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Abstract
Half BPS correlators in N = 4 super Yang–Mills theory are key quantities both
in the AdS/CFT correspondence as well as in scattering amplitudes research.
They are dual at strong coupling to quantum gravity amplitudes. At weak
coupling on the other hand they contain all N = 4 SYM amplitudes. They
have been found to possess a number of hidden symmetries, for example
non-trivial permutation symmetry of perturbative four-point integrands and a
higher dimensional conformal symmetry. Their study has enjoyed continuous
progress since the discovery of AdS/CFT and they are now some of the best
understood quantities of any four-dimensional quantum field theory. In this
review we outline the current knowledge of half BPS correlators, emphasis-
ing these two co-existing relations to scattering amplitudes at strong and weak
coupling.
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1. Introduction

N = 4 super Yang–Mills is the most symmetric of all four-dimensional quantum field theories.
The simplest local operators in this theory are the half BPS operators. Despite this simplicity,
the family of correlators of half BPS operators provides a remarkably rich breeding ground
of ideas as well as being some of the most accurately known quantities in any 4d QFT. They
impact on many key areas in current theoretical physics, scattering amplitudes, integrability,
positive geometry/amplituhedron, conformal bootstrap etc.

The relation of half BPS correlators to scattering amplitudes is of particular interest and
importance and has provided the thrust for most of the progress in our understanding of these
correlators. This relation with amplitudes appears in two completely different ways, to ampli-
tudes in two different theories, via AdS/CFT on the one hand and the correlator/amplitude
duality on the other. Half BPS correlators first became significant objects of interest imme-
diately after the discovery in 1997 of the AdS/CFT correspondence which tells us that we
can interpret them as IIB supergraviton amplitudes in string theory on an AdS5 × S5 back-
ground. Indeed the most accurate quantum gravity amplitude in curved space has recently
been obtained by bootstrapping a half BPS correlator at strong coupling and this provides a
crucial arena for exploring quantum gravity. But then over a decade after AdS/CFT in 2010
another relation to amplitudes was discovered, the correlator/amplitude duality. The correla-
tor/amplitude duality states that the correlators become N = 4 SYM amplitudes on taking a
certain polygonal lightlike limit. This duality gives insight in both directions and indeed the
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most accurately known amplitude integrand has been obtained via the correlator using this
duality.

In this review we will attempt to describe as much as possible of what is currently known
of the family of half BPS correlators in N = 4 SYM

〈Op1 . . .Opn〉. (1)

Here one can vary the number of operators in the correlator, n, the nature of the operators in
the correlators (i.e. their charges pi —we will focus on single trace/single particle operators
Op = Tr(φp) + .), as well as the Yang–Mills coupling, λ, and the rank of the SU(Nc) gauge
group, Nc. We have arranged this review as illustrated here:

Thus we focus first, in section 2, on the simplest (non-trivial) correlator, the four-point corre-
lator of the lowest charge stress-tensor multiplets, n = 4, pi = 2. We begin with its structure and
the hidden symmetry of its perturbative integrands (leaving the derivations to later sections) and
then where feasible giving, or at least outlining, explicit results, first at weak coupling—where
we highlight the relation to N = 4 SYM amplitudes—and then at strong coupling. Then in
section 3 we consider four-point functions of higher charge half BPS operators (n = 4, arbi-
trary pi) where a recently discovered hidden 10d conformal symmetry plays a key role: when
present all higher charge correlators can be obtained from the simplest, lowest charge, corre-
lator. Finally in section 4 we move to higher point correlators (arbitrary n, focussing mostly
on pi = 2 but also making some new speculations about all charge generalisations based on
the ten dimensional conformal symmetry) and introduce the analytic superspace formalism,
perfectly suited for half BPS correlators. Pulling together material from a few different places
we hope to explain in detail this formalism which in the process will allow us to both prove
many of the structural results stated in earlier sections as well as discuss the relatively little
that is known explicitly at higher points.

2. Four-point stress-tensor correlators

We begin with the simplest non-trivial half BPS correlator in planar SU(Nc) N = 4 SYM:

3
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〈O(x1)Ō(x2)O(x3)Ō(x4)〉 = 4c2

(4π2)4

(
1

x4
12x4

34

+
1

x4
14x4

23

+
1
c

1
x2

12x2
23x2

34x2
14

(1 + 2F(xi;λ, c))

)
.

(2)

Here λ = g2
YMNc is the ’t Hooft coupling and c = (N2

c − 1)/4 is the central charge. The oper-
ator O = Tr(φ2) where φ(x) is one of the three complex scalar fields in the adjoint of the
gauge group. The operator O is part of the simplest half BPS supermultiplet, called the stress-
tensor multiplet since it also contains the stress-tensor Tμν as well as the on-shell Lagrangian.
As was discovered soon after the AdS/CFT correspondence, two- and three-point functions
involving O are all independent of the coupling constant, taking on their free theory values
[1–8]. These can thus be obtained by simple Wick contractions, for example the two-point
function is 〈O(x1)Ō(x2)〉 = 2c/(x4

12(4π2)2). The four-point function is then the simplest non-
trivial correlator involving O. Superconformal symmetry is enough to completely fix the four
point function of any four operators in the stress tensor multiplet O in terms of this correlator
[9] (see section 4.1 for a derivation). The first three terms in (2) give the free theory (λ = 0) cor-
relator which can be obtained by Wick contractions. Thus F, which is a conformally invariant
function, vanishes at zero coupling, F(xi; 0, c) = 0.

2.1. Loop integrands: hidden symmetry

We first consider the correlator in perturbation theory at weak coupling. It was computed at
one loop O(λ) and two loops O(λ2) by direct (Feynman diagram) computation in a series of
papers soon after the discovery of AdS/CFT [10–14]. The one-loop integrand was given in
terms of the one loop box integral and the two-loop integrand in terms of double box integrals
together with the product of box functions in various orientations. Over a decade later, follow-
ing renewed interest arising from the correlator/amplitude duality, it was observed that these
combinations of integrands, if placed over a common denominator have a suggestive, permu-
tation symmetric form [15]. If we define the loop level correlators F(l) via the expansion in λ
and the corresponding integrands f (l) as

F(x1, .., x4;λ, c) =
∞∑

l=1

(
λ

4π2

)l

F(l)(x1, ., x4; c) (3)

F(l)(x1, .., x4; c) =
ξ(4)

l!

