(p, q)|2 +
|b(p′, q ′)|2 for any pairs of primes p, q and p′, q ′, so invoking Mertens’ theorem
and symmetry the above expressions are

� X
∑

X1/4<p,q≤X
p �=q

|b(p, q)|2
pq

,

and the claim follows. ��
Proof of Proposition 7.1 Let g ∈ A, and let g∗ be the strongly additive function equal
to g at primes, provided by Lemma 3.6. Applying Lemma 3.2, then following the
proof of Lemma 3.6, we find

1

X

∑

n∈S(X)

|(g − g∗) − Ag−g∗(X)|2 � Bg−g∗(X)2

�
∑

pk≤X
k≥2

|g(p)|2 + |g(pk)|2
pk

� εBg(X)2,

by assumption. It follows that

1

X

∑

n∈S(X)

|g(n) − Ag(X)|2 � εBg(X)2 + 1

X

∑

n∈S(X)

|g∗(n) − Ag∗(X)|2,

so replacing g by g∗, we may assume in what follows that g is strongly additive.
Fix z = X1/4 and split g = g≤z + g>z , where g≤z is the strongly additive function
defined by g≤z(pk) := g(p)1p≤z at primes powers pk . By Cauchy–Schwarz, we seek
to estimate
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1066 A. P. Mangerel

1

X

∑

n∈S(X)

|g≤z(n) − Ag≤z (X)|2 + 1

X

∑

n∈S(X)

|g>z(n) − Ag>z (X)|2. (36)

We begin with the first expression. Writing

g≤z(n) − Ag≤z (X) =
∑

p≤z

g(p)
∑

1≤k≤log X/ log p

(
1pk ||n − p−k(1 − 1/p)

)

=
∑

p≤z

g(p)(1p|n − 1/p) + O(X−1
∑

p≤z

|g(p)|) (37)

for each n ≤ X and expanding the square, the first sum in (36) is

= 1

X

∑

n∈S(X)

∑

p,q≤z
p �=q

g(p)g(q)|
pq

(p1p|n − 1)(q1q|n − 1)

+ O

⎛

⎝
∑

p≤z

|g(p)|2
p2

1

X

∑

n∈S(X)

(p1p|n − 1)2

⎞

⎠

+ O(Bg(z)
2X−1(zπ(z))1/2)

=: O + D + O(Bg(X)2X−3/4).

Consider the off-diagonal term O . Observe that for any two distinct primes p and q,
the Chinese remainder theorem implies that

(p1p|n − 1)(q1q|n − 1) =

⎛

⎜⎜⎝
∑

a (mod p)
a �=0

e(an/p)

⎞

⎟⎟⎠

⎛

⎜⎜⎝
∑

b (mod q)
b �=0

e(bn/q)

⎞

⎟⎟⎠

=
∑∗

c (mod pq)

e(cn/pq),

where the asterisked sum is over reduced residues modulo pq. Note that for any two
distinct products p1q1 and p2q2 the gap between fractions with these denominators
satisfies

∣∣∣∣
c1
p1q1

− c2
p2q2

∣∣∣∣ ≥ 1

p1q1 p2q2
≥ 1

z4
= 1

X
,

and the number of pairs yielding the same product pq is ≤ 2. Using this expression
in O , applying the Cauchy–Schwarz inequality twice followed by the large sieve
inequality [31, Lem. 7.11], we obtain
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O ≤ 1

X

∑

p,q≤z
p �=q

|g(p)g(q)|
pq

∣∣∣∣∣∣

∑∗

c (mod pq)

∑

n≤X

1S(n)e(cn/pq)

∣∣∣∣∣∣

≤ 1

X

(
∑

p≤z

|g(p)|2
p

)
⎛

⎜⎜⎜⎝
∑

pq≤√
X

p �=q

1

pq

∣∣∣∣∣∣

∑∗

c (mod pq)

∑

n≤X

1S(n)e(cn/pq)

∣∣∣∣∣∣

2

⎞

⎟⎟⎟⎠

1/2

� 1

X
Bg(X)2

⎛

⎜⎜⎜⎝
∑

pq≤√
X

p �=q

∑∗

c (mod pq)

∣∣∣∣∣∣

∑

n≤X

1S(n)e(cn/pq)

∣∣∣∣∣∣

2

⎞

⎟⎟⎟⎠

1/2

� 1

X
Bg(X)2 (X |S(X)|)1/2 =

( |S(X)|
X

)1/2

Bg(X)2.

Expanding g>z(n) − Ag>z(X) in a similar way as in (37), then inserting this and the
previous estimate into (36) we obtain the upper bound,

� 1

X

∑

p≤z

|g(p)|2
p2

∑

n∈S(X)

|p1p|n − 1|2 + 1

X

∑

n∈S(X)

∣∣∣∣∣∣

∑

X1/4<p≤X

g(p)

p
(p1p|n − 1)

∣∣∣∣∣∣

2

+
( |S(X)|

X

)1/2

Bg(X)2

�

∣∣∣∣∣∣∣∣∣

∑

X1/4<p,q≤X
p �=q

g(p)g(q)

pq

1

X

∑

n∈S(X)

(p1p|n − 1)(q1q|n − 1)

∣∣∣∣∣∣∣∣∣

+
∑

p≤X

|g(p)|2
p2

1

X

∑

n∈S(X)

|p1p|n − 1|2 +
( |S(X)|

X

)1/2

Bg(X)2. (38)

Denote by T the expression in (38), so that

T =
∑

X1/4<p,q≤X
p �=q

g(p)g(q)

pq

(
pq

X
|Spq(X)| − p

X
|Sp(X)| − q

X
|Sq(X)| + |S(X)|

X

)

=:
∑

X1/4<p,q≤X
p �=q

g(p)g(q)

pq
Tp,q(X),
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1068 A. P. Mangerel

say. We split the pairs of primes X1/4 < p, q ≤ X , p �= q in the support of T as
follows. Given a squarefree integer d, call Ed(ε) the condition d

X |Sd(X)| ≤ ε, and let
Ld(ε) be the converse condition d

X |Sd(X)| > ε. If, simultaneously, the three condi-
tions Epq(ε), Ep(ε) and Eq(ε) all hold, then as |S(X)|/X < ε we have Tp,q(X) � ε;
otherwise, we trivially have Tp,q(X) � 1. We thus find by the Cauchy–Schwarz
inequality that

T � ε
∑

X1/4<p,q≤X
p �=q

|g(p)g(q)|
pq

+
∑

X1/4<p,q≤X
p �=q

L p(ε),Lq (ε) or L pq (ε)
holds

|g(p)g(q)|
pq

� Bg(X)2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε
∑

X1/4<p≤X

1

p
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

X1/4<p,q≤X
p �=q

L p(ε),Lq (ε) or L pq (ε)
holds

1

pq

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

Now suppose Ld(ε) holds for some d ≥ 2. As ε > 2 |S(X)|
X we have

1

d
= 4d

(εX)2

(
εX

2d

)2

<
4d

(εX)2

(
|Sd(X)| − |S(X)|

d

)2

.

