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A B S T R A C T   

The paper presents a novel effective macro-modelling approach for masonry arches and bridges under cyclic 
loading, including dynamic actions induced by earthquakes. It utilises an anisotropic material model with 
embedded discontinuities to represent masonry nonlinearities. Realistic numerical simulations of masonry arch 
bridges under static and dynamic loading require accurate models representing the anisotropic nature of ma
sonry and material nonlinearity due to opening and closure of tensile cracks and shear sliding along mortar 
joints. The proposed 3D modelling approach allows for masonry bond via simple calibration, and enables the 
representation of tensile cracking, crushing and shear damage in the brickwork. A two-scale representation is 
adopted, where 3D continuum elements at the structural scale are linked to embedded nonlinear interfaces 
representing the meso-structure of the material. The potential and accuracy of the proposed approach are shown 
in numerical examples and comparisons against physical experiments on masonry arches and bridges under 
cyclic static and dynamic loading.   

1. Introduction 

Masonry arch bridges are old structures which still play a crucial role 
within modern railway and roadway networks. The vast majority of 
existing masonry bridges were built more than one hundred years ago 
mostly following empirical rules [1], and in many cases they date back 
to the medieval or Roman times representing important architectural 
heritage assets for numerous countries worldwide. Since their con
struction, they have been subjected to environmental actions causing 
progressive material degradation eventually leading to a reduction of 
the structural performance [2,3]. 

In general, masonry bridges show a very complex 3D response under 
traffic and extreme loading. It is governed by material nonlinearity in 
masonry, which in turn depends upon the properties of units and mortar 
joints and the bond pattern, and by the interaction among the different 
bridge components including arch, backfill, spandrel walls and piers in 
the case of multi-span bridges. Under dynamic loads, such as those 
inducted by earthquakes, the response is determined also by mechanical 
degradation with reduction of strength and stiffness of masonry due to 
opening and closure of tensile cracks and shear sliding along the mortar 
joints, by energy dissipation associated with the hysteretic behaviour of 

the backfill, and by the free-field conditions at the bridge boundaries. 
Despite an increasing attention from the scientific community to

wards the behaviour of masonry arch bridges over the past three de
cades, many aspects concerning the cyclic and dynamic response of 
these complex structural systems are yet to be fully explored. Thus far, 
most of the research has been devoted to studying masonry bridges 
under static forces representing gravity and traffic loading. Laboratory 
tests were performed to investigate the load capacity of arch bridges [4] 
evaluating the influence of backfill [5–8], spandrel and wing walls [9], 
and degradation phenomena associated with masonry bond, such as ring 
separation in multi-ring arches [10–12]. On the other hand, very limited 
experimental studies focused on the response of masonry arches and 
vaults under horizontal cyclic loading [13] and dynamic actions [14], 
while the dynamic behaviour of masonry arch bridges under earthquake 
loading has yet to be investigated in physical tests. 

On the numerical modelling front, masonry bridges are usually 
assessed employing 2D models based upon limit analysis concepts 
[15–17], the finite element method [18,19] or discrete element ap
proaches [20,21]. 2D descriptions generally entail a limited computa
tional cost so they are suitable for practical assessment also of large 
bridges, but they cannot represent transverse behaviour induced by 
eccentric or lateral loading and the 3D interaction between the different 
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bridge components. To overcome these limitations, 3D modelling stra
tegies with different levels of detail and accuracy have been developed 
[22–29], where the behaviour under earthquake loading has been 
studied mainly using FE continuum approaches with macroscale mate
rial descriptions for masonry [24,30,31]. In these models, masonry is 
simulated by an equivalent homogeneous material and isotropic 
smeared-crack nonlinear constitutive laws, assuming plastic yield do
mains defined in terms of principal stresses, such as the total strain 
rotating crack model (TSRCM) implemented in DIANA FEA [32]. This 
model describes the tensile and compressive behaviour of the material 
employing a uniaxial stress–strain relationship and assuming that the 
crack directions rotate with the principal strain axes. Homogeneous 
finite element approaches have the advantage of requiring a limited 
computational effort, as the mesh size is independent from the actual 
masonry bond and the dimensions of the units. However, such macro
scale material models bring important limitations, as they do not 
consider the anisotropy nature of brick/block masonry and do not allow 
for realistic damage accumulation under cyclic loading. Moreover, 
studies conducted on masonry buildings [33], and masonry bridges [34] 
showed that macroscale isotropic models require complex calibration 
procedures to simulate the realistic brick/block-masonry response under 
monotonic or cyclic loading conditions. In this regard, advanced 3D 
homogeneous techniques have been proposed to describe the nonlinear 
response of masonry walls and curved masonry elements including skew 
arches allowing for the actual bond [35]. As an alternative to continuous 
homogenised FEM approaches, meso-macro models [36] with advanced 
two-step homogenisation techniques [37,38], or discrete approaches 
[27,39,40] have been employed to assess curved structures and masonry 
arch bridges. 

This paper investigates the cyclic and dynamic behaviour of masonry 
arches by employing a novel continuum macro-modelling strategy, 
which has been recently developed and employed to simulate the in- 

plane and out-of-plane response of masonry walls [41], and here it is 
applied for the first time to investigate masonry arches and bridges. The 
results of the numerical study have been used (i) to access the accuracy 
of the proposed macro-modelling strategy via comparisons against 
experimental and detailed mesoscale masonry models and (ii) to 
investigate the dynamic behaviour of masonry bridges and the complex 
interaction between masonry and backfill components under cyclic 
loading conditions. 

The proposed continuum model allows for masonry anisotropy by 
means of discrete embedded interfaces describing the response at the 
local level, while a continuum Cauchy representation is adopted at the 
macroscale. A simple but robust multi-scale approach is adopted to 
transfer information from the macroscale to the local level and vice versa. 
This modelling strategy enables a practical model calibration through 
the direct use of mesoscale mechanical parameters, and it achieved a 
drastic reduction of the computational burden when applied to large 
structures, especially in comparison with detailed mesoscale approaches 
[25,26]. The ability of the proposed continuum macroscale description 
to predict the cyclic and dynamic response of masonry arches and 
bridges is evaluated considering 2D and 3D arch specimens, also inter
acting with backfill, and assuming as reference solutions the results from 
detailed mesoscale simulations. Parametric analyses are also performed 
to identify the most critical material parameters governing the hyster
etic behaviour of the analysed systems. 