∫
d4x5

(−4π2)
..

d4x4+l

(−4π2)
f (l)(x1, ., x4+l; c) (4)

where ξ(4) = x4
13x4

24x2
12x2

23x2
34x2

14 (all integrals are wick rotated to Euclidean signature). Then
the one- and two-loop correlators can be written compactly as:

f (1) =
1∏

1�i< j�5
x2

i j
, (5)

f (2) =

1
48

∑
σ∈S6

x2
σ1σ2

x2
σ3σ4

x2
σ5σ6∏

1�i< j�6
x2

i j

. (6)

The factor of 1/48 in (6) just factors out the over-counting in the sum over S6 permutations
so that each term appears with coefficient 1: there are 15 independent terms in the sum over
6! = 15 × 48. Now in this form we see that both denominator and numerator are fully S4+l
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symmetric in (5) and (6) and this suggests the presence of such a symmetry also at higher loops.
The subgroup S4 × Sl ⊂ S4+l arises simply from crossing symmetry together with symmetry
of the integration variables: the highly non-trivial aspect of this hidden S4+l symmetry occurs
in the interchanging of external x1, . . . , x4 variables and integration x5, . . . , x4+l variables. This
higher loop permutation symmetry indeed turns out to be present [15, 16]. The proof involves
relating the integrand to higher point correlators with Lagrangian operators which are related
by SUSY to O. We give this proof later in section 4.6 but for now we simply assume this
symmetry and explore its consequences.

The functions f (1) and f (2) are uniquely defined (up to an overall coefficient) by this hid-
den S4+l permutation symmetry, together with conformal symmetry which says that they are
functions of the Lorentz invariants x2

i j only and have conformal weight 4 at each point as well
as the assumption that they only have simple poles in x2

i j.
Going further it is useful to consider graphs representing the integrands in the standard

way—associating vertices with the space-time points and edges between vertices i and j when-
ever there is a propagator term 1/x2

i j. The permutation symmetry means we need not worry
about a specific labelling since we have to sum over all labellings. We call such graphs f
graphs. The f graphs corresponding to the one- and two-loop correlators (5) and (6) are:

(7)

More generally a possible contributing l-loop f -graph is an l + 4 point graph of (net) vertex
degree 4. We may also have non-cancelled numerator terms x2

i j which we represent by dashed
lines. Since the conformal weight at each point is 4, this means the number of edges minus
the number of dashed edges (which we call the net vertex degree) equals 4 at each point. A
simple algorithm for obtaining all possible f graphs is then to list all (4 + l)-point graphs of
vertex degree 4 or higher at each point, and then consecutively try to add numerator lines to
any vertices of degree higher than 4 to bring the net vertex degree down to 4 at each point.

This is true for any value of Nc. If we consider the large Nc limit, there is a further powerful
constraint on the allowed f graphs, namely we expect all component correlator graphs to be
planar. This suggests the f -graphs themselves should be planar also (excluding the numerator,
dashed edges). We notice that in (7) the graph f (2) is indeed planar1. So at three loops we now
simply look for all planar f graphs, and we find that there is only 1 possibility!

(8)

1 A little awkwardly f (1) is non-planar however. The reason for this is that the function f itself is not the correlator, but
appears multiplied by x4

12x4
34 (see (2)) which deletes some edges. When these edges are deleted the resulting correlator

is represented by planar graphs. Moreover this is true for the four-point function of any other operators related by
SUSY to O(x). However at higher loops the only way to achieve planar graphs for all component correlators is for the
f graph itself to be planar.
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where we have suppressed a numerator line between the two blue nodes (where the colour blue
indicates that the vertex has degree 5 and thus needs a numerator line to bring it back to net
degree 4). Its overall coefficient (which is 1) can be fixed by various considerations the most
direct being the correlator/amplitude duality.

Continuing this process we find three planar four-loop f -graphs and seven planar five-loop
f -graphs. Again various considerations (to be discussed shortly) fix all their coefficients to
be ±1. We thus obtain the following remarkably compact expressions for the correlator to
5 loops

(9)

(10)

where again the numerator lines are suppressed in the figures but can be deduced by ensuring
the net degree is 4 at each vertex2.

At six loops [16] there are 36 planar f graphs, and for the first time not all of them contribute
(some have vanishing coefficient). Furthermore, for the first time a non unit norm coefficient
appears, namely the pentagram graph comes with coefficient 2

(11)

This program of listing all the planar f graphs, and then fixing their coefficients has been pur-
sued up to ten loop order [16–18]. But how do we fix the coefficients? By far the most efficient
method is to deduce equations which act purely on the individual graphs themselves without
having to evaluate their actual algebraic expressions (which in particular involves summing
over (4 + l)! terms which for example is 8.7 × 1010 at ten loops!)

In [18] three graphical rules were implemented, called the triangle rule, the square rule and
the pentagon rule. All three were needed to fix all the coefficients at ten loops. The triangle
rule is straightforward to state. It says that the result obtained by shrinking all triangles of all
f graphs at l loops is twice the result of shrinking all edges at (l − 1) loops. Each side of the
equation is a sum of graphs.

The origin of this rule arises from considering the coincident limit xi → x j using the OPE,
realising that the log of the correlator at l loops only has the divergence of the one loop correla-
tor, and understanding the implications of this reduced divergence at the level of the integrand
[16, 17].

The other rules, the square and pentagon rules arise from structural considerations of the
correlator/amplitude duality.

2 As above, a blue vertex is degree 5 and needs one numerator line ending there, whereas a red vertex is degree 6 and
needs two numerator lines and a green numerator line is degree 7 and needs 3 numerator lines ending there.
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2.2. Correlator/amplitude duality for the four-point correlator

In [19] it was shown very generally that if you take operator insertion points to be consecu-
tively lightlike separated the resulting correlator becomes proportional to a Wilson loop in the
adjoint representation of the gauge group on the lightlike polygonal contour whose vertices
are these insertion points. But the amplitude/Wilson loop duality [20–26] relates the large Nc,
N = 4 SYM polygonal Wilson loop in the fundamental representation to scattering ampli-
tudes. Furthermore, since in the planar limit a Wilson loop in the adjoint rep equates to the
square of Wilson loops in the fundamental rep these relations imply that correlators should
reduce to squares of amplitudes in the light-like limit. This is indeed the case as has been
shown and proven in a number of works [19, 25–31]. An important point is that this correla-
tor/amplitude duality works directly at the level of the integrands, and thus becomes a direct
relation between rational functions, avoiding regularisation issues.

