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Abstract: Determining for the first time the Darwin operator contribution for the non-
leptonic charm-quark decays and using new non-perturbative results for the matrix ele-
ments of ∆C = 0 four-quark operators, including eye-contractions, we present a compre-
hensive study of the lifetimes of charmed mesons and inclusive semileptonic decay rates
as well as the ratios, within the framework of the Heavy Quark Expansion (HQE). We
find good agreement with experiment for the ratio τ(D+)/τ(D0), for the total D+

s -meson
decay rate, for the semileptonic rates of all three mesons D0, D+ and D+

s , and for the
semileptonic ratio ΓD+

sl /ΓD
0

sl . The total decay rates of the D0 and D+ mesons are underes-
timated in our HQE approach and we suspect that this is due to missing higher-order QCD
corrections to the free charm quark decay and the Pauli interference contribution. For the
SU(3)F breaking ratios τ(D+

s )/τ(D0) and ΓD
+
s

sl /ΓD
0

sl our predictions lie closer to one than
experiment. This might originate from the poor knowledge of the non-perturbative param-
eters µ2

G, µ2
π and ρ3

D in the D0 and D+
s systems. These parameters could be determined

by experimental studies of the moments of inclusive semileptonic D meson decays.
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1 Introduction

Lifetimes of charm mesons are determined experimentally very precisely [1]1 and show a
pattern which is clearly less monotonous than in the b-sector, with values spreading over
a rather large range. Moreover, also inclusive semileptonic branching fractions have been
measured [1], and recently an update for the D+

s -meson has been released by the BESIII
Collaboration [3]. A summary of the current experimental status is presented in table 1.
While in the bottom sector, the approximation that the meson decay can be described

1New results from Belle II have recently been made public [2]: τ(D0) = 410.5± 1.1± 0.8 fs, τ(D+) =
1030.4± 4.7± 3.1 fs.
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D0 D+ D+
s

τ [ps] 0.4101(15) 1.040(7) 0.504(4)

Γ [ps−1] 2.44(1) 0.96(1) 1.98(2)

τ(Dq)/τ(D0) 1 2.54(2) 1.20(1)

Br(Dq → Xe+νe)[%] 6.49(11) 16.07(30) 6.30(16)
Γ(Dq → Xe+νe)
Γ(D0 → Xe+νe)

1 0.977(26) 0.790(26)

Table 1. Status of the experimental determinations of the lifetime and the semileptonic branching
fractions of the lightest charmed mesons (Dq ∈

{
D0, D+, D+

s

}
). All values are taken from the

PDG [1] apart from the semileptonic D+
s -meson decays which were recently measured by the BESIII

Collaboration [3].

in terms of the free b-quark decay is experimentally well accommodated, for the charm
system this is poorly justified. A systematic way to study this assumption is provided by
the heavy quark expansion (HQE) — see refs. [4, 5] for early references or ref. [6] for a
recent review, according to which the inclusive decay width of a meson containing a heavy
charm quark can be written as

Γ(D) = Γ3 + Γ5
〈O5〉
m2
c

+ Γ6
〈O6〉
m3
c

+ . . .+ 16π2
(

Γ̃6
〈Õ6〉
m3
c

+ Γ̃7
〈Õ7〉
m4
c

+ . . .

)
, (1.1)

with the matrix element of the ∆C = 0 operators given by 〈OY 〉 = 〈D|OY |D〉/(2mD).
Their numerical size is expected to be of the order of the hadronic scale ΛQCD ≤ 1GeV,
but the actual value must be determined with a non-perturbative calculation. Note that
in eq. (1.1) quantities labelled by a tilde refer to the contribution of four-quark operators,
while those without a tilde correspond to two-quark operators, cf. figure 1. The Wilson co-
efficients Γi in eq. (1.1) can be computed perturbatively and admit the following expansion
in the strong coupling αs, i.e.

Γi = Γ(0)
i + αs(mc)

4π Γ(1)
i +

[
αs(mc)

4π

]2
Γ(2)
i + . . . . (1.2)

In the present work we will try to shed further light into the question, whether the expan-
sion parameters αs(mc) and ΛQCD/mc are small enough in order to ensure a meaningful
convergence of the HQE. The Particle Data Group [1] quotes, for the pole and MS mass
of the charm quark, the values

mPole
c = (1.67± 0.07) GeV , mc(mc) = (1.27± 0.02) GeV, (1.3)

while the dependence of the strong coupling on both the charm scale and the loop order
(obtained using the RunDec package [7]) is shown in table 2. In our numerical analysis we
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αs(mc) mc = 1.67 GeV mc = 1.48 GeV mc = 1.27 GeV

2-loop 0.322 0.346 0.373
5-loop 0.329 0.356 0.387

Table 2. Numerical values of the strong coupling αs evaluated at different scales and loop order,
obtained using the RunDec package [7].

use the 5-loop running of the strong coupling. While the determination of the MS mass
is theoretically well founded, that of the pole mass seems to be affected by a potential
breakdown of perturbation theory. On the other side, the pole mass is the natural expansion
parameter of the HQE. The relation between the two mass schemes, up to third order in
the strong coupling, reads [8–10]

mPole
c = mc(mc)

[
1 + 4

3
αs(mc)
π

+ 10.43
(
αs(mc)
π

)2
+ 116.5

(
αs(mc)
π

)3]
= mc(mc) [1 + 0.1642 + 0.1582 + 0.2176] , (1.4)

where we have used the 5-loop result for the strong coupling at the scale 1.27GeV. Due to
the fact that Γ3 depends on the fifth power of the charm pole mass, see section 2.2, one
obtains quite different results according to how higher orders in eq. (1.4) are treated. Specif-
ically, by truncating the expansion in eq. (1.4) at first order in αs, frommc(mc) = 1.27GeV,
we obtain for the pole mass the value mPole

c = 1.479GeV, which leads respectively to(
mPole
c

)5
= mc(mc)5 [1 + 0.1642]5 = 2.14mc(mc)5, (1.5)

taking the fifth power of mPole
c , and(

mPole
c

)5
≈ mc(mc)5 [1 + 5 · 0.1642] = 1.82mc(mc)5 , (1.6)

further expanding up to the first order in αs. The result in eq. (1.6) is about 15% smaller
than the one in eq. (1.5). Instead, by including also all the higher order terms given in
eq. (1.4), we get(

mPole
c

)5
= mc(mc)5 [1 + 0.1642 + 0.1582 + 0.2176]5 = 8.66mc(mc)5 , (1.7)

which is roughly a factor four larger than the value in eq. (1.5).
In the following, we will thus consider four different quark mass schemes:

1. Use eq. (1.4) to first order in αs, since this is the order to which most of the Wilson
coefficients are known. In this case we fix mPole

c = 1.48GeV and express everything
in terms of the pole mass. A further possibility would be to consider the expansion
in eq. (1.4) to be an asymptotic one, whose smallest correction appears at order
α2
s, which is where we stop the expansion. In this case we get the pole mass value

from PDG, mPole
c = 1.67GeV. We did numerical tests for this large value of the

charm quark mass and the results for decay rates are roughly 70–90% larger than

– 3 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
1

the values obtained using mPole
c = 1.48GeV. Since we expect this enhancement to be

compensated by missing NNLO corrections to the non-leptonic decay rates, we will
not separately present results for mPole

c = 1.67GeV.

2. Express the c-quark mass in terms of the MS mass [11],

mPole
c = mc(mc)

[
1 + 4

3
αs(mc)
π

]
, (1.8)

taking mc(mc) = 1.27GeV [1], and expand consistently up to order αs. Because of
the dependence on the fifth power of the charm-quark mass, in this case Γ3 is affected
by a large correction 5× (4/3)(αs/π).

3. Express the c-quark mass in terms of the kinetic mass [12, 13]. The kinetic scheme
has been introduced in order to obtain a short distance definition of the heavy quark
mass which allows a faster convergence of the perturbative series and is still valid at
small scales µ ∼ 1GeV. The relation between the kinetic scheme and the MS and
Pole schemes can be found, up to N3LO corrections, in ref. [14]. At order αs one has

mPole
c = mKin

c

1 + 4αs
3π

4
3
µcut

mKin
c

+ 1
2

(
µcut

mKin
c

)2
 , (1.9)

where µcut is the Wilsonian cutoff separating the perturbative and non-perturbative
regimes. Using mc(mc) as an input, the authors of ref. [14] obtain

mKin
c (1GeV) = 1.128 GeV (N3LO) , (1.10)

mKin
c (1GeV) = 1.206 GeV (NLO) . (1.11)

Comparing with eq. (1.8) it follows that the kinetic scheme might be preferred to the
MS scheme if the term in the round brackets of eq. (1.9) would give a suppression
factor. For µcut = 1 GeV and mKin

c = 1.2GeV, this is not the case, while using lower
values i.e. µcut < 1GeV, the convergence of the series could be improved, however this
would bring in an additional uncertainty due to the closeness to the non-perturbative
scale ΛQCD. In our numerical analysis we will investigate the kinetic scheme with
µcut = 0.5GeV. From ref. [14] we take the following value

mkin
c (0.5 GeV) = 1.363 GeV , (1.12)

obtained for consistency at NLO in αs and using as an input mc(mc).

4. In addition, we will consider the 1S-mass scheme defined as [15–17]:

mPole
c = m1S

c

(
1 + (CF αs)2

8

)
, (1.13)

where CF = 4/3, and the 1S mass m1S
c ≈ 1.44GeV is obtained using the conversion

from the MS-scheme (implemented in the RunDec package [7]) at one-loop level. Note
that the correction within the 1S scheme in fact starts at order α2

s which however is
still considered to be a NLO (not NNLO) effect [15].2

2Similarly, another possibility would be to study the potential subtracted mass [18].
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The above arguments clearly indicate the importance of including higher order perturbative
QCD corrections to the decay rates.

With this work we present a study of the total decay rate of the D0,D+ andD+
s mesons,

of their lifetime ratios τ(D+)/τ(D0) and τ(D+
s )/τ(D0) and of the semileptonic branching

fractions Br(Dq → Xe+νe) using state-of-the-art expressions for the ∆C = 0 Wilson
coefficients and for the non-perturbative parameters. Γ3 is known at NLO-QCD [19–26]
for non-leptonic decays. NNLO-QCD [27–36] and NNNLO-QCD [37, 38] corrections have
been computed for semileptonic decays, while for non-leptonic decays NNLO corrections
have been determined in the massless case and in full QCD (i.e. no effective Hamiltonian was
used) in ref. [39]. Γ5 was determined at LO-QCD for both semileptonic and non-leptonic
decays [40–43]. For the semileptonic modes even NLO-QCD corrections are available [44–
46]. In the b-system, Γ6 was first computed at LO-QCD in ref. [47] and recently the NLO-
QCD corrections were determined in ref. [48], both for the semileptonic case only. Very
recently Γ6 has been determined also for non-leptonic decays [49–51] and the coefficient
was found to be large. For semileptonic D-meson decays, Γ6 was determined in ref. [52], see
also the recent ref. [53], while the corresponding results for the non-leptonic charm modes
are presented for the first time in this work. Γ̃6 is known at NLO-QCD for lifetimes of
B-meson [54, 55] and of D-meson [56], while Γ̃7 and Γ̃8 have been estimated in LO-QCD
in refs. [57, 58].

On the non-perturbative side, at dimension-five, the matrix element of the chromo-
magnetic operator can be determined from spectroscopy, while for the kinetic operator
there exist several heavy quark effective theory (HQET) determinations with lattice sim-
ulations [59–63] and using sum rules [12, 64, 65]. The matrix elements of the four-quark
operators 〈Õ6〉 have been computed using HQET sum rules [66]. Violations of SU(3)F and
so far undetermined eye-contractions could yield visible effects and a calculation of these
corrections with HQET sum rules — following ref. [67] — has been performed in ref. [68].
Corresponding lattice results for the matrix elements of the four-quark operators would
be highly desirable. We emphasise that the matrix element of the dimension-six Darwin
operator, 〈O6〉, can be expressed in terms of the above Bag parameters by taking into
account the equation of motion for the gluon field strength tensor.

The paper is organised as follows. In section 2, after briefly introducing the effective
Hamiltonian describing the c-quark decays, we analyse in detail the structure of the HQE,
discussing each of the short-distance contributions in eq. (1.1). In section 3, we describe how
the corresponding non-perturbative parameters are determined. Numerical results for the
totalD-meson decay widths, their ratios, as well as for the semileptonic branching fractions,
are presented in section 4. Finally, we conclude in section 5 with an outlook on how to
further improve the theoretical predictions in the charm sector. The numerical input used
in the analysis are collected in appendix A, the complete expressions for the coefficients of
the Darwin operator for non-leptonic c-quark decays are presented in appendix B, while in
appendix C we show the parametrisation of the matrix elements of the four-quark operators.
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µ1[GeV] 1 1.27 1.36 1.44 1.48 3

C1(µ1) 1.25
(1.34)

1.20
(1.27)

1.19
(1.26)

1.18
(1.25)

1.18
(1.24)

1.10
(1.15)

C2(µ1) −0.48
(−0.62)

−0.39
(−0.50)

−0.40
(−0.53)

−0.37
(−0.49)

−0.37
(−0.48)

−0.24
(−0.32)

C3(µ1) 0.03
(0.02)

0.02
(0.01)

0.02
(0.01)

0.01
(0.01)

0.01
(0.01)

0.00
(0.00)

C4(µ1) −0.06
(−0.04)

−0.05
(−0.03)

−0.04
(−0.03)

−0.04
(−0.02)

−0.04
(−0.02)

−0.01
(−0.01)

C5(µ1) 0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.00
(0.00)

C6(µ1) −0.08
(−0.05)

−0.05
(−0.03)

−0.05
(−0.03)

−0.04
(−0.03)

−0.04
(−0.03)

−0.01
(−0.01)

Table 3. Comparison of the Wilson coefficients at NLO-QCD (LO-QCD) for different values of µ1.

2 The total decay rate

2.1 Effective Hamiltonian and HQE

The non-leptonic decay of a charm quark c → q1q̄2u (qi = u, d, s) is governed by the
effective ∆C = 1 Hamiltonian (see e.g. ref. [69])

HNL
eff = GF√

2

 ∑
q1,2=d,s

λq1q2 [C1(µ1)Qq1q2
1 + C2(µ1)Qq1q2

2 ]− λb
6∑
j=3

Cj(µ1)Qj

+ h.c., (2.1)

where λq1q2 = V ∗cq1Vuq2 and λb = V ∗cbVub are the CKM factors, Ci(µ1) denote the Wilson
coefficients at the renormalisation scale µ1 ∼ mc, Qq1q2

1,2 are tree-level ∆C = 1 operators3

Qq1q2
1 =

(
q̄i1γρ(1− γ5)ci

) (
ūjγρ(1− γ5)qj2

)
, (2.2)

Qq1q2
2 =

(
q̄i1γρ(1− γ5)cj

) (
ūjγρ(1− γ5)qi2

)
, (2.3)

while Qj , j = 3 . . . 6 are penguin operators, which can only arise in the singly Cabibbo
suppressed decays c→ ss̄u and c→ dd̄u or in further suppressed pure penguin decays like
c→ uūu. Values of the Wilson coefficients at different scales are shown in table 3 both at
NLO-QCD and LO-QCD.

We see that the Wilson coefficients of the penguin operators are very small, additionally
their contributions are also strongly suppressed by the CKM factor λb � λq1q2 . Therefore,
in our analysis, we neglect the effect of the penguin operators, given the current limited
theoretical accuracy in the charm sector.