2. Macromodel with embedded discontinuities 

The proposed macro-modelling strategy is based on a two-scale 
description of the masonry material. At the macro level, the masonry is 
simulated as an equivalent homogenised continuum material, discretised 
by means of a standard mesh of solid finite elements, while, at the local 
level, the meso-structure of the material is described by means of a 

Notation 

Latin upper case letters 
C Internal kinematics compatibility matrix 
D Damage matrix 
Dn Damage index in the normal direction 
Dt Damage index in the shear direction 
Eb Young’s modulus of bricks 
Em Young’s modulus of mortar 
En Homogenised normal modulus 
Et Homogenised shear modulus 
Fs Yield surface in shear 
Ft Yield surface in tensile 
Fc Yield surface in compression 
Gs Shear fracture energy 
Gt Tensile fracture energy 
Gc Compression fracture energy 
K Macroscopic tangent stiffness matrix 
Kint Tangent stiffness matrix at the local level 
E Tangent stiffness matrix of a single Internal Layer 
E0 Elastic stiffness matrix of a single Internal Layer 

Latin lower case letters 
b,h Dimensions of the bricks 
hz Height of the bricks 
hm Average thickness of bed and head joints 
hmz Thickness of circumferential joints 
c Cohesion 
d Internal Layer strain vector 

dp Internal Layer plastic strain vector 
dint Strain vector at the local level 
gs Shear plastic potential 
ft Tensile strength 
fc Compression strength 
hbw Bandwidth length 
kn Normal stiffness of the mesoscale interfaces 
kt Shear stiffness of the mesoscale interfaces 
q Hardening parameter of the damage-plasticity constitutive 

model 
s Internal Layer stress vector 
sint Stress vector at the local level 
s̃ Internal Layer effective stress vector 

Greek upper case letters 
Γk Internal layer (IL) normal to the local k direction (k = x,y,z) 

Greek lower case letters 
ε Macroscopic strain vector 
σ Macroscopic stress vector 
εp Macroscopic plastic strain vector 
αhk Parameter linking the macroscopic shear strains to the 

shear strains of the internal layers (hk = xy, xz, yz) 
νb Poisson’s coefficient of bricks 
νm Poisson’s coefficient of mortar 
ϕ Friction coefficient 
ϕg Dilatancy coefficient 
μ Model parameter of the damage-plasticity constitutive 

model governing he closure of the tensile cracks  
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uniform distribution of discontinuities, hereinafter referred to as internal 
layers (ILs). The ILs represent embedded interfaces, which allow spreading 
the plastic flow and damage (in real structures mostly concentrated at the 
mortar joints) uniformly into the material volume. As a result, at each 
Gauss integration point of an element domain, three ILs are considered 
(Γx, Γy, Γz), whose normal directions are along the main local material 
directions (x, y, z in Fig. 1) corresponding to the orientations of the mortar 
joints within the brick/blockwork. The orientation of the ILs, with refer
ence to a multi-ring barrel vault, is schematically depicted in Fig. 1. More 
specifically, the local z axis corresponds to the direction of the circum
ferential mortar joints connecting adjacent rings, while the x and y axes 
are set along the bed and head joints of the masonry vault. This allows the 
macro-model to effectively simulate the 3D anisotropic nature of the 
material, also in presence of double-curvature or irregular geometries 
such as skew arch textures [39]. 

According to the proposed modeling strategy, a Cauchy continuum 
strain field in the local reference system, ε =

[
εx εy εz γxy γxz γyz

]T, 
describes the deformations at the macro level. The macroscopic strains are 
transferred to the mesoscale level at each Gauss point of the domain (P in 
Fig. 2) and used to compute the deformations of the internal layers dk =

[dk dkh dkh ]
T (k = x, y, z; h = x, y, z with h ∕= k) composed of one normal 

component (dk) and two shear components (dkh) on the plane with normal 
k. 

The dual local stresses of the ILs sk = [ sk skh skh ]
T are linked to the 

local strains by the incremental relationship δsk = Dkδdk, where Dk is 
the tangent stiffness matrix associated with the plane Γk. The complete 
sets of local strains and stresses are ordered in the 9-components vectors 
dint and sint: 

dint = [ dx dy dz dxy dxz dyz dyx dzx dzy ]
T (1)  

sint = [ sx sy sz sxy sxz syz syx szx szy ]
T (2) 

Simple kinematic compatibility relationships are utilised to link the 
local strains (dint) to the macroscopic strains (ε), as expressed by: 

δdint =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1

αxy 1 − αxy
αxz 1 − αxz
αyz 1 − αyz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

δε (3) 

By imposing the Cauchy equilibrium conditions, namely the internal 
rotational equilibrium between the corresponding shear stress 

components (τkh = τhk), it is possible to evaluate the parameters αxy,

αxz and αyz corresponding to the increment of macroscopic strains (δε), 
and thus the relation linking the increment of the internal strains to the 
increment of the macroscopic strains [41]: 

δdint =

⎡

⎣

[ I3x3 03x3 ]

− A− 1B

[ 03x3 I3x3 ] + A− 1B

⎤

⎦ • δε = C
(
Dx,Dy,Dz

)
• δε (4)  

where: 

A =

⎡

⎣
Sx,22 + Sy,22 Sx,23 − Sy,23

Sx,32 Sx,33 + Sz,22 Sz,23
− Sy,32 Sz,32 Sy,33 + Sz,33

⎤

⎦ (5)  

B =

⎡

⎣
Sx,21 − Sy,21 0 − Sy,22 0 0
Sx,31 0 − Sz,21 0 − Sz,22 − Sz,23

0 Sy,31 − Sz,31 Sy,32 − Sz,32 − Sz,33

⎤

⎦ (6) 

As can be observed from Eq. (4), the kinematics compatibility matrix 
(C), linking the macroscopic and local strains, depends on the tangent 
stiffness matrix of the ILs. As a result, the procedure is iterative. In the 
numerical application, a full Newton-Raphson scheme is adopted until 
the internal equilibrium is reached [41]. At each iteration, Eq. (4) is used 
to perform the elastic prediction phase, while the plastic correction is 
carried out by integrating independently the constitutive laws of the 
three ILs and evaluating the residual unbalance vector for the next 
iteration. From the compatibility relation in Eq. (4), the macroscopic 
stress σ =

[
σx σy σz τxy τxz τyz

]T can be written as reported in Eq. 
(7a). Alternatively, when Cauchy equilibrium condition are satisfied, 
the macroscopic stress can be obtained directly by Eq. (2), leading to Eq. 
(7b). 

σ = CT • sint (7a)  

σ = [ I6x6 06x3 ] • sint (7b) 

When local convergence is reached, the local macroscopic tangent 
stiffness matrix (K), which is required for determining the increment of 
nodal displacement within the FE solution procedure, is evaluated by 
imposing the virtual work principle resulting in: 

K = CT • Kint • C + ∂CT/∂ε • sint (8a)  

where Kint is the local tangent stiffness matrix containing the tangent 
stiffness matrices of the three internal layers. Given that sint satisfies the 
Cauchy equilibrium condition and considering Eqs. (7), it follows 
CT = [ I6x6 06x3 ]. Therefore, the variation in the second term in Eq. (7) 
is zero, and the tangent stiffness matrix can be written as: 

K = CT • Kint • C (8b)  

Fig. 1. Orientation of the local layers according to the vault and arch ma
sonry bond. 