The duality can be applied to correlators at any loop order and for any number of points. We
will consider the light-like limit of general higher-point correlators later, in section 4.8 but in
this section we will consider applying n-gon light-like limits to the four-point correlator. Even
this case has remarkably powerful implications.

The four-point light-like limit. First we consider applying the four point polygonal light-
like limit x2

12, x2
23, x2

34, x2
41 → 0 to the connected (O(c)) part of the correlator (2). The duality

states that this (divided by tree-level) yields the square of the four-point amplitude. More
precisely

lim
x2

12,..,x2
41→0

〈OŌOŌ〉|c
〈OOŌŌ〉|c,λ=0

= A4(xi;λ)2 (12)

where A4(xi;λ) is the planar four-point amplitude, divided by the tree-level amplitude, and
written in terms of region momenta so pi = xi i+1. Defining the amplitude integrand in the
obvious way

A4(x1, .., x4;λ) =
∞∑

l=0

λl

(4π2)ll!

∫
d4x5

(−4π2)
..

d4x4+l

(−4π2)
A(l)

4 (x1, ., x4+l), (13)

the duality (12) becomes

lim
x2

12,..,x2
41→0

(2ξ(4) f (l)(xi;λ)) =
l∑

l′=0

(
l
l′

)
A(l′)

4 A(l−l′)
4 , (14)

where ξ(4) = x4
13x4

24x2
12x2

23x2
34x2

14 and on the rhs the binomial coefficient is really shorthand for

a sum over all inequivalent ways of distributing the l loop variables between A(l′)
4 and A(l−l′)

4 .
This duality can be beautifully represented graphically on the f graphs. Only terms in f

which contain all four poles x2
12..x

2
41 survive the limit on the lhs of (14). Graphically this cor-

responds to a four-cycle. This breaks the planar graph into two halves which can be thought
of as an ‘inside’ and an ‘outside’. The number of vertices inside is l′ in (14) and the number
of vertices outside is then l − l′. Furthermore the graph inside the four cycle will be a graph
contributing to the amplitudes A(l′)

4 . So graphically from any f graph we read off the corre-
sponding amplitude graphs contributing to the product by taking the inside and outside of the
four-cycle

7
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(15)

This is true for any value of l′ including l′ = 0 (or equivalently l′ = l) in which case the inside
or outside is empty. This has two immediate implications.

First, extracting the amplitudeA(l)
4 from f (l) is simply a case of taking all four cycles with no

inside (or alternatively no outside) from all f graphs i.e. taking all quadrilateral faces (where by
quadrilateral face we include two adjacent triangular faces). Importantly the resulting ampli-
tude graphs obtained inherit the coefficient of the f graph. In this way the four-point amplitude
of N = 4 SYM to ten loops has been obtained directly from the correlator [18].

But second, this gives a recursive rule for building higher loop f graphs, with their coef-
ficients, from lower loop ones. Take any two quadrilateral faces of two f -graphs and glue
them together along this face. The result will be an f -graph at higher loops contributing with
coefficient given by the product of the coefficients of the two original f graphs.

(16)

Note that the two f -graphs on the lhs look non-planar due to the grey lines. However, at most
one of these grey lines is actually present due to the existence of numerators x2

13 or x2
24 which

will cancel the grey lines. The numerator lines are implicit in the blue or green blobs, repre-
senting amplitude graphs. Indeed the only case where no grey line are cancelled by numerators
is the 1 loop case where we know that the f graph is in fact non-planar.

The above directly leads to the ‘square rule’ when we consider l′ = 1, and corresponds to
gluing pyramids on the quadrilateral face [16, 18, 29]. This was one of the constraints used to
fix the correlator to 10 loops [18] as mentioned at the end of section 2.13.

The higher-point light-like limit. The higher-point amplitude/correlator duality has impli-
cations even for the four-point correlator. This is due to the fact that the four-point loop level
correlator is itself a higher point correlator and then takes part in the higher point amplitude
duality. We will derive this in detail in section 4.8. For now we just consider the implications
which are that the n-point polygonal light-like limit x2

12, x2
23, . . . , x2

n1 → 0 of the four-point cor-

3 Although the case l′ > 1 can give more general predictions that were not used in [18]. I thank Gabriele Dian for
discussions and for performing explicit checks of this point.
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relator integrand gives a sum of products of n-point NkMHV l loop superamplitude integrands
divided by the tree-level MHV amplitude A(l)

n;k as follows:

lim
x2

12,..,x2
n1→0

(2ξ(n) f (l+n−4)) =
l∑

l′=0

n−4∑
k=0

(
l
l′

)A(l′)
n;k A

(l−l′)
n;n−4−k

A(0)
n;n−4

, (17)

where

ξ(n) ≡
n∏

i=1

x2
i i+1x2

i i+2. (18)

Similarly to the four-point case above, this relation can be used for n = 5 to extract the full
five-point amplitude from the four-point correlator [32] graphically. The limit (17) becomes

lim
x2

12,..,x2
51→0

(
ξ(5) f (l+1)

)
=

l∑
l′=0

(
l
l′

)
A(l′)

5 A(l−l′)
5 . (19)

The five-point amplitude is a little more complicated than the four-point case. One only has
MHV and MHV amplitudes, both of which factorise into tree-level times integrals depending
on x only. But the amplitude integrands are no longer functions of x2

i j only. Rather they split
into a parity evenA+A and a parity odd A−A part. While the parity even part only involves
x2

i j, the parity odd part contains another object, most neatly represented in the 6d embedding
space formulation of 4d Minkowski space, using a 6d epsilon-tensor contracted with 6 xis,
εi1i2i3i4i5i6 , which maintains manifest dual conformal invariance. The parity even part of the
five-point amplitude at l loops can be extracted graphically directly from f (l+1) in a completely
analogous way to the extraction of the four-point amplitude. Namely taking all pentagonal faces
(by which we include three adjacent triangular faces and adjacent triangle/quadrilateral faces),
the graphs remaining after removing the pentagon gives the amplitude graphs (with coefficient)
of the parity even part of the five point amplitude. To obtain the parity odd part we need to go
one loop higher, to f (l+2), and extract all pentawheels (pentagons with a single vertex inside
and 5 spokes from this vertex to the pentagon). A pentawheel necessarily has a numerator line
from its central vertex (to produce net degree 4) to some other vertex in the remaining part of
the f graph. We now remove the pentawheel and mark the vertex which the numerator line
ends on. The resulting marked graph (with accompanying coefficient) contributes directly to
the parity odd part of the l-loop five-point amplitude.