Using this with d = p for each X1/4 < p ≤ X , and applying Lemma 7.3, we get

∑

X1/4<p≤X
L p(ε) holds

1

p
� 1

(εX)2

∑

p≤X

p

∣∣∣∣∣∣∣∣

∑

n≤X
p|n

1S(n) − 1

p

∑

n≤X

1S(n)

∣∣∣∣∣∣∣∣

2

� ε−2 |S(X)|
X

;

this, by the way, establishes (34). Similarly, by Lemma 7.4 we get

∑

X1/4<p,q≤X
p �=q

L pq (ε) holds

1

pq
� 1

(εX)2

∑

X1/4<p,q≤X
p �=q

pq

∣∣∣∣∣∣∣∣

∑

n≤X
pq|n

1S(n) − 1

pq

∑

n≤X

1S(n)

∣∣∣∣∣∣∣∣

2

� ε−2 |S(X)|
X

.
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Combining these estimates in (39) shows that

T � Bg(X)2

(
ε + ε−1

( |S(X)|
X

)1/2
)

.

Thus, putting δ(X) := ε + ε−1
( |S(X)|

X

)1/2
, we finally conclude that

1

X

∑

n∈S(X)

|g(n) − Ag(X)|2

�
∑

p≤X

|g(p)|2
p2

1

X

∑

n∈S(X)

|p1p|n − 1|2 + δ(X)Bg(X)2

=
∑

p≤X

|g(p)|2
p

(
(p − 2)|Sp(X)|

X
+ |S(X)|

pX

)
+ δ(X)Bg(X)2

�
∑

p≤X
|Sp(X)|>εX/p

|g(p)|2
p

+ Bg(X)2
(

ε + |S(X)|
X

)
+ δ(X)Bg(X)2

�
∑

p≤X
|Sp(X)|>εX/p

|g(p)|2
p

+ δ(X)Bg(X)2,

and the claim follows. ��
Corollary 7.5 Let g : N → R be an additive function in As . Let S ⊂ N be a set with
|S(X)| = o(X). Then for any fixed j ∈ Z,

1

X

∑

n+ j∈S(X)

|g(n) − Ag(X)|2 = o(Bg(X)2).

Proof By appealing to Proposition 7.1, we will show that for any ε > 0 there is X0(ε)

such that if X ≥ X0(ε) then

1

X

∑

n+ j∈S(X)

|g(n) − Ag(X)|2 � εBg(X)2,

for any fixed j ∈ Z.
First, note that as Bg(X) → ∞, if X ≥ X0(ε) then

∑

pk≤X
k≥2

g(p)2

pk
�

∑

p≤X

g(p)2

p2
≤ Bg(log X)2 + 1

log X

∑

log X<p≤X

g(p)2

p
≤ 1

2
εBg(X)2.
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1070 A. P. Mangerel

Taking X larger if necessary, we may combine this with (23) to deduce that

∑

pk≤X
k≥2

g(p)2 + g(pk)2

pk
≤ εBg(x)

2.

Next, for any fixed j ∈ Z we have |(S − j)(X)| ≤ |S(X)| + j = o(X) as X → ∞,
and so for X taken even larger if needed we have |(S − j)(X)|/X < ε4 < ε/2, for ε

sufficiently small. We claim that

∑

p≤X
|(S− j)p(X)|>εX/p

g(p)2

p
� εBg(X)2 (40)

for sufficiently large X . Assuming this, Proposition 7.1 will imply that

1

X

∑

n+ j∈S(X)

|g(n) − Ag(X)|2 � Bg(X)2
(
ε + ε−1(ε4)1/2

) + εBg(X)2 � εBg(X)2,

as required.
We may split the sum in (40) according to whether or not |g(p)| > δ−1Bg(X), where
δ = δ(ε) > 0 is to be chosen. In light of (34), we obtain

∑

p≤X
|(S− j)p(X)|>εX/p
|g(p)|≤δ−1Bg(X)

g(p)2

p
≤ δ−2Bg(X)2

∑

p≤X
|(S− j)p(X)|>εX/p

1

p
� (εδ)−2 |S(X)|

X
Bg(X)2,

so that this is � εBg(X)2 if X ≥ X0(ε).
On the other hand, by our assumption (22),

∑

p≤X
|(S− j)p(X)|>εX/p
|g(p)|>δ−1Bg(X)

g(p)2

p
≤

∑

p≤X
|g(p)|>δ−1Bg(X)

g(p)2

p
≤ 2Fg(δ)Bg(X)2,

provided X ≥ X0(δ). For δ = δ(ε) sufficiently small we can make this � εBg(X)2

whenever X ≥ X0(ε) (with X0(ε) taken larger if necessary). The claim now follows.
��

We are now able to prove the first part of Theorem 1.8, namely that there is a
parameter λ = λ(X) � Bg(X)

log X such that

∑

pk≤X

|g(pk) − λ(X) log pk |2
pk

= o(Bg(X)2).
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The proof of the slow variation condition λ(Xu) = λ(X) + o(
Bg(X)

log X ), for 0 < u ≤ 1
fixed, is postponed to the next section.