Fig. 2. Schematic representation of the double-scale description adopted in the 
macro-model. 
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3. Macromodel calibration 

In this work, the damage-plasticity material model developed by 
Minga et al. [42] is adopted to describe the mechanical behaviour of the 
ILs. This underlying constitutive model considers three strain–stress 
components: s = [ σ τ1 τ2 ]

T and d = [ ε γ1 γ2 ]
T The concept of 

effective stress ̃s = E0
(
d − dp

)
representing the stress of a fictitious un

damaged material is introduced. These stresses are evaluated by solving 
a linear-hardening elasto-plastic problem considering the elastic stiff
ness matrix E0 = diag{En Et Et }, with En and Et the elastic normal 
and shear moduli of the material, and the plastic strains εp. The nominal 
stress vector is obtained by multiplying the effective stress by the 
damage matrix D = diag{Dn Dt Dt }, as given by: 

s = (I3 − D)̃s = (I3 − D)E0
(
d − dp

)
(9) 

The damage matrix contains the damage parameters in the normal 
(Dn) and shear (Dt) directions, ranging from 0 (no-damage) to 1 (com
plete damage). The damage evolution is governed by three ratios be
tween the tensile, compressive and shear plastic works and the 
corresponding fracture energies ( Gt Gc Gs ). The damage in the 
normal direction assumes two different expressions in relation to the 
sign of the normal effective stress to allow the recovery of the normal 
stiffness in compression after the closure of tensile cracking [42]. 

Three plane yield surfaces define the elastic limits in shear (Fs) 
tension (Ft) and compression (Fc), as reported in the following: 

Fs(σ̃, q) =
̅̅̅
τ̃

√ 2
1 + τ̃

2

2 + σ̃tan(ϕ) − c′ (10)  

Ft(σ̃, q) = σ̃ − (ft − q) (11)  

Fc(σ̃) = − σ̃+ fc (12) 

A 2D representation of the yield domain in the space ̃σ − τ̃ =
̅̅̅
τ̃

√ 2
1 + τ̃

2

2 
is reported in Fig. 3. In the expressions, ft and fc are the tensile and 
compressive material strengths, ϕ the friction angle and q a linear 
hardening variable, ranging from 0 (initial value) to the limit value 
qlim = c

tan(ϕ) − ft. Moreover, c′

= c if q ≤ qlim and c′

= c+(q − qlim)tan(ϕ) if 
q > qlim. With the increase of q, the surface Ft reduces until becoming a 
point when q reaches the value qlim. On the other hand, Fs increases with 
the increase of q if q > qlim. Two distinct associated plastic flows are 
defined for Ft and Fc, while a non-associated flow rule is assumed in 
shear employing a plastic potential (gs), obtained from Fs substituting ϕ 
with ϕg, to take into account the effects of masonry dilatancy. 

The complete formulation of the underlying constitutive model, 
including the hardening and the cyclic rules, can be found in [42]. 

The cyclic behaviour in tension is governed by the parameter (μ =

εp,f/εf ), defined as the ratio between the residual normal strain (εp,f ) 
when unloading from the point in which the full damage under pure 
tension (Dn = 1) is reached and the normal strain at that point (εf ). 

In this study, the model parameters of the constitutive law described 
above are evaluated following a simple calibration procedure, based on 

the mechanical properties of bricks and mortar joints or, alternatively, 
based on the corresponding mesoscale description of masonry. The 
elastic properties in the material local directions x-y, identifying the 
tangent plane of the masonry vault where a regular running bond is 
considered (Fig. 4a), are evaluated following the homogenisation tech
nique proposed in [43]. The expressions of the equivalent normal and 
shear module Enx,Etx,Eny,Ety are reported in the following expressions. 

Enx =

[
μb

Eb
+

μm

Em
−

μmμbEmEb

Eny

(
νb

Eb
−

νm

Em

)2
]− 1

(13)  

Eny = μmEm + μbEb (14)  

Etx = Ety = 2
[

2(1 + νb)μb

Eb
+

2(1 + νm)μm

Em

]− 1

(15)  

where μm = hm
(hm+h); μb = h

(hm+h); Eb,Em are the Young’s modulus of bricks 
and mortar; νb, νm are the Poisson’s coefficients of bricks and mortar; b,
h are the dimensions of the bricks and hm is the average thickness of bed 
and head joints. 

In the plane of the arch, a stack bond masonry, with no brick inter
locking along the circumferential contact surfaces connecting the arch 
rings (Fig. 4b), is considered as it is a common solution adopted for 
multi-ring arches. Consistently to this, the equivalent normal and shear 
moduli along the local z direction, are evaluated by combining in-series 
the stiffness of bricks and mortar, results in: 

Enz =
EmEb(hz + hmz)

Ebhmz + Emhz
(16)  

Etz =
GmGb(hz + hmz)

Gbhmz + Gmhz
(17)  

where, hz is the height of the bricks and hmz the thickness of the 
circumferential joints. 

The nonlinear parameters along the local x and z directions, are 
considered coincident to the nonlinear parameters of the mortar joints. 
Namely, the tensile strength (ft), cohesion (c), friction factor (ϕ), and 
tensile and shear fracture energies normalised by the crack bandwidth 
(

Gt
hbw

, Gs
hbw

)
to ensure a mesh-independent response even in the presence of 

softening behaviour. The crack bandwidth, in each direction, is assumed 
as the minimum value between the mesh size and the dimension of the 
masonry unit in that direction. The influence of the mesh characteristics 
on the response prediction of masonry panels has been investigated in 
[41]. 

The nonlinear parameters along the local y direction (transversal 
direction of the vault) are evaluated according to [44] taking into 

Fig. 4. Macroscopic homogenisation of the masonry periodic cell.  Fig. 3. Yield surface used for the ILs.  
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account the brick interlocking in this direction. The results are reported 
in Eqs. (18) and (19) where rb = b/2h and the subscripts j and b indicate 
the parameters of bricks and mortar joints, respectively. Finally, the 
masonry strength in compression, in each direction, is assumed as a 
macroscopic parameter to be evaluated from experimental tests carried 
out on masonry prisms. 

fty = min
{

ftj + cjrb ftj + ftb/2
}

(18)  

cy = cjμm + cbμb (19)  

Gty =

{
(Gtj + Gsjrb)/(b + hm) if fty = ftj + cjrb(
Gtjμm + Gtbμb

)/
(b + hm) if fty = ftjμm + ft,bμb

(20) 

More accurate calibration procedures, based on 3D homogenisation 
techniques or numerical virtual tests, can be considered to improve the 
accuracy of the results. However, this task is beyond the scope of the 
present work which aims at investigating the accuracy and robustness of 
the proposed modelling strategy employing a simple calibration of the 
model parameters. 

4. Verification, validation and application studies 

The proposed macro-modelling strategy has been implemented in 
ADAPTIC [45], an advance FE code for nonlinear simulations of struc
tures, and used to investigate the response of bare masonry arches, 3D 
vaults, and arches interacting with backfill under monotonic and cyclic 
loadings. The numerical results have been compared against detailed 
mesoscale simulations according the approach proposed in [46] and 
against experimental data reported in the literature. 

4.1. 2D masonry arch 

The first numerical-experimental comparison considers the two-ring 
brick-masonry arch, Arch-G, tested under vertical loading by Melbourne 
et al. [10]. The arch has 3 m span, 215 mm thickness and 455 mm width. 
It is made of class A engineering bricks 215 × 102.5 × 65 mm3 arranged 
according to the stretcher bond with a continuous circumferential 
mortar joint connecting the two rings (Fig. 5). Mortar joints are 10 mm 
thick and characterised by a volumetric cement:lime:sand ratio of 1:2:9. 
In the physical test, rigid reinforced concrete abutments were used to 
avoid support movements. Two initial vertical forces F0 = 10 kN each 
were applied at quarter and three-quarter span and kept constant during 
the test. Subsequently, a vertical force (F) at quarter span was increased 
up to collapse under force control (Fig. 5). 