Consistency of this five-point lightlike limit is quite non-trivial. For example the product
of two parity odd amplitudes involves the product of epsilons, which leads to a number of
terms, some of which output non-planar f -graphs which must cancel in the sum. This then
leads to consistency conditions relating f graphs at the same loop order. One such consistency
condition was extracted and lead to the ‘pentagon rule’ which is used to fix the correlator to
10 loops [18] as mentioned at the end of section 2.1.

At higher points, n > 5, the duality with the four-point correlator (17) becomes even more
non-trivial, although the consequences are harder to extract at least from a purely graphical
approach. Here the rhs of (17) inevitably involves non trivial NkMHV amplitudes which have
complicated particle dependent rational contributions. Nevertheless there is strong evidence
that by assuming Yangian invariance and dual conformal invariance, all n-point, loop-level,
any k amplitudes can be extracted from the four-point correlator [33]. More precisely, writing
the scattering amplitudes as an arbitrary sum of NkMHV Yangian invariant rational terms Rk;i

times l-loop dual conformal invariant integrands I (	)
j

9
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A(	)
n;k =

∑
i j

αi jRk;iI (	)
j , (20)

and inserting this into the duality (17), then the four-point correlator completely fixes A(	)
n;k

(see [33]). It would be fascinating to explore this further and see if there is a more direct,
graphical way to extract higher point amplitudes from the four-point correlator and furthermore
to understand more systematically what constraints the existence of this duality imposes on the
correlator.

There are also other graphical possibilities for constructing the higher loop correlator, aris-
ing from the amplituhedron. In particular the deep cuts of [34, 35] can be interpreted as highly
non-trivial, even constructive, graphical rules for the correlator [36].

2.3. The non-planar correlator

Having reviewed the story for perturbative planar correlators let us now consider the non-planar
theory perturbatively. From equation (8) onwards we derived the f -graph basis for the large Nc

four-point correlator using conformal symmetry, hidden permutation symmetry, knowledge of
the pole structure and planarity. We now ask what happens if we drop planarity. The listing of
the basis of f -graphs continues in the same way, but simply without imposing that the f graphs
must be planar. It is then easier to consider numerator graphs rather than f -graphs (the advan-
tage of f graphs in the planar case is purely that we can impose planarity). A numerator graph
is a graph obtained by multiplying the f graph by the product of all possible poles

∏
i< jx

2
i j to

obtain a polynomial in x2
i j. The polynomial will have weight l − 1 at each point. Thus associ-

ating x2
i j with an edge between vertex i and j, then we obtain a degree l − 1 graph. However

we can have repeated edges arising from e.g. x4
i j. Thus this numerator becomes equivalent to a

degree l − 1 multi-graph on l + 4 vertices (the multigraph can also be disconnected unlike the
f graph).

At two-loops, the only degree 1 multigraph on 6 vertices is given by 3 disconnected edges.
The numerator in (6) is precisely of this form.

At three-loops we can list all degree 2 multigraphs on 7 vertices. There are four possibilities,
corresponding to a seven-cycle, a five-cycle × two-cycle, four-cycle × three-cycle and three-
cycle× two-cycle× two-cycle. The only one that produces a planar f graph is the five-cycle×
two-cycle which one can observe agrees with the numerator of (8). The other three produce
non-planar f graphs. To fix the coefficients one can use the triangle rule [16] 4 which does
not rely on planarity (unlike the square and pentagon rules which are intrinsically planar).
This fixes the three-loop non-planar result up to a single free coefficient. However examining
more carefully one sees that this free coefficient multiplies a combination of numerator graphs
which becomes algebraically equal to the fully permutation invariant, conformally invariant,
vanishing Gram determinant det(xi.x j) with i, j = 1, . . . , 7 (the xs are in the 6d embedding
space formalism). Thus the non-planar (all Nc) three-loop correlator is completely fixed and is
in fact equal to the large Nc planar correlator (8).

Moving to four-loops a similar analysis can be performed. First listing all numerator graphs
which here are degree 3 multi-graphs on eight vertices, one obtains 32 possibilities. Then fix
coefficients using the triangle rule relating it to lower loops. In fact it turned out that a more
powerful (algebraic rather than graphical) rule involving a lightlike limit and arising from the
duality between correlators and Wilson loops fixes more coefficients. This fixed all but seven

4 In [16] the double coincidence limit was used but this is equivalent to the triangle rule.
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coefficients. But as before there are again conformally covariant permutation invariant vanish-
ing Gram determinants. This time there are three independent combinations of the numerator
polynomials which are vanishing in 4d. Thus one is left with 4 remaining free unfixed coeffi-
cients for the 4 loop non-planar correlator. These four remaining coefficients have themselves
been fixed in a remarkable computation [37] using the formulation of correlators in twistor
space in [38] (reviewed briefly in section 4.9).

2.4. Integrals

The discussion so far has been focussed on the integrand of loop level correlators, which
are themselves physical, Born-level, higher point correlators and as we have seen possess
additional symmetries. But it is of course interesting to perform the integrals in (4) not least
because this then allows the extraction of non-trivial CFT data via a conformal partial wave
decomposition.

