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Abstract

Camera traps are increasingly used in wildlife monitoring and citizen science to

address an array of ecological questions on a wide variety of species. However,

despite the ability of modern camera traps to capture high-quality video, the

majority of studies collect still images, in part because of concerns with video

performance. We conducted a camera trap survey of a forested landscape in the

UK, using a grid of paired camera traps, to quantify the impact of using video

compared to photos on the outcomes of ecological research and for participa-

tion and engagement of citizen scientists. Ecological outputs showed no differ-

ence between photo and video datasets, but comparison between expert and

citizen science classifications showed citizen scientists were able to classify

videos more accurately (average accuracy of 95% for video, 86% for photo).

Furthermore, citizen scientists were more likely to volunteer additional infor-

mation on age (provided for 61% videos and 30% photos) and sex (provided

for 63% videos and 45% photos) of animals in video footage. Concerns over

slow trigger speeds for videos did not appear to affect our datasets or the infer-

ences gained. When combined with citizen science, video datasets are likely to

be of higher quality due to increased classification accuracy. Consequently, we

encourage researchers to consider the use of video for future camera-trapping

projects.

Introduction

The use of camera traps for research has seen exponential

growth over the last two decades (Blount et al., 2021).

While this growth may slow, development of technology,

analytical methods and coordinated data sharing plat-

forms will allow for continued diversification of the topics

and questions that can be addressed using camera trap

data (Delisle et al., 2021). Furthermore, the practical

advantages of camera traps during times of uncertainty

and restricted travel have recently become more evident

(Blount et al., 2021). In light of this, there is a pressing

need to consider how to optimize camera trap set-ups for

specific purposes.

While the majority of camera trap research uses pho-

tographs, video footage may be more suitable for applica-

tions such as behavioural studies (Caravaggi et al., 2017;

Janisch et al., 2021; Tagg et al., 2018), monitoring group

size (Balestrieri et al., 2016; Green-Barber & Old, 2018;

Medeiros et al., 2019) or density estimation of unmarked

species (Corlatti et al., 2020; Howe et al., 2017; Naka-

shima et al., 2018). Video footage may also increase pub-

lic engagement and facilitate easier identification of

species and individuals for citizen scientists (Reyes

et al., 2017; Swinnen et al., 2014). Despite these advan-

tages, a number of issues may deter researchers from

using video. First, camera traps can have slower trigger

speeds and longer recovery times when set to video and

therefore risk missing some events (Apps &

McNutt, 2018; Findlay et al., 2020). Second, videos have

larger file sizes, leading to faster filling of memory cards,

and increased power consumption when recording, lead-

ing to shorter battery life (Blount et al., 2021; Janisch

et al., 2021). A final concern is the longer processing time

needed to view videos, which may be exacerbated by a

lack of support for video management in software
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designed to streamline camera data management. Process-

ing times are already an issue for many projects collecting

photo data (Glover-Kapfer et al., 2019; Rovero & Zim-

mermann, 2016; Young et al., 2018) and can slow

research and lead to potentially valuable data on non-

target species being left unanalysed (Scotson et al., 2017).

Despite these concerns, little work has quantified the

impacts of using video on the outcomes of ecological

research. While some research has explored the impact of

different camera trap settings, this has focused on con-

trolled scenarios, such as using domestic animals to trig-

ger cameras (Apps & McNutt, 2018; Yajima &

Nakashima, 2021) and typically uses relatively small num-

bers of camera traps and sites. Fewer studies have com-

pared photo and video settings; those that have were

focused on a small number of species (Findlay

et al., 2020; Glen et al., 2013; Palencia et al., 2019), or on

the identification of individuals of a species (Reyes

et al., 2017). Instead, studies have focused on the influ-

ence of camera model (Driessen et al., 2017; Yajima &

Nakashima, 2021), camera position (Apps &

McNutt, 2018; Jacobs & Ausband, 2018; Meek

et al., 2016; Seidlitz et al., 2021), flash type (Herrera

et al., 2021) or sensitivity settings (Palencia et al., 2021).

To support the time-consuming matter of data process-

ing, camera trap researchers may turn to citizen science

(Meek & Zimmermann, 2016). Camera-trapping citizen

science projects have burgeoned recently and been shown

to provide ecologically meaningful data (Hsing

et al., 2018; Lasky et al., 2021; McShea et al., 2016; Swan-

son et al., 2016). Factors such as camera settings and

location can impact classification accuracy; specifically,

sequences with multiple photos have been found to have

higher classification accuracy than those with single pho-

tos (Egna et al., 2020). Camera trap videos could allow

for easier species identification because movement can

make animals easier to locate within the footage, and

because more information is available to an observer,

such as different views of an animal, their gait or move-

ment profile, and sound. However, probably owing to the

concerns outlined above, most camera trap citizen science

projects use photographs and there has been little assess-

ment of citizen science classification accuracy of videos

(but see McCarthy et al., 2021). Gaining adequate num-

bers of classifications is important for timely processing

and for combining multiple classifications to achieve

higher confidence in classification accuracy (Anton

et al., 2018; Egna et al., 2020; Hsing et al., 2018; Swanson

et al., 2016). Attracting participants and maintaining

engagement are, therefore, important considerations for

citizen science projects (Meek & Zimmermann, 2016).