The developed mesoscale model is composed of 48 20-noded elastic 

elements simulating the bricks of each arch ring. Nonlinear interface 
elements [46] are employed to describe the circumferential mortar 
joints connecting the two rings, and the bed mortar joints assumed as 
continuous along the radial directions. The mesoscale material param
eters adopted in [47] are used. More specifically, the solid elements are 
characterised by a Young’s modulus Eb = 16000MPa, a Poisson’s ratio ν 
= 0.15 and a specific self-weight of 22 kN/m3. The mechanical param
eters for the nonlinear interfaces are reported in Table 1, where, kn and 
kt are the normal and tangential stiffnesses, ft, fc and c are the tensile 
strength, the compressive strength and the cohesion, ϕ and ϕg are the 
friction and dilatancy angles. 

Two different macroscale models with 1 × 24 and 2 × 34 20-noded 
solid elements have been developed to assess the influence of the mesh 
size on the arch response prediction. The macroscale mechanical pa
rameters have been determined following the procedure described in 
Section 3. The homogenised linear parameters are reported in Table 2, 
where the nonlinear properties coincide with the nonlinear material 
characteristics of the mesoscale interfaces in Table 1. Zero dilatancy 
angle is considered in the analysis according to [48]. However, this 
parameter is not expected to significantly affect the results since, as 
confirmed in the following numerical investigations, the failure mech
anisms are not associated with sliding at the masonry joints. The effec
tive lengths of 65 mm and 102.5 mm are used to normalise the fracture 
energies along the circumferential (x) and radial (z) directions, 
respectively. 

Finally, the parameter μ governing the closure of the tensile cracks is 
assumed equal to 0.001, both in the mesoscale and macroscale 
description. 

In the first simulation, the force F is monotonically increased 
reproducing the test protocol. The failure mechanisms obtained by the 
mesoscale model and the macroscale model with the finer mesh, with 
two solid elements along the thickness of the arch, are shown in Fig. 6, 
where the von-Mises equivalent stress contours are also displayed. The 
two alternative numerical descriptions predict the same flexural mech
anism with the activation of four radial cracks, as observed in the 
experimental test. The load–deflection curves showing the variation of 
the vertical displacement δ at quarter span underneath the load are 
displayed in Fig. 7a. The macroscale curves obtained by using the two 
alternative meshes are in good agreement with the mesoscale response, 
confirming a negligible influence of the macroscale mesh characteris
tics. The macroscale model, however, overestimates the stiffness of the 
arch after 20kN of force and the peak load by about 15 % compared to 
the mesoscale and experimental results. A further study revealed that 
such discrepancy is associated with the contribution of the continuous 
circumferential mortar joint, which is spread along with the entire 
thickness of the arch in the simplified macroscale description. In fact, a 
mesoscale simulation for a single ring arch with the same geometrical 
and mechanical characteristics of the analysed two-ring masonry arch 
leads to a peak load very close to that predicted by the proposed 
macroscale model (Fig. 7a). Nevertheless, for displacement values larger 

Fig. 5. Brick-masonry arch.  

Table 1 
Mechanical parameters of the mesoscale model.  

kn kt ft fc c Gt Gs Gc tgϕ tgϕg 

[N/mm3] [N/mm3] [MPa] [MPa] [MPa] [N/mm] [N/mm] [N/mm] [–] [–] 

90.0 40.0 0.10 24.0 0.40 0.12 0.12 0.5  0.5  0.0  

Table 2 
Equivalent elastic propertes of the macromodel [MPa].  

Local direction z Local direction x 

En Et En Et 

4818 4128 6956 3009  
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than the peak-load displacement (about 2 mm), the two macroscale 
curves converge rapidly towards the mesoscale curve confirming an 
accurate prediction of the post-peak response. 

In order to evaluate the ability of the proposed macroscale modelling 
strategy to predict the hysteretic behaviour of the arch, simulations 
under cyclic loading have been carried out using the 1 × 24 macroscale 
mesh and the mesoscale model. Four loading–unloading cycles with 
increasing maximum displacement (Fig. 7b) have been applied. The 
detailed mesoscale modelling strategy, which has been extensively 
validated in the literature (e.g. [42]), is considered here as the reference 
solution. The two models predict a very similar hysteretic behaviour 
characterised by the opening and closure of tensile cracks. The main 
difference is observed in terms of residual deformations which are larger 
for the macroscale model. 

4.2. Arch interacting with backfill 

In this section, the single-span masonry bridge specimen Bridge 3–1 
tested by Melbourne and Gilbert [12] is investigated using the proposed 

macroscale modelling strategy. The analysed structure comprises a two- 
ring arch, backfill and spandrel walls. The arch is 2880 mm wide and has 
the same span, rise and thickness of the arch shown in Fig. 5 and 
considered in Section 4.1. The backfill extends horizontally 2460 mm 
from the two arch supports and is 300 mm deep at the arch crown. The 
Bridge 3–1 specimen was subjected to a line load at the top surface of the 
backfill at the quarter span of the arch (Fig. 8). The load was uniformly 
distributed along the width of the bridge inducing a cylindrical defor
mation mode up to failure. The spandrel walls were detached from the 
arch, but they provided lateral confinement to the backfill. 

The specimen was analysed by Zhang et al. [25] using a detailed 
mesoscale description explicitly allowing for the actual masonry bond. 
In this previous study, an efficient strip model representing a portion of 
the arch interacting with the backfill, which was fully restrained along 
the transverse direction, was adopted. A similar numerical model is used 
here, employing the same representation with 15-noded elasto-plastic 
tetrahedral elements for the backfill and a macroscale description for 
the arch, which corresponds to the coarser mesh with 1 × 24 20-noded 
solid elements introduced in Section 4.1. The adopted mesoscale and 

Fig. 6. Ultimate deformed shapes and Von-Mises stress distribution (in MPa) of the (a) mesoscale model and (b) macromodel.  

Fig. 7. Force deflection curves of the arch, considering (a) monotonic and (b) cyclic loading paths.  

Fig. 8. Geometry of the prototype and test layout.  
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macroscopic masonry material properties are reported in Tables 1 and 
Table 2. 

According to Zhang et al. [25], an elasto-plastic material model with 
a modified Drucker-Prager yield criterion is employed for the backfill, 
assuming a Young’s modulus Eb = 500 MPa, a cohesion cb = 0.001 MPa, 
friction and dilatancy coefficients tgϕb = 0.95 and tgψb = 0.45, and a 
specific self-weight of 22 kN/m3. The interaction between the arch and 
the backfill is simulated by introducing nonlinear interfaces at the 
extrados of the arch with tensile strength ffi = 0.002 MPa, cohesion ci =

0.0029 MPa, friction coefficient tgϕi = 0.6 and zero dilatancy. The 
backfill domain is fully restrained at the two bases and longitudinally 
restrained at the two lateral faces to represent rigid supports. In addi
tion, the nodes on the two longitudinal faces are transversally restrained 
to simulate the lateral confinement provided by the spandrel walls. 