Proof of Theorem 1.8: Part I In light of Lemma 3.3, we begin by showing that

1

X

∑

n≤X

|g(n) − Ag(X)|2 = o(Bg(X)2). (41)

By Lemma 3.4, when X/ log X < Y ≤ X we have

|Ag(X) − Ag(Y )| � Bg(X)

√
log log X

log X
,

so that upon dyadically decomposing the range [X/ log X , X ] and applyingLemma3.2
to the range [1, X/ log X ] in the sum on the LHS of (41), we get

≤ 1

X

∑

n≤ X
log X

|g(n) − Ag(X)|2 +
∑

1≤2 j≤log X

2− j · 2
j

X

∑

X/2 j+1<n≤X/2 j

|g(n) − Ag(X)|2

=
∑

1≤2 j≤log X

2− j · 2
j

X

∑

X/2 j+1<n≤X/2 j

|g(n) − Ag(X/2 j )|2 + O

(
Bg(X)2 log log X

log X

)
.

It thus suffices to show that, uniformly over 1 ≤ 2 j ≤ 2 log X ,

2 j

X

∑

X/2 j+1<n≤X/2 j

|g(n) − Ag(X/2 j )|2 = o(Bg(X)2).

Fix 1 ≤ 2k ≤ 2 log X , set Yk := X/2k and introduce a parameter 1 ≤ R ≤ (log X)1/2,
which will eventually be chosen as slowly growing as a function of X . Let

BR :=
⋃

|i |≤R

(B + i), GR(Yk) := [Yk/2,Yk]\BR, BR(Yk) := BR ∩ [Yk/2,Yk].

We observe that if n ∈ GR(Yk) then we have

g(n − R) ≤ g(n − R + 1) ≤ · · · ≤ g(n) ≤ g(n + 1) ≤ · · · ≤ g(n + R).

We divide GR(Yk) further into the sets

G+
R (Yk) := {n ∈ GR(Yk) : g(n) ≥ Ag(Yk)}, G−

R (Yk) := {n ∈ GR(Yk) : g(n) < Ag(Yk)}.

Suppose n ∈ G+
R (Yk). Since

0 ≤ g(n) − Ag(Yk) ≤ 1

R

∑

1≤ j≤R

g(n + j) − Ag(Yk),
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1072 A. P. Mangerel

we deduce from the monotonicity of the map y �→ y2 for y ≥ 0 that (shifting
n �→ n + R =: n′)

2

Yk

∑

n∈G+
R (Yk)

n+R≤Yk

|g(n) − Ag(Yk)|2

≤ 2

Yk

∑

n′−R∈G+
R (Yk)

n′≤Yk

∣∣∣∣∣∣
1

R

∑

n′−R<m≤n′
g(m) − 2

Yk

∑

Yk/2<m≤Yk

g(m)

∣∣∣∣∣∣

2

+ O

(
Bg(X)2

log X

)
,

where the error term comes from replacing Ag(Yk) by the sum over [Yk/2,Yk] by
applying Lemma 3.4. Similarly, if n ∈ G−

R (Yk) then

0 ≤ Ag(Yk) − g(n) ≤ Ag(Yk) − 1

R

∑

0≤ j≤R−1

g(n − j),

and so by the same argument we obtain

2

Yk

∑

n∈G−
R (Yk )

n−R≥Yk/2

|g(n) − Ag(Yk)|2

≤ 2

Yk

∑

n∈G−
R (Yk)

n−R≥Yk/2

∣∣∣∣∣∣
1

R

∑

n−R<m≤n

g(m) − 2

Yk

∑

Yk/2<m≤Yk

g(m)

∣∣∣∣∣∣

2

+ O

(
Bg(X)2

log X

)
.

The above sums cover all elements of GR(Yk) besides those in [Yk/2,Yk/2 + R) ∪
(Yk − R,Yk]. To deal with these, we define

S :=
⋃

j∈Z

0<2 j≤X

[X/2 j − R, X/2 j + R] ∩ N, S(Z) := S ∩ [1, Z ]

for Z ≥ 1. We see that |S(Z)| � R log Z = o(Z), and S contains [Yk/2,Yk/2 +
R] ∪ [Yk − R,Yk] for each k. By Corollary 7.5 (taking j = 0 there), we thus obtain

1

Yk

∑

n∈GR(Yk )∩S(Yk)

|g(n) − Ag(Yk)|2 = o(Bg(X)2)
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uniformly over all X/ log X < Yk ≤ X , provided X is large enough in terms of R.
Combining the foregoing estimates and using positivity, we find that

2

Yk

∑

n∈GR(Yk )

|g(n) − Ag(Yk)|2

� 1

Yk

∑

Yk/2<n≤Yk

∣∣∣∣∣∣
1

R

∑

n−R<m≤n

g(m) − 2

Y

∑

Yk/2<m≤Yk

g(m)

∣∣∣∣∣∣

2

+ o(Bg(X)2).

By Theorem 1.4, this gives oR→∞(Bg(X)2), uniformly over X/ log X < Yk ≤ X .
It remains to estimate the contribution from n ∈ BR(Yk). By the union bound, we
have

2

Yk

∑

n∈BR(Yk)

|g(n) − Ag(Yk)|2 ≤ R max|i |≤R

2

Yk

∑

Yk/2<n≤Yk
n+i∈B

|g(n) − Ag(Yk)|2.

By Corollary 7.5, the above expression is o(Bg(X)), again provided X is sufficiently
large in terms of R.
To conclude, for any ε > 0we can find R large enough in terms of ε and X0 sufficiently
large in terms of ε and R such that if X ≥ X0 then

2

Yk

∑

Yk/2<n≤Yk

|g(n) − Ag(Yk)|2 � εBg(X)2

uniformly in X/ log X < Yk = X/2k ≤ X , and (41) follows.
Now, applying Lemma 3.3, we deduce that

Bgλ0
(X)2 + λ0(X)2 =

∑

pk≤X

|g(pk) − λ0(X) log pk |2
pk

+ λ0(X)2

� 1

X

∑

n≤X

|g(n) − Ag(X)|2 = o(Bg(X)2),

where we recall that gλ0(n) = g(n) − λ0 log n for all n ≥ 1, and

λ0(X) := 2

(log X)2

∑

p≤X

g(p) log p

p
. (42)

Note that by Cauchy–Schwarz and the prime number theorem,

λ0(X)2 � 1

(log X)2

⎛

⎝
∑

p≤X

g(p)2

p

⎞

⎠

⎛

⎝ 1

(log X)2

∑

p≤X

(log p)2

p

⎞

⎠ � Bg(X)2

(log X)2
.
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1074 A. P. Mangerel

Thus, |λ0(X)| � Bg(X)/ log X , and Bgλ0
(X)2 = o(Bg(X)2), as wanted. We will

verify that λ0(X) is slowly varying in the next section (immediately following the
proof of Proposition 8.1). ��

8 Rigidity properties for almost everywheremonotone functions

We continue to assume that g is almost everywhere monotone in the sense of the previ-
ous section. Theorem 1.8 claims that an additive function g ∈ A is well approximated
by a constant times a logarithm, assuming g(p) is not frequently much larger than
Bg(X) for p ≤ X . In this section, we will complete the proof of this theorem, along
with those of Corollary 1.7 and Theorem 1.7, all of which are consequences of the
almost everywhere monotonicity property. A key input in this direction is Proposi-
tion 8.1, which is a structure theorem for the asymptotic mean value Ag(X).