The integrals contributing to the correlator F(l) in (3) are conformally invariant and hence
depend on the xi through the two independent cross-ratios F(l)(x, x̄) where the cross-ratios x, x̄
are defined as:

xx̄ = u =
x2

12x2
34

x2
13x2

24

(1 − x)(1 − x̄) = v =
x2

14x2
23

x2
13x2

24

. (21)

At one- and two-loops the integrals one obtains are all ladder diagrams with known explicit
expressions in terms of polylogs [39]. At three-loops there are two new types of integrals,
dubbed ‘easy’ and ‘hard’ in [15]. These integral were obtained in [40]. To obtain them an
assumption about the functional form was used, namely that they had the form rational ×
(generalised) polylogarithms of total weight 6 (using the principle of uniform transcendentality
which is a property of many quantities in N = 4 SYM). We assume that one can write the sym-
bol [41] of the polylogs in such a way that the only letter appearing in each term is x, x̄, 1 − x,
1 − x̄ and x − x̄. Furthermore they are ‘single-valued’, implying that the symbol can also be
written such that first entry of every term is a u or a v. Leading singularity methods were
used to determine the rational prefactors. The asymptotic expansion of the integrals as one
of the cross ratios vanishes was obtained in [42]. These asymptotics together with crossing
symmetry are enough to uniquely fix the symbol which can then be integrated up to give the
full result [40]. Interestingly, most of the integrals only have x, x̄, 1 − x, 1 − x̄ in the sym-
bol. Such polylogarithms are called harmonic polylogarithms and the single valued ones are
known as single-valued harmonic polylogarithms and have nice properties, in particular there
is a straightforward linear basis for them [43]. The hard integral on the other hand requires the
additional x − x̄ letter, and is written in terms of the more general Goncharov polylogarithms.
Recently such single valued Goncharov polylogarithms have also been understood [44].

At four-loops the correlator is still not known at the integrated level, although it is possible
to evaluate the integrals with current technology, and one such non-trivial case was done in
[45], and so the remaining correlator is presumably within reach. It is interesting that the same
types of integral are also of interest from a more mathematical, number theoretic, perspective
and are known in that context as graphical functions [46].

Note that although the correlators themselves are not known fully beyond three loops, it
has nevertheless still proven possible to extract certain data at higher loop order directly from
the integrands without fully integrating them. In particular, in [47] the anomalous dimension
of the Konishi operator (the lowest dimension operator with an anomalous dimension in the
theory) was obtained up to five loops, by manipulating the integrands in (7)–(10) and perform-
ing a simpler integral of one loop lower. This used the fact that this anomalous dimension is

11
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the coefficient of the leading single logarithmic singularity of the logarithm of the correlation
function in short-distance limit in which two operator positions coincide (this is very closely
related to the derivation of the triangle rule). Similar methods, but keeping more terms in the
asymptotic expansion around the singular limit can also give OPE coefficients for the Kon-
ishi in the OŌ OPE. This has also now been achieved to five loop order in the planar theory
[42, 48–50] and four-loops in the non-planar theory [37].

Note that in this subsection we have discussed obtaining analytic correlators by integrat-
ing integrands that have been obtained by bootstrap-type methods. For scattering amplitudes
in N = 4 SYM there has been a very successful programme (see SAGEX review chapter 5
[51]) bootstrapping analytic amplitudes directly and thus bypassing integrands completely. It
would be fascinating to attempt a similar approach on the correlator side, although the more
complicated structure of the leading singularities suggests it would be an even more intricate
story than for amplitudes.

2.5. Strong coupling AdS/CFT

Having covered what is known about the simplest half BPS four point function in perturbation
theory, we now turn to the other extreme, strong coupling λ→∞. Here there is a whole new
and fascinating story which we will review (see also [52] for a recent review overlapping with
this topic).

The AdS/CFT correspondence [53–55] relates half BPS correlators to supergraviton scat-
tering amplitudes in IIB string theory on AdS5 × S5 space. In the current context, the simplest
half BPS operator discussed here, O, relates to amplitudes of particles purely in AdS5, with
no dependence on the sphere. In the string theory/quantum gravity dual, 1/c = GN Newton’s
constant and 1/

√
λ = α′ the inverse string tension. Thus now we are expanding in small

GN,α′ which means a 1/λ, 1/c expansion around infinite λ, c. The results of this section are
summarised in figure 1.

Consider the expansion in 1/c of the correlator F (recall its definition (2))

F(x, x̄;λ, c) =
∞∑

g=0

c−gFSG;(g)(x, x̄;λ). (22)

Tree-level supergravity. The genus 0 term FSG;(0)(x, x̄;∞) at infinite λ will correspond,
according to AdS/CFT, to tree-level supergravity on AdS. More concretely this function can be
directly read off from the quartic terms in the supergravity action linearized around AdS space.
It was obtained in this way a few years after the AdS/CFT correspondence was discovered in
[56–60] and found to be given by the expression

FSG;(0)(x, x̄;∞) = −1
2

uv∂u∂v(1 + u∂u + v∂v)Φ(1)(u, v) = −1
2

uvD̄2422(u, v), (23)

where

Φ(1)(u, v) =
1

x − x̄

(
log(u) log

(
1 − x
1 − x̄

)
+ 2Li2(x) − 2Li2(x̄)

)
(24)

is the one-loop scalar box integral and we also give the expression in terms of scalar contact
AdS Witten diagrams (in the form of D̄-functions introduced in [61] and defined below in (29)
which are derivatives of the one loop scalar box function).

12
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Figure 1. Plot of known four-point stress-tensor correlators at strong coupling. Quantum
gravity loop corrections sit on the x axis with the y axis giving α′ = 1/

√
λ corrections.

Terms below the x axis would then be viewed as counter terms form a quantum gravity
perspective. From a string perspective the parameters are c and τ = θ/(2π) + 4πi

√
c/λ.

The diagonal dashed lines are then fixed c, varying τ .

Tree-level string corrections. The 1/λ corrections to this result, corresponding to tree-level
string corrections, have polynomial Mellin amplitudes and finite spin support in their conformal
partial wave decompositions [62–64]. The first correction, at O(1/λ3/2), is constant in Mellin
space and this constant was obtained in [65] by comparing with the flat space limit. Indeed
certain contributions to all orders in 1/λ can be read off directly from the flat space amplitude
(which is known to all orders in α′ = 1/

√
λ, the Virasoro Shapiro amplitude). However lifting

from flat space to curved space is not unique, as can be seen by considering the corresponding
effective action. Derivative terms in the effective action lift to covariant derivatives which no
longer commute, thus commutator terms will vanish in the flat space limit and be undetermined
by it. Despite this, higher order corrections have been pinned down in [66, 67] up to order 1/λ3

using supersymmetric localisation in N = 4 SYM. Indeed the coefficients are even known as
full functions of the string coupling in terms of generalised Eisenstein series [68, 69].