The monotonic load–deflection curve obtained by the macroscale 
mesh is shown in Fig. 9a, together with the experimental results and the 
mesoscale curve achieved adopting the same numerical description for 
the backfill. A very good agreement can be observed for displacement 
levels up to collapse. This improved accuracy compared to the results 
obtained for the bare masonry-two-ring arch in Section 4.1, especially in 
term of peak-load prediction, corroborates the critical role played by the 
backfill and the arch-backfill interaction on the load-carrying capacity of 
masonry arch bridges. 

As for the bare arch in Section 4.1, further nonlinear simulations 
have been conducted considering a cyclic loading–unloading history. 
The macroscale and mesoscale curves are shown in Fig. 9b. Also, in the 
case of confined arch, the cyclic response of the macroscale model is in a 
good agreement with that predicted by the mesoscale model exhibiting a 
very similar hysteretic behaviour which is markedly different from that 
obtained for the bare arch, in section 4.1. This again emphasises the 
importance function of the backfill and the importance of a realistic 
hysteretic model for the backfill to effectively simulate the dissipative 
capacity of the composite arch-backfill system under cyclic loading 
conditions. 

The results in Fig. 7 and Fig. 9 clearly show that load capacity of the 
bare arch is significantly reduced compared to that of the confined arch 
which may indicate a prevalent contribution of the backfill to the ulti
mate performance of the bridge specimen. However, as observed in 
Panto’ et al. [34], a correct representation of the arch response is critical 
also in this case, as an inconsistent modelling of the masonry material of 
the arch may lead to an inaccurate representation of the arch-backfill 
interaction and unrealistic predictions of the actual failure mode and 
the resistance of the coupled arch-backfill system. Furthermore, it is 
important to point it out that the proposed macroscale masonry model 
enables accurate simulations of the monotonic and cyclic response of 
bare and confined arches without requiring sophisticated calibrations of 
the masonry material parameters, thus confirming the practicality and 

the ease of use of the proposed macroscale masonry model for masonry 
arches and bridges. 

Finally, Fig. 10 depicts the deformed shapes and the equivalent Von- 
Mises stresses for the mesoscale (Fig. 10a) and macroscale (Fig. 10b) 
models at collapse. In accordance with the experimental observations (e. 
g. [5,12]), both numerical models predict a flexural mechanism with 
general movement of soil beneath the load and on the side opposite to 
the loading area. Moreover, the two models predict significant sliding 
between the arch and backfill on the side opposite to the loading area. 
Fig. 10c and 10d show the damage index (ranging from 0 to 1) at the 
arch-backfill interfaces at the last step of the analyses. 

4.3. Parametric analysis 

To study the influence of the main model material parameters on the 
response under cyclic loading, parametric analyses have been carried 
out on both the bare two-ring masonry arch and the arch bridge spec
imen. The parameters considered in this numerical investigation have 
been selected amongst those that affect most the monotonic strength and 
stiffness of brick-masonry arches and bridges according to Tubaldi et al. 
[49]. In the case of the bare arch, the considered mesoscale material 
properties comprise the Young’s modulus of the bricks (Eb), the normal 
stiffness (kn), the tensile strength (ft), the Mode-I fracture energy (Gt) 
and the residual strain factor (μ) of the nonlinear interface elements 
representing mortar joints, whereas in the analysis of the arch with 
backfill also the influence of the backfill cohesion (cf ) has been inves
tigated. The ranges of variation of the model material parameters are 
summarised in Table 3. Nonlinear simulations under displacement 
control have been carried out changing one parameter at a time. It has 
been found that a variation of Eb and μ has only a marginal influence on 
the response predictions, but kn, ft, Gt and cf are more influential. 

Figs. 11 and 12 show mesoscale and macroscale load–displacement 
curves for the bare arch, respectively. It can be observed that both meso- 
and macroscale peak-load predictions are largely influenced by the 
variation of the tensile strength. 

Furthermore, both models lead to residual load capacity values 
which are less dependent from material parameters (apart from the case 
of large fracture energy) which indicates that residual strength depends 
mostly on the geometrical characteristics of the arch and the level of 
precompression induced by the gravity loads directly applied onto it. 
Comparing mesoscale and macroscale responses, it can be observed that 
the proposed macroscale modelling strategy, apart from overestimating 
the peak-load, predicts also an initial steeper post-peak softening branch 
and larger residual plastic deformations after unloading. Finally 
comparing Figs. 11 and 12, it can be observed that the mesoscale peak 
load prediction is slightly less sensitive to the elastic stiffness and frac
ture energy. This may be explained considering the simplified 

Fig. 9. Force-deflection curves of the arch interacting with backfill: (a) monotonic and (b) cyclic loading.  
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kinematics of the macro-model which spreads plastic deformations into 
a larger zone compared to the mesoscale model, making it more sensi
tive to variations of the stiffness and strength parameters. 

Figs. 13 and 14 illustrate the main results obtained in the analysis of 
the arch with backfill. In this case, the backfill cohesion is the dominant 
parameter determining the peak load and the residual deformation upon 
unloading. Conversely, further parametric simulations, which are not 
reported here for the sake of brevity, indicates that the masonry pa
rameters kn, ft, and Gt have a limited influence on the system response. 

The numerical analyses have been performed by a displacement 
control algorithm, imposing the complete recovery of the applied 
displacement at the end of each cycle. Both mesoscale and macroscale 
curves are characterised by a mostly elasto-plastic behaviour with sub
stantial residual deformations. This result is consistent with experi
mental observations on masonry arch bridge specimens subjected to 
vertical cyclic loading [5] and confirm the major role played by the 
backfill which reduces the effects of potential variations of the masonry 
material characteristics. 

Furthermore, it can be observed from Figs. 13 and 14 that the initial 
stiffness is recovered at each cycle. This result is consistent with the 
damage-plasticity constitutive law adopted for interfaces, which is 
characterised by different damage indexes governing the material 
degradation in tension, compression and shear. More specifically, the 
system presents an increase of the initial stiffness by increasing the cycle 
amplitude. This result can be explained by the redistribution of internal 
forces between the arch and the backfill at the interface between the two 
domains due to residual sliding deformations. 

4.4. 3D masonry vault 

The accuracy and potential of the proposed macroscale modelling 
strategy has been assessed investigating also the response of a 3D ma
sonry vault under static as well as dynamic (earthquake) loading. As for 
the previous cases, the macroscale predictions are compared against 
detailed mesoscale simulations which provide baseline results for model 
validation. The analysed masonry vault is 3 m wide and has the same 
span, rise and thickness of the arch shown in Fig. 5. 

In the mesoscale model, the actual masonry bond along the trans
versal direction is also taken into account by representing each half brick 
with a 20-noded elastic element and alternating mortar interfaces with 
brick interfaces simulating the potential development of cracks within 
the bricks. The parameters reported in Table 1 are used for the mortar 
nonlinear interfaces, whereas the brick interfaces are characterised by 
high normal and shear stiffnesses kn = kt = 10E5 N/mm3 and by the 
following strength parameters: ft = 2.0 MPa, Gt = 0.08 N/mm, c =

2.8 MPa, Gs = 0.5 N/mm, fc = 24.5 MPa, Gc = 5.0 N/mm, according to 
[47]. The macroscopic material properties indicated in Table 4 have 
been evaluated following the procedure described in Section 3. 