8.1 The structure of Ag(X)

The first main result of this section is the following.

Proposition 8.1 Let g : N → R be an additive function satisfying Bg(X) → ∞ as
X → ∞. Assume that B := {n ∈ N : g(n) < g(n − 1)} satisfies |B(X)| := |B ∩
[1, X ]| = o(X) as X → ∞. Then for each X sufficiently large there is λ = λ(X) ∈ R

such that for any log log X√
log X

< δ ≤ 1/4,

∑

Xδ<pk≤X

1

pk
|Ag(X) − Ag(X/pk) − λ log pk | = o(Bg(X)(log(1/δ))1/2), (43)

and also

∑

Xδ<pk≤X

|g(pk) − λ log pk |
pk

= o(Bg(X)(log(1/δ))1/2). (44)

Furthermore, Ag(X) and λ(X) satisfy the following properties:

(i) λ(X) � Bg(X)/ log X,
(ii) for X sufficiently large and any X δ < t1 ≤ t2 ≤ X,

Ag(t2) = Ag(t1) + λ(X) log(t1/t2) + o((log(1/δ)1/2Bg(X)),

(iii) for every u ∈ (δ, 1] we have

λ(X) = λ(Xu) + o

(
(log(1/δ)1/2δ−1 Bg(X)

log X

)
.

Remark 8.2 It would be desirable to determine Ag(t) directly as a function of t in
some range, say X δ < t ≤ X . Proposition 8.1 provides the approximation Ag(t) =
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Additive functions in short intervals. . . 1075

Ag(X δ) + (1 − δu)λ(X) log t + o(Bg(X)), where u := log X/ log t , but this still
contains a reference to a second value Ag(X δ). We might iterate this argument to

obtain (using the slow variation of λ) a further approximation in terms of Ag(X δ2),

Ag(X δ3), and so forth, butwithout further data about g (say, Ag(X1/1000) = o(Bg(X)))
it is not obvious that this argument yields an asymptotic formula for Ag(t) alone.

To prove this proposition we will require a few lemmas.

Lemma 8.3 Let g : N → C be an additive function satisfying Bg(X) → ∞ as

X → ∞. Let α ∈ (1, 2) and log log X√
log X

< δ ≤ 1/4. Then

∑

Xδ<pk≤X

1

pk
|g(pk) − Ag(X) + Ag(X/pk)|

�α (log(1/δ))1/2

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|α
⎞

⎠
1/α

+ Bg(X)

(log X)1/4
.

Proof We will estimate the quantity

M := 1

X

∑

Xδ<pk≤X

∣∣∣∣∣∣∣∣

∑

n≤X
pk ||n

g(n) − 1

pk

(
1 − 1

p

) ∑

n≤X

g(n)

∣∣∣∣∣∣∣∣

in two different ways.
First, we will obtain a lower bound forM as follows. Given 2 ≤ Y ≤ X observe that
for any fixed prime p

Sp(Y ) :=
∑

m≤Y
p�m

g(m) =
∑

m≤Y

g(m) −
∑

j≥1

∑

r≤Y/p j

p�r

(g(r) + g(p j ))

=
∑

m≤Y

g(m) −
∑

m≤Y/p

g(m) +
∑

j≥1

∑

r≤Y/p j

p�r

(g(p j−1) − g(p j ))

= Y

(
1 − 1

p

)
Ag(Y ) + Y

p
(Ag(Y ) − Ag(Y/p))

+
∑

j≥1

(g(p j−1) − g(p j ))

(⌊
Y

p j

⌋
−

⌊
Y

p j+1

⌋)
+ O

(
Y Bg(Y )√
log Y

)
,

where the last equality arises from Lemma 3.1.
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1076 A. P. Mangerel

Using this estimate with Y = X/pk for pk ≤ X , we obtain

∑

n≤X
pk ||n

g(n) =
∑

mpk≤X
p�m

g(mpk) = g(pk)

(⌊
X

pk

⌋
−

⌊
X

pk+1

⌋)
+ Sp(X/pk)

= X

pk

(
1 − 1

p

)(
g(pk) + Ag(X/pk)

)

+ O

(
X

pk+1 |Ag(X/pk) − Ag(X/pk+1)|
)

+ O

⎛

⎜⎜⎜⎝|g(pk)| + X
∑

j≥1
p j≤X/pk

|g(p j−1)| + |g(p j )|
pk+ j

+ XBg(X/pk)

pk
√
log(2X/pk)

⎞

⎟⎟⎟⎠ ,

noting that the third error term is 0 unless pk ≤ X/2. Similarly, again by Lemma 3.1
we have

1

pk

(
1 − 1

p

) ∑

n≤X

g(n) = X

pk

(
1 − 1

p

)(
Ag(X) + O

(
Bg(X)√
log X

))
.

We thus deduce that

M =
∑

Xδ<pk≤X

1

pk

(
1 − 1

p

) ∣∣∣g(pk) + Ag(X/pk) − Ag(X)

∣∣∣ + O (R(X)) (45)

≥ 1

2

∑

Xδ<pk≤X

1

pk

∣∣∣g(pk) + Ag(X/pk) − Ag(X)

∣∣∣ + O (R(X)) , (46)

where we have set

R(X) :=
∑

Xδ<pk≤X

1

pk

⎛

⎜⎜⎜⎝1 +
∑

j≥1
p j≤X/pk

|g(p j )|
p j

⎞

⎟⎟⎟⎠ +
∑

Xδ<pk≤X/2

Bg(X)

pk
√
log(X/pk)

+ 1

X

∑

pk≤X

|g(pk)| +
∑

Xδ<pk≤X

1

pk+1 |Ag(X/pk) − Ag(X/pk+1)|

=: R1(X) + R2(X) + R3(X) + R4(X).