13
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The results are most simply quoted as Mellin amplitudes M(s, t; λ) defined by

F(x, x̄; λ, c) =
1
2

∫ i∞

−i∞

ds dt
(4πi)2

(xx̄)
s
2 ((1 − x)(1 − x̄))

t
2−2Γ

[
2 − s

2

]2
Γ
[
2 − t

2

]2
Γ
[
2 − u

2

]2
M(s, t;λ, c)

(25)

with u = 4 − s − t. Mellin amplitudes can be viewed as analogues of flat space amplitudes and
indeed in the large s, t, u limit they reduce to flat space amplitudes with s, t, u the Mandelstam
invariants [63]. The Mellin amplitude for the supergravity solution (23) has the very simple
form MSG;(0)(λ = ∞) = 8/((s − 2)(t − 2)(u − 2)). The string corrections are symmetric poly-
nomials in s, t, u, closely mimicking the behaviour of flat space amplitudes in momentum space.
The result for the next few α′ = 1/

√
λ corrections, obtained in [66, 67] is

M(0)(s, t;λ) =
8

(s − 2)(t − 2)(u − 2)
+

120ζ(3)

λ
3
2

+
630ζ(5)

λ
5
2

[
s2 + t2 + u2 − 3

]
+

5040ζ(3)2

λ3

[
stu − 1

4
(s2 + t2 + u2) − 4

]
+ O(λ−3). (26)

These correspond to R4 type corrections to the string effective action. The conversion of
these expressions to position space is a straightforward procedure [63]. They correspond via
AdS/CFT to contact four-point scalar Witten diagrams

DΔ1Δ2Δ3Δ4 (xi) = N−1
∫

AdS

dd+1z
(z.x1)Δ1 (z.x2)Δ2 (z.x3)Δ3 (z.x4)Δ4

, (27)

where z is a (d + 2)-component bulk coordinate, which contracts with d dimensional
Minkowski space coordinates in the d + 2 component embedding space formalism, xi, using
the SO(2, d) metric, z.xi. The integral in (27) is taken over the (d + 1)-dimensional subspace
corresponding to AdSd+1. The normalisation is

NAdSd+1
Di

=
1
2π

d/2Γ(ΣΔ − d/2)(−2)ΣΔ∏
iΓ(Δi)

, (28)

where ΣΔ = (Δ1 +Δ2 +Δ3 +Δ4)/2 which makes the integral independent of the space-
time dimension d (as a function of invariants Lorentz invariants x2

i j). All contact diagrams
can be expressed in terms of derivatives of the scalar box function Φ(1) [60]. A prefactor is
commonly pulled out of the contact diagrams to make them conformally invariant D̄ functions

D̄(u, v) :=
(x2

13)Σ−Δ4 (x2
24)Δ2

(x2
14)Σ−Δ1−Δ4 (x2

34)Σ−Δ3−Δ4
DΔ1Δ2Δ3Δ4 (xi). (29)

For example the first correction at O(λ−3/2) is proportional to D4444, the Witten contact
diagram for the four-point function of four dimension four scalars. This is no coincidence
in fact as it turns out that the entire quartic interaction sector of the string theory effective
action on AdS5 × S5 can be written in terms of a single, dimension four scalar action [70]
(see section 3.3).

Quantum gravity loop corrections. The first 1/c correction, FSG;(1)|λ0 corresponding to
quantum gravity loop corrections in AdS5 × S5, is now known, computed by OPE bootstrap

14



J. Phys. A: Math. Theor. 55 (2022) 443009 Topical Review

techniques in N = 4 SYM. More precisely, the 1/λ expansion of the one loop correction actu-
ally has a super-leading term at O(λ1/2), which we will discuss shortly, and the expansion takes
the following form

FSG;(1) = λ1/2FSG;(1)|λ1/2 + FSG;(1)|λ0 + λ−1FSG;(1)|λ−1 + λ−3/2FSG;(1)|λ−3/2 + . . . . (30)

All four of the above terms in the expansion are known completely.
The one loop quantum gravity correction, FSG;(1)|λ0 , was obtained in [71] as follows. First

the full functional coefficient of the leading log2x2
12 divergence was obtained by extracting the

information from lower order correlators as follows. All terms in the OPE of O(x1)Ō(x2) con-
tain a factor CÔ

OŌ(x2
12)γ(c)/2 where γ(c) = γ1/c + O(1/c2) is the anomalous dimension of the

operator Ô and CÔ
OŌ the OPE coefficient. Inserted into the four point function and expanding

in 1/c this produces log x2
12 terms which in turn can only arise from log u terms when the

correlator is considered as a function of cross-ratios u, v. At O(c−g−1), the maximal possible
power of log x2

12 can only arise from terms of the form CÔ
OŌc−g−1γg+1

1 logg+1x2
12 in an OPE

decomposition, and in particular it depends entirely on the first non-zero term in the expan-
sion of the anomalous dimension γ1 (multiplied by zeroth order OPE coefficients). Thus this
maximal logg+1u power of FSG;(g)|λ0 arises from data which in principle can be extracted from
lower order (g = 0 as well as free theory) correlation functions. There is a rather large technical
difficulty to overcome however in extracting this data in that there is a large mixing problem to
disentangle. Many operators (even entire supermultiplets) have the same free theory quantum
numbers. In the supergravity limit we consider here, a key insight from AdS/CFT is that only
operators corresponding to supergravity states survive, whereas string states become infinitely
massive. This simplifies the mixing problem hugely as only operators constructed from single
particle half BPS operators are involved in the mixing. Further these can be unmixed by con-
sidering four-point functions of all higher charge half BPS correlators (which were obtained
in [72] and reviewed in section 3.3). Performing a super conformal partial wave decomposi-
tion [60, 61, 73] of these correlators yields the relevant data, still in a mixed form, but then
considering all cases yields enough equations to solve the unmixing, giving the γ1s and the
relevant free OPE coefficients CÔ

OŌ. This unmixing was partially done (enough to obtain the
one loop results for which one only actually needs a partial unmixing) in [71, 74] and then
fully displayed explicitly in [75].

Remarkably, a 10d conformal symmetry was discovered to lie hidden in the resulting for-
mulae [76]. It is hidden in the unmixed OPE coefficient data whose remarkable structure arises
from the decomposition of 10d conformal SO(2, 10) representations to SO(2, 4) × SO(6). It is
also hidden in the anomalous dimensions γ1. We will given more detail of this in the more
general situation of section 3.3 (see e.g. (58)).