In initial simulations, the vault has been subjected to static patch 
loads applied on an area of 300 × 400 mm2, centred at three-quarter 
span (Fig. 15). In a first test, the monotonic load is applied vertically 
(Fv) and the vault is fully restrained at the two bases, while the two 
lateral faces are either free or restrained in the vertical direction to 
simulate the effects of rigid spandrel walls. Subsequently, the vault is 
analysed under horizontal cyclic forces (Fh) with fixed supports at the 

Table 3 
Variation of the model material parameters.  

Eb kn ft Gt μ cf 

[GPa] [kN/mm3] [MPa] [N/mm] [–] [MPa] 

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 

8 40 90 200  0.03  0.15  0.03  0.25 1E-4  0.1 5E-4  0.01  

Fig. 10. Deformed shape and Von-Mises stresses (in MPa) at collapse: (a) mesoscale model and (b) macroscale model, and sliding damage at the arch-backfill in
terfaces predicted by the (c) mesoscale and the (d) macroscale model. 
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Fig. 11. Mesoscale parametric simulations on the two-ring arch based on the 
variation of: (a) the normal stiffness; (b) tensile strength; (c) fracture energy of 
the nonlinear interface elements representing mortar joints. 
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Fig. 12. Macroscale parametric simulations on the two-ring arch based on the 
variation of the normal stiffness (a) tensile strength (b) and fracture energy (c) 
of the nonlinear interface elements representing mortar joints. 
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Fig. 13. Mesoscale parametric simulations on arch with backfill based on the 
variation of (a) tensile strength, (b) fracture energy and (c) backfill cohesion. 

Fig. 14. Macroscale parametric simulations on arch with backfill based on the 
variation of (a) tensile strength. (b) fracture energy and (c) backfill cohesion. 

Table 4 
Mechanical properties adopted in the macromodel.  

Local Direction En Et ft fc c Gt Gs Gc tgϕ tgϕg 

[MPa] [MPa] [MPa] [MPa] [MPa] [N/mm] [N/mm] [N/mm] [ − ] [ − ]

x 4818 4128  0.10  24.5  0.40  0.10  0.125  5.0  0.50  0.0 
y 13,980 4128  0.85  24.5  0.80  0.37  0.125  5.0  0.50  0.0 
z 6956 3009  0.10  24.5  –  0.10  –  5.0  –  

B. Pantò et al.                                                                                                                                                                                                                                   



Engineering Structures 269 (2022) 114722

11

bases and free at the two lateral faces. 
The numerical load–deflection curves obtained in the two numerical 

experiments are presented in Fig. 16. More specifically, Fig. 16a displays 
the results associated with the monotonic vertical load Fv, while Fig. 16b 
shows the results for the horizontal cyclic load Fh. 

In Fig. 16a, MS-F and MS-R refer to the response curves from 
mesoscale models with free and restrained lateral faces, respectively, 
while MM-F and MM-R denote the corresponding response curves ob
tained with the macroscale models. The restrained models show a load 
capacity which is approximately double that predicted by the models 
with free ends and a reduced ductility. The proposed macroscale 
modelling strategy offers a very accurate prediction of the initial stiff
ness and the residual resistance for the two different support conditions, 
but it underestimates of about 17 % the peak-load for the case with free 
end faces, and it overestimates the load capacity of about 7.5 % for the 
case with vertically restrained end faces. In Fig. 16a, the mesoscale 
model shows a more brittle post-peak behaviour caused by the activa
tion of local ruptures at the interfaces, which is simulated by the macro- 
scale model by the spread of the plastic deformations with the FE mesh. 

A very good agreement between mesoscale and macroscale results 
under horizontal cyclic loading can be observed in Fig. 16b. This con
firms that the proposed macroscale description enables a realistic rep
resentation of the cyclic hysteretic characteristics, including stiffness 
degradation and limited residual deformation upon unloading as pre
dicted by the detailed mesoscale model. 

Finally, the equivalent von-Mises stress distributions at the intrados 
and extrados of the vault with free end faces under vertical loading are 

shown in Fig. 17. The stress pattern predicted by the macroscale model is 
consistent with that obtained by the mesoscale model, further con
firming that the macroscale description leads to an accurate represen
tation of 3D effects in masonry vaults. 

In further numerical investigations, the vault has been subjected to 
prescribed acceleration histories at the two bases to represent the effects 
of earthquake loading. The N–S horizontal component of the Irpinia 
earthquake with PGA 0.32 g (Fig. 18) is simultaneously applied along 
the longitudinal and transversal directions of the vault. The earthquake 
record from Southern Italy Irpina earthquake (1980), Sturno station, is 
selected from the European Strong-Motion Database (ISESD), already 
processed by means of a linear baseline correction procedure and an 
eighth order elliptical bandpass filter with cut-off frequencies of 0.25 
and 25.00 Hz [50,51]. 

A viscous damping proportional to the mass and associated with a 
damping coefficient ξ = 1 % for a reference period of 0.10 s is employed 
in the nonlinear simulations. This considers the effects of potential 
micro-cracks that are not taken into account by the adopted material 
description improving numerical stability. The original signal has been 
scaled until the failure of the vault which was reached by both models 
for PGA = 2.56 g (8 times the original PGA) at approximately 5.3 s. The 
failure mode predicted by the mesoscale model is characterised by shear 
sliding along the radial joints at the vault bases (Fig. 19a). Extensive 
damage also develops along the vault span, as denoted by shear damage 
contours distribution at collapse shown in Fig. 19b. 

A similar mechanism is predicted by the macroscale model as dis
played in Fig. 20, where significant shear deformations localised at the 

Fig. 15. 3D spatial vault prototypes.  

Fig. 16. Load-deflection curves for the masonry vault under (a) vertical monotonic and (b) horizontal cyclic loading.  
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two supports. 
Time-histories showing the variation in time of the relative longi

tudinal displacement centred at the crown of the vault, as predicted by 
the macroscale and mesoscale models for PGA = 2.24 g and PGA = 2.56 
g (failure), are shown in Fig. 21a and b, respectively. Also these results 
confirm the potential of the macroscale strategy and its ability in 

predicting the nonlinear dynamic response characteristics under earth
quake loading, where the variation of peak displacements and fre
quencies are well simulated. The major differences from the mesoscale 
results can be noted from 6.0 s to 7.5 s, where the macroscale model 
shows higher high-frequency oscillations. 

Finally, the hysteretic responses predicted by the two models for 
PGA = 2.24 g and PGA = 2.56 g are shown in Fig. 22, where the vari
ation of the base shear along the longitudinal direction is plotted against 
the longitudinal horizontal displacement centred at the crown. A general 
good agreement between the two descriptions can be observed for PGA 
= 2.24 g (Fig. 22a,b). 

On the other hand, for PGA = 2.56 g, the macroscale model predicts 
wider hysteretic loops (Fig. 22c,d) which may be due to the nature of the 
failure mode with a concentration of shear sliding at the two ends of the 
vaults which is spread within continuous elements in the macroscale 
model, whereas it is concentrated at the nonlinear interfaces repre
senting the radial joints in the mesoscale description. 