As in the proof of Lemma 3.1,

R3(X) ≤ 1√
X

∑

pk≤X

|g(pk)|
pk/2

≤
(

π(X)

X

)1/2

Bg(X) � Bg(X)√
log X

.
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Next, we may upper bound R2(X) as

R2(X) ≤ Bg(X)

⎛

⎜⎜⎝
1

(log X)1/4

∑

Xδ<pk≤Xe−√
log X

1

pk
+

∑

Xe−√
log X<pk≤ X

2

1

pk

⎞

⎟⎟⎠

� Bg(X)

(log X)1/4
.

To treat R1(X), we use |g(p j )|/p j ≤ Bg(p j )p− j/2 to get

∑

Xδ<pk≤X

∑

j≥1
p j≤X/pk

|g(p j )|
p j+k

≤ Bg(X)
∑

Xδ<pk≤X

∑

j≥1
p j≤X/pk

p−(k+ j/2)

� Bg(X)

⎛

⎜⎜⎜⎜⎝
X−δ

∑

Xδ<pk≤X
k≥2/δ

1 +
∑

Xδ<pk≤X

p>Xδ2/2

p−k
∑

j≥1
p j≤X/pk

1

p j/2

⎞

⎟⎟⎟⎟⎠

� Bg(X)

⎛

⎜⎝X−δ/2 +
∑

p>Xδ2/2

p−3/2

⎞

⎟⎠ � Bg(X)X−δ2/4.

Furthermore, we have

∑

Xδ<pk≤X

1

pk+1 ≤
∑

1≤k≤log X

∑

max{2,Xδ/k }≤p≤X1/k

1

pk+1 �
∑

1≤k≤log X

kX−δ � (log X)2

X δ
.

(47)

Since Bg(X) 
 1 these last two bounds combine to give

R1(X) � Bg(X)X−δ2/4.

Finally, to bound R4(X) we use Lemma 3.4 to obtain

|Ag(X/pk) − Ag(X/pk+1)| � Bg(X/pk)(log log X)1/2 ≤ Bg(X)(log log X)1/2

uniformly over pk ≤ X , and thus using (47) we find

R4(X) � Bg(X)(log log X)1/2
∑

Xδ<pk≤X

1

pk+1 � Bg(X)
(log X)3

X δ
.
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1078 A. P. Mangerel

Combining the estimates for R j (X), 1 ≤ j ≤ 4, in view of the range of δ we finally
obtain

R(X) � Bg(X)/(log X)1/4

in (45). Thus,

∑

Xδ<pk≤X

1

pk
|g(pk) + Ag(X/pk) − Ag(X)| ≤ 2M + O(Bg(X)/(log X)1/4).

Next, we execute the second estimation of M . If pk ∈ (X δ, X ] define

�g(X; pk) := pk

X

∣∣∣∣∣∣∣∣

∑

n≤X
pk ||n

g(n) − 1

pk

(
1 − 1

p

) ∑

n≤X

g(n)

∣∣∣∣∣∣∣∣
.

Set g′(n) := g(n) − Ag(X) for n ≤ X , and note that

�g(X; pk) = �g′(X; pk) + O

(
pk

X
|Ag(X)|

)
.

Thus, as |Ag(X)| ≤ Bg(X)
√
log log X by Lemma 3.4, we find

M =
∑

Xδ<pk≤X

1

pk
�g′(X; pk) + O

( |Ag(X)|π(X)

X

)

=
∑

Xδ<pk≤X

1

pk
�g′(X; pk) + O

(
Bg(X)

√
log log X

log X

)
. (48)

Recall that α ∈ (1, 2). Let us now partition the set of prime powers X δ < pk ≤ X
into the sets

P1 :=

⎧
⎪⎨

⎪⎩
X δ < pk ≤ X : �g′(X; pk) >

⎛

⎝ 1

X

∑

n≤X

|g′(n)|α
⎞

⎠
1/α

⎫
⎪⎬

⎪⎭

P2 :=

⎧
⎪⎨

⎪⎩
X δ < pk ≤ X : �g′(X; pk) ≤

⎛

⎝ 1

X

∑

n≤X

|g′(n)|α
⎞

⎠
1/α

⎫
⎪⎬

⎪⎭
.
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Note that by Mertens’ theorem,

∑

Xδ<pk≤X

1

pk
≤

∑

Xδ<p≤X

1

p
+ X−δ

∑

Xδ<pk≤X
k≥2/δ

1 +
∑

Xδ<pk≤X
2≤k≤2/δ

p>Xδ2/2

1

pk

� log(1/δ)
(
1 + δ−1X−δ2/2

)
+ X−δ/2 � log(1/δ). (49)

Using this and Hölder’s inequality, we obtain

∑

Xδ<pk≤X

p−k�g′(X; pk)

�α (log (1/δ))1−
1
α

⎛

⎜⎜⎜⎝
∑

Xδ<pk≤X
pk∈P1

p−k�g′(X; pk)α

⎞

⎟⎟⎟⎠

1
α

+ (log(1/δ))
1
2

⎛

⎜⎜⎜⎝
∑

Xδ<pk≤X
pk∈P2

p−k�g′(X; pk)2

⎞

⎟⎟⎟⎠

1
2

.

By Theorem 3.1 of [36] this is bounded by

� (log(1/δ))
1
2

⎛

⎝ 1

X

∑

n≤X

|g′(n)|α
⎞

⎠

1
α

.

Combining this with (45) and (48) completes the proof of the lemma. ��

Next, we show that, in an �1 sense, g(pk) is well approximated by λ log pk on
average over the prime powers X δ < pk ≤ X , for some function λ = λ(X). This will
be the λ that appears in the statement of Proposition 8.1.

Lemma 8.4 There is a parameter λ = λ(X) ∈ R such that the following holds. For
any α ∈ (1, 2),

∑

Xδ<pk≤X

1

pk
|g(pk) − λ log pk | �α (log(1/δ))1/2

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|α
⎞

⎠
1/α

.
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Proof By [1, Théorème 1], there are λ = λ(X) and c = c(X) (both depending on g
but independent of α) such that

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|α
⎞

⎠
α


α

⎛

⎝
∑

pk≤X

|g′′
λ,c(p

k)|α
pk

⎞

⎠
1/α

+
⎛

⎝
∑

pk≤X

|g′
λ,c(p

k)|2
pk

⎞

⎠
1/2

.