This 10d symmetry relates (in a somewhat mysterious way, with an eighth order Casimir
operator Δ(8) playing the role of GN) to the fact that AdS5 × S5 is related through a Weyl
transformation to 10d flat space. Again we will give more detail later in a more general setting in
section 3.3 (see (59) forΔ(8)). In practical terms the higher symmetry explains many properties
of the unmixed data. The remarkable structure of the unmixed OPE coefficients found in [75]
then arises from structure constants in the decomposition of the 10d conformal group SO(2, 10)
down to the AdS5 × S5 symmetry group SO(2, 4) × SO(6). The anomalous dimensions of all
two-particle supergravity operators (labelled by four integers) relate to those of a single family
of higher spin currents (labelled by a single integer, the 10d spin). Furthermore this then implies
a vast simplification of the formulae for the leading log u divergence at any loop order which
secretly has this simple 10d origin and no longer requires any unmixing, since in 10d there is
just a single 10d operator for each even spin l. The O(cg+1)logg+1u coefficient then takes the
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form (Δ(8))g acting on a much simpler function which itself can be obtained by summing 10d
blocks with known coefficients [76] and has been examined further in [77, 78].

Returning to the derivation of the one loop result, having performed the unmixing, this data
is then inserted back into a superconformal block expansion in the form of the sum involving
the OPE coefficients and (γ1)2, for all operators. This yields the log2u coefficient of FSG;(1)|λ0

in the form of a finite number of terms in its Taylor expansion. By matching to an appropriate
ansatz its analytic form could then be found. Having thus obtained the log2u part of the result,
the complete analytic function can then be obtained by matching to a suitable ansatz, imposing
crossing symmetry, and matching with this log2u coefficient [71]. In fact the full solution (not
only its leading log u coefficient) can be simplified using the Δ(8) operator and written

FSG;(1)|λ0 =
v

8u3
Δ(8)L(2)

2222 +
1
4

FSG;(0)|λ0 (31)

in terms of a preamplitude L(2)
2222 which is far simpler than FSG;(1)|λ0 itself. We refer the reader

to [79] (equation (227) and following equations) for the explicit expressions.
The superleading term in the one loop supergravity amplitude (30), FSG;(1)|λ1/2 , is also

known. Its Mellin amplitude is simply a constant 5
√
λ/8 [80] just like the α′3 tree-level string

correction, M(0)|λ3/2 in (26). Both terms arise from the same R4 term in the effective action,
but now appearing (from the supergravity point of view) as a one loop counter-term. Indeed
in string theory the R4 term comes multiplied by a fully known function of the complex string
coupling τ = θ/(2π) + 4πi/g2

YM, namely the non holomorphic Eisenstein series E(3/2, τ , τ̄)
[81, 82] (see figure 1). This function contains just two perturbative terms in I(τ ) =

√
c/λ cor-

responding to the tree level α′3 = 1/λ−3/2 correction of (26) and the one loop superleading
counter term λ1/2/c. Indeed all the terms in (26) are now known as full functions of the string
coupling in terms of (generalised) Eisenstein series [68, 69, 81–86]. Furthermore, the same
function D̄4444 appears in a third place, as the only ambiguity remaining in the computation
[71] of FSG;(1)|λ0 . This ambiguity was then also fixed by supersymmetric localisation in [80].

Then the third term in (30), FSG;(1)|λ−1 , arises in a similar way. It is proportional to the
1/λ3 = α′6 tree-level string correction in (26) which in turn arises from a ∂6R4 correction to
the string theory effective action. Its coefficient is the generalised non-holomorphic Eisenstein
series E(3, 3/2, 3/2, τ , τ̄) which yields a known perturbative contribution at one loop O(λ−1)
[85](see figure 1).

The fourth term in the expansion (30) is also now known at one loop level up to certain
ambiguities (in particular an ambiguity arising from a ∂8R4 term in the effective action, see
figure 1). It was found first in Mellin space [87] and then in position space [88]. The position
space correlator has a similar structure to that of supergravity, polynomials in x, x̄ multiplied
by polylogarithms (but of weight 3 and below rather than weight four and below) and divided
by high order x − x̄ poles. A new feature found here is the presence of generalised (but still
single valued) polylogarithms. These have x − x̄ in their symbol whereas previously only
x, x̄, 1 − x, 1 − x̄ occurred. Recall that exactly the same phenomenon occurred at three loops
in perturbation theory as discussed below (21).

Very recently the expression FSG;(2)|λ0 corresponding to the two-loop quantum gravity
amplitude has been obtained [89] using similar methods and found to have the very suggestive
form

FSG;(2)|λ0 = (Δ(8))2L(3)
2222 +

5
4

FSG;(1)|λ0 −
1
16

FSG;(0)|λ0 + ambiguities , (32)
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where there are both tree-level and one-loop ambiguities whose coefficients are unfixed. It
would be fascinating to see if this structure of pulling out Δ(8) powers persists at higher orders,
and to understand why this is the case.

3. Higher charges and 10d conformal symmetry

In the previous section we have focussed on four-point correlators of the lowest charge half
BPS operator O := Tr(φ2) where φ is one of the 3 (complex) scalars in N = 4 SYM. This
operator is the first in an infinite class of half BPS operators. The half BPS operators are mem-
bers of separate supermultiplets. The independent supermultiplets are labelled by an integer
p = 2, 3, . . . . For the four point function of lowest charge operators we could focus on just
one operator Tr(φ2) since the four point function of any other component field is related to
〈OŌOŌ〉 by supersymmetric Ward identities. However this is no longer the case for higher
charge operators, and we thus need to consider the full scalar sector of N = 4 SYM5. There
are six real scalars, φI, I = 1, . . . , 6, in the theory carrying the fundamental representation of
the internal symmetry group SO(6) ∼ SU(4) ⊂ SU(2, 2|4). We can deal with these indices by
contracting with internal co-ordinates yI, so

φI(x) → φ(x, y) = yIφ
I(x). (33)

The half BPS operators fall into symmetric traceless representations of SO(6) which are then
represented as simple products of φ(x, y) as long as yI satisfies yIy

I = 0 in order to project out
the SO(6) trace. Recall that the scalars are all in the adjoint of the gauge group SU(Nc) and we
take traces over this to obtain gauge invariant operators. We will then focus on single particle
operators

Op(x, y) = Tr(φp) + · · · φ = φ(x, y), yIy
I = 0. (34)

Single particle operators are equal to single trace operators plus multi-trace 1/Nc corrections
(hence the dots in the above definition). Single particle operators are uniquely defined to be
orthogonal to (have vanishing two-point functions with) all multi-trace operators [90]. They
are equivalent to single trace operators at large Nc but give crucial differences when 1/Nc

corrections are taken into account [79, 91, 92].
Superconformal ward identities and non-renormalisation theorems now dictate (see discus-

sion leading to and around (91) for the proof) that the correlator of four arbitrary charge half
BPS operators takes the form

〈Op1Op2Op3Op4〉 = free + Cp1 p2 p3 p4

I(xi, y j)
ξ(4)

× Fpk (xi, y j;λ, c). (35)

Here the normalisation is given by

Cp1 p2 p3 p4 =
p1 p2 p3 p4

2c

( c
16π4

) 1
4
∑

pi
(36)

5 We still do not need to consider other fields beyond scalars (i.e. fermions or the gauge field) at four points though.
When moving beyond four points we will need to consider the entire supermultiplet and will use analytic superspace
to do this (section 4.1).
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and we recall ξ(4) = x4
13x4

24x2
12x2

23x2
34x2

14. The factor I(xi, y j) is the consequence of (the
fermionic part of) superconformal symmetry and we will derive this in section 4.1. It takes
the form

I(xi, y j) =
(
(x2

13x2
24 − x2

14x2
23)x2

13x2
24y2

12y2
23y2

34y2
41 + (1 → 2 → 3 → 1)

+ (1 → 3 → 2 → 1)) + (x ↔ y), (37)

where y2
i j = yI

i y
I
j. It is completely symmetric under crossing symmetry S4 as well as under the

interchange x ↔ y. It can be rewritten in a simple compact form in terms of cross ratios as:

I(xi, y j) = x4
13x4

24y4
13y4

24(x − y)(x − ȳ)(x̄ − y)(x̄ − ȳ), (38)

where the cross-ratios x, x̄, y, ȳ are defined as

xx̄ =
x2

12x2
34

x2
13x2

24

(1 − x)(1 − x̄) =
x2

14x2
23

x2
13x2

24

yȳ =
y2

12y2
34

y2
13y2

24

(1 − y)(1 − ȳ) =
y2

14y2
23

y2
13y2

24

.

(39)

Now the correlator (35) is a homogeneous polynomial of degree pj in the variable y j for each
j = 1, . . . , 4, as one can see directly from (33) and (34). The factor I(xi, y j) absorbs 2 y js for
each j and (crucially) the remainder f pk is also polynomial in the variables y j but of reduced
homogeneity pj − 2. The function f pk is also SU(4) ∼ SO(6) invariant which implies that the
y variables must appear as scalar products only. Thus we can completely parameterise the
polynomial (in y j) Fpk , in terms of functions of the xi variables only

Fpk (xi, y j;λ, c) =
∑
{bi j}

(∏
i< j

g
bi j
i j

)
F{bi j}(x, x̄;λ, c)

{bi j} :=

{
bi j = b ji : bii = 0,

∑
i

bi j = pj − 2

}
gi j :=

y2
i j

x2
i j
.

(40)

Note that the correlator is homogeneous of degree −pi in each variable xi since the operator
Opi has dimension pi (the fundamental massless scalar in four dimensions has dimension 1).
Therefore Fpk has weight −pi − 2 in each variable xi. This x weight is then absorbed by the
explicit factors of x2

i j in (40) leaving functions of x-cross ratios only F{bi j}(x, x̄).
Relation to the simplest correlator. How does this relate to the simplest correlator consid-

ered in section 2? There we considered the operator O = Tr(φ2) where φ was any complex
scalar, for example φ = (φ1 + iφ2)/

√
2. This can be obtained from φ(x, y) (33) by setting

yI = (1, i, 0, 0, 0, 0)/
√

2. Thus the correlator (2) of section 2 is simply the charge 2 correlator
with a fixed choice of y coordinates

〈OOŌŌ〉 = 〈O2O2O2O2〉

∣∣∣∣∣∣y1=y3=(1,+i,0,.,0)/
√

2
y2=y4=(1,−i,0,.,0)/

√
2

. (41)

One can quickly check that this choice of y coordinates gives y2
13 = y2

24 = 0, y2
12 = y2

14 = y2
13 =

y2
34 = 1 and so the superconformal factor I(xi, y j) = x4

13x4
24. Thus the function F in (2) is simply
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the function F2222 in (35). Furthermore in this case the decomposition of F2222 in (40) is trivial
(it has no y dependence) and so this equates to the only contributing function F{bi j} in (40)

F2222(xi, y j;λ, c) = F{000 000}(x, x̄;λ, c) = F(xi;λ, c). (42)

3.1. Loop integrands and 10d symmetry

A number of higher charge half BPS planar correlators were computed directly by Feynman
graphs to two-loops in [13, 60, 93–97]. Then in [98, 99] the integrands of all planar half BPS
four-pnt correlators to five loops were derived using bootstrappy techniques, specifically super-
conformal symmetry, the analytic structure, planarity and OPE arguments. The integrals which
appear are exactly those of the stress-tensor multiplet correlator (3)–(11) but with different
coefficients and hence all the integrals to three-loops are also known analytically from [40].

The results of [98, 99] display an interesting structure, that the component correlators are
independent of bi j (see (40)) beyond some minimum value, depending on the loop order.
Recently this structure has been beautifully understood as due to the presence of a hidden 10d
conformal symmetry. Assuming this continues it then implies that all perturbative correlators
can be understood as derivable directly from the stress-tensor correlator itself [100]. Defining
the integrands of the higher charge correlators Fpi and their components F{bi j} in a similar way
to the integrands of the lowest charge correlator (3) i.e.

F{bi j} =

∞∑
l=1

(
λ

4π2

)l

F(l)
{bi j} (43)

F(l)
{bi j}(x1, .., x4) =

ξ(4)

l!

∫
d4x5

(−4π2)
..

d4x4+l

(−4π2)
f (l)
{bi j}(x1, ., x4+l) (44)

then the higher charge component correlators f (l)
{bi j} are obtained directly from the simplest cor-

relator by writing it in terms of 10d conformal invariants and taking the appropriate coefficient

f (l)
{bi j}(x

2
i j) = f (l)(x2

i j)|(gi j)
bi j , (45)

where on the rhs f (