Including blank photos in a dataset can increase engage-

ment, leading to longer classification sessions (Bowyer

et al., 2015). This is thought to be due to the increased

feeling of reward when an image containing an animal is

seen (Bowyer et al., 2015). Other than this, little work has

addressed how citizen scientists engage with different

types of camera trap content. The sound and movement

provided by videos could create a more immersive and

engaging experience, but we are not aware of studies

comparing how citizen scientists engage with photo versus

video content.

Here, we present data collected from a camera trap sur-

vey in the Forest of Dean, UK. Paired cameras were placed

across the site with one set to take photos and the other

set to take video. We ran common camera trap analyses,

including species richness, occupancy, activity level and

detection rate, to determine whether there were any eco-

logically meaningful differences between the photo and

video datasets. Data were uploaded to the citizen science

platform, MammalWeb (www.mammalweb.org) (Hsing

et al., in press), into parallel photo and video projects for

classification. We compared classification accuracy between

different lengths of photo sequence and video footage as

well as looking at participation and engagement with both

types of media. Our aim was to inform the choice of pho-

tos versus videos in camera settings in future ecological

surveys, particularly those looking to engage citizen scien-

tists in the classification process.

Materials and Methods

Study site – Forest of dean

The Forest of Dean (51°46059.99″N, �2°32059.99″W),

extends across Gloucestershire, Herefordshire and Mon-

mouthshire, UK, and consists of a mixture of broadleaf

and conifer woodland, with patches of young trees. Our

survey covered two forest areas, the larger covered

approximately 65 km2 with a smaller patch of approxi-

mately 20 km2. Land is managed by Forestry England and

fieldwork was undertaken in partnership with the

Gloucestershire Wildlife Trust. The site is ecologically

interesting to citizen scientists, as it is home to a variety

of UK mammal species, including reintroduced popula-

tions of wild boar (Sus scrofa) (Dutton et al., 2015) and

pine marten (Martes martes) (Macpherson &

Wright, 2021). The mammal assemblage (Table S1)

enabled ecologically meaningful comparisons between

photo and video footage for species ranging in abun-

dance, body size and activity level.

Fieldwork

A grid of points spaced 1 km apart was overlayed on a

map of the Forest of Dean using QGIS (QGIS
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Development Team, 2018). The grid covered the main

forest area, plus the additional patch around Symonds

Yat approximately 2.5 km west of the main block

(Fig. 1). The main forest area was divided into four sec-

tions, each containing 15 points; the forest at Symonds

Yat constituted a fifth area. Fifteen pairs of camera traps

were deployed between the 19 November 2019 and 24

March 2020, with the survey conducted during this per-

iod to avoid dispersal and breeding/birthing seasons. This

period is characterized by reduced vegetation cover,

increasing the field of view available to camera traps, and

reducing the risk of false triggers. Camera traps were

placed as close as possible to the specified grid points,

while ensuring sites were accessible for servicing, avoided

the river, and, to reduce risk of damage or theft, were out

of sight of public footpaths. Mean displacement of camera

stations from planned locations was 94 m. Cameras were

deployed at sites in the main forest for between 25 and

30 nights before being rotated to new sites. Camera traps

in the fifth and final location were in place for either 14

or 15 nights, as surveying was curtailed by the Covid-19

pandemic and uncertainty over site accessibility.

At each camera station, a pair of Browning Recon

Force Extreme (2017 model) camera traps was mounted

side-by-side on a metal bracket. Cameras were placed at a

mean height of 51 cm from the ground and secured to a

suitable tree with a camera strap and a python lock. Signs

were attached to each camera station, informing people

of the purpose of the study, requesting that the cameras

not be disturbed, and providing contact information. One

camera trap from each pair was set to record bursts of

eight photos, and the other to record 20-s videos. Half-

way through deployment at each site, cameras were ser-

viced, with the batteries checked and memory cards

changed. Batteries used were either Varta alkaline or Ene-

loop rechargeable, with the same type of battery used in

both cameras in each pair. In order to account for any

slight differences in camera position, the camera settings

were switched half-way through deployment so that the

camera taking photos would take videos, and vice versa.

Cameras use an infrared flash and manufacturer specifica-

tions suggest a trigger speed of 0.4 s and 0.8 s recovery

time for photos. Trigger interval was set to 5 s.

Data processing

To explore the impacts of video length and number of

photos in a sequence, we created three versions of each

camera trap sequence. Each video was clipped to create

two additional versions, the first containing only the first

10 s and the second only the first 5 s of the clip. Images

were first allocated into sequences with a greater than 10-

s interval between images used to define a new sequence.

Images were then labelled according to sequence and

image number within sequence for each camera deploy-

ment. This followed the standard image processing

method for footage added to MammalWeb (Hsing

et al., 2018) and allowed manipulation of the number of

images from each sequence. Three versions of the photo

sequence dataset were created: one containing the first

eight images in each sequence, one containing the first

three images in each sequence, and one containing only

the first photo from each sequence. There were, thus, six

versions of the dataset: short (5 s), medium (10 s) and

long (20 s) videos and short (one photo), medium (three

photos) and long (eight photos) photo sequences.