(50)

Here, writing gλ(n) = g(n) − λ log(n), we have set

g′
λ,c(p

k) :=
{
gλ(pk) if |gλ(pk)| ≤ c,

0 otherwise;
g′′
λ,c(p

k) :=
{
0 if |gλ(pk)| ≤ c,

gλ(pk) otherwise.

Since gλ(pk) = g′
λ,c(p

k) + g′′
λ,c(p

k) for each pk , by Hölder’s inequality and (49)
once again,

∑

Xδ<pk≤X

|gλ(pk)|
pk

�α (log(1/δ))1−1/α

⎛

⎝
∑

Xδ<pk≤X

|g′′
λ,c(p

k)|α
pk

⎞

⎠
1/α

+ (log(1/δ))1/2

⎛

⎝
∑

Xδ<pk≤X

|g′
λ,c(p

k)|2
pk

⎞

⎠
1/2

.

The result now follows upon combining this last estimatewith (50) and using positivity.
��

Tomake use of the previous two lemmaswe establish the following upper bound for
moments of order α ∈ [1, 2) that crucially uses the almost-everywhere monotonicity
property of g.

Lemma 8.5 Assume that B := {n ∈ N : g(n) < g(n − 1)} satisfies |B(X)| = o(X),
where B(X) = B ∩ [1, X ]. Then for any α ∈ [1, 2),

1

X

∑

n≤X

|g(n) − Ag(X)|α �
(
log log(1/r(X))

log(1/r(X))
+ (log X)

− 1
800

)2−α

Bg(X)α,

where r(X) := max X
log X <Y≤X

(( |B(Y )|
Y

)1/2 + logY√
Y

)
.

Proof By Hölder’s inequality, for any α ∈ (1, 2) we have

1

X

∑

n≤X

|g(n) − Ag(X)|α ≤
⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|
⎞

⎠
2−α

·
⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|2
⎞

⎠
α−1

,

123



Additive functions in short intervals. . . 1081

an inequality that is vacuously also true when α = 1. Applying Lemma 3.2 to the
second bracketed expression, we obtain the upper bound

� Bg(X)2α−2

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|
⎞

⎠
2−α

.

Next, we show that for all X/ log X < Y ≤ X we get

1

Y

∑

n≤Y

|g(n) − g(n − 1)| �
(( |B(Y )|

Y

)1/2

+ log Y√
Y

)
Bg(Y ) ≤ r(X)Bg(X). (51)

This will imply the claim of the lemma, since by Proposition 6.1 the latter bound gives

1

X

∑

n≤X

|g(n) − Ag(X)| �
(
log log(1/r(X))

log(1/r(X))
+ (log X)

− 1
800

)
Bg(X).

To prove (51), we note that for all 1 ≤ n ≤ Y ,

|g(n) − g(n − 1)| = g(n) − g(n − 1) + 2|g(n) − g(n − 1)|1n∈B(Y ).

It follows from this and telescoping that

1

Y

∑

n≤Y

|g(n) − g(n − 1)| = g(�Y �)
Y

+ 2

Y

∑

n∈B(Y )

|g(n) − g(n − 1)|.

By Lemma 3.5, g(�Y �)/Y � Bg(Y )(log Y )Y−1/2. Owing to Lemma 3.2 and the
triangle and Cauchy–Schwarz inequalities, we also obtain

1

Y

∑

n∈B(Y )

|g(n) − g(n − 1)| ≤ 2

( |B(Y )|
Y

)1/2
⎛

⎝ 1

Y

∑

n≤Y

|g(n) − Ag(Y )|2
⎞

⎠
1/2

�
( |B(Y )|

Y

)1/2

Bg(Y ).

This implies (51), and completes the proof of the lemma. ��
Proof of Proposition 8.1 We begin with the proof of (44). Set α = 3/2, say. Combining
Lemmas 8.4 and 8.5, there is a λ = λ(X) ∈ R such that

∑

Xδ<pk≤X

|g(pk) − λ log pk |
pk

� (log(1/δ))1/2

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|3/2
⎞

⎠
2/3

= o((log(1/δ))1/2Bg(X)). (52)
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We use this to obtain (43). Indeed, this time combining Lemmas 8.3 and 8.5 , we get

∑

Xδ<pk≤X

|g(pk) − Ag(X) + Ag(X/pk)|
pk

� (log(1/δ))1/2

⎛

⎝ 1

X

∑

n≤X

|g(n) − Ag(X)|3/2
⎞

⎠
2/3

+ Bg(X)

(log X)1/4

= o((log(1/δ))1/2Bg(X)).

Combining this with (52) and applying the triangle inequality in the form

|Ag(X) − Ag(X/pk) − λ log pk | ≤ |g(pk) − Ag(X) + Ag(X/pk)| + |g(pk) − λ log pk |

for each X δ < pk ≤ X , we quickly deduce (43).
Next, we proceed to the proofs of properties (i)–(iii).
(i) By the triangle inequality and positivity, we obtain

|λ(X)|
∑

X1/4<p≤X1/2

log p

p
≤

∑

X1/4<p≤X

|Ag(X) − Ag(X/p) − λ(X) log p|
p

+
∑

X1/4<p≤X1/2

|Ag(X) − Ag(X/p)|
p

. (53)

By Mertens’ theorem,

∑

X1/4<p≤X1/2

log p

p
= 1

4
log X + O

(
1

log X

)

 log X ,

and by the Cauchy–Schwarz inequality we have, for X1/4 ≤ p ≤ X1/2,

|Ag(X) − Ag(X/p)| � Bg(X)

⎛

⎝
∑

X/p≤qk≤X

1

qk

⎞

⎠
1/2

� Bg(X)

(
log p

log X

)1/2

.

Using the above, (43), the prime number theorem and partial summation in (53), we
find that

|λ(X)| log X � o(Bg(X)) + Bg(X)√
log X

∑

p≤X1/2

(log p)1/2

p
� Bg(X),

and (i) follows immediately.
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(ii) We observe, using (i) and (44) that if X δ < t1 ≤ t2 ≤ X ,

∣∣Ag(t2) − Ag(t1) − λ(X) log(t2/t1)
∣∣

=
∣∣∣∣∣∣

∑

t1<pk≤t2

(
1 − 1

p

)
g(pk) − λ(X) log pk

pk

∣∣∣∣∣∣

+ O

⎛

⎝λ(X)

⎛

⎝ 1

δ log X
+

∑

t1<pk≤t2

log pk

pk+1

⎞

⎠

⎞

⎠

≤
∑

Xδ<pk≤X

|g(pk) − λ(X) log pk |
pk

+ O

(
Bg(X)

(
1

δ(log X)2
+ (log X)3

xδ

))

= o((log(1/δ)1/2Bg(X)),

where in the penultimate line the second error term is estimated similarly to (47). This
proves the required estimate.
(iii) Applying (ii) with (t1, t2) = (X y, Xz), where, in sequence, (y, z) = (u, 1),
(y, z) = (uv, 1) and (y, z) = (uv, u) for any v ∈ (δ/u, 1/2] and u ∈ (δ, 1], we get

Ag(X) − Ag(X
u) = (1 − u)λ(X) log X + o((log(1/δ)1/2Bg(X))

Ag(X) − Ag(X
uv) = (1 − uv)λ(X) log X + o((log(1/δ)1/2Bg(X))

Ag(X
u) − Ag(X

uv) = (u − uv)λ(Xu) log X + o((log(1/δ)1/2Bg(X
u)).

We subtract the second equation from the first and combine the result with the third
equation. Using Bg(Xu) ≤ Bg(X) we conclude that

u(1 − v)λ(X) log X = u(1 − v)λ(Xu) log X + o((log(1/δ)1/2Bg(X)).

Since 1 − v ≥ 1/2 and u > δ, the claim follows immediately upon rearranging (with
a potentially larger implicit constant in the error term). ��
Proof of Theorem 1.8: Part II The work at the end of Sect. 7 implies that

∑

pk≤X

|g(pk) − λ0(X) log pk |2
pk

= Bgλ0
(X)2 = o(Bg(X)2), (54)

where λ0 is as in (42). Now, by Proposition 8.1 we have

∑

X1/2<pk≤X

|g(pk) − λ(X) log pk |
pk

= o(Bg(X)), (55)

where λ(X) satisfies

λ(X) = λ(Xu) + o(
Bg(X)

log X ), 0 < u ≤ 1 fixed.
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Thus, by (54) and (55), Cauchy–Schwarz and Mertens’ theorem, whenever Y = Xu

with 0 < u ≤ 1 fixed we have

|λ(Y ) − λ0(Y )| log Y � |λ(Y ) − λ0(Y )|
∑

Y 1/2<p≤Y

log p

p
(56)

≤
∑

Y 1/2<p≤Y

|g(p) − λ0(Y ) log p|
p

+
∑

Y 1/2<p≤Y

|g(p) − λ(Y ) log p|
p

≤ Bgλ0
(Y )

⎛

⎝
∑

Y 1/2<p≤Y

1

p

⎞

⎠
1/2

+ o(Bg(Y )) = o(Bg(X)).

(57)

We thus deduce that λ(Xu) = λ0(Xu) + o(Bg(X)/ log X) for all 0 < u ≤ 1 fixed,
and therefore also that

λ0(X
u) = λ(Xu) + o

(
Bg(X)

log X

)
= λ(X) + o

(
Bg(X)

log X

)
= λ0(X) + o

(
Bg(X)

log X

)
,

and the second claim of Theorem 1.8 is proved. ��

8.2 Growth of Bg(X) and the proof of Corollary 1.7

In this subsection we prove Corollary 1.7. The key step will be to show that if there is
a λ(X) such that Bgλ(X) = o(Bg(X)) (which follows from Theorem 1.8) then Bg(X)

grows roughly like log X .
We begin by showing that this is the case assuming in addition that λ(X) is fairly large
(this assumption is subsequently removed in Lemma 8.7).
Until further notice, assume that Bg(X) 
 1 as X gets large.

Lemma 8.6 Assume that there is a C > 0 such that λ(X) ≥ CBg(X)/ log X for
all X sufficiently large in the conclusion of Proposition 8.1. Then for any ε > 0,
(log X)1−ε �ε Bg(X) �ε (log X)1+ε.

Proof By Proposition 8.1 and our assumption λ(X) 
 Bg(X)/ log X ,

λ(X) = λ(Xu) + o(Bg(X)/ log X) = λ(Xu) + o(λ(X)) (58)

whenever 0 < u ≤ 1 is fixed. This implies in particular that λ(X) � λ(Xu). Setting
Y := Xu and v := 1/u ≥ 1, we see also that

λ(Y v) = λ(Y ) + o(λ(Y v)) = λ(Y ) + o(λ(Yuv)) = λ(Y ) + o(λ(Y )).
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Thus, (58) holds for all fixed u ≥ 1 as well, and thus for all fixed u > 0. We thus
deduce that for each u > 0 fixed and ε > 0 there is X0(ε, u) such that if X ≥ X0(ε, u),

∣∣∣∣
λ(Xu)

λ(X)
− 1

∣∣∣∣ < ε.

Set u = 1/2, put X0 = X0(ε, 1/2) and for each k ≥ 1 define Xk := X2k
0 . Let K be

large. Then

λ(X0)

λ(XK )
=

∏

1≤k≤K

λ(Xk−1)

λ(Xk)
∈ [(1 − ε)K , (1 + ε)K ].

As K ≤ 2 log log XK for large enough K and X0, we find

|λ(XK )| ≤ |λ(X0)| exp (−K log(1 − ε)) �ε exp (4ε log log XK ) = (log XK )4ε,

|λ(XK )| ≥ |λ(X0)| exp (−K log(1 + ε)) 
ε exp (−4ε log log XK ) = (log XK )−4ε.

Thus, we have Bg(XK ) � |λ(XK )|(log XK ) �ε (log XK )1+4ε by assumption, and
by Proposition 8.1(i) we have Bg(XK ) 
 |λ(XK )| log XK 
ε (log Xk)

1−4ε.
Since log XK � log XK+1, by monotonicity of Bg we also have

Bg(X) ≤ Bg(XK+1) �ε (log XK+1)
1+4ε �ε (log XK )1+4ε ≤ (log X)1+4ε

for any XK < X < XK+1. Similarly, we obtain Bg(X) 
ε (log X)1−4ε on the same
interval. Since ε > 0 was arbitrary, the claim now follows. ��
Lemma 8.7 Assume Bgν (X) = o(Bg(X)) for some ν = ν(X) that satisfies |ν| �
Bg(X)/ log X. Then for any ε > 0, (log X)1−ε �ε Bg(X) �ε (log X)1+ε.

Proof By Cauchy–Schwarz, we have

Bg(X)2 =
∑

pk≤X

|g(pk)|2
pk

≤ 2

⎛

⎝ν(X)2
∑

pk≤X

(log pk)2

pk
+

∑

pk≤X

|gν(pk)|2
pk

⎞

⎠

= 2ν(X)2(log X)2 + o(Bg(X)2).

It follows that |ν(X)| ≥ 1
4 Bg(X)/ log X when X is sufficiently large. The conclusion

follows fromLemma 8.6, providedwe can show that λ(X) = ν(X)+o(Bg(X)/ log X)

for all large X , where λ(X) is the function from the conclusion of Proposition 8.1.
But this can be verified by the same argument as that which leads to (57), so the claim
follows. ��
Proof of Corollary 1.7 Suppose g : N → R is a completely additive function that
satisfies

Fg(ε) → 0 as ε → 0+, and |B(X)| ≤ X

(log X)2+η
, for some η > 0.
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Suppose first that Bg(X) → ∞, so that g ∈ As . By Theorem 1.8 there is a parameter
λ0(X) with |λ0(X)| � Bg(X)/ log X , such that Bgλ0

(X) = o(Bg(X)), as X → ∞.

By Lemma 8.7, we deduce that Bg(X) �ε (log X)1+ε. Now, applying (51), we obtain

1

X

∑

n≤X

|g(n) − g(n − 1)| � Bg(X)

(( |B(X)|
X

) 1
2 + log X√

X

)

�η (log X)1+
η
3 · (log X)−

1
2 (2+η) � (log X)−

η
6 .

By Theorem 3.7, we deduce that there is a constant c ∈ R such that g(n) = c log n
for all n, as required.
If, instead, Bg(X) � 1 then we again deduce (even if g /∈ As) from (51) that

1

X

∑

n≤X

|g(n) − g(n − 1)| = o(Bg(X)) = o(1),

and so the claim follows (necessarily with c = 0) by Theorem 3.7. ��

8.3 Proof of Theorem 1.9

To prove Theorem 1.9 we will appeal to the following result due to Elliott, which will
be useful for us in light of our Proposition 8.1.

Theorem [26, Thm. 6] Let 0 < a < b ≤ 1. Let g : N → C be an additive function,
and for y ≥ 10 define

θ(y) :=
∑

ya<pk≤yb

1

pk
|g(pk) − Ag(y) + Ag(y/p

k)|.

Then for all ε, B > 0 there exist X0 = X0(a, b, ε, B) and c > 0 such that if X ≥ X0
then, uniformly over Xε < t ≤ X,

Ag(t) = G(X) log t − η(X) + O(Y (X)),

where G, η are measurable functions and

Y (X) := sup
Xc<w≤X

θ(w) + (log X)−B
∑

pk≤X

|g(pk)|
pk

+ max
Xc≤pk≤X

|g(pk)|p−k .

Corollary 8.8 Let δ ∈ (0, 1/2). Suppose g : N → R is an additive function such that
|B(X)| = o(X). Then, uniformly over all X δ ≤ t ≤ X we have

Ag(t) = λ(X) log t − η(X) + o(Bg(X)),
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where λ(X) and η(X) are measurable functions such that for each fixed 0 < u ≤ 1,

λ(Xu) = λ(X) + o(
Bg(X)

log X ), η(Xu) = η(X) + o(Bg(X)).

Proof By combining Lemmas 8.3 and 8.5 , we have

∑

Xδ≤pk≤X

|g(pk) − Ag(X) + Ag(X/pk)|
pk

= o(Bg(X)),

for any fixed δ > 0. Applying Elliott’s theorem with a = ε = δ, b = 1, B = 1, we
have

Y (X) = o(Bg(X)) + O

(√
log log X

log X
Bg(X) + Bg(X)X−δ/2

)
= o(Bg(X)),

using Lemma 3.4 to treat the second error term, and the bound |g(pk)|p−k/2 ≤ Bg(X)

for all pk ≤ X in the third. We thus deduce the existence of G(X) such that

Ag(t) = G(X) log t − η(X) + o(Bg(X)). (59)

For X δ < t1 ≤ t2 ≤ X ,

Ag(t2) − Ag(t1) = G(X) log(t2/t1) + o(Bg(X)),

so we have removed the term η(X). Now, by Proposition 8.1 we also know that in the
same range,

Ag(t2) − Ag(t1) = λ(X) log(t2/t1) + o(Bg(X)).

Applying this with t1 = X1/2, t2 = X , we deduce readily that

G(X) = λ(X) + o

(
Bg(X)

log X

)
,

and hence, from (59), that for all X δ < t ≤ X ,

Ag(t) = λ(X) log t − η(X) + o(Bg(X)).

The slow variation of λ(X) is a consequence of Proposition 8.1(iii). To obtain the
corresponding property for η we evaluate Ag(Xu) in (59), once as written and once
with X replaced by Xu , obtaining

Ag(X
u) = uλ(Xu) log X − η(Xu) + o(Bg(X

u)) = uλ(X) log X − η(X) + o(Bg(X)),
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from which it also follows, using the slow variation of λ, that

η(Xu) = η(X) + u(λ(Xu) − λ(X)) log X + o(Bg(X)) = η(X) + o(Bg(X))

for each fixed δ ≤ u ≤ 1, as required. ��
Proof of Theorem 1.9 By Lemma 8.5 (with α = 1),

1

X

∑

n≤X

|g(n) − Ag(X)| = o(Bg(X))

so that for all but o(X) integers n ≤ X we have

g(n) = Ag(X) + o(Bg(X)). (60)

By Corollary 8.8 and Proposition 8.1(i), we deduce that

g(n) = λ(X) log X − η(X) + o(Bg(X)) = λ(X) log n − η(X) + o(Bg(X))

for all but o(X) integers X/ log X < n ≤ X , and thus for all but o(X) integers n ≤ X ,
proving the claim of Theorem 1.9. ��
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