The computational times of the two description strategies have been 
registered to evaluate the efficiency of the macroscale model compared 
to the more detailed mesoscale approach. Regarding the time history 
analysis with PGA = 2.24 g, the macromodel showed an average speed- 

Fig. 17. Equivalent von Mises stresses (in MPa) at the peak-load for the vault with free ends under vertical loading: (a) extrados and (b) intrados of the mesoscale 
model and corresponding (c) extrados and (d) intrados of the macroscale description. 

Fig. 18. Acceleration ground motion history applied in the analyses.  

Fig. 19. Mesoscale model: (a) sliding failure mechanism of the vaults; (b) shear damage distribution at the interfaces.  
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up value of approximately 83 %. This result demonstrates the high po
tentiality of the macromodel to be adopted for the simulation of large 
structures. 

In the next validation, a further vault specimen with the same span, 
thickness and mechanical properties of the vault analysed in the previ
ous example, but with a different span-to-rise ratio of 2.5, is investigated 
applying the same accelerogram in both longitudinal and transversal 
directions. The displacement time-histories for the macroscale and 
mesoscale descriptions and different levels of PGA are reported in 
Fig. 23. For PGA = 0.32 g the two representations provide very similar 
responses. For higher values of PGA, 0.96 g and 1.60 g, the macromodel 
overestimates the displacement peaks, while providing a satisfactory 
prediction of the dynamic response of the vault in terms of frequencies of 
oscillation and predicting, coherently to the mesoscale model, the fail
ure for a PGA of 1.60 g. The hysteretic cycles of the two models for PGA 

= 0.96 g and 1.60 g are reported in Fig. 24. The hysteretic characteristics 
of the macromodel are consistent with those predicted by the mesoscale 
model, but the macromodel tends to overestimate the amplitude of the 
hysteretic loops, leading to an overestimation of the effective energy 
dissipation capacity of the structure. Finally, the failure mechanisms 
obtained by the two models are reported in Fig. 25. In this case, a 
flexural failure mechanism is observed, which is due to the activation of 
four radial cracks. A very good agreement between the macroscale and 
mesoscale description can be observed. 

4.5. Three-span masonry bridge 

In this section, the response of a three-span arch bridge specimen, 
which was tested previously by Melbourne et al. [8] at the Bolton 
Institute (UK), is numerically simulated using the proposed macroscale 

Fig. 20. Deformed shape and Von-Mises stress distribution (in MPa) of the macroscale model at collapse: (a) 3D and (b) top view.  

Fig. 21. Displacement time-histories displacement corresponding to the ground motion with (a) PGA 2.24 g and (b) PGA 2.56 g.  
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Fig. 22. Hysteretic curves for macromodel (a) and mesoscale model (b) at PGA = 2.24 g; macromodel (c) and mesoscale model (d) at PGA = 2.56 g.  
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model and the baseline detailed mesoscale model. The geometric char
acteristics of the analysed full-scale bridge specimen 2880 mm wide 
with detached spandrel walls (Bridge-2 in [8]) is depicted in Fig. 26a. 

The masonry of the specimen consists of class ’A’ clay engineering 
bricks with 154 MPa compression strength and 1:2:9 (cement:lime:sand) 
mortar with 2.4 MPa compression strength. The masonry bond of the 
arches with two rings corresponds to that of the arch of the single span 
bridge specimen investigated in Section 4. The mechanical parameters 
of the brickwork and backfill obtained in material tests are summarised 
in Table 5. 

Two strip models have been developed using the macro-scale 
(Fig. 26b) and the mesoscale (Fig. 26c) modelling approaches. For the 
mesoscale model, the same mesoscale material parameters utilised in 
Tubaldi et al. [49] are assumed. In particular, a Young’s modulus of 
18500 MPa and a Poisson’s ratio of 0.15 are adopted for the solid ele
ments, and the parameters indicated in Table 6 are employed for the 
nonlinear interfaces representing mortar joints. Following Tubaldi et al. 

[49], the backfill is modelled utilising a Drucker-Prager criterion fitted 
to the inner edges of the Mohr-Coulomb yielding surface with a Young’s 
modulus of 50 MPa, a Poisson’s ratio of 0.20, a cohesion coefficient of 
0.003 MPa and friction and dilatancy coefficients of 0.95 and 0.45, 
respectively. The backfill-masonry physical interface is modelled by 
nonlinear interfaces with negligible cohesion (0.001 MPa) and a friction 
coefficient of 0.6 according to [49]. Finally, the masonry macroscale 
parameters are evaluated based on the mesoscale parameters, according 
to the procedure described in Section 3. The equivalent macroscale 
elastic properties are listed in Table 7. The remaining parameters 
required to characterise the nonlinear behaviour of the macroscale in
ternal layers are assumed to be equal to those adopted in the mesoscale 
model. 

In a preliminary numerical investigation, the two alternative bridge 
models have been subjected to a vertical patch load applied at the 
quarter of the central span which is increased up to collapse following 
the loading protocol considered in experimental test. The patch load is 
applied considering a uniform load distribution on a patch area of 460 ×
2880 mm2 using a displacement control algorithm. 

Fig. 27 shows numerical and experimental load–displacement curves 
representing the variation of the vertical displacement at the intrados of 
the arch underneath the loaded area (Fig. 27a) and at the center of Span 
3 (Fig. 27b) against the applied load. It can be seen that both the 
mesoscale and the macroscale model provide a realistic representation 
of the actual response, with predictions of initial stiffness, peak and 
residual loads very close to the experimental results. As a further com
parison, Fig. 28 shows the numerical and experimental horizontal dis
placements at the top of the two piers. Again, both models simulate the 
experimental response with a high level of accuracy. The major differ
ences are observed in the displacements at Pier 2, where the macroscale 
model underestimates the maximum top displacements of the pier. 

Finally, Fig. 29 depict the deformed shapes of the two models at two 
levels of displacements with the distribution of von Mises stresses. The 
failure mechanisms predicted by the two numerical models are 
reasonably consistent with each other and consistent with the flexural 
failure mechanism observed in the test, Melbourne et al. [8], charac
terised by the formation of three plastic hinges (radial cracks in the arch) 
in the central span, two plastic hinges along Span 3, and a rocking 
mechanism of the Pier 2. 

In a subsequent numerical investigation, an acceleration time- 
history is applied in the longitudinal direction at the base of the two 
piers and abutments and at the two end lateral surfaces of the bridge 
model. The same accelerogram shown in Fig. 18 is considered with an 
amplification factor of 2.0 (PGA 0.64 g) to represent a medium-strong 
earthquake. The displacements predicted by the mesoscale and the 
macroscale models are provided in Figs. 30 and 31, respectively. Three 
control points located at the mid-span section of the first, second and 
third arch (P1, P2, P3), and the relative horizontal displacements at the 
top of two pier 1 (P4) and pier 2 (P5), are considered. The indexes (x) and 
(z) indicate, respectively, the relative horizontal the vertical displace
ments at the considered control points. A suitable agreement is observed 
between the responses predicted by the two alternative models up to 
collapse which occurs at around 5.4 sec. 