All videos and photo sequences were tagged in the

open-source photo management tool ‘digiKam’ (https://

www.digikam.org) to create expert classified datasets.

Metadata and tags were extracted from photos and videos

using the R package ‘camtrapR’ (Niedballa et al., 2016).

MammalWeb

Separate Forest of Dean photo and video projects were

established on MammalWeb, with matching descriptions

and display images, so that the projects differed only in

containing either photos or videos for classification. To

prevent potential bias from a user repeatedly classifying

the same piece of footage, only one version (short, med-

ium or long) of each video or photo sequence was

uploaded to MammalWeb. Footage was uploaded to

MammalWeb between the 20 February and 3 June 2020

and the two projects first became available for public clas-

sification on 9 March 2020. MammalWeb contributors

can choose to participate in a specific project or select the

‘classify all’ button, which will then serve the user a selec-

tion of footage from all active projects on the site. Users

were able to participate in the Forest of Dean projects as

‘Spotters’, which involves viewing the footage and adding

tags to identify the species present. Participants classifying

an animal in a photo sequence or video could supply

additional information about the animal, including sex

(male or female) and age (adult or juvenile). A default

option of ‘Unknown’ was set for both age and sex. Spot-

ters could also ‘like’ the sequence or video that they were

viewing. Time, date and anonymous user ID number

were recorded by the website for each classification sub-

mitted.

Classification data were downloaded on 11 June 2021,

after all footage had been available for classification for at

least 1 year and all footage had received at least one clas-

sification. Classifications submitted by citizen scientists

via the MammalWeb platform were compared to expert

classifications to determine whether each classification

was correct. All classifications submitted were used in
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accuracy analysis, but data were split into discrete classifi-

cation sessions to compare participation rates between the

photo and video projects. The minimum requirement for

a session was three or more consecutive classifications of

footage within either the photo project only or video pro-

ject only by one user within a 30-min period. This was

designed to exclude classifications by participants who

had selected ‘classify all’ and had randomly been served

footage from the Forest of Dean projects. This ensured

that sessions were analysed only where a user had specifi-

cally chosen to classify from that particular project. A ses-

sion ended if there was a greater than 30-min interval

between classifications submitted.

Data analysis

Ecological outputs

Analyses were conducted using R 3.6.2 (R Core

Team, 2019). Diversity and richness estimates were gener-

ated for all six datasets using ‘iNEXT’ (Hsieh

et al., 2020). More detailed ecological analysis focused on

a subset of species. Selection criteria were mammals with

a body size greater than 250 g (a small rodent), which

might reasonably be expected to be detected by our cam-

era trap set up, and that yielded sufficient detections

(n = 40 detections at a 30-min independence level). The

species comprised Eurasian badger (Meles meles), red fox

(Vulpes vulpes), fallow deer (Dama dama), Reeves munt-

jac (Muntiacus reevesi), roe deer (Capreolus capreolus),

wild boar (Sus scrofa), European rabbit (Oryctolagus

cuniculus) and grey squirrel (Sciurus carolinensis).

Detections were compared between the datasets by gen-

erating presence-absence data at each camera station for

each of the focal species detected at that site, for every

half-hour during the active period of each camera station.

A half-hour period was chosen as this is a common inter-

val for discerning independent detections (Burton

et al., 2015; Rovero & Zimmermann, 2016; Soll-

mann, 2018). To assess differences in species detections

between different media types and lengths, we used gen-

eral linear mixed models (GLMMs) with a binomial dis-

tribution in ‘lme4’ (Bates et al., 2015). We defined

separate models to check for the effect of length within

each media type and then to check for differences

between photo and video datasets. Analyses were

Figure 1. Forest area included in the study with locations of camera trap stations. Inset shows map of the UK with the location of the study site.

Different deployments indicate the different time periods during which each area of the forest was surveyed. The time periods for each

deployment are as follows: Deployment 1 = 19/11/2019–17/12/2019; Deployment 2 = 18/12/2019–13/01/2020; Deployment 3 = 13/01/2020–11/

02/2020; Deployment 4 = 11/02/2020–09/03/2020; Deployment 5 = 09/03/2020–24/03/2020.
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separated to avoid replication of the same datasets (across

length variants) when comparing photos and videos. Spe-

cies and camera station were specified as random factors.

Half-hour time slot or ‘survey period’ was included as an

additional random factor in the photo/video comparison

model. Model comparison tables were generated using the

MuMIn package to assess whether including media type

or length-improved model performance (Barton, 2020).

For each focal species, activity levels (the proportion of

time species spent active per day; see Rowcliffe

et al., 2014) from each length of video or photo sequence

were compared using the R-package ‘activity’ (Row-

cliffe, 2021). Data were species detections with 5-min

intervals between events. Even though some events may

not be independent, this time period was chosen to

trade-off the risk of non-independence with the aim of

resolving activity to a reasonably fine scale. A Wald test

was used to assess differences in activity level between the

datasets produced by the different media and media

lengths for each individual species and the combined

dataset.

Detection histories were generated for each of the focal

species from each length of video and photo sequence

dataset. Detection histories were based on 24 h survey

periods and were generated using ‘camtrapR’ (Niedballa

et al., 2016) and then used to fit occupancy models using

the package ‘unmarked’ (Fiske & Chandler, 2011). Out-

puts were back-transformed to give occupancy probability

and the probability of detection. No covariates were

included because our aim was the comparison between

inferences from different media (and the paired design of

the data collection ensured covariate differences did not

introduce bias in these parameters), rather than to iden-

tify the factors driving occupancy of each species.

Citizen science classifications

Citizen science classifications were analysed using GLMMs

to assess species classification accuracy, likelihood of sub-

mitting age and sex classification data, likelihood of foo-

tage receiving a ‘like’, and length of classification session.

Classification accuracy models were initially split into

photo and video datasets, using sequence or video length

as a fixed factor. Length did not have a detectable influ-

ence on classification accuracy for either photo or video,

so it was excluded from models using the combined

photo and video datasets. Classification accuracy models

were then fitted to the full data set and to each focal spe-

cies’ data. The response variable for classification accuracy

was a binary indicator of whether or not a citizen science

classification matched the expert classification for that

footage (1 if classifications matched, 0 if they did not).

Age classification likelihood models were fitted to footage

containing any of the eight focal species as these are com-

mon mammals for which participants might reasonably

be expected to identify adult or juvenile forms. Sex classi-

fication likelihood models were fitted only to footage con-

taining one of the three deer species present at the study

site, because only these species show clear sexual dimor-

phism. The response variables for age and sex classifica-

tion models were also binary indicators of whether or not

an age or sex classification had been provided alongside a

species classification (1 if an age or sex classification was

given, 0 if the corresponding classification was not given).

Models determining the probability of liking footage used

the full dataset. Again, the response variable was a binary

indicator (1 if the footage was liked, 0 if it was not).

Fixed factors in all classification models were media type

(photo or video) and whether or not the flash was acti-

vated (i.e. whether footage was full colour or black and

white/grey scale). Length of video or photo sequence was

included as a fixed factor in age, sex and like classification

models. Random factors were camera site ID and anony-

mous user ID, which were used in all classification mod-

els other than for accuracy of rabbit classifications where

only anonymous user ID was used, due to the small num-

ber of different sites at which rabbits were detected. For

each model, we first fitted the full model and then used

the dredge function of the MuMIn package (Bar-

ton, 2020) to fit all possible additive variable permuta-

tions for the fixed factors described above. For the

classification accuracy model a single interaction between

media type and activation of flash was also included.

Models were ranked according to AIC (Tables S5-S8). We

then used effect size and p value of factors in the top

model (using model averaging where there was more than

one model within six AIC of the top) to assess strength

and classical statistical significance of the effect of these

predictors.

Length of session was measured in two ways: time dif-

ference between first and last classifications submitted in

a session, and number of classifications submitted in a

session. For both models, media type was used as fixed

factor and anonymous user ID as a random factor.

Results

Camera traps taking photos were active and functional

for a total of 1734 trap nights across 73 camera stations,

while cameras taking videos were active for 1730 nights

across 73 stations. The slight differences were due to cam-

era malfunction. Of the original 75 planned sites, one was

excluded due to bracken causing high levels of false trig-

gers and filling memory cards, with no meaningful data

collected from that site. A second site was excluded due

to the theft of the cameras during the fourth rotation.
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This meant only 14 sites were available for the fifth rota-

tion; since this was the smaller forest patch, coverage was

not greatly affected. Other than the one theft, cameras

were left undamaged and were not tampered with at any

other site, despite evidence they were detected by people

on multiple occasions.

The displays showed photo cameras used, on average,

0.8% of battery per week with video cameras using 3.8%.

Photo cameras recorded a mean of 415 individual photos

per week and video cameras a mean of 29 videos. Each

20-s video had a file size of approximately 31 MB and

each photo had a file size of approximately 0.8 MB. Based

on the above rates of capture, an average of 332 MB and

899 MB of memory storage were needed per week for

photos and videos, respectively.

Ecological outputs

Only data from 70 sites where video and photo cameras

were active at the same time were used in analysis of eco-

logical outputs. Diversity and species richness and species

accumulation rates were similar for all datasets (Table 1;

Fig. S1). The same 13 mammal species were detected in

all lengths of photo sequence and video, and 18 and 15

bird species were detected in video and photo footage,

respectively (Table S1).

Species detection

Trapping rates for all of the eight focal species were very

similar across all lengths of photo sequence and video

(Fig. 2). Neither length of video or photo sequence, nor

choice of video versus photo influenced the probability of

detecting a species event; model selection showed no

improvement in model performance when media type or

length were included compared to null models (DAICs of
null models = 0, DAICs of models including fixed effects

<6; Table S2).

Activity

There was no difference between the activity levels

derived from the different lengths of photo sequence and

video for any of the focal species (P-values between 0.4

and 1; Fig. 3; Table S3).

Occupancy

Due to lack of difference in species detections between

the different lengths of video and photo sequence, occu-

pancy analyses used only the 20-s video and eight-photo

sequence datasets to compare the two media. Occupancy

and detection probability estimates were the same or very

similar for photo and video. Where slight differences

occurred, standard errors overlapped, indicating no

meaningful difference in outputs (Table S4).

Citizen science classifications

5,326 photo sequences and 5,610 videos were uploaded to

MammalWeb for classification. All photo sequences and

videos received at least one classification and, overall,

17,474 photo and 12,429 video classifications were sub-

mitted.

Table 1. Species diversity estimates from a camera trap survey of the Forest of Dean, UK, where photo bursts and video data were collected

simultaneously using a paired camera setup. Diversity estimates are given based on the first photo, first three photos and first eight photos in

each burst, and for the first 5 s, first 10 s and full 20 s of each video clip. Observed differences were due to three species of bird detected in

video footage but not in photos. These species were blue tit, marsh tit and tree creeper, all of which are small birds for which we would not con-

sider our camera trap setup a suitable method for surveying.

Five-second

videos

Ten-second

videos

Twenty-second

videos

One-photo

sequences

Three-photo

sequences

Eight-photo

sequences

Species richness observed 30 31 31 28 28 28

Species richness estimator

(SE)

36.25 (7.55) 37.25 (7.55) 33.67 (3.48) 28.25 (0.73) 28.25 (0.73) 28.5 (1.32)

Shannon diversity

observed

10.2 10.54 10.78 10.43 10.42 10.45

Shannon diversity

estimator (SE)

10.3 (0.23) 10.64 (0.26) 10.87 (0.27) 10.51 (0.25) 10.49 (0.27) 10.52 (0.22)

Simpson diversity

observed

7.46 7.6 7.74 7.57 7.55 7.56

Simpson diversity

estimator (SE)

7.48 (0.18) 7.63 (0.18) 7.76 (0.18) 7.6 (0.18) 7.56 (0.18) 7.59 (0.16)
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Species classification accuracy

Media type and flash activation both affected the proba-

bility of a citizen science classification being correct

(Table 2). Use of video had a positive effect with a higher

probability of correct classifications than for photo

sequences (Fig. 4; Table 2). Activation of flash had a neg-

ative effect on classification accuracy of both video and

Figure 2. Boxplots of trapping rates for each of eight focal species detected during a camera trap survey of the Forest of Dean, UK, using 73

camera stations with paired cameras recording videos and photo bursts. Trapping rates were acquired for each camera trap station at which the

species was detected, calculated as number of half-hour periods in which a species was detected, divided by number of operational camera days.

Trapping rates were calculated using detections in datasets comprising: the first photo in every photo sequence; the first three photos in a

sequence; the first eight photos in a sequence; the first 5 s of each video clip; the first 10 s; and 20-s video clips (the full length of each video).

Bars and boxes indicate median and interquartile range (IQR), whiskers show the largest and smallest values within 1.5*IQR, with individual out-

liers plotted as solid fill circles.

Figure 3. Activity distribution over a 24 hr. period with 95% confidence limits for each of eight focal species recorded during a camera trap

survey of the Forest of Dean, UK, based on 8-photo and 20-s video datasets collected by paired cameras. Data were species detections with, at a

minimum, 5-min intervals between events.
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photo footage, with participants more likely to submit a

correct classification when shown full colour than footage

taken using infrared flash.

When analysed individually, all focal species were clas-

sified more accurately in video footage; this effect was sta-

tistically significant (p < 0.05) in models for all species

apart from fox and roe deer (Table 2). Activation of flash

was the only significant effect in the analysis of roe deer

classification and had a negative influence on classifica-

tion accuracy. For grey squirrel classifications, there was a

significant interaction between media type and flash acti-

vation (Table 2) with the negative effect of flash activa-

tion being greater for photo footage than for video.

Activation of flash was included in top models for fallow

deer, red fox and wild boar with a positive effect, and in

the top model for muntjac with a negative effect, but

none of these were statistically significant (Table 2). Effect

of flash could not be included in the models for badger

or rabbit because the flash was activated for all detec-

tions.

Age and sex classification

Media type and length of video or photo sequence influ-

enced whether an age or sex classification was provided

Table 2. Coefficient estimate, standard error and p value for GLMMs

examining classifications of camera trap data provided by citizen sci-

entists. Fixed effects include media type (photo vs. video), whether

the flash was activated or not, and the length of a photo sequence or

video (short = the first photo taken in each sequence or the first 5 s

of each video clip, medium = the first three photos in a sequence or

first 10 s of a video and long = the first eight photos in a sequence

and 20-s video clips. Response variable for accuracy models was a bin-

ary indicator of whether or not a citizen science classification matched

the expert classification. Response variable for age, sex and likes was

a binary indicator whether or not an age classification, a sex classifica-

tion or a ‘like’ was provided alongside a species classification. Accu-

racy models were run on all citizen science classifications, then for

footage containing each of eight focal species separately. Age models

were run on data containing footage of one of eight focal species

(badger, red fox, fallow deer, roe deer, muntjac deer, wild boar, rab-

bit, grey squirrel). Sex classification models were run on footage con-

taining only deer (fallow, roe or muntjac). ‘Like’ models were run

using all citizen science classifications. Where there are multiple mod-

els within six AIC units of the top model, model averaging is used to

calculate coefficient estimates.

Model parameter Estimate SE P value

All species classification accuracy

Intercept 1.530 0.105 <0.001

Media (video) 0.906 0.109 <0.001

Flash (activated) �0.412 0.053 <0.001

Media (video) X Flash(activated) �0.009 0.063 0.887

Badger classification accuracy

Intercept 1.668 0.429 <0.001

Media (video) 2.502 0.955 0.009

Red fox classification accuracy

Intercept 1.564 0.788 0.0472

Media (video) 2.564 1.514 0.091

Flash (activated) 1.276 0.846 0.132

Media (video) X Flash(activated) �1.750 1.559 0.262

Fallow deer classification accuracy

Intercept �0.385 0.327 0.240

Media (video) 1.237 0.253 <0.001

Flash (activated) 0.038 0.134 0.779

Media (video) X Flash(activated) 0.021 0.145 0.884

Reeves muntjac classification accuracy

Intercept 1.467 0.477 0.002

Media (video) 1.001 0.469 0.033

Flash (activated) �0.140 0.306 0.646

Media (video) X Flash(activated) �0.256 0.268 0.906

Roe deer classification accuracy

Intercept 2.752 0.637 <0.001

Media (video) 0.634 0.824 0.443

Flash (activated) �1.206 0.481 0.012

Media (video) X Flash(activated) �0.248 0.645 0.701

Wild boar classification accuracy

Intercept 1.865 0.345 <0.001

Media (video) 1.133 0.367 0.002

Flash (activated) 0.200 0.287 0.487

Media (video) X Flash(activated) 0.011 0.276 0.968

Grey squirrel classification accuracy

Intercept 2.060 0.157 <0.001

(Continued)

Table 2. Continued.

Model parameter Estimate SE P value

Media (video) 0.795 0.206 <0.001

Flash (activated) �1.630 0.126 <0.001

Media (video) X Flash(activated) 1.064 0.264 <0.001

Rabbit classification accuracy

Intercept 2.318 0.446 <0.001

Media (video) 2.243 0.795 0.005

Age classification provision

Intercept �2.518 0.270 <0.001

Media (video) 1.104 0.087 <0.001

Flash (activated) 0.415 0.044 <0.001

Length (medium) �0.240 0.122 0.046

Length (short) �0.243 0.122 0.047

Sex classification provision

Intercept �0.797 0.225 <0.001

Media (video) 0.296 0.137 0.031

Flash (activated) �0.005 0.047 0.918

Length (medium) �0.268 0.143 0.062

Length (short) �0.397 0.137 0.013

Likes given

Intercept �7.485 0.480 <0.001

Media (video) 2.132 0.258 <0.001

Flash (activated) 0.852 0.175 <0.001

Length (medium) �0.246 0.281 0.382

Length (short) �0.163 0.227 0.474

P values <0.05 are given in bold.
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(Table 2; Fig. 5). Use of video had a positive effect on

likelihood of an age or sex classification being submitted,

as did the use of longer videos or photo sequences. Acti-

vation of flash was included in the top age classification

model and had a slight positive effect on likelihood of an

age classification being provided (Table 2; Fig. 5).

Citizen science engagement

A total of 183 contributors participated in at least one of

the Forest of Dean projects; 126 users classified at least one

sequence from the photo project, 117 users classified at least

one video from the video project; 60 users participated in

both projects. Eighty-six users took part in a combined

total of 411 classification sessions for the photo project and

59 users took part in 365 sessions for the video project.

Video classification sessions had a mean duration of

27 min 5 s (range: 46 s–173 mins 51 s) with a mean of 33

(range: 3–281) videos classified in a session. Photo classifi-

cation sessions had a mean length of time of 26 min 34 s

(range: 23 s–184 min 49 s) with 42 (range: 3–305) photo

sequences classified per session. Mean time taken to classify

was 42 s (range: 7.7 s - 259 s) for a photo sequence and

60 s (range: 15.3 s - 450 s) to classify a video.

Figure 4. Proportion of citizen science classifications that matched expert classifications for each of eight focal species and for the full data set of

classifications of footage collected in a camera trap survey of the Forest of Dean, UK. Proportions are given separately for photo and video

footage, both with and without the flash activated. Error bars show 95% confidence intervals.

Figure 5. A) Proportion of camera trap footage for each of eight focal species for which an age category (adult or juvenile) was supplied by

citizen scientists alongside a species classification and B) proportion of camera trap footage for three deer species for which a sex category (male

or female) was supplied by citizen scientists alongside a species classification for different lengths of photo sequence and video. Error bars show

95% confidence intervals.

276 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Camera Trapping with Photos and Videos S. E. Green et al.

 20563485, 2023, 2, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.309 by T

est, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Classification session length

More classifications were submitted per session for the

photo project than for the video project. Model fit was

improved by including media type as a predictor

(Table S8) and the effect of media type was statistically

significant (p < 0.001) in this model. However, there was

still large variation and considerable overlap between the

two projects (Fig. 6). For session duration, there was no

difference in model performance when media type was

included and model-averaged results show no significant

difference (p = 0.41) between photo and video projects

(Table S8; Fig. 6).

‘Liked’ footage

Media type and length of photo sequence or video had

an effect on probability of footage being ‘liked’ by a citi-

zen scientist (Table 2). The probability that a video was

liked was 14 times greater than for photo sequences, with

longer videos being most popular (Fig. 7). Single photos

were more likely to be liked than both 3-photo and 8-

photo sequences. Footage was more likely to be liked if

the flash had been activated (Table 2).

Discussion

We tested whether camera traps set to video could collect

ecological data of the same quality as that obtained by

cameras set to record photos. Moreover, we tested for dif-

ferences in citizen science classification accuracy and

engagement between photo and video datasets. We found

that photo and video settings did not affect the ecological

inferences, but that citizen scientists were more accurate

and provided more detail when classifying video footage.

Overall, there was a 9% difference in footage classification

accuracy between photo (average accuracy 85%) and

video (average accuracy 94%) footage when the flash was

activated and a 7% difference when flash was not acti-

vated (average photo accuracy was 89%, video was 96%).

The percentage of video footage containing one of the

focal species that was given an age classification was twice

that of age classifications given to photo footage (age clas-

sification provision for video was 61% and 30% for

photo). The percentage of footage containing deer that

was given a sex classification was also higher for video,

with an 18% difference (sex classification provision for

video was 63% and 45% for photo).

Ecological analyses

Based on datasets from expert classification, we found no

differences in species diversity, occupancy, activity or

detection rates between the photo and video datasets.

This is in contrast to concerns that slow trigger and

recovery speeds limit the value of video datasets, and is

reassuring for those researchers wishing to use video

based on its advantages in behavioural research

Figure 6. Boxplots of the length of time citizen scientists spent classifying camera trap footage from parallel photo and video projects in a

continuous classification session, and the number of classifications that were submitted per classification session by MammalWeb participants.

Bars and boxes indicate median and interquartile range (IQR), whiskers show the largest and smallest values within 1.5*IQR, with individual

outliers plotted as solid fill circles.
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(Caravaggi et al., 2017), individual ID (Reyes et al., 2017)

and density estimation of unmarked individuals (Corlatti

et al., 2020; Howe et al., 2017). While videos did take up

more battery and memory, we found this had no real

impact on our study, so need not be a deterrent to using

video. Of course, in areas of higher animal activity, or

where site access is necessarily infrequent, these factors

may still need careful consideration. In such conditions,

shorter videos could provide a good compromise, as we

found that 5-s videos recorded species as reliably as 20-s

videos.

We tested only one model of camera trap in one eco-

logical system and other studies have found differences in

performance between photo and video settings (Findlay

et al., 2020; Palencia et al., 2019). As different camera

traps perform differently (Apps & McNutt, 2018; Driessen

et al., 2017; Palencia et al., 2021; Randler & Kalb, 2018;

Rovero et al., 2013; Yajima & Nakashima, 2021), more

research is needed to determine whether our findings will

generalize across cameras and study species. Nevertheless,

as camera traps continue to be upgraded, we would

expect video performance to improve further over time.

Citizen science classifications

Overall, video footage was classified more accurately than

photo sequences (Fig. 4). There was no difference in clas-

sification accuracy between videos of 5-s or 20-s length,

highlighting that projects could benefit from improved

accuracy even when short video clips are used. Citizen

scientists were not only more accurate when classifying

species in video, but they were also more likely to add

age and sex category classifications, suggesting this was

easier to identify in videos than photos. Alternatively, the

increase in age and sex classifications may reflect a deeper

level of engagement with video footage. Preliminary

examination of the data suggests that age and sex classifi-

cations, when provided, were accurate for both videos

and photo sequences (approximately 95% correct) indi-

cating that video footage could provide valuable addi-

tional demographic data. However, since the study was

conducted when few juvenile animals were present and

most male deer still had their antlers making them easier

to recognize, further analyses across seasons are needed to

determine more precisely the ability of citizen scientist to

identify age and sex of animals accurately from photo

and video footage. It is likely that more citizen science

projects will start requiring human observers to move

beyond species classifications; provision of additional

detail is already evident in projects asking participants to

identify age and sex (Thel et al., 2021) and individual ID

(McCarthy et al., 2021; Tagg et al., 2018). Further

research is needed to establish optimum camera settings

for accurate identification of these traits, although video

appears to offer clear benefits over traditional photos.

Confidence in accuracy and verification of citizen

science ecological data is important for trust and accep-

tance of the value of the data (Baker et al., 2021; Freitag

et al., 2016). The higher classification accuracy of video

footage could, thus, increase the value of video datasets.

Organizations harnessing citizen science invest consider-

able effort in data verification, with common methods

including expert verification and community consensus;

however, expert verification can be time consuming,

Figure 7. Proportion of camera trap footage of each species which was ‘liked’ by a citizen scientist while they were classifying species in that

footage. Proportions are given for different lengths of photo sequence and video for footage containing one of eight focal species, and for all

footage combined from a survey of the Forest of Dean, UK. Error bars show 95% confidence intervals.
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particularly for large camera trap datasets (Baker

et al., 2021). Community consensus can be used to

increase final classification accuracy but requires a large

number of participants to gain enough classifications

(Hsing et al., 2018; Swanson et al., 2016). Video footage

could be advantageous, therefore, particularly for smaller

projects, since community consensus could be achieved

more easily.

Similar numbers of participants engaged with the

MammalWeb photo and video projects although many

spotters only participated in one project, suggesting they

have different preferences for classifying photo or video

footage. Participants spent similar amounts of time classi-

fying per session in the photo and video projects but

more photo sequences were classified per session than

videos because people spent longer classifying each video.

Participants spent around a minute, on average, classify-

ing each video, which implies the video clip was watched

multiple times. This could either be due to a determina-

tion to identify the video correctly or simply enjoyment

of the clip. MammalWeb participants ‘liked’ more video

footage than photos, suggesting that videos were more

engaging and enjoyable to watch. Engaging enough par-

ticipants is a challenge faced by many citizen science pro-

jects, particularly in light of the growing number of

projects available to choose from (Follett & Strezov, 2015;

Meek & Zimmermann, 2016; Pelacho et al., 2021; Willi

et al., 2019). Using video could help with engagement

while also gathering more accurate and detailed species

classifications, thus generating higher quality datasets with

fewer classifications needed per video. This would be

advantageous to small projects as a high confidence in

classification accuracy could be obtained with only a

small number of participants viewing each video.

Video for camera trapping and citizen
science

Detection probability in camera trap studies consists of

several components, including the probability that an ani-

mal is identifiable in a photo or video (Findlay

et al., 2020; Hofmeester et al., 2019). We found that citi-

zen scientists classified videos more accurately, and it is

likely that expert accuracy would also be improved

through the use of video. Concerns over slow trigger

speed reducing detection probability in videos were

shown to be unfounded in this study. Therefore, due to

increased animal identification accuracy, the use of video

could increase detection probability, particularly for citi-

zen science classified datasets. Consequently, we advocate

for increased use of video in camera trap studies based

on improved detection probability and citizen science

engagement benefits.

More coordinated monitoring efforts are needed to

identify global trends in biodiversity (Scotson et al., 2017;

Steenweg et al., 2017) and there are now several initiatives

combining camera trap footage from a range of partici-

pants in order to monitor wildlife across a wide area,

such as MammalWeb (Hsing et al., in press), the Tropical

Ecology Assessment and Monitoring (TEAM) Network

(Rovero & Ahumada, 2017), and both Snapshot USA

(Cove et al., 2021) and Snapshot Europe (https://www.ab.

mpg.de/358074/snapshot-europe). These projects rely on

large numbers of participants to collect enough data for

meaningful ecological analysis. Our results show that it

would be possible to combine datasets containing photo

and video footage without risking loss of data quality. To

support this, more camera trap data management soft-

ware needs to be able to handle video footage. Artificial

Intelligence (AI) is increasingly used to classify camera

trap images and can be combined with citizen science for

efficient data processing (Green et al., 2020). It is encour-

aging that AI for video classification is fundamentally no

different to that for photo classification in that each video

frame can be treated like a single photo (e.g. Chalmers

et al., 2019), and that AI video analysis offers other

potential advantages over photo classification (e.g.

Johanns et al., 2022).

Integrating video could encourage a greater number

of participants in collaborative projects, both from citi-

zen science volunteers who prefer to use video and from

researchers or practitioners undertaking surveys that fit

other project criteria, but are currently unable to submit

video footage. Allowing the use of video in such projects

is of great importance for making efficient use of all

camera trap data being collected, especially in the field

of conservation, where resources are limited and data

on even common species are still lacking (Croft

et al., 2017).
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Figure S1. Sample-size-based rarefaction and extrapola-

tion curves for the 8-photo and 20-s video datasets. Data

input was incidence rate and the sampling unit was one

camera day at one camera station. Species accumulation

rates were almost identical for video and photo surveys

and reached a complete species list with the same number

of sampling units required.
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Table S1. Full list of species detected. *Species only

detected in video footage. All other species detected in

both photo and video

Table S2. Model comparison of GLMMS used to test for

influence of video length, photo sequence length or media

type on detections of the eight focal species. Comparison

is given between null models and those including either

media type or length as a fixed factor with the coefficient

estimate, standard error and p value outputs for fixed fac-

tors from each full model (described in bold).

Table S3. Results of a Wald test comparing activity level

derived from the short (5 s) and long (20 s) video data

sets and short (one photo) and long (eight photo) photo

sequence data sets for eight focal species. Long (20s

videos and 8-photo sequence) data sets were used in

video vs. photo comparisons. Difference = differences

between activity level estimates produced by the difference

data sets, SE = Standard error of the differences,

W = Wald statistics, P = p values

Table S4. Occupancy and detection probabilities with

standard errors (SE) for focal species for each media type

and length data set based on expert classifications. *SE
not available for these estimates due to lack or variability

in presence across sites, that is this species was detected

at all or almost all study sites.

Table S5. Species classification accuracy model compar-

isons showing all models within six AIC units of the top

model for the global species set and individual focal spe-

cies. Full model is given in bold with results of model

selection below.

Table S6. Age classification model comparison showing

all models within six AIC units of the top model. Full

model is given in bold with results of model selection

below.

Table S7. Sex classification model comparison showing all

models within six AIC units of the top model. Full model

is given in bold with results of model selection below.

Table S8. Results of GLMM model comparison for classi-

fication sessions measured in number of classifications

and in length of time spent submitting classifications. Full

model is given in bold with results of model selection

below.

Table S9. ‘Liked’ footage model comparison showing all

models within six AIC units of the top model. Full model

is given in bold with results of model selection below.

Table S10. Breakdown of the number of photo

sequences/videos in species categories for the different

data sets.

Table S11. Number of detections of focal species used in

activity analysis.
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