3In our notation, Qq1q2
1 is the colour-singlet operator.
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The complete effective Hamiltonian describing all possible c-quark decays is a sum of
non-leptonic, semileptonic and radiative contributions, namely

Heff = HNL
eff +HSL

eff +Hrare
eff , (2.4)

where HNL
eff is given in eq. (2.1),

HSL
eff = GF√

2
∑
q=d,s

∑
`=e,µ

V ∗cq Q
q` + h.c. , (2.5)

with the semileptonic operator Qq` = (q̄γµ(1− γ5)c) (ν̄`γµ(1− γ5)`), while Hrare
eff describes

decays like D → π`+`−, whose branching fraction is much smaller than those corresponding
to tree-level transitions. Hence, in the following we neglect rare decays and we do not show
an explicit expression for Hrare

eff .
The total decay width of a heavy D meson with mass mD and four-momentum pµD can

be written as

Γ(D) = 1
2mD

∑
X

∫
PS

(2π)4δ(4)(pD − pX) |〈X(pX)|Heff |D(pD)〉|2, (2.6)

where PS denotes the phase space integration and we have summed over all possible final
states X into which the D meson can decay. Eq. (2.6) can be related, via the optical
theorem, to the discontinuity of the forward scattering matrix element of the time ordered
product of the double insertion of the effective Hamiltonian, i.e.

Γ(D) = 1
2mD

Im〈D|T |D〉 , (2.7)

with the transition operator

T = i

∫
d4xT {Heff(x) ,Heff(0)} . (2.8)

In the framework of the HQE, the four-momentum of the decaying c-quark is parametrised
in terms of “large” and “small” components as

pµc = mc v
µ + kµ, (2.9)

where vµ = pµ/mD denotes the four-velocity of the D-meson and kµ → iDµ, with Dµ

being the covariant derivative with respect to the background gluon field, accounts for the
residual interaction of the c-quark with the light degrees of freedom inside the hadron, i.e.
soft gluons and quarks. At the same time, the heavy charm quark field is redefined as

c(x) = e−imcv·xcv(x) , (2.10)

to remove the large fraction of the c-quark momentum. Using eqs. (2.9) and (2.10), Γ(D) in
eq. (2.7) can be expanded in the small quantity Dµ/mc ∼ ΛQCD/mc, leading to the series
in eq. (1.1) — for more details see e.g. ref. [70], or ref. [49] for a more recent treatment.
The result is schematically shown in figure 1. The first diagram on the top line of figure 1,

– 7 –
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+c c c c + . . . + + . . .

c c

c c c c c c c c c c

O3 O5 O6 Õ6 Õ7

q1

q̄2

u

q1

q̄2

u

q1

q̄2
u u

q q qq

Figure 1. The diagrams describing contributions to the HQE in eq. (1.1). The crossed circles denote
the ∆C = 1 operators Qi of the effective Hamiltonian while the squares denote the local ∆C = 0
operators Oi and Õi. The two-loop and the phase space enhanced one-loop diagrams correspond
respectively to the two-quark operators Oi and to the four-quark operators Õi in the HQE.

corresponding to the limit mc → ∞, represents the decay of a free c-quark, while power
corrections due to the interaction of the heavy quark with soft gluons and quarks are
described respectively by the second and third diagrams on the top line of figure 1. Finally,
before discussing the individual terms in eq. (1.1) separately, it is worth emphasizing that
the field cv is related to the effective heavy quark field hv, introduced in the framework of
the HQET (see e.g. ref. [71]), by

cv(x) = hv(x) + i /D⊥
2mc

hv(x) +O
( 1
m2
c

)
, (2.11)

where Dµ
⊥ = Dµ − (v ·D) vµ.

2.2 Dimension-three contribution

The leading term in eq. (1.1), Γ(0)
3 , can be schematically written as

Γ(0)
3 = Γ0 c3 = Γ0

[
f (zs, ze, zνe) + f

(
zs, zµ, zνµ

)
+ |Vud|2Na f (zs, zu, zd) + . . .

]
, (2.12)

where we define
Γ0 = G2

Fm
5
c

192π3 |Vcs|
2 , (2.13)

and we introduce the dimensionless mass parameter zq = m2
q/m

2
c . Note than we neglect the

neutrino as well as the electron, the up and down quarks masses, i.e. zν = ze = zu = zd = 0,
while zs 6= 0 6= zµ. The first two terms in c3 in eq. (2.12) correspond to the semileptonic
modes c → se+νe and c → sµ+νµ, while the third term to the Cabibbo favoured decay
c → sud̄. The ellipsis stand for CKM suppressed contributions. The dependence on the
∆C = 1 Wilson coefficients is absorbed in the combination Na = 3C2

1 +3C2
2 +2C1C2. The

behaviour of Na as function of the renormalisation scale, both at LO- and NLO-QCD, is

– 8 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
1

1.0 1.5 2.0 2.5 3.0
3.0

3.5

4.0

4.5

5.0

Figure 2. Scale dependence of the Wilson coefficient combination Na = 3C2
1 + 3C2

2 + 2C1C2.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

Na(LO) 4.85 4.35 4.23 4.15 4.12 3.52
Na(NLO) 4.18 3.86 3.79 3.74 3.71 3.31

Table 4. Comparison of Na at LO- and NLO-QCD, for different values of the renormalisation
scale µ1.

shown in table 4 and in figure 2, indicating a visible shift from LO to NLO and a moderate
reduction of the scale uncertainty in the NLO result. Else there are no cancellations in Na
that might lead to numerical instability. The phase-space function f(a, b, c) in eq. (2.12)
describes the effect of the final state masses. In the case of one massive particle, it reduces
to the well-known expression

f(z, 0, 0) = 1− 8z + 8z3 − z4 − 12z2 ln z , f (zs, 0, 0) ≈ 1− 0.03 , (2.14)

which shows that the contribution due to the finite s-quark mass is small. The analytic
expression of f(a, b, c) for two different masses in the final state, can be found e.g. in the
appendix of ref. [72].

By including also NLO-QCD corrections, Γ3 can be schematically presented as

Γ3 = Γ0
[
3C2

1 C3,11 + 2C1C2 C3,12 + 3C2
2 C3,22 + C3,SL

]
, (2.15)

where a summation over all the modes is implicitly assumed. At NLO, the expressions for
C3,11, C3,22 and C3,SL are taken from ref. [19], where the computation was done for three
different final state masses, hence we can easily use these results for all c-quark decay
modes. For the coefficient C3,12 we use ref. [22] for the c → sd̄u, c → ds̄u and c → dd̄u

decay channels, while the result of ref. [26] is used in the case of final state with two massive
s-quarks, c→ ss̄u.
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Mass scheme ΓLO
3 [ps−1] ΓNLO

3 [ps−1]

Pole (mc = 1.48GeV) 1.45+0.17
−0.14 1.52+0.20

−0.16

MS (Eq. (1.8)) 0.69+0.06
−0.09 1.32+0.06

−0.03

Kinetic (Eq. (1.9)) 0.97+0.10
−0.11 1.47+0.27

−0.30

1S (Eq. (1.13)) 1.25+0.14
−0.13 1.50+0.31

−0.25

Table 5. Numerical values of ΓLO
3 = Γ(0)

3 and ΓNLO
3 = Γ(0)

3 + αs(mc)/(4π) Γ(1)
3 using different

schemes for the c-quark mass. The uncertainties are obtained by varying the renormalisation scale
µ1 between 1GeV and 3GeV.

Neglecting final state masses and approximating |Vud|2 ≈ 1 the following expression
was determined in 1991 [20], i.e.

cNLO
3 − cLO

3 = 8 αs4π

[(25
4 − π

2
)

︸ ︷︷ ︸
<0

+(C2
1 + C2

2 )
(31

4 − π
2
)

︸ ︷︷ ︸
<0

−2
3C1C2

(7
4 + π2

)
︸ ︷︷ ︸

≥0

]
. (2.16)

The first term on the r.h.s. of eq. (2.16) stems from semileptonic decays and the next two
terms from non-leptonic channels. For non-leptonic b-quark decays the NLO corrections
are negative, while for charm quarks decays the third term will dominate over the second
one and the correction becomes positive. Moreover, there is a sizable enhancement of the
αs-corrections in the non-leptonic b-quark decays due to finite charm quark mass effects [21–
23, 26] — the corresponding increase in charm quark decays is much less pronounced as
m2
c/m

2
b ≈ 0.1� m2

s/m
2
c ≈ 0.005.

The numerical values for Γ3 both in LO- and NLO-QCD, for different c-quark mass
schemes are shown in table 5. The range of NLO-QCD values from 1.3 ps−1 to 1.5 ps−1

for the free charm-quark decay at NLO-QCD, is in good agreement with the experimental
determinations in table 1. Moreover we observe small (< 5%) corrections due to a non-
vanishing strange quark mass. Interestingly the NLO-QCD result is affected by strong
cancellations. We in fact observe a suppression of the non-leptonic contribution because of
the opposite sign between the NLO corrections to the diagrams describing QCD corrections
to the upper left diagram of figure 1 and the QCD corrections intrinsic to the ∆C = 1
Wilson coefficients. A further cancellation is then present between the semileptonic and
the non-leptonic modes. This behaviour can be nicely read of the result in the Pole scheme:

Γ3 = ΓLO
3

1 +

 NL︷ ︸︸ ︷
1.84︸︷︷︸
diag.

− 0.74︸︷︷︸
WC

−
SL︷︸︸︷

0.67

 αs
π

+O
(
αs
π

)2
 . (2.17)

Expressing the pole mass in terms of a short distance mass like the MS scheme, an ad-
ditional large NLO correction arises from the conversion factor of m5

c , which is the origin
of the large shift between the LO and the NLO values in the MS-, the kinetic and the

– 10 –
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1S-schemes, see table 5. We find e.g. in the MS scheme

Γ3 = ΓLO
3

1 +

 NL︷ ︸︸ ︷
2.10︸︷︷︸
diag.

− 0.70︸︷︷︸
WC

−
SL︷︸︸︷

0.71 +
conv.fac.︷︸︸︷

6.66

 αs
π

+O
(
αs
π

)2
 . (2.18)

The corrections due to the mass conversion also make the overall semileptonic NLO term
in the MS scheme positive.

To get a first indication of the behaviour of the QCD series for the decay rate at
higher orders, we briefly discuss here the NNLO [35] and NNNLO [37] corrections for
the semileptonic b-quark decay and the preliminary NNLO-QCD corrections for the non-
leptonic b-quark decay [39]. In the Pole mass scheme [37]

Γ3(B → Xc`ν̄`)
ΓLO

3 (B → Xc`ν̄`)
= 1−1.72αs(µ)

π
−13.09

(
αs(µ)
π

)2
−163.3

(
αs(µ)
π

)3
= 1−0.12−0.06−0.05,

(2.19)
the semileptonic decay rate gets large negative corrections, and in the MS-scheme

Γ3(B → Xc`ν̄`)
ΓLO

3 (B → Xc`ν̄`)
= 1+3.07αs(µ)

π
+13.36

(
αs(µ)
π

)2
+62.7

(
αs(µ)
π

)3
= 1+0.21+0.06+0.02,

(2.20)
one finds [37] sizable positive corrections — driven by the conversion of the quark mass
from the Pole scheme to the MS-scheme and indicating again the importance of higher
order perturbative corrections. For the semileptonic charm quark decay one finds even
larger corrections,4 e.g. in the Pole mass scheme

Γ3(D → X`+ν`)
ΓLO

3 (D → X`+ν`)
= 1−2.41αs(µ)

π
−23.4

(
αs(µ)
π

)2
−321.5

(
αs(µ)
π

)3
= 1−0.25−0.26−0.37,

(2.21)
which clearly spoils the perturbative approach and makes the use of different quark mass
schemes mandatory.

Regarding the NNLO-QCD corrections to the non-leptonic decay rates, ref. [39] presents
a partial result (not resumming the large logarithms, neglecting effects of the operator Qq1q2

2
and assuming a vanishing charm quark mass) for the b-quark. In the pole mass scheme the
authors obtain

Γ(b→ cūd)
3Γ(b→ ceν̄) = 1 + 1 αs(µ)

π
+ 67.1

(
αs(µ)
π

)2
. (2.22)

It is interesting to note that from the coefficient of the α2
s term, 67.1, a contribution of

54.7 stems from not summing large logarithms of the form ln(MW /mb) and ln2(MW /mb).
Using eq. (2.19) and the fact that, in the approximations of ref. [39] the ratio between
non-leptonic and semileptonic rate is equal to 3 at LO-QCD, yields

Γ(b→ cūd) = ΓLO(b→ cūd)
[
1− 0.7 αs(µ)

π
+ 52.3

(
αs(µ)
π

)2]
. (2.23)

4Results presented by Matteo Fael at CHARM 2020:
https://indico.nucleares.unam.mx/event/1488/session/12/contribution/56/material/slides/0.pdf.
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For non-leptonic charm-quark decays the logarithms become even larger and we find that
the coefficient of the α2

s term increases from 52.3 to 91.2, which clearly indicates the
necessity of summing the large logarithms. Neglecting final state masses seems to be well
justified in the charm system. In order to further estimate the effect of neglecting the
operator Qq1q2

2 , we set in our code C1 = 1 and C2 = 0 and we get in the Pole scheme

ΓNL
3

ΓNL,LO
3

= 1− 1.4 αs(µ)
π

, (2.24)

while the result with the full inclusion of the effective Hamiltonian yields a very different
value of the QCD corrections

ΓNL
3

ΓNL,LO
3

= 1 + 1.6 αs(µ)
π

. (2.25)

All in all we conclude that, higher order corrections seem to be crucial for a reliable
determination of Γ3. Despite being conceptually very interesting, the result of ref. [39]
is not useful for phenomenological applications and a full NNLO determination of the
non-leptonic decay rate using the effective Hamiltonian would be highly desirable.

2.3 Dimension-five contribution

The first corrections to the free charm-quark decay arise at order 1/m2
c and describe

the effect of the kinetic and the chromomagnetic operators. Their matrix elements are
parametrised by the two non-perturbative inputs µ2

π and µ2
G, i.e.

2mD µ
2
π(D) = −〈D(p)|c̄v(iDµ)(iDµ)cv|D(p)〉 , (2.26)

2mD µ
2
G(D) = 〈D(p)|c̄v(iDµ)(iDν)(−iσµν)cv|D(p)〉 , (2.27)

with σµν = (i/2)[γµ, γν ]. Both the operators receive a contribution from the expansion of
the dimension-three matrix element 〈D(p)|c̄vcv|D(p)〉 [70]. However, the chromomagnetic
operator receives further contributions due to the expansion of the short distance coefficient
c3 and of the quark-propagator in the external gluon field [41, 42, 49] — see the second
diagram on the top line of figure 1. Hence, at order 1/m2

c , we can schematically write

Γ5
〈O5〉
m2
c

= Γ0

[
cµπ

µ2
π

m2
c

+ cG
µ2
G

m2
c

]
. (2.28)

The coefficient of the kinetic operator is related to the dimension-three contribution,5
cµπ = −c(0)

3 /2, and the chromomagnetic coefficient cG can be decomposed as

cG = 3C2
1 CG,11 + 2C1C2 CG,12 + 3C2

2 CG,22 + CG,SL , (2.29)

where again a summation over all the modes is assumed. The individual contributions
CG,nm for non-leptonic modes can be found e.g. in the appendix of ref. [49]. In the latter

5Since the dimension-5 contribution for non-leptonic modes is known only at LO in QCD, we use the
dimension-three coefficient c3 just at LO-QCD for cµπ .
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Figure 3. Scale dependence of the coefficient of the chromomagnetic operator.

reference, the coefficients of the chromomagnetic operator were determined for the non-
leptonic B-meson decays, however, since there are no IR-divergences at this order, it is
straightforward to obtain the corresponding results for the charm-sector, namely by re-
placing mb → mc, mc → ms, etc. For the semileptonic decay c → sµ+νµ, the expression
for two different mass parameters zs 6= 0 6= zµ can be found in the appendix of ref. [72].6
By neglecting the strange and muon masses and by considering only the dominant CKM
modes, the result for cG becomes very compact, i.e.

cG ≈ −|Vud|2
[9

2
(
C2

1 + C2
2

)
+ 19C1C2

]
− 3. (2.30)

Because of the large coefficient in front of C1C2 and of its negative value, eq. (2.30) can
be affected by cancellations. In figure 3 we plot cG in eq. (2.29), as a function of the
renormalisation scale µ1 while in table 6 we list the numerical result for some reference
values of µ1. For cG a change of sign occurs in the region between 1 and 2GeV — leading to
a large uncertainty due to scale variation. Note, that the “NLO” result shown in figure 3
and table 6 only includes QCD corrections due to the ∆C = 1 Wilson coefficients. A
complete calculation of the NLO-QCD corrections to cG is still missing (these corrections
are only known for the semileptonic case) and would be very desirable in order to reduce
the huge scale dependence. The numerical values of the non-perturbative parameters µ2

π

and µ2
G will be discussed in sections 3.2 and 3.1.

2.4 Dimension-six two-quark operator contribution

By determining higher order 1/mc corrections in the expansion, respectively, of the quark-
propagator, of the matrix elements of mass dimension-three and mass dimension-five, and
of the corresponding short-distance coefficients, see e.g. refs. [41, 42, 49, 73] for details, one

6Since ms ≈ mµ ≈ 100 MeV � mc, in principle one can safely set zs = zµ and use the non-leptonic
expressions for the semileptonic modes, e.g. c→ ss̄u for c→ sµν̄µ by setting Nc = 1, C1 = 1, C2 = 0.
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µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

cNL
G (LO) 6.20 4.34 3.91 3.58 3.43 0.62
cSL
G (LO) -3.11 -3.11 -3.11 -3.11 -3.11 -3.11
cG(LO) 3.09 1.23 0.80 0.47 0.32 -2.49

cG(“NLO′′) 0.25 -1.06 -1.37 -1.62 -1.74 -3.95

Table 6. Comparison of the coefficients cSL
G , cNL

G , and cG = cSL
G + cNL

G for different values of the
renormalisation scale µ1 at LO and “NLO”, setting for reference mc = 1.5GeV.

obtains the dimension-six contribution to Γ(D), which can be compactly written as

Γ6
〈O6〉
m3
c

= Γ0 cρD
ρ3
D

m3
c

, (2.31)

with the matrix element of the Darwin operator given by7

2mD ρ
3
D(D) = 〈D(p)|c̄v(iDµ)(iv ·D)(iDµ)cv|D(p)〉 . (2.32)

The coefficient cρD can be decomposed into

cρD = 3C2
1 CρD,11 + 2C1C2 CρD,12 + 3C2

2 CρD,22 + CρD,SL , (2.33)

including both non-leptonic and semileptonic contributions. For B-mesons decays, the
non-leptonic coefficients were computed recently in refs. [49–51]. In order to determine the
corresponding expressions for the charm system, some subtleties have to be considered.
In b-quark decays, one assumes mb ∼ mc � ΛQCD, and the coefficient of the Darwin
operator for the semileptonic b → c`ν̄` decays is a finite function of ρ = m2

c/m
2
b , which

however diverges in the limit ρ → 0, i.e. in correspondence of the b → u`ν̄` transitions.
This is due to the fact that, the radiation of a soft gluon off a massless quark-propagator
leads to IR singularities at dimension-six. In non-leptonic b-quark decays, one has to
further deal with the emission of a soft gluon from the internal light u-, d-, and s-quark
lines. The corresponding IR divergences are of the form log(mq/mb), for q = u, d, s,
and are removed by taking into account the mixing between the four-quark operators
with external q quarks and the Darwin operator under renormalisation, for details see
e.g. refs. [49, 50, 74, 75]. Because of mc � ms ∼ ΛQCD, it follows that one cannot trivially
generalise the results from the b- to the c-sector, i.e. by only replacing mb → mc, mc →
ms, etc., since there are further contributions due to the mixing of four-quark operators
with external s-quarks which must be additionally included. Specifically, this leads to a
modification of the coefficients proportional to C2

1 and C1C2. Using the same procedure as
discussed in ref. [49], we have recomputed the coefficients of the Darwin operator required
for the study of D-meson decays. The analytic expressions for CρD,nm, including the full s-
quark mass dependence, however finite in the limit ms → 0, are presented in appendix B for

7Note that with the given definition for the dimension-six two-quark operators, in terms of full covariant
derivatives, the contribution of the spin-orbit operator to the decay width vanishes.
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Figure 4. Scale dependence of the coefficient of the Darwin operator.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

cNL
ρD

(LO) 60.6 51.7 49.6 48.1 47.5 35.4
cSL
ρD

(LO) 12.6 12.6 12.6 12.6 12.6 12.6
cρD(LO) 73.2 64.3 62.3 60.8 60.1 48.1

cρD(“NLO′′) 60.5 54.5 53.1 52.1 51.6 42.8

Table 7. Numerical values of cSL
ρD , c

NL
ρD , and cρD = cSL

ρD + cNL
ρD for different values of the renormali-

sation scale µ1 at LO and “NLO” with µ0 = mc = 1.5GeV.

all non-leptonic modes. To obtain the corresponding expression for CρD,SL, it is sufficient
to set in the results for the non-leptonic decays Nc = 1, C1 = 1, C2 = 0 and zs = zµ for
the c→ sµ+νµ mode. In particular, we confirm the results in ref. [53].

Again, by neglecting the strange and muon masses and by considering only the domi-
nant CKM modes, one finds

cρD ≈ |Vud|
2
(

18C2
1 −

68
3 C1C2 + 18C2

2

)
+ 12 . (2.34)

It is interesting to note that in this combination all terms have the same sign and no
cancellations arise. In figure 4 we show the dependence of the function cρD in eq. (2.33)
on the renormalisation scale µ1 and in table 7 we quote the numerical result for some
reference values of µ1. The determination of the matrix element of the Darwin operator
will be discussed in section 3.3.

2.5 Dimension-six four-quark operator contribution

The perturbative coefficients in eq. (1.1) considered so far are independent of the spectator
quark in the D meson, in fact its effect appears only in the corresponding matrix elements
of the dimension-five and dimension-six operators. Starting at order 1/m3

c , there are also
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Figure 5. Spectator quark effects in the HQE expansion: WE (left), PI (middle) and WA (right).

one-loop contributions, cf. Γ̃6 in eq. (1.1), in which the spectator quark is directly involved.
These correspond respectively to the weak exchange (WE), Pauli interference (PI) and
weak annihilation (WA) diagrams, depicted in figure 5.8 Note that compared to the terms
discussed above, these contributions imply a phase space enhancement factor of 16π2. The
corresponding ∆C = 0 four quark operators of dimension-six are:9

Oq1 = (c̄ γµ(1− γ5)q) (q̄ γµ(1− γ5)c), (2.35)
Oq2 = (c̄(1− γ5)q) (q̄(1 + γ5)c), (2.36)
T q1 = (c̄ γµ(1− γ5)TAq) (q̄ γµ(1− γ5)TAc), (2.37)
T q2 = (c̄(1− γ5)TAq) (q̄(1 + γ5)TAc), (2.38)

where TA is a colour matrix and a summation over colour indices is implied. The parame-
terisation of the matrix elements of the operators in eqs. (2.35)–(2.38) in QCD is given in
appendix C. However, by evaluating the matrix elements in the framework of the HQET,
one obtains the following set of operators, i.e.10

Õq1 = (h̄v γµ(1− γ5)q) (q̄ γµ(1− γ5)hv), (2.39)
Õq2 = (h̄v(1− γ5)q) (q̄(1 + γ5)hv), (2.40)
T̃ q1 = (h̄v γµ(1− γ5)TAq) (q̄ γµ(1− γ5)TAhv), (2.41)
T̃ q2 = (h̄v(1− γ5)TAq) (q̄(1 + γ5)TAhv), (2.42)

here hv denotes the HQET field defined by eqs. (2.10), (2.11). The matrix elements of
these operators are parameterised as

〈Dq|Õqi |Dq〉 = F 2(µ)mDq B̃
q
i , (2.43)

〈Dq|Õq
′

i |Dq〉 = F 2(µ)mDq δ̃
q′q
i , q 6= q′ , (2.44)

where q, q′ = u, d, s, B̃q
i denote the Bag parameters in HQET, with B̃q

1,2 corresponding
to the colour-singlet operators, and B̃q

3,4 ≡ ε̃q1,2 to the colour-octet ones, and F (µ) is the
HQET decay constant, defined as

〈0|q̄γµγ5hv|Dq(v)〉HQET = i F (µ)√mDq v
µ. (2.45)

8In the case of semileptonic decays, only the WA topology can contribute.
9Sometimes, we will use the short-hand notation Oqi , i = 1, 2, 3, 4 assuming Oq3 ≡ T

q
1 , O

q
4 ≡ T

q
2 .

10Note that all quantities defined in HQET are labelled by a tilde, contrary to those in QCD.
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Similarly, the QCD decay constant fDq is given by11

〈0|q̄γµγ5c|Dq(p)〉QCD = ifDq p
µ, (2.46)

with p = mDqv. The relation between fDq and F (µ) up to αs and 1/mc corrections can be
found e.g. in refs. [76, 77]. At the scale µ = mc, it reads

fDq = F (mc)√
mDq

(
1− 2

3
αs(mc)
π

+ G1(mc)
mc

+ 6 G2(mc)
mc

− 1
2

Λ̄−mq

mc

)
, (2.47)

where Λ̄ = mDq − mc, and the parameters G1 and G2 characterise matrix elements
of non-local operators. Note that in our analysis we express the parameter F (mc) in
eqs. (2.43), (2.44), in terms of fDq using eq. (2.47). This brings additional αs corrections
— which become part of NLO dimension-six contribution — as well as 1/mc ones. The
latter, as it will be explained in detail in section 2.6, can be partially absorbed in the
contribution of some of the dimension-seven operators in HQET.

In vacuum insertion approximation (VIA), the Bag parameters of the colour-singlet
operators are equal to one, B̃q

1,2 = 1, and the Bag parameters of the colour-octet operators
vanish, ε̃q1,2 = 0. Note that throughout this work we assume isospin symmetry, i.e.

B̃u
i = B̃d

i . (2.48)

The quantities δ̃q
′q
i in eq. (2.44) describe the so-called eye-contractions, see figure 6, and

characterize “subleading” (compared to the large Bag parameters) effects in the non-
perturbative matrix elements — in VIA all eye-contractions vanish i.e. δ̃q

′q
i = 0. However,

beyond VIA, the matrix elements of the four-quark operators with external q′ quark differ
from zero even when the spectator quark q in the Dq meson does not coincide with the
quark q′, as reflected by δ̃q

′q
i in eq. (2.44). Note that in our notation the eye-contractions

with q = q′, are in fact included in the Bag parameters B̃q
i . And again, due to isospin

symmetry we will use:

δ̃uq
′

i = δ̃dq
′

i , δ̃q
′u
i = δ̃q

′d
i , q′ = u, d, s .

The Bag parameters B̃q
i and δ̃qq

′

i have been determined using HQET sum rules, specifically
the Bag parameters B̃q

i for the D+,0 mesons were calculated in ref. [66], while corrections
due to the strange quark mass as well as the contribution of the eye-contractions, see
figure 6, have been computed for the first time in ref. [68]. The numerical values of the Bag
parameters will be briefly discussed in section 3.4 and they are summarised in appendix A.

By considering only the dominant CKM modes and by neglecting the effect of the eye-
contractions, at LO-QCD and at dimension-six, the contribution of four-quark operators

11The subscript ‘QCD’ or ‘HQET’ on the states is usually omitted, however for clarity it is specified in
the definition of the decay constant.
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to the D-mesons decay rate reads

16π2 Γ̃D0
6
〈Õ6〉D

0

m3
c

= Γ0|V ∗ud|2 16π2MD0f2
D0

m3
c

(1− zs)2

{(1
3C

2
1 + 2C1C2 + 3C2

2

)[
(B̃u

2 − B̃u
1 ) + zs

(
2B̃u

2 −
B̃u

1
2

)]

+2C2
1

[
(ε̃u2 − ε̃u1) + zs

(
2 ε̃u2 −

ε̃u1
2

)]}
, (2.49)

16π2 Γ̃D+
6
〈Õ6〉D

+

m3
c

= Γ0|V ∗ud|2 16π2MD+f2
D+

m3
c

(1− zs)2

{(
C2

1 + 6C1C2 + C2
2

)
B̃d

1 + 6
(
C2

1 + C2
2

)
ε̃d1

}
, (2.50)

16π2 Γ̃D
+
s

6
〈Õ6〉D

+
s

m3
c

= Γ0|V ∗ud|2 16π2
MD+

s
f2
D+
s

m3
c{(

3C2
1 + 2C1C2 + 1

3C
2
2 + 2
|V ∗ud|2

)(
B̃s

2 − B̃s
1

)
+ 2C2

2 (ε̃s2 − ε̃s1)
}
,

(2.51)

respectively, for the WE, PI and WA topologies. Note that in the latter we have neglected
the muon mass in the semileptonic decay c→ sµ+νµ. In eqs. (2.49)–(2.51) some interesting
numerical effects are arising. First, in the charm system, one expects that the contribution
due to the spectator quark is of similar size compared to the leading term Γ3 in the HQE,
unless some additional cancellations are present. Using the pole mass mPole

c = 1.48GeV
and Lattice QCD values for the decay constants [78] we roughly obtain that

16π2MD0f2
D0

m3
c

= 4.1 ≈ O(c3) , (2.52)

16π2
MD+

s
f2
D+
s

m3
c

= 6.0 ≈ O(c3) . (2.53)

This result has led the authors of ref. [79] to propose a different ordering for the HQE series
in the charm sector. However, to investigate further the size of four-quark contributions,
we consider the combinations of Wilson coefficients that appear in eqs. (2.49)–(2.51), i.e.

CSWE = 1
3C

2
1 + 2C1C2 + 3C2

2 , COWE = 2C2
1 , (2.54)

CSPI = C2
1 + 6C1C2 + C2

2 , COPI = 6 (C2
1 + C2

2 ) , (2.55)

CSWA = 3C2
1 + 2C1C2 + 1

3C
2
2 , COWA = 2C2

2 , (2.56)

where the superscripts S and O refer to coefficient in front of the colour-singlet and colour-
octet Bag parameters, respectively. A comparison of these combinations for different values
of the renormalisation scale µ1 is shown in table 8.

As one can see, the combination of Wilson coefficients multiplying the colour-singlet
Bag parameters of WE is strongly suppressed. Note that, depending on whether we dis-
regard α2

s corrections in these combinations of ∆C = 1 Wilson coefficients — as we do —
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Figure 6. Diagram describing the eye-contractions.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

CSWE(LO) 0.09 0.03 0.02 0.02 0.01 0.01

CSWE(NLO) −0.03 −0.03 −0.03 −0.02 −0.02 0.04

COWE(LO) 3.57 3.24 3.16 3.11 3.08 2.63

COWE(NLO) 3.11 2.89 2.83 2.79 2.77 2.44

CSPI(LO) −2.80 −2.12 −1.96 −1.85 −1.79 −0.79

CSPI(NLO) −1.74 −1.28 −1.16 −1.08 −1.04 −0.27

COPI(LO) 13.0 11.4 11.0 10.7 10.6 8.50

COPI(NLO) 10.6 9.55 9.31 9.13 9.05 7.60

CSWA(LO) 3.82 3.61 3.56 3.53 3.51 3.24

CSWA(NLO) 3.57 3.42 3.38 3.36 3.35 3.16

COWA(LO) 0.77 0.55 0.51 0.47 0.46 0.21

COWA(NLO) 0.41 0.30 0.27 0.25 0.24 0.10

Table 8. Comparison of the combinations CS,OWE,PI,WA, respectively at LO- and NLO-QCD, for
different values of the renormalisation scale µ1.

or not, we can get even different signs for CS
WE at NLO. Moreover, in eq. (2.49) the Bag

parameters of the colour singlet operators exactly cancel in VIA at leading order in 1/mc.
The coefficient of the colour-octet operator is, on the other hand, not suppressed for weak
exchange, indicating that both singlet and octet operators might be equally important in
this case. For Pauli interference, the combinations of Wilson coefficients multiplying the
colour-singlet operators are significantly enhanced compared to those in WE, the same
holds for the colour-octet operators. Note that COPI and CSPI get large modifications (and
even a flip of sign) compared to the case C1 = 1 and C2 = 0 revealing the importance of
gluon radiative corrections. Moreover COPI is enhanced compared to CSPI, indicating that
both singlet and octet operators might be equally important for Pauli interference. For
weak annihilation, the corresponding combination in front of the colour-singlet operators
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is large. On the other hand, the Bag parameters of the colour singlet operators exactly
cancel in VIA at leading order in 1/mc.

The above arguments show that, by neglecting the effect of the colour-octet operators in
VIA, one might be led to misleading conclusions, and therefore an accurate determination
of the deviation of the Bag parameters from their VIA values, using non-perturbative
methods like HQET sum rules or lattice simulations, is necessary.

Finally, by including all CKMmodes as well as NLO-QCD corrections, the contribution
of four-quark operators to the total decay width at order 1/m3

c schematically reads

16π2 Γ̃Dq6
〈Õ6〉Dq
m3
c

= Γ0
|Vcs|2

4∑
i=1

{ ∑
q1,q2=d,s

|λq1q2 |
2
[
AWE
i,q1q2

〈Dq|Õui |Dq〉
m3
c

+API
i,q1q2

〈Dq|Õq2
i |Dq〉
m3
c

+ AWA
i,q1q2

〈Dq|Õq1
i |Dq〉
m3
c

]
+
∑
q1=d,s

|Vcq1 |2
∑
`=e,µ

[
AWA
i,q1`
〈Dq|Õq1

i |Dq〉
m3
c

]}
,

(2.57)

where the matrix elements of the four-quark operators are given in eqs. (2.43), (2.44), and
the short-distance coefficients for the WE, PI and WA topologies, cf. figure 5 are denoted by
AWE
i,q1q2 , A

PI
i,q1q2 and AWA

i,q1q2 , A
WA
i,q1`

, respectively. NLO corrections to AWE
i,q1q2 and API

i,q1q2 have
been computed for HQET operators in ref. [55]. The corresponding results for AWA

i,q1q2 can
be obtained by Fierz transforming the ∆C = 1 operators given in eqs. (2.2), (2.3). Since
the Fierz symmetry is respected also at one-loop level, the functions AWA

i,q1q2 are derived
from AWE

i,q1q2 by replacing C1 ↔ C2. For the semileptonic modes, the coefficients AWA
i,q1`

have been determined in ref. [56]. Note that in our analysis, we treat the contribution of
the δ̃q

′q
i parameters as a subleading “NLO” effect, therefore their coefficients are included

only at LO-QCD. To demonstrate the importance of the NLO-QCD corrections to the
spectator effects, we show in table 9 the dimension-six contributions to the D-meson decay
widths (see eq. (2.57)) splitting the LO and NLO parts, both in VIA and using HQET
SR results for the Bag parameters. NLO-QCD corrections turn out to have an essential
numerical effect for the four-quark contributions. In the case of the D0 and D+

s mesons
these corrections lift the helicity suppression of weak exchange and weak annihilation being
present in LO-QCD when using VIA. For the D+

s meson, in addition to the CKM dominant
WA contribution, there is a correction due to CKM suppressed but nevertheless large PI
topology. In the case of the D+ meson the overall contribution from Pauli interference
turns out to be huge, of the order of −2.5 ps−1. In addition, the NLO correction to Pauli
interference turn also out to be very large, 50%–100% of the LO term depending on the
mass scheme. Already in the B system this NLO-QCD corrections were found to be of
the order of 30% for the ratio τ(B+)/τ(Bd), see e.g. ref. [54] in the Pole scheme. Thus,
neglecting these contributions for charm lifetime studies, as done in ref. [80], is clearly not
justified and a knowledge of NNLO-QCD corrections to the four-quark contributions would
be highly desirable.
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Mass scheme D0 D+ D+
s

VIA

Pole −0.014︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.014︸ ︷︷ ︸
∆NLO

−2.64︸ ︷︷ ︸
NLO

= −1.68︸ ︷︷ ︸
LO

−0.97︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

MS −0.010︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.010︸ ︷︷ ︸
∆NLO

−2.49︸ ︷︷ ︸
NLO

= −1.23︸ ︷︷ ︸
LO

−1.25︸ ︷︷ ︸
∆NLO

−0.18︸ ︷︷ ︸
NLO

= −0.08︸ ︷︷ ︸
LO

−0.10︸ ︷︷ ︸
∆NLO

Kinetic −0.012︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.53︸ ︷︷ ︸
NLO

= −1.42︸ ︷︷ ︸
LO

−1.11︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.10︸ ︷︷ ︸
LO

−0.09︸ ︷︷ ︸
∆NLO

1S −0.013︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.013︸ ︷︷ ︸
∆NLO

−2.60︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.11︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

HQET SR

Pole 0.007︸ ︷︷ ︸
NLO

= 0.019︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.89︸ ︷︷ ︸
NLO

= −1.87︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.16︸ ︷︷ ︸
LO

−0.05︸ ︷︷ ︸
∆NLO

MS 0.020︸ ︷︷ ︸
NLO

= 0.014︸ ︷︷ ︸
LO

+0.006︸ ︷︷ ︸
∆NLO

−2.72︸ ︷︷ ︸
NLO

= −1.37︸ ︷︷ ︸
LO

−1.35︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

Kinetic 0.014︸ ︷︷ ︸
NLO

= 0.016︸ ︷︷ ︸
LO

−0.002︸ ︷︷ ︸
∆NLO

−2.76︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.18︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.13︸ ︷︷ ︸
LO

−0.07︸ ︷︷ ︸
∆NLO

1S 0.009︸ ︷︷ ︸
NLO

= 0.018︸ ︷︷ ︸
LO

−0.008︸ ︷︷ ︸
∆NLO

−2.84︸ ︷︷ ︸
NLO

= −1.76︸ ︷︷ ︸
LO

−1.08︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.15︸ ︷︷ ︸
LO

−0.06︸ ︷︷ ︸
∆NLO

Table 9. Dimension-six contributions to D-meson decay widths (see eq. (2.57)) (in ps−1) and split
up into LO-QCD and NLO-QCD corrections within different mass schemes and both in VIA and
using the HQET SR for Bag parameters.

2.6 Dimension-seven four-quark operator contribution

The dimension-six four-quark operator contribution discussed in the previous section, is
obtained by neglecting in the expression of the incoming momentum pµ = pµc + pµq the
effect due to the small momentum of the light spectator quark pq ∼ ΛQCD. Including
also corrections linear in the quantity pq/mc, leads to the contribution of order 1/m4

c to
Γ(D), which can be described in terms of the following basis of dimension-seven operators,
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defined in full QCD, i.e.12

P q1 = mq (c̄(1− γ5)q)(q̄(1− γ5)c) , (2.58)

P q2 = 1
mc

(c̄
←
Dνγµ(1− γ5)Dνq)(q̄γµ(1− γ5)c) , (2.59)

P q3 = 1
mc

(c̄
←
Dν(1− γ5)Dνq)(q̄(1 + γ5)c) , (2.60)

together with the corresponding colour-octet operators Sq1 , S
q
2 , S

q
3 , containing the genera-

tors TA, and again a summation over colour indices is implied. Due to the presence in
eqs. (2.59), (2.60) of a covariant derivative acting on the charm quark field, which scales as
mc at this order, there is no immediate power counting for these operators, cf. the HQET
operators in eqs. (2.62), (2.63). Moreover, note that this basis differs from the one used in
ref. [58] for the computation of dimension-seven and dimension-eight contributions.

In order to evaluate the matrix element of the dimension-seven four-quark operators
using the framework of the HQET, one has to further expand the charm quark momentum,
according to pµ = mcv

µ + kµ + pµq , see eq. (2.9), as well as to include 1/mc corrections to
the effective heavy quark field and to the HQET Lagrangian, retaining only terms linear
in k/mc and pq/mc. The small residual momentum of the charm quark kµ will result in a
covariant derivative acting on hv and the small momentum of the spectator quark pµq will
result in a covariant derivative acting on the light quark field q. In this case, one obtains
the following basis, which includes the local operators

P̃ q1 = mq (h̄v(1− γ5)q)(q̄(1− γ5)hv) , (2.61)
P̃ q2 = (h̄vγµ(1− γ5)(iv ·D)q)(q̄γµ(1− γ5)hv) , (2.62)
P̃ q3 = (h̄v(1− γ5)(iv ·D)q)(q̄(1 + γ5)hv) , (2.63)

and

R̃q1 = (h̄vγµ(1− γ5)q)(q̄γµ(1− γ5)(i /D)hv) , (2.64)
R̃q2 = (h̄v(1− γ5)q)(q̄(1 + γ5)(i /D)hv) , (2.65)

supplemented by the corresponding colour-octet operators S̃q1,2,3 and Ũ
q
1,2, and the non-local

operators

M̃ q
1,π = i

∫
d4y T

[
Õq1(0), (h̄v(iD)2hv)(y)

]
, (2.66)

M̃ q
2,π = i

∫
d4y T

[
Õq2(0), (h̄v(iD)2hv)(y)

]
, (2.67)

M̃ q
1,G = i

∫
d4y T

[
Õq1(0), 1

2gs
(
h̄vσαβG

αβhv
)

(y)
]
, (2.68)

M̃ q
2,G = i

∫
d4y T

[
Õq2(0), 1

2gs
(
h̄vσαβG

αβhv
)

(y)
]
, (2.69)

12Notice that in e.g. ref. [56] it is used a redundant basis in which the operator denoted by P q2 is related to
P q1 by hermitean conjugation, namely P q2 = mq (c̄(1 + γ5)q)(q̄(1 + γ5)c) = (P q1 )†. Since these two operators
lead to the same matrix element, we only include P q1 in our basis. It then follows that the operators here
denoted by P q2 and P q3 , correspond respectively to P q3 and P q4 in the notation of ref. [56]. Furthermore, we
point out that the matrix element of the operator P q4 in eqs. (C5) and (C6) of ref. [56] should have the
opposite sign.
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also supplemented by the corresponding colour-octet operators.13 We see that, compared
to the QCD basis, there are in addition the two local operators R̃q1 and R̃q2 (and also the
corresponding colour-octet ones), which emerge from the expansion in eq. (2.11), and the
four non-local operators M̃ q

1,π, M̃
q
2,π, M̃

q
1,G and M̃ q

2,G (and the corresponding colour-octet
ones) which are obtained by taking the time-ordered product of the dimension-six operators
with the 1/mc correction to the HQET Lagrangian, see e.g. ref. [71] for details.

We parametrise the matrix elements of the operators in eqs. (2.61)–(2.69) using VIA
and account for deviations from it by including the corresponding Bag parameters, as it
is explicitly shown in appendix C. However, since for these matrix elements there is no
non-perturbative evaluation available yet, in our analysis we have to rely only on VIA. It
follows that, at LO-QCD the matrix element of the dimension-seven operators listed above,
can be expressed in terms of the HQET non-perturbative parameters F (µ), G1(µ), G2(µ),
and Λ̄, so far determined only with large uncertainties. For this reason, we prefer to use
as an input the QCD decay constant fD, which is computed very precisely using Lattice
QCD [78]. In doing so, we obtain that in VIA and at the matching scale µ = mc, the
contribution of the local operators R̃q1,2 as well as that of the non-local ones M̃ q

1,π, M̃
q
2,π,

M̃ q
1,G and M̃ q

2,G can be entirely absorbed in the QCD decay constant fD, cf. eq. (2.47) (more
precisely, in the matrix element of the dimension-six QCD operators in eqs. (2.35), (2.36),
which are proportional to fD), so that we are left only with the 1/mc contribution due to
the operators P̃ q1,2,3, analogously to the QCD case.14

To make this point more clear, we consider as an example the contribution due to
Pauli interference at LO-QCD and up to order 1/m4

c , in the case of c → sd̄u transition,
which constitutes the dominant correction to Γ(D+),

Im T PI = Γ0 |V ∗ud|2
32π2

m3
c

(1− zs)2
[
CSPI

(
Õd1 + R̃d1

mc
+
M̃d

1,π
mc

+
M̃d

1,G
mc

+ 21 + zs
1− zs

P̃ q3
mc

)

+ (colour-octet part)
]
, (2.70)

with CSPI defined in eq. (2.55). By evaluating the matrix element of ImT PI in VIA, the con-
tribution due to the colour-octet operators vanishes. Moreover, using the parametrisation
for the matrix elements of the four-quark operators given in eq. (2.43) and in appendix C,
we obtain in VIA and setting µ = mc, that

〈D+|Õd1 + R̃d1
mc

+
M̃d

1,π
mc

+
M̃d

1,G
mc
|D+〉HQET = F 2(mc)mD+

[
1− Λ̄

mc
+ 2G1(mc)

mc
+ 12G2(mc)

mc

]
= f2

Dm
2
D+ = 〈D+|Od1 |D+〉QCD, (2.71)

where in the second line we have used the conversion between the QCD and HQET decay
constants given in eq. (2.47), showing that the contribution of the local operators R̃qi and

13Operators which vanish due to the equation of motion (iv ·D)hv = 0 are not shown.
14In the matrix element of P̃ q1,2,3 one can replace the HQET decay constant with the QCD one, up to

higher order corrections.
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non-local operators M̃ q
i,π and M̃ q

i,G is entirely absorbed in the QCD decay constant. Note
that, by neglecting the effect due to the strange quark mass and using VIA we reproduce
the approximate result of eq. (19) in ref. [79].

The same argument applies also to the remaining topologies i.e. WE and WA. However,
it is worth mentioning that in VIA and neglecting the strange quark mass, the contribu-
tion of WE and WA exactly vanishes at LO-QCD, due to the helicity suppression. This
suppression is lifted once the s-quark mass or perturbative gluon corrections are included,
and in this case it becomes again manifest that the contributions of R̃qi , M̃

q
i,π and M̃q

i,G in
HQET can be completely absorbed in fD by evaluating the matrix elements in VIA.15 We
note that a detailed analysis of the dimension-seven contributions within the HQET has
been performed in ref. [77] for the case of B − B̄-mixing. Specifically, it was found that
in VIA, subleading power corrections due to non-local operators can be entirely absorbed
in the definition of the QCD decay constant, and that the residual 1/mb corrections, due
to the running of the local dimension-seven operators from the scale mb to µ ∼ 1GeV, is
numerically small (∼ 5% for ref. [77]).16

Finally, by summing over all the CKM modes, at LO-QCD, the dimension-seven con-
tribution can therefore be presented as (with q = u, d, s)

16π2 Γ̃Dq7
〈Õ7〉Dq
m4
c

= Γ0
|Vcs|2

3∑
i=1

{ ∑
q1,q2=d,s

|λq1q2 |
2
[
GWE
i,q1q2

〈Dq|P̃ ui |Dq〉
m4
c

+GPI
i,q1q2

〈Dq|P̃ q2
i |Dq〉
m4
c

+GWA
i,q1q2

〈Dq|P̃ q1
i |Dq〉
m4
c

]
+

∑
q1=d,s

|Vcq1 |2
∑
`=e,µ

[
GWA
i,q1`
〈Dq|P̃ q1

i |Dq〉
m4
c

]}
+(colour-octet part), (2.72)

where the matrix elements of the dimension-seven operators are presented in appendix C.
We confirm the results for the short-distance coefficients GWE

i,q1q2 , G
PI
i,q1q2 and GWA

i,q1q2 , G
WA
i,q1`

presented in ref. [56]. Note that, due to the current accuracy of the analysis, at dimension-
seven we include only the contribution of the valence-quark, therefore e.g. 〈D0|P si |D0〉 = 0.
Numerical values of the dimension-seven contributions to the decay rates and the ratios
will be presented in section 4. In table 10 we show the central values of the dimension-seven
contributions in ps−1 in the kinetic mass scheme and we find for the D+ meson a correction
that is almost as large as the leading dimension three term, see table 5.

3 Determination of the non-perturbative parameters

In the present section, we discuss the numerical determination for the matrix elements of
the operators introduced in sections 2.2–2.6. We start with the operators of the lowest
mass dimension.

15Note, that for the operator Oq2 the contribution of Rq2 is absorbed by the combination (mD fD/mc)2 ≈
(1 + 2 Λ̄/mc) f2

D.
16By neglecting the effect of running down to a lower scale, from ref. [77] one can see that in VIA the

QCD decay constant entirely absorbs all the 1/mb contributions.
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D0 D+ D+
s

16π2 Γ̃Dq7
〈Õ7〉Dq
m4
c

[ps−1] 4.6× 10−7 1.05 0.10

Table 10. Dimension-seven contributions to D-meson decay widths (see eq. (2.72)) in ps−1 within
VIA in the kinetic mass scheme.

3.1 Parameters of the chromomagnetic operator

For the B system many of non-perturbative parameters have been determined by perform-
ing fits to the experimental data for inclusive semileptonic decays [81, 82]. In the case of
the chromomagnetic operator, one finds [82]

µ2
G(B) = (0.306± 0.050) GeV2 . (3.1)

Assuming heavy quark symmetry we expect the corresponding parameter in the D system
to have a similar size. Another way of estimating the value of µ2

G is to use the well-known
spectroscopy relation [83]

µ2
G(D(s)) = 3

2mc (MD∗(s)
−MD(s)) , (3.2)

which holds up to power corrections. Using the value for the meson masses given in the
PDG [1] and setting mc = 1.27 GeV, we obtain the following estimates:

µ2
G(D) = (0.268± 0.107) GeV2, µ2

G(Ds) = (0.274± 0.110) GeV2, (3.3)

where we have conservatively added an uncertainty of 40% due to unknown power correc-
tions of order 1/mc. The values in eq. (3.3) are roughly 19% smaller than those obtained
from experimental fits for semileptonic B-meson decays, see eq. (3.1). Moreover, eq. (3.2)
leads to a tiny amount of SU(3)F -symmetry breaking of ≈ 2%, which might, however,
be enhanced by the neglected power corrections. In the literature many times instead of
eq. (3.2) the relation [71, 84]

µ2
G(D(s)) = 3

4

(
M2
D∗(s)
−M2

D(s)

)
(3.4)

is adopted, which coincides with eq. (3.2) up to corrections of order 1/mc. Numerically we
find that eq. (3.4) yields

µ2
G(D) = 0.41 GeV2 , µ2

G(D+
s ) = 0.44 GeV2 , (3.5)

which are roughly 23% higher than that in eq. (3.1). In our numerical analysis, we will use
the average value of the two determinations in eq. (3.3) and eq. (3.5). This gives

µ2
G(D) = (0.34± 0.10) GeV2, µ2

G(D+
s ) = (0.36± 0.10) GeV2 , (3.6)

which agrees well with the one in eq. (3.1).
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Source LQCD [59] LQCD [60] Exp. fit [81] Exp. fit [82] QCD SR [65] QCD SR [64]

µ2
π[GeV2] 0.05(22) 0.314(15) 0.465(68) 0.477(56) 0.10(5) 0.6(1)

Table 11. Different determinations of µ2
π(B) available in the literature.

Thus, from eq. (2.28), we expect corrections to the total decay rate due to the chro-
momagnetic operator, cG µ2

G/(c3m
2
c) ranging between −6% and +8% with respect to the

leading free-quark decay contribution. A large part of the sizable uncertainty derives from
the cancellations in the coefficient cG, shown in table 6 and figure 3, which could be re-
duced with a complete determination of the NLO-QCD corrections to cG. For semileptonic
rates the contribution of the chromomagnetic operator can be even of the order of 20%,
see section 4.3.

An experimental determination of µ2
G(D) from inclusive semileptonic D-meson decays

could further reduce the uncertainties and could in particular give some insight into the
numerical size of SU(3)F breaking.

3.2 Parameters of the kinetic operator

For the matrix element of the kinetic operator no precise determination is available so far
in the charm sector. Several predictions of µ2

π available in the literature for the B-meson
cover a large range of values, see table 11. Assuming heavy quark symmetry one can use
the value obtained from the recent fit of the semileptonic B-meson decays [82]:

µ2
π(B) = (0.477± 0.056) GeV2 , (3.7)

to get the following estimate for the D-meson

µ2
π(D) = (0.48± 0.20) GeV2. (3.8)

In the above, we have again added a conservative uncertainty of 40% to account for the
breaking of the heavy quark symmetry. This value clearly fulfills the theoretical bound
µ2
π ≥ µ2

G, see e.g. the review [85]. Thus we expect from eq. (2.28) corrections due to the
kinetic operator of the order of −10%, which is also found in section 4.3 — both for the
total decay rate and the semileptonic one.

The SU(3)F breaking effects for the kinetic operator have been estimated in refs. [56, 86]

µ2
π(D+

s )− µ2
π(D0) ≈ 0.09 GeV2 , (3.9)

leading to the following estimate we use for the Ds meson:

µ2
π(D+

s ) = (0.57± 0.23) GeV2. (3.10)

Again a more precise experimental determination of µ2
π from fits to semileptonic D+, D0

and D+
s meson decays — as it was done for the B+ and B0 decays — would be very

desirable.
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3.3 Parameters of the Darwin operator

For the matrix element of the Darwin operator no theoretical determination for the charm
sector is available. We again could assume heavy quark symmetry and use the correspond-
ing value in the B-system, obtained from recent fits of the semileptonic decays [82]:

ρ3
D(B) = (0.185± 0.031) GeV3 , (3.11)

and add quadratically an uncertainty of 40% for the transition from the B to the D system,
leading to a first estimate of

ρ3
D(D)I = (0.185± 0.080) GeV3 . (3.12)

Alternatively the Darwin parameter can be related to the matrix elements of the dimension-
six four-quark operators through the equation of motion for the gluon field. At leading
order in 1/mQ one obtains:

ρ3
D(H) = g2

s

18f
2
H mH

2 B̃q′

2 − B̃
q′

1 + 3
4 ε̃

q′

1 −
3
2 ε̃

q′

2 +
∑

q=u,d,s

(
2δ̃qq

′

2 − δ̃
qq′

1 + 3
4 δ̃

qq′

3 −
3
2 δ̃

qq′

4

)
+O

(
1
mQ

)
,

(3.13)

where H is a heavy hadron with the mass mH and the decay constant fH , q′ = u, d, s is the
light valence quark in the H-hadron, and the Bag parameters B̃q

1, B̃
q
2, ε̃

q
1, ε̃

q
2, δ̃

qq′

1 δ̃qq
′

2 δ̃qq
′

3
and δ̃qq

′

4 were introduced in section 2.5. Their numerical values are summarised in table 17
in appendix C. The strong coupling gs has its origin in the non-perturbative regimes —
e.g. ref. [87] suggests to set αs = 1.

Using the input from the appendix A and applying eq. (3.13) we derive estimates of ρ3
D

for B- and D-mesons both in VIA and using the HQET SR results for the Bag parameters.
The values are summarised in table 12 for the three different choices, αs(µ = 1.5 GeV),
αs(µ = 1 GeV) and αs = 1.

Setting αs = 1 in eq. (3.13) yields values for ρ3
D that are close to the one determined

from the fit of semileptonic B meson decays, eq. (3.11), indicating 1/mb-corrections in
eq. (3.13) of the order of +30%. Moreover, we find that VIA gives in eq. (3.13) values
which are very close to the HQET sum rule ones. We emphasise that due to the sizeable
SU(3)F breaking in the decay constants, eq. (3.13) leads also to a sizable SU(3)F breaking
for the non-perturbative parameters ρ3

D(D), ρ3
D(D+

s ). Taking the values corresponding to
αs = 1 and using HQET SR results for the bag parameters we get the second estimate
(last column in table 12)

ρ3
D(D)II = (0.056± 0.022) GeV3 , ρ3

D(D+
s )II = (0.082± 0.033) GeV3 , (3.14)

where we have again added a 40% uncertainty. Finally, another possibility to extract ρ3
D(D)

is to substitute in eq. (3.13) the values of the Bag parameters in VIA, which gives

ρ3
D(H) ≈ g2

s

18f
2
H mH . (3.15)
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µ = 1.5GeV µ = 1.0GeV αs = 1

ρ3
D[GeV3] VIA HQET VIA HQET VIA HQET

B+, Bd 0.048 0.047 0.066 0.064 0.133 0.129

Bs 0.072 0.070 0.098 0.095 0.199 0.193

D+, D0 0.021 0.020 0.027 0.026 0.059 0.056

D+
s 0.030 0.029 0.040 0.038 0.086 0.082

Table 12. Values of ρ3
D(H) for B- and D-mesons in VIA and using HQET SR for Bag parameters

for three different choices of αs in eq. (3.13).

Assuming a similar size for the strong coupling in both the B- and D-meson matrix ele-
ments, from eq. (3.15) one obtains:

ρ3
D(D) ≈ f2

DmD

f2
BmB

ρ3
D(B) , ρ3

D(Ds) ≈
f2
Ds
mDs

f2
BmB

ρ3
D(B) . (3.16)

Using the most precise determination of the decay constants from Lattice QCD [78], and of
the meson masses from PDG [1] and taking into account the value of ρ3

D(B) in eq. (3.11),
leads to the following estimates:

ρ3
D(D)III = (0.082± 0.035) GeV3 , ρ3

D(Ds)III = (0.119± 0.052) GeV3 , (3.17)

where we again assign in addition a conservative 40% uncertainty due to missing power
corrections. These values are consistent with the numbers shown in table 12 for αs = 1.
Contrary to the case of the dimension-five non-perturbative parameters, in eq. (3.17) one
observes a large SU(3)f -symmetry breaking of ≈ 46%, similar to the ≈ 49% that one
obtains for the B(s)-mesons, mostly stemming from the ratios fBs/fBd and fD+

s
/fD0 . In our

numerical analysis we use the values shown in eq. (3.17), which lies between the estimates
obtained in eq. (3.12) and eq. (3.14).

Again, here a more precise experimental determination of ρ3
D from fits to semileptonic

D+, D0 and D+
s meson decays — as it was done for the B+ and B0 decays — would be

very desirable and could have a significant effect on the phenomenology of inclusive charm
decays.

3.4 Bag parameters of dimension-six and dimension-seven

The dimension-six Bag parameters of the D+ and D0 mesons have been determined
using HQET Sum Rules [66]; strange quark mass corrections, relevant for the Bag param-
eter of the D+

s meson, as well as eye-contractions have been computed for the first time in
ref. [68]. The results are collected in table 17 and the HQET sum rules suggest values for
the Bag parameter that are very close to VIA.

For the dimension-seven Bag parameters (defined in HQET), we apply VIA. As one can
see from appendix C, the matrix elements of dimension-seven operators in HQET depend
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VIA

Observable Pole MS Kinetic 1S Exp. value

Γ(D0)[ps−1] 1.71 1.49 1.58 1.66 2.44

Γ(D+)[ps−1] 0.22 −0.01 0.11 0.18 0.96

Γ̄(D+
s )[ps−1] 1.76 1.51 1.61 1.71 1.88

τ(D+)/τ(D0) 2.55 2.56 2.53 2.54 2.54

τ̄(D+
s )/τ(D0) 0.97 0.99 0.98 0.98 1.30

BD0
sl [%] 5.43 6.55 6.14 5.75 6.49

BD+
sl [%] 13.8 16.6 15.6 14.6 16.07

BD+
s

sl [%] 7.12 8.42 7.95 7.50 6.30

ΓD+
sl /ΓD

0
sl 1.00 1.00 1.00 1.00 0.985

ΓD
+
s

sl /ΓD
0

sl 1.06 1.05 1.05 1.05 0.790

Table 13. Central values of the charm observables in different quark mass schemes using VIA for
the matrix elements of the 4-quark operators compared to the corresponding experimental values
(last column).

also on the parameters Λ̄(s) = mD(s) −mc, for which we use the following ranges [68]

Λ̄ = (0.5± 0.1) GeV,
Λ̄s = (0.6± 0.1) GeV. (3.18)

4 Numerical results

In this section, using all the ingredients described above, we present the theoretical predic-
tion for the total and semileptonic decay rates, and for their ratios. All the input used in our
numerical analysis are collected in appendix A. For each observable, we investigate several
quark mass schemes (with the kinetic scheme as default) and compare the corresponding
results using both VIA and HQET SR values for the Bag parameters. The uncertainties
quoted below are obtained by varying all the input parameters within their intervals. For
the renormalisation scales, we fix the central values to µ1 = µ0 = 1.5 GeV and vary both of
them independently between 1 and 3GeV. Moreover we add an estimated uncertainty due
to missing higher power corrections. The results are discussed in the following subsections
and they are summarised in tables 13, 14, 15 and in figure 7.

4.1 The total decay rates

We start by investigating the theory prediction of the total decay rates, which are expected
to have sizable uncertainties due to the dependence of the free quark decay on the fifth
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HQET SR

Observable Pole MS Kinetic 1S Exp. value

Γ(D0)[ps−1] 1.73 1.52 1.61 1.68 2.44

Γ(D+)[ps−1] −0.03 −0.24 −0.12 −0.06 0.96

Γ̄(D+
s )[ps−1] 1.75 1.50 1.60 1.69 1.88

τ(D+)/τ(D0) 2.83 2.83 2.80 2.82 2.54

τ̄(D+
s )/τ(D0) 0.99 1.01 1.00 1.00 1.30

BD0
sl [%] 5.26 6.42 6.00 5.59 6.49

BD+
sl [%] 13.4 16.3 15.2 14.2 16.07

BD+
s

sl [%] 7.10 8.36 7.91 7.48 6.30

ΓD+
sl /ΓD

0
sl 1.002 1.001 1.001 1.002 0.985

ΓD
+
s

sl /ΓD
0

sl 1.08 1.06 1.07 1.08 0.790

Table 14. Central values of the charm observables in different quark mass schemes using HQET sum
rule results [66, 68] for the matrix elements of the 4-quark operators compared to the corresponding
experimental values (last column).

Observable HQE prediction Exp. value

Γ(D0)[ps−1] 1.61± 0.37+0.46 +0.01
−0.37−0.01 2.44± 0.01

Γ(D+)[ps−1] −0.12± 0.77+0.59 +0.25
−0.28−0.10 0.96± 0.01

Γ̄(D+
s )[ps−1] 1.60± 0.44+0.52 +0.02

−0.41−0.01 1.88± 0.02

τ(D+)/τ(D0) 2.80± 0.85+0.01 +0.11
−0.14−0.26 2.54± 0.02

τ̄(D+
s )/τ(D0) 1.00± 0.16+0.02 +0.01

−0.03−0.01 1.30± 0.01

BD0
sl [%] 6.00± 1.57+0.33

−0.28 6.49± 0.11

BD+
sl [%] 15.23± 4.07+0.83

−0.72 16.07± 0.30

BD+
s

sl [%] 7.91± 2.64+0.43
−0.38 6.30± 0.16

ΓD+
sl /ΓD

0
sl 1.001± 0.008± 0.001 0.985± 0.028

ΓD
+
s

sl /ΓD
0

sl 1.07± 0.24± 0.01 0.790± 0.026

Table 15. HQE predictions for all the ten observables in the kinetic scheme (second column), using
HQET SR results for the Bag parameters. The first uncertainty is parametric, the second and third
uncertainties are due to µ1- and µ0-scales variation, respectively. The results are compared with
the corresponding experimental measurements (third column).

– 30 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
1

power of the charm quark mass and due to large perturbative and power corrections. The
central values for the HQE prediction of the decay widths in different mass schemes, are
shown in the three first rows of table 13, using VIA for the Bag parameters and of table 14
using the HQET sum rules results. In table 15 we show the theoretical prediction including
the corresponding uncertainties within the kinetic mass scheme and using the HQET SR
values for the dimension-six Bag parameters — the same result is visualised in figure 7. In
each table, the corresponding experimental determinations are listed in the last column.
For theD+

s meson an additional subtlety is arising due to the large branching fraction of the
leptonic decay D+

s → τ+ντ , which is not included in the HQE, since the tau lepton is more
massive than the charm quark. Using the experimental value of the leptonic branching
ratio [1] (online update)

Br(D+
s → τ+ντ ) = (5.48± 0.23)% , (4.1)

we therefore define a reduced decay rate Γ̄(D+
s ):

Γ̄(D+
s ) ≡ Γ(D+

s )− Γ(D+
s → τ+ντ ) = (1.88± 0.02) ps−1 , (4.2)

leading also to a reduced lifetime ratio

τ̄(D+
s )

τ(D0) = 1.30± 0.01 . (4.3)

The first and main result we deduce from table 15 and figure 7, is that the HQE gives
values of Γ(D0), Γ(D+) and Γ(D+

s ) which lie in the ballpark of the experimental numbers.
Looking closer we find that our prediction for Γ(Ds) is in good agreement with experiment
(within large uncertainties), while the total decay rates of the D0 and D+ mesons are
underestimated. As a reason for that we suspect missing NNLO-QCD corrections to the
free charm quark decay. Second, using different mass schemes yields similar results, and
further higher order correction will reduce the differences between these schemes. Due to
the fact that the values of the HQET Bag parameters [66, 68] listed in table 17 are close
to the corresponding ones in VIA, the predictions shown in table 13 and in table 14 do not
differ much. A peculiar role is played by the D+ meson, where we get a huge theoretical
uncertainty stemming from the large negative value of the Pauli interference contribution
at dimension-six. This term actually dominates the total decay rate. Moreover, the large
negative value is further enhanced by NLO-QCD corrections, but partly compensated by
the dimension-seven contribution. Here further studies of the Bag parameters, e.g. via
an independent confirmation of the HQET sum rule results with lattice QCD, as well as
calculation of higher order QCD corrections to dimension-six and dimension-seven might
yield deeper insights.

In order to further analyse the size of the individual contributions to the total decay
rate, we show below the numerical coefficients of each non-perturbative parameter in the
HQE, using the central values for the input in appendix A and (as an example) the kinetic
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scheme for the charm mass with µcut = 0.5GeV, namely17

Γ(D0) = Γ0

[
6.15︸︷︷︸
cLO

3

+ 2.95︸︷︷︸
∆cNLO

3

− 1.66 µ
2
π(D)

GeV2 + 0.13 µ
2
G(D)

GeV2 + 23.6 ρ
3
D(D)
GeV3

−1.60 B̃q
1 + 1.53 B̃q

2 − 21.0 ε̃q1 + 19.2 ε̃q2 + 0.00︸︷︷︸
dim−7,VIA

−10.7 δ̃qq1 + 1.53 δ̃qq2 + 54.6 δ̃qq3 + 0.13 δ̃qq4 − 29.2 δ̃sq1 + 28.8 δ̃sq2 + 0.56 δ̃sq3 + 2.36 δ̃sq4

]
= 6.15 Γ0

[
1 + 0.48− 0.13 µ2

π(D)
0.48 GeV2 + 0.01 µ2

G(D)
0.34 GeV2 + 0.31 ρ3

D(D)
0.082 GeV3

− 0.01︸︷︷︸
dim−6,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.137 ε̃q1
−0.04 − 0.125 ε̃q2

−0.04 + 0.00︸︷︷︸
dim−7,VIA

− 0.0045 rqq1 − 0.0004 rqq2 − 0.0035 rqq3 + 0.0000 rqq4

− 0.0109 rsq1 − 0.0079 rsq2 − 0.0000 rsq3 + 0.0001 rsq4
]
. (4.4)

In the second equality in eq. (4.4) we have normalised the HQE parameters µ2
π(D), µ2

G(D)
and ρ3

D(D) to their central values. Moreover, we introduce

B̃q
i = 1 + δB̃q

i , (4.5)

to indicate deviations from VIA and we conservatively normalise δB̃q
i to 0.02. The matrix

elements of the colour-octet operators are normalised to −0.04 — here using the central
value of the HQET determination for ε̃ q2 might underestimate its effect due to the quoted
HQET uncertainties. Furthermore, we introduce also the ratios rqq

′

i ≡ δ̃qq
′

i /〈δ̃qq
′

i 〉, with
〈δ̃qq

′

i 〉 being the central values listed in table 17.
For the neutral D meson we find a convergent series, with the largest correction due to

the QCD corrections to the free quark decay and the contribution of the Darwin operator.
Here a calculation of the NNLO-QCD corrections to the free-quark decay would be very
desirable, as well as a more profound determination of the value of the matrix element
of the Darwin operator. Note that since we take as a central value µ1 = 1.5GeV, the
coefficient of the chromomagnetic operator in eq. (4.4) turns out accidentally to be very
small, see figure 3. In fact, varying the renormalisation scale µ1 between 1 and 3GeV
one finds quite sizable contribution of ∼ 5–10% due to µ2

G(D). Because of the helicity
suppression, we get only small contributions from the weak exchange diagrams. In LO-
QCD and VIA these corrections actually vanish, the small value ≈ −0.01 stems from
NLO-QCD corrections, which break the helicity suppression. Nevertheless, depending on
the size of the ε̃qi , the colour-octet operator could give contributions of a similar size as the
kinetic operator. Finally, according to the HQET SR determination, the numerical effect
of the eye-contractions does not seem to be pronounced.

17Here and hereafter, in the Bag parameters we use the same label q both for u or d-quarks, reflecting
the isospin symmetry, namely B̃ui = B̃di ≡ B̃qi and δ̃udi = δ̃dui ≡ δ̃qqi , δ̃usi = δ̃dsi ≡ δ̃qsi , δ̃sui = δ̃sdi ≡ δ̃sqi .
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Similarly, we get for the D+-meson decay width:

Γ(D+) = Γ0

[
6.15︸︷︷︸
cLO

3

+ 2.95︸︷︷︸
∆cNLO

3

−1.66 µ
2
π(D)

GeV2 + 0.13 µ
2
G(D)

GeV2 + 23.6 ρ
3
D(D)
GeV3

−16.9 B̃q
1 + 0.56 B̃q

2 + 84.0 ε̃q1 − 1.34 ε̃q2 + 6.76︸︷︷︸
dim−7

−0.06 δ̃qq1 + 0.06 δ̃qq2 − 16.8 δ̃qq3 + 16.9 δ̃qq4 − 29.3 δ̃sq1 + 28.8 δ̃sq2 + 0.56 δ̃sq3 + 2.36 δ̃sq4

]
= 6.15 Γ0

[
1 + 0.48− 0.13 µ2

π(D)
0.48 GeV2 + 0.01 µ2

G(D)
0.34 GeV2 + 0.31 ρ3

D(D)
0.082 GeV3

− 2.66︸︷︷︸
dim−6,VIA

− 0.055 δB̃
q
1

0.02 + 0.002 δB̃
q
2

0.02 − 0.546 ε̃q1
−0.04 + 0.009 ε̃q2

−0.04 + 1.10︸︷︷︸
dim−7,VIA

− 0.0000 rqq1 − 0.0000 rqq2 + 0.0011 rqq3 + 0.0008 rqq4

− 0.0109 rsq1 − 0.0080 rsq2 − 0.0000 rsq3 + 0.0001 rsq4
]
, (4.6)

where we observe huge negative corrections due to Pauli interference. In VIA we get from
dimension-six (summing LO and NLO-QCD) a ≈ −270% correction to the LO-free-quark
decay. Dimension-seven yields a large positive correction of +110%. Because of the almost
perfect cancellation between the three dominant terms, 16π2

(
Γ̃(0)

6 + αs/πΓ̃(1)
6

)
〈Õ6〉VIA/m3

c ,
Γ3 and 16π2Γ̃(0)

7 〈Õ7〉VIA/m4
c , the HQE series for Γ(D+) becomes very sensitive to sub-

dominant terms, e.g. higher order QCD corrections to Γ̃6, Γ̃7, Γ3, Γ5 and Γ6, and to
deviations of the Bag parameter from VIA. In this case it might also be interesting to fur-
ther study estimates of higher orders in the HQE, see e.g. refs. [57, 58]. Else, we get for the
two-quark ∆C = 0 contributions the same (due to isospin) size of corrections as in the D0

case and we find, based on the HQET sum rules estimates, again that the eye-contractions
give only tiny corrections.

Finally, we have for the D+
s -meson decay width:

Γ(D+
s ) = Γ0

[
6.15︸︷︷︸
cLO

3

+ 2.95︸︷︷︸
∆cNLO

3

− 1.66 µ
2
π(Ds)
GeV2 + 0.13 µ

2
G(Ds)
GeV2 + 23.6 ρ

3
D(Ds)
GeV3

− 49.6 B̃s
1 + 48.4 B̃s

2 − 13.7 ε̃s1 + 18.8 ε̃s2 + 0.63︸︷︷︸
dim−7

− 15.8 δ̃qs1 + 2.34 δ̃qs2 + 55.4 δ̃qs3 + 25.0 δ̃qs4

]
= 6.15 Γ0

[
1 + 0.48− 0.15 µ2

π(Ds)
0.57 GeV2 + 0.01 µ2

G(Ds)
0.36 GeV2 + 0.46 ρ3

D(Ds)
0.119 GeV3

− 0.20︸︷︷︸
dim−6,VIA

− 0.161 δB̃
s
1

0.02 + 0.157 B̃s
2

0.02 + 0.089 ε̃s1
−0.04 + 0.122 ε̃s2

0.04 + 0.10︸︷︷︸
dim−7,VIA

− 0.0064 rqs1 − 0.0007 rqs2 − 0.0036 rqs3 + 0.0012 rqs4

]
, (4.7)
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where we find again a converging series with the dominant contribution coming from the
NLO-QCD corrections to the free quark decay and the Darwin term. For the latter a more
reliable determination of the corresponding non-perturbative matrix elements would be
highly desirable. In VIA, the four-quark operators show again a pronounced cancellation
between dimension-six and dimension-seven contributions.

4.2 The lifetime ratios

In order to eliminate the contribution of the free-quark decay, we calculate the lifetime
ratios as

τ(D+
(s))

τ(D0) = 1 +
[
ΓHQE(D0)− ΓHQE(D+

(s))
]
τ exp(D+

(s)) , (4.8)

where ΓHQE(D0) and ΓHQE(D+
(s)) are given in eqs. (4.4) and (4.6), (4.7), respectively. In

these ratios, Γ3 cancels exactly and Γ5 and Γ6 cancel up to isospin or SU(3)F breaking
corrections in the corresponding non-perturbative matrix elements. The lifetime ratios
should then be dominated by the contribution of four-quark operators.

The central values for the HQE prediction of the lifetime ratios in several mass schemes
are shown in the fourth and fifth rows of table 13, table 14, table 15 and in figure 7 and
it turns out that the large lifetime ratio τ(D+)/τ(D0) is well reproduced in all schemes,
while in the case of τ(D+

s )/τ(D0) the HQE predictions lie closer to one compared to the
experimental values. The latter theory result is dominated by SU(3)F breaking differences
of the non-perturbative matrix elements µ2

π, µ2
G and ρ3

D, which are only very roughly
known, see section 3. With future, more precise determinations of these parameters our
conclusion might significantly change for this lifetime ratio.

The large lifetime ratio τ(D+)/τ(D0) can be expressed as

τ(D+)
τ(D0) = 1+2.46B̃q

1 +0.16B̃q
2−16.9 ε̃q1+3.31 ε̃q2 −1.09︸ ︷︷ ︸

dim−7,VIA

−1.71 δ̃qq1 +0.24 δ̃qq2 +1.15 δ̃qq3 −2.71 δ̃qq4 +0.01 δ̃sq1 −0.01 δ̃sq2 +0.00 δ̃sq3 +0.00 δ̃sq4

= 1 + 2.62︸ ︷︷ ︸
dim−6,VIA

− 1.09︸ ︷︷ ︸
dim−7,VIA

+0.049 δB̃
q
1

0.02 +0.003 δB̃
q
2

0.02 +0.676 ε̃q1
−0.04−0.132 ε̃q2

−0.04

−0.004rqq1 −0.000rqq2 −0.005rqq3 −0.001rqq4 . (4.9)

In VIA, we predict a lifetime ratio of 2.5, which is already quite close to the experimental
value. Again, we observe here a sizable cancellation between dimension-six and dimension-
seven contributions. In order to improve the theoretical prediction, a more precise deter-
mination of the Bag parameters of the colour-octet operators is mandatory, as well as of
the perturbative higher order QCD corrections in Γ̃6 and Γ̃7.

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
1

And finally we get for the lifetime ratio τ(D+
s )/τ(D0):

τ(D+
s )

τ(D0) = 1+0.14 µ
2
π(Ds)−µ2

π(D)
GeV2 −0.01 µ

2
G(Ds)−µ2

G(D)
GeV2 −1.93 ρ

3
D(Ds)−ρ3

D(D)
GeV3 −0.05︸ ︷︷ ︸

dim−7,VIA

−0.13B̃q
1 +0.13B̃q

2 +4.06B̃s
1−3.96B̃s

2−1.72 ε̃q1+1.57 ε̃q2+1.12 ε̃s1−1.54 ε̃s2
−0.88 δ̃qq1 +0.13 δ̃qq2 +4.47 δ̃qq3 +0.01 δ̃qq4 −2.39 δ̃qs1 +2.36 δ̃qs2 +0.05 δ̃qs3 +0.19 δ̃qs4

+1.29 δ̃sq1 −0.19 δ̃sq2 −4.54 δ̃sq3 −2.04 δ̃sq4

= 1+0.012 µ
2
π(Ds)−µ2

π(D)
0.09GeV2 −0.0002 µ

2
G(Ds)−µ2

G(D)
0.02GeV2 −0.071 ρ

3
D(Ds)−ρ3

D(D)
0.037GeV3

+0.10︸ ︷︷ ︸
dim−6,VIA

−0.05︸ ︷︷ ︸
dim−7,VIA

−0.003 δB̃
q
1

0.02 +0.003 δB̃
q
2

0.02 +0.081 δB̃
s
1

0.02−0.079 δB̃
s
2

0.02

+0.069 ε̃q1
−0.04−0.063 ε̃q2

−0.04−0.045 ε̃s1
−0.04−0.062 ε̃s2

0.04
−0.0023rqq1 −0.0002rqq2 −0.0018rqq3 +0.0000rqq4

−0.0055rqs1 −0.0040rqs2 −0.0000rqs3 +0.0001rqs4

+0.0032rsq1 +0.0003rsq2 +0.0018rsq3 −0.0006rsq4 . (4.10)

With the estimates of µ2
π, µ2

G and ρ3
D from section 3 we find that the largest individual

SU(3)F breaking effect (≈ −7%) comes from the Darwin term. Using VIA we obtain a
correction of +5% due to the four-quark contributions of dimension-six and dimension-
seven — finite values of the matrix elements of the colour-octet operators as well as of
δB̃s

1,2 might lead to numerically similar effects. Else we have a large number of smaller
SU(3)F breaking effects, which can be both positive and negative.

4.3 The semileptonic decay widths and their ratios

For discussing the inclusive semileptonic decays of D mesons, we introduce the short-hand
notations ΓDsl ≡ Γ(D → Xe+νe) and BD

sl ≡ Br(D → Xe+νe). We determine the theory
value of the semileptonic branching ratio as

BD,HQE
sl = ΓD,HQE

sl · τ(D)exp . (4.11)

The central values for the HQE prediction of the lifetime ratios in several mass schemes
are shown in the sixth, seventh and eighth row of table 13, table 14 and table 15 and in
figure 7.

The semileptonic decay rate of the D0 meson can be written (in the kinetic scheme) as

ΓD0
sl = Γ0

[
1.02︸︷︷︸
cLO

3

+ 0.16︸︷︷︸
∆cNLO

3

− 0.27 µ
2
π(D)

GeV2 − 0.84 µ
2
G(D)

GeV2 + 2.48 ρ
3
D(D)
GeV3

− 0.28 δ̃qq1 + 0.28 δ̃qq2 − 5.23 δ̃sq1 + 5.23 δ̃sq2

]
= 1.02 Γ0

[
1 + 0.16− 0.13 µ2

π(D)
0.48 GeV2 − 0.28 µ2

G(D)
0.34 GeV2 + 0.20 ρ3

D(D)
0.082 GeV3

− 0.0007 rqq1 − 0.0005 rqq2 − 0.0118 rsq1 − 0.0087 rsq2
]
, (4.12)
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where as for the total D0-meson decay width we find a converging series, with the largest
correction due to the dimension-five operators, followed by the Darwin operator contribu-
tion and the NLO-QCD corrections to the free quark decay. Note that only the non-valence
four-quark operator contributions (eye-contractions) are present here.

For the semileptonic D+-meson decay we obtain

ΓD+
sl = Γ0

[
1.02︸︷︷︸
cLO

3

+ 0.16︸︷︷︸
∆cNLO

3

− 0.27 µ
2
π(D)

GeV2 − 0.84 µ
2
G(D)

GeV2 + 2.48 ρ
3
D(D)
GeV3 + 0.00︸︷︷︸

dim−7,VIA

− 0.28 B̃q
1 + 0.28 B̃q

2 − 0.09 ε̃q1 + 0.09 ε̃q2 − 5.24 δ̃sq1 + 5.24 δ̃sq2

]
= 1.02 Γ0

[
1 + 0.16− 0.13 µ2

π(D)
0.48 GeV2 − 0.28 µ2

G(D)
0.34 GeV2 + 0.20 ρ3

D(D)
0.082 GeV3

− 0.00︸︷︷︸
dim−6,7,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ε̃q1
−0.04 − 0.004 ε̃q2

−0.04

− 0.0118 rsq1 − 0.0088 rsq2
]
, (4.13)

where we find the same series as for the neutral D-meson supplemented by contributions
from CKM suppressed weak annihilation, which vanish in VIA both at dimension-six and
dimension-seven. Deviations from VIA give very small corrections.

For the D+
s -meson we obtain

ΓD
+
s

sl = Γ0

[
1.02︸︷︷︸
cLO

3

+ 0.16︸︷︷︸
∆cNLO

3

− 0.27 µ
2
π(Ds)
GeV2 − 0.84 µ

2
G(Ds)
GeV2 + 2.48 ρ

3
D(Ds)
GeV3 + 0.00︸︷︷︸

dim−7,VIA

− 7.63 B̃s
1 + 7.63 B̃s

2 − 2.55 ε̃s1 + 2.37 ε̃s2 − 0.41 δ̃qs1 + 0.41 δ̃qs2

]
= 1.02 Γ0

[
1 + 0.16− 0.15 µ2

π(Ds)
0.57 GeV2 − 0.30 µ2

G(Ds)
0.36 GeV2 + 0.29 ρ3

D(Ds)
0.119 GeV3

− 0.00︸︷︷︸
dim−6,VIA

− 0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ε̃s1
−0.04 + 0.09 ε̃s2

0.04

− 0.0010 rqs1 − 0.0007 rqs2

]
, (4.14)

where we have a larger contribution due to CKM dominant weak annihilation as well as
SU(3)F breaking corrections. Again, in VIA the four-quark contributions vanish both
at dimension-six and dimension-seven, but now deviations from VIA might give sizable
corrections.

Using the experimental values for the D0 lifetime and semileptonic branching fraction,
we determine the semileptonic ratios in the following way

ΓD+
sl

ΓD0
sl

= 1 +
[
ΓD+
sl − ΓD0

sl

]HQE
[
τ(D0)
BD0
sl

]exp

, (4.15)

ΓD
+
s

sl

ΓD0
sl

= 1 +
[
ΓD

+
s

sl − ΓD0
sl

]HQE
[
τ(D0)
BD0
sl

]exp

, (4.16)
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where
[
ΓD0
sl

]HQE
,
[
ΓD+
sl

]HQE
and

[
ΓD

+
s

sl

]HQE
are given in eqs. (4.12), (4.13) and (4.14),

respectively.
The HQE values of these ratios are shown in the ninth and tenth rows of tables 13, 14
and 15 and in figure 7. In agreement with experiment HQE predicts values for ΓD+

sl /ΓD
0

sl

very close to one. Using the inputs from appendix A the HQE prefers also for ΓD
+
s

sl /ΓD
0

sl

values close to one, while experiment find a value as low as 0.79 — again a more profound
determination of µ2

G, µ2
π and ρ3

D as well as an inclusion of dimension-seven contributions
with two-quarks operators for D mesons might change this conclusion.

We expand ΓD+
sl /ΓD

0
sl as

ΓD+
sl

ΓD0
sl

= 1− 0.27 B̃q
1 + 0.27 B̃q

2 − 0.09 ε̃q1 + 0.08 ε̃q2 + 0.00︸ ︷︷ ︸
dim−7,VIA

+ 0.27 δ̃qq1 − 0.27 δ̃qq2 − 0.01 δ̃sq1 + 0.01 δ̃sq2

= 1 + 0.00︸︷︷︸
dim−6,7,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ε̃q1
−0.04 − 0.003 ε̃q2

−0.04 . (4.17)

Due to isospin symmetry, in eq. (4.17) the contributions of the kinetic, chromomagnetic
and the Darwin operators vanish. Moreover, in VIA there is also no correction due to the
spectator quark effects. Thus this ratio, within the framework of the HQE, is predicted to
be very close to one.

Finally, we obtain for the ratio ΓD
+
s

sl /ΓD
0

sl
18

ΓD
+
s

sl

ΓD0
sl

= 1− 0.27 µ
2
π(Ds)− µ2

π(D)
GeV2 − 0.82 µ

2
G(Ds)− µ2

G(D)
GeV2 + 2.42 ρ

3
D(Ds)− ρ3

D(D)
GeV3

− 7.47 B̃s
1 + 7.47 B̃s

2 − 2.50 ε̃s1 + 2.32 ε̃s2 + 0.00︸ ︷︷ ︸
dim−7,VIA

+ 0.27 δ̃qq1 − 0.27 δ̃qq2 + 5.11 δ̃sq1 − 5.11 δ̃sq2 − 0.40 δ̃qs1 + 0.40 δ̃qs2

= 1− 0.024 µ
2
π(Ds)− µ2

π(D)
0.09 GeV2 − 0.016 µ

2
G(Ds)− µ2

G(D)
0.02 GeV2 + 0.090 ρ

3
D(Ds)− ρ3

D(D)
0.037 GeV3

+ 0.00︸︷︷︸
dim−6,7,VIA

− 0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ε̃s1
−0.04 + 0.09 ε̃s2

0.04

+ 0.0007 rqq1 + 0.0005 rqq2 + 0.0118 rsq1 + 0.0087 rsq2 − 0.0001 rqs1 − 0.0007 rqs2 ,

(4.18)

which is dominated by SU(3)F -symmetry breaking corrections. The Darwin operator gives
a sizable positive contribution to the ratio, which is partly compensated by the kinetic and
the chromomagnetic terms. The spectator effects give in VIA a vanishing contribution, but
deviations from VIA could sizably affect the ratio and also eye-contractions could yield a
visible effect — here again a more precise determination of the non-perturbative parameters
is necessary in order to make more profound statements.

18We note here a typo in the corresponding expression of this ratio in ref. [56]. In eq. (40) of ref. [56],
the sign in front of the contribution of the kinetic operator has to be changed.
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Figure 7. A comparison of the HQE prediction for the charm observables in the kinetic scheme
(blue) with the corresponding experimental data (green).

5 Conclusions and outlook

We have performed a comprehensive study of charmed mesons lifetimes, of their ratios
and of the inclusive semileptonic decay rates. Compared to previous studies we have
included for the first time the sizeable contribution due to the Darwin term in the charm
sector (with new expressions shown in appendix B), non-perturbative estimates of the eye-
contractions [68] and strange quark mass corrections to the Bag parameters of the D+

s

meson [68]. Moreover we have studied different mass schemes for the charm quark.
In particular our new study supersedes the one done by some of us in ref. [66] and we

could clarify in the present work that the dimension-seven operators R̃q1,2 (introduced in
ref. [66] as P q5,6) can be absorbed in the definition of the QCD decay constant. In contrast
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to the present work, ref. [66] could describe the experimental number for τ(D+
s )/τ(D0) by

fitting the Bag parameters in order to accommodate the experimental value of ΓD
+
s

sl /ΓD
0

sl

— this can be achieved by demanding e.g. for the difference B̃s
1 − B̃s

2 ≈ 0.032, which is in
slight tension with the HQET sum rule result B̃s

1 − B̃s
2 = 0.004+0.019

−0.012 we are using here.

Ref. [80] also studies charm mesons, albeit restricting exclusively to a LO-QCD anal-
ysis. Different quark mass schemes can only be distinguished starting from NLO-QCD
onwards — working at leading order in QCD only, the different quark mass schemes used in
our work would induce a relative uncertainty to the free-quark decay of (1.48/1.27)5 ≈ 2.15,
which is clearly not acceptable. Moreover, as can be nicely read from table 9, NLO-QCD
corrections to the four-quark operators can dominate over the LO contribution. Using
exclusively LO-QCD expressions is thus a far too crude and unnecessary assumption in the
charm sector. Furthermore, ref. [80] considers only the MS scheme for the charm quark
mass and obviously the recently determined Darwin term and the eye-contractions could
not have been included, since they were not known at that point of time.

Finally, there is also some overlap with two recent studies of the Bc lifetime [88, 89].
The first paper [88] considers also the free charm quark decay Γ3 and the second one [89]
the total D-meson decay rate without the free charm quark decay, i.e. Γ(D)− Γ3. For Γ3
the authors of ref. [88] consider three quark mass schemes: MS, 1S and the meson mass
scheme. They find in table 3 and 4 of their paper values in the MS/1S scheme which
are slightly smaller/slightly larger than our values in table 5: 1.0 ps−1 vs 1.3 ps−1 and
1.7 ps−1 vs 1.5 ps−1. Since they in principle use the same NLO-QCD expressions as we do,
we expect the slight difference to root in a different treatment of higher orders in αs and
some differences in the values of the input parameters. As in our study, they also find a
relatively small effect due to a non-vanishing strange quark mass. In ref. [89] the authors
determine theD-meson decay rate without the free charm quark decay. In that respect they
consider all the corrections we also take into account, except contributions of dimension-
seven and eye-contractions. In the end, when considering the D+ meson they obtain
values for the Bc-meson decay rate of around 3.3 ps−1 (see table III of ref. [89]), compared
to the experimental value of 1.961(35) ps−1. We naively estimate that an inclusion of the
dimension-seven contribution to the D+ meson decay rate would decrease their result by
about 1.1 ps−1, see table 10, and bring it in nice agreement with the measurement. On the
other hand, these missing dimension-seven contributions might be partially compensated
by the corresponding contributions to the Bc-meson decay rate. Here a further investigation
might be necessary to clarify this point.

Our main numerical results are presented in tables 13, 14 and 15 and in figure 7. At
a first glance all considered observables lie in the ballpark of the experimental results. In
particular, we find good agreement with experiment for the ratio τ(D+)/τ(D0), for the
total D+

s -meson decay rate, for the semileptonic rates of all three mesons D0, D+ and D+
s ,

and for the semileptonic ratio ΓD+
sl /ΓD

0
sl . The values obtained with different mass schemes

for the charm quark overlap and the exclusive use of only one scheme might underestimate
the uncertainties. Including higher orders in the perturbative QCD expansion will further
alleviate the differences among the mass schemes. Looking, as a starting point, at the

– 39 –



J
H
E
P
0
8
(
2
0
2
2
)
2
4
1

structure of the contributions to the total decay rates and neglecting spectator effects, we
find that the NLO-QCD corrections to the free quark decay give the dominant correction
(of the order of 50% of LO-QCD free quark decay), followed by the Darwin term (of the
order of 30% of LO-QCD free quark decay). In the case of semileptonic decay rates the
chromomagnetic term provides the dominant contribution (of the order of 30%), followed
by the Darwin term and NLO-QCD corrections to the free quark decay. Turning now to
the spectator effects, we find them to be tiny for Γ(D0), ΓD0

sl and ΓD+
sl , but they provide

visible corrections to ΓD
+
s

sl and Γ(D+
s ) — in the latter case we find also sizable cancella-

tions between dimension-six and dimension-seven contributions. For the D+ meson we
find, however, a huge negative Pauli interference contribution — with a substantial part
stemming from the NLO-QCD corrections. Moreover, one observes here a significant can-
cellation between dimension-six and dimension-seven terms related to Pauli interference.
The values of the HQET Bag parameters entering the spectator effects are close to the
VIA values, deviations from the latter can, however, lead to sizable effects in Γ(D+) and to
visible effects in Γ(D0), Γ(D+

s ) and ΓD
+
s

sl . Based on the HQET sum rule results [68] we find
that eye-contractions constitute only subleading corrections, they might, however, turn out
to be relevant for ΓD

+
s

sl /ΓD
0

sl and τ(D+
s )/τ(D0), when more precise non-perturbative esti-

mates will become available. In the end, the total decay rates of the D0 and D+ mesons
stay underestimated in our HQE approach and we suspect that this is due to missing
higher-order QCD corrections to the free charm quark decay and the Pauli interference
contribution. For the SU(3)F breaking ratios τ(D+

s )/τ(D0) and ΓD
+
s

sl /ΓD
0

sl our predictions
lie closer to one than experiment. This might originate from the poor knowledge of the
non-perturbative parameters µ2

G, µ2
π and ρ3

D in the D0 and D+
s systems, as discussed in

section 3.
Our numerical analysis shows that there are many possibilities for future improvements

of the HQE predictions in the charm sector:

• Γ(2)
3 : NNLO-QCD [27–38] contributions to the semileptonic decays have been found

to be large and NLO-QCD corrections to the non-leptonic decay rates represent one
of the dominant corrections. Moreover we observe that at NLO-QCD there is pro-
nounced cancellation — see eq. (2.17) and eq. (2.18) — which might not be necessarily
present at NNLO-QCD. Thus a first determination of the NNLO-QCD corrections
to the non-leptonic decays might have some sizable impact on the numerical studies
of the total decay rates.

• Γ(1)
5 : cancellations in the coefficient cG for the total decay rate, shown in eq. (6) and

figure 3 lead to large uncertainties, even the sign of these corrections is ambiguous.
Here a determination of the QCD-corrections to the coefficient cG for the non-leptonic
case might considerably improve the situation.

• Γ(1)
6 : the Wilson oefficients of the Darwin operator are large, therefore QCD correc-

tions for the non-leptonic case might be important.

• Γ(0)
7,8: since the dimension-six contribution is sizable, the LO-QCD determination of

the dimension-seven and dimension-eight contributions with two-quark operators for
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the non-leptonic case might bring some additional insights on the convergence of the
HQE in the charm sector.

• Γ̃(2)
6 , Γ̃(1)

7 : Pauli interference dominates the total decay rate of the D+ meson. Cur-
rently Γ̃(0)

6 , Γ̃(1)
6 and Γ̃(0)

7 are known and their numerical values were found to be huge,
see e.g. table 9. Thus further QCD corrections will turn out to be very important.

• Γ̃(0)
8 : since the four-quark dimension-six contribution can dominate the total decay

rate and Γ̃(0)
7 is also very sizable, a further study of the dimension-eight contributions

might bring further insights on the convergence of the HQE in the charm sector, see
refs. [57, 58].

• More precise determinations for the parameters µ2
G, µ2

π and ρ3
D — both for the D0

and the D+
s mesons: the Darwin term and the chromomagnetic term provide large

corrections to the decay rates and they are poorly known — in particular the size of
SU(3)F breaking effects is largely unknown. An experimental determination of µ2

G, µ2
π

and ρ3
D from fits to semileptonic D+-, D0- and D+

s -meson decays — as done in the B
system, see e.g. ref. [81] — would be very desirable. This might be doable at BESIII,
Belle II and a future tau-charm factory. Moreover, new theoretical determinations,
e.g. via lattice simulations or sum rules could be undertaken.

• Independent lattice determination of the matrix elements of the four-quark operators
of dimension-six: here we have currently only HQET sum rule determinations [66, 68]
or outdated lattice results [90, 91].

• A first non-perturbative determination of the matrix elements of the dimension-seven
four-quark operators in order to test the validity of VIA. A similar endeavour has
already been performed for Bs mixing [92].

Overall, we find that the HQE can describe inclusive charm observables, in which no
pronounced GIM cancellation arises,19 albeit with very large uncertainties. We therefore do
not observe a clear signal for a breakdown of the HQE in the charm sector or of violations of
quark hadron duality, see e.g. ref. [94] and we presented a long list of potential theoretical
improvements, which might shed further light into the convergence properties of the HQE
in the charm sector.
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A Numerical input

We use five-loop running for αs(µ) [7] with four active flavours at the scale µ ∼ mc, and
the most recent value [1]

αs(MZ) = 0.1179± 0.0010. (A.1)

For the CKM matrix elements we apply the standard parametrisation in terms of
θ12, θ13, θ22, δ and use as an input [95] (online update)

|Vus| = 0.224834+0.000252
−0.000059 , (A.2)

|Vub|
|Vcb|

= 0.088496+0.001885
−0.002244 , (A.3)

|Vcb| = 0.04162+0.00026
−0.00080 , (A.4)

δ =
(
65.80+0.94

−1.29

)◦
. (A.5)

For the c-quark mass, we use different values depending of the scheme. In the MS-scheme
we take [1]:

mc(mc) = (1.27± 0.02) GeV, (A.6)

in the kinetic scheme we employ (at NLO) [14]:

mkin
c (0.5 GeV) = (1.363± 0.02) GeV, (A.7)

and in the 1S-scheme (see eq. (1.13)) we use m1S
c = 1.44GeV [7].

For the s-quark mass we take the value [1]

ms =
(
93+11
−5

)
MeV. (A.8)

The masses of D-mesons are known very precisely [1]:

MD0 = 1.86493 GeV, MD+ = 1.86965 GeV, MD+
s

= 1.96834 GeV.

The values of the non-perturbative parameters used in the analysis are shown in tables 16
and 17.

B Expressions for the coefficients of the Darwin operator

The coefficients C(q1q2)
ρD,mn(ρ, µ0) including full ρ = m2

s/m
2
c dependence are given by the

expressions:

C(dd̄)
ρD,11 = 6 + 8 log

(
µ2

0
m2
c

)
, (B.1)
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Parameter D+,0 Source D+
s Source

fD [GeV] 0.2120± 0.0007 Lattice QCD [78] 0.2499± 0.0005 Lattice QCD [78]

µ2
π(D) [GeV2] 0.48± 0.20 Exp. fit [82] and HQ

symmetry 0.57± 0.23
Exp. fit [44],

SU(3)f -breaking [86]
and HQ symmetry

µ2
G(D) [GeV2] 0.34± 0.10 Spectroscopy

relations [83] 0.36± 0.10 Spectroscopy
relations [83]

ρ3
D(D) [GeV3] 0.082± 0.035 Exp. fit [82] and

E.O.M relation 0.119± 0.052 Exp. fit [82] and
E.O.M relation

Table 16. Numerical values of the non-perturbative parameters used in our analysis.

HQET, µ0 = 1.5 GeV B̃1 B̃2 ε̃1 ε̃2

D+,0 1.0026+0.0198
−0.0106 0.9982+0.0052

−0.0066 −0.0165+0.0209
−0.0346 −0.0004+0.0200

−0.0326

D+
s 1.0022+0.0185

−0.0099 0.9983+0.0052
−0.0067 −0.0104+0.0202

−0.0330 0.0001+0.0199
−0.0324

HQET, µ0 = 1.5 GeV δ̃1 δ̃2 δ̃3 δ̃4

〈Dq|Õq|Dq〉 0.0026+0.0142
−0.0092 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

〈Ds|Õq|Ds〉 0.0025+0.0144
−0.0093 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

〈Dq|Õs|Dq〉 0.0023+0.0140
−0.0091 −0.0017+0.0046

−0.0070 −0.0004+0.0015
−0.0023 0.0003+0.0012

−0.0008

Table 17. Numerical values of the HQET Bag parameters [66, 68] evaluated through a traditional
HQET sum rule.

C(dd̄)
ρD,12 = −34

3 , (B.2)

C(dd̄)
ρD,22 = 6 + 8 log

(
µ2

0
m2
c

)
, (B.3)

C(ds̄)
ρD,11 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)− 25ρ2 + 5ρ3

]
+ 8 (1− ρ)(1− ρ2) log

(
µ2

0
m2
c

)
, (B.4)

C(ds̄)
ρD,12 = −2

3

[
17 + 12ρ

(
5 + 2ρ− 2ρ2

)
log(ρ) + 48(1− ρ)(1− ρ2) log(1− ρ)

−26ρ+ 18ρ2 − 38ρ3 + 5ρ4 + 24 ρ (1 + ρ− ρ2) log
(
µ2

0
m2
c

)]
, (B.5)

C(ds̄)
ρD,22 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)− 25ρ2 + 5ρ3

]
,

+ 8 (1− ρ)(1− ρ2) log
(
µ2

0
m2
c

)
, (B.6)
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C(sd̄)
ρD,11 = 2

3

[
9− 16ρ− 12ρ2 + 16ρ3 − 5ρ4 + 12 log

(
µ2

0
m2
c

)]
, (B.7)

C(sd̄)
ρD,12 = −2

3

[
17 + 12 ρ2 (3− ρ) log(ρ)− 24(1− ρ)3 log(1− ρ)

−50ρ+ 90ρ2 − 54ρ3 + 5ρ4 − 12ρ (3− 3ρ+ ρ2) log
(
µ2

0
m2
c

)]
, (B.8)

C(sd̄)
ρD,22 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)

−25ρ2 + 5ρ3 + 12 (1− ρ2) log
(
µ2

0
m2
c

)]
, (B.9)

C(ss̄)
ρD,11 = 2

3

[√
1− 4ρ

(
17 + 8ρ− 22ρ2 − 60ρ3

)
− 4

(
2− 3ρ+ ρ3

)
+

−12
(
1− ρ− 2ρ2 + 2ρ3 + 10ρ4

)
log

(
1 +

√
1− 4ρ

1−
√

1− 4ρ

)

−12 (1− ρ)(1− ρ2)
(

log(ρ)− log
(
µ2

0
m2
c

))]
, (B.10)

C(ss̄)
ρD,12 = 2

3

[√
1− 4ρ

(
−33 + 24 log(ρ)− 24 log(1− 4ρ) + 46ρ− 106ρ2 − 60ρ3

)

+ 12
(
3− 2ρ+ 4ρ2 − 16ρ3 − 10ρ4

)
log

(
1 +

√
1− 4ρ

1−
√

1− 4ρ

)
+ 4 (1− ρ)2 (4 + 3(1− ρ) log(ρ)− ρ)

−12
(
1−

√
1− 4ρ− 3ρ+ 3ρ2 − ρ3

)
log

(
µ2

0
m2
c

)]
, (B.11)

C(ss̄)
ρD,22 = 2

3

[√
1− 4ρ

(
9 + 24 log(ρ)− 24 log(1− 4ρ) + 22ρ− 34ρ2 − 60ρ3

)

+ 24
(
1− 2ρ− ρ2 − 2ρ3 − 5ρ4

)
log

(
1 +

√
1− 4ρ

1−
√

1− 4ρ

)

+ 12
√

1− 4ρ log
(
µ2

0
m2
c

)]
. (B.12)

The numerical values of the above coefficients for ρ = 0.006 are shown in table 18.

C Parametrisation of the matrix element of four-quark operators

The matrix elements of the dimension-six operators in QCD are parametrised in the fol-
lowing way

〈Dq|Oqi |Dq〉 = Ai f
2
Dqm

2
Dq B

q
i , (C.1)

〈Dq|Oq
′

i |Dq〉 = Ai f
2
Dqm

2
Dq δ

qq′

i , q 6= q′ , (C.2)
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3C2
1 2C1C2 3C2

2

c→ dd̄u 6 -11.33 6
c→ ds̄u 6.10 -9.81 6.10
c→ sd̄u 5.94 -11.23 6.10
c→ ss̄u 6.04 -9.70 6.21

Table 18. Numerical values of C(q1q2)
ρD,nm for ρ = 0.006 and µ0 = mc.

where
Aq1 = Aq3 = 1, Aq2 = Aq4 = m2

D

(mc +mq)2 .

In VIA the Bag parameters reduce to Bq
1 = Bq

2 = 1 and Bq
3 = εq1 = 0, Bq

4 = εq2 = 0 and all
δqq
′

i = 0.
The matrix elements of the dimension-seven four-quark operators in eqs. (2.61)–(2.69)

in HQET are parametrised in the following way:

〈Dq|P̃ q1 |Dq〉 = −mqF
2(µ0)mD B̃

q
P,1 , (C.3)

〈Dq|P̃ q2 |Dq〉 = −F 2(µ0)mD Λ̄ B̃q
P,2 , (C.4)

〈Dq|P̃ q3 |Dq〉 = −F 2(µ0)mD Λ̄ B̃q
P,3 , (C.5)

〈Dq|R̃q1|Dq〉 = −F 2(µ0)mD (Λ̄−mq) B̃q
R,1 , (C.6)

〈Dq|R̃q2|Dq〉 = F 2(µ0)mD (Λ̄−mq) B̃q
R,1 , (C.7)

with Λ̄ = mD −mc, and

〈Dq|M̃ q
1,π|Dq〉 = 2F 2(µ0)mDG1(µ0) L̃q1,π , (C.8)

〈Dq|M̃ q
2,π|Dq〉 = 2F 2(µ0)mDG1(µ0) L̃q2,π , (C.9)

〈Dq|M̃ q
1,G|Dq〉 = 12F 2(µ0)mDG2(µ0) L̃q1,G , (C.10)

〈Dq|M̃ q
2,G|Dq〉 = 12F 2(µ0)mDG2(µ0) L̃q2,G , (C.11)

and similar expressions for the colour-octet operators. Again, in VIA, the dimension-seven
Bag parameters are B̃q

P,i = 1, B̃q
R,i = 1, and L̃q1,π = 1, L̃q1,G = 1 and the corresponding

colour-octet Bag parameters vanish.
The expressions in eqs. (C.3)–(C.7) can be obtained using a general parametrisation

of matrix elements of the HQET quark currents with a heavy pseudo-scalar mesonM (see
e.g. ref. [71]):

〈0|q̄ Γhv|M(v)〉 = i

2F (µ) Tr[ΓM(v)] , (C.12)

〈0|q̄ Γ iDαhv|M(v)〉 = − i6(Λ̄−mq)F (µ) Tr[(vα + γα)ΓM(v)] , (C.13)

〈0|q̄(−i
←
Dα) Γhv|M(v)〉 = − i6F (µ) Tr[((4Λ̄−mq)vα + (Λ̄−mq)γα)ΓM(v)], (C.14)
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and for the non-local operators:

〈0|i
∫
d4y T

[
(q̄ Γhv)(0), (h̄v(iD)2hv)(y)

]
|M(v)〉 = F (µ)G1(µ) Tr[ΓM(v)],

(C.15)

〈0|i
∫
d4y T

[
(q̄ Γhv)(0), 1

2gs
(
h̄vσαβG

αβhv
)

(y)
]
|M(v)〉 = 6F (µ)G2(µ) Tr[ΓM(v)],

(C.16)

where Γ is a generic Dirac structure, and

M(v) = −√mD
(1 + /v)

2 γ5 . (C.17)

Since we are limited to LO-QCD for the dimension-seven contribution, we can just replace
the HQET decay constant F (µ) by the full QCD one fD, using F (µ) = fD

√
mD.
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