Finally, the mesoscale and macroscale deformed shapes with 
equivalent von Mises stress contours at the last step of the numerical 
simulations are shown in Fig. 32a and 32b. A flexural shear failure mode 
is predicted by the mesoscale model. Flexural radial cracks and shear 
sliding separations are predicted to develop at the mortar interfaces at 

Fig. 23. Displacement time-histories for different levels of PGA.  
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Fig. 24. Hysteretic curevs for macromodel (a) and mesoscale model (b) at PGA = 0.96 g; macromodel (c) and mesoscale model (d) at PGA = 1.60 g.  

Fig. 25. Failure mechanism predicted by the mesoscale model (a) and the micromodel (b).  
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Fig. 26. The arch bridge specimen: (a)geometrical layout – dimensions in mm; (b) macroscale FE mesh; (c) mesoscale FE mesh.  

Table 5 
Masonry and backfill properties detaermined by material tests.  

Bricks compression strength 
[MPa] 

Mortar compression strength 
[MPa] 

Masonry Backfill 

Compression strength 
[MPa] 

Young’s 
modulus 
[MPa] 

Specific weight 
[KN/m3]

Cohesion  

[MPa] 

Friction angle 
[O] 

Specific weight 
[KN/m3]

154  2.4  26.8 16,200  22.4 0 60  22.2  

Table 6 
Mesoscale parameters adopted in the analyses [49].  

kn kt ft fc c Gt Gs Gc tanϕ tanϕg μ 
[N/mm3] [N/mm3] [MPa] [MPa] [MPa] [N/mm] [N/mm] [N/mm] [–] [–] [–] 

400 167 0.20 16.00 0.29 0.05 0.05 1.00  0.50  0.00  0.001  

Table 7 
Equivalent elastic properties of the macroscale model.  

Element Direction En Et ft c Gt 

[Mpa] [Mpa] [Mpa] [Mpa] [N/mm] 

Pier Horizontal 10,860 9240 0.05 0.29 0.05 
Vertical 16,160 0.65 elastic 0.60 

Arch Circumferential 10,809 5620 0.05 0.29 0.05 
Radial 13,353  
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different locations along the three arches and at the base of the two piers 
(Fig. 32a). Also in this case, the macroscale model reproduces the 
complex failure mechanism predicted by the more detailed mesoscale 
model with a good level of accuracy (Fig. 32b). 

5. Conclusions 

The paper presents a novel 3D macroscale modelling approach for the 
simulation of masonry arches, vaults and arch bridges under static and 
dynamic loading. The proposed modelling strategy is based on a 2-level 
description of the masonry. At the macroscopic level, masonry is simu
lated as a homogeneous continuum Cauchy domain, whilst at the local 
level the mesoscale structure of masonry is represented by means of a 
discrete distribution of embedded interfaces (internal layers) simulating 
tensile, shear and compressive plastic deformations of mortar joints and 
potential cracks within bricks. A simple but robust calibration procedure, 

based upon the mesoscale mechanical parameters of masonry, is 
employed to evaluate the mechanical properties of the internal layers. 

The proposed modelling strategy aims at providing an efficient but 
accurate numerical tool for the seismic assessment of large bridges with 
a reduced computational burden compared with detailed mesoscale 
descriptions. The model is validated with reference to 2D strip models of 
masonry arches, also interacting with a backfill layer, spatial vault 
specimens subjected to static and dynamic loading conditions, and a 
three-span bridge specimen. The results of the proposed model are 
compared to those obtained by detailed mesoscale models and experi
mental data, demonstrating the ability of the developed modelling 
strategy to simulate the cyclic and dynamic response of masonry arches 
and arch bridges. Further investigations considering entire masonry 
bridges, including spandrel walls and piers, will be considered in future 
research. 

Fig. 27. Numerical and experimental load–displacement curves: (a) vertical displacement at quarter-span of the loaded arch; (b) vertical displacement at the centre 
of span 3. 

Fig. 28. Numerical and experimental load–displacement curves of the two piers.  
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Fig. 29. Numerical failure mechanisms with von Mises stresses distributions (in MPa): Mesoscale model prediction at (a) 20 mm with 20 amplification factor and (b) 
5 mm with amplification factor 60; macroscale prediction at (c) 20 mm with 20 amplification factor and (d) at 5 mm with amplification factor 60. 

Fig. 30. Displacement time histories predicted by the mesoscale model.  Fig. 31. Displacement time histories predicted by the macroscale model.  
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B. Pantò et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0141-0296(22)00814-8/h0005
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0005
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0010
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0010
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0020
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0020
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0020
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0025
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0025
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0025
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0040
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0040
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0045
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0045
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0060
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0060
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0065
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0065
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0065
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0070
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0070
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0070
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0075
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0075
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0085
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0085
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0085
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0090
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0090
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0095
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0095
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0100
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0100
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0105
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0105
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0105
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0110
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0110
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0115
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0115
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0120
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0120
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0120
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0120
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0125
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0125
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0125
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0130
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0130
http://refhub.elsevier.com/S0141-0296(22)00814-8/h0130


Engineering Structures 269 (2022) 114722

21

[27] Pulatsu B, Erdogmus E, Lourenço PB. Comparison of in-plane and out-of-plane 
failure modes of masonry arch bridges using discontinuum analysis. Eng Struct 
2019;178:24–36. 
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[41] Pantò B, Macorini L, Izzuddin BA. A two-level macroscale continuum description 
with embedded discontinuities for nonlinear analysis of brick/block masonry. 
Comput Mech 2022;69(3):865–90. 

[42] Minga E, Macorini L, Izzuddin BA. A 3D mesoscale damage-plasticity approach for 
masonry structures under cyclic loading. Meccanica 2018;53(7):1591–611. 

[43] Gambarotta L, Lagomarsino S. Damage models for the seismic response of brick 
masonry shear walls. Part I: the mortar joint model and its applications. 
Earthquake Eng Struct Dyn 1997;26(4):423–39. 

[44] Lourénço PB, De Borst R, Rots JG. A plane stress softening plasticity model for 
orthotropic materials. Int J Numer Meth Eng 1997;40(21):4033–57. 

[45] Izzuddin BA. Nonlinear dynamic analysis of framed structures, PhD thesis. London, 
UK: Imperial College London; 1991. 

[46] Macorini L, Izzuddin B. A non-linear interface element for 3D mesoscale analysis of 
brick-masonry structures. Int J Numer Meth Eng 2011;85(12):1584–608. 

[47] Zhang Y, Macorini L, Izzuddin BA. Mesoscale partitioned analysis of brick-masonry 
arches. Eng Struct 2016;124:142–66. 

[48] Van der Pluijm R. Out-of-plane bending of masonry behaviour and strength, PhD 
thesis. Eindhoven, Netherland: Eindhoven University of Technology; 1999. 

[49] Tubaldi E, Macorini L, Izzuddin BA. Identification of critical mechanical 
parameters for advanced analysis of masonry arch bridges. Struct Infrastruct Eng 
2020;16(2):328–45. 

[50] Ambraseys N, Smit P, Douglas J, Margaris B, Sigbjörnsson R, Olafsson S, et al. 
Internet site for European strong-motion data. Bollettino di geofisica teorica ed 
applicata 2004;45(3):113–29. 

[51] Ambraseys N, Smit P, Douglas J, Margaris B, Sigbjörnsson R, Olafsson S, et al. 
Internet site for European strong-motion data. Bollettino di geofisica teorica ed 
applicata 2004;45(3):113–29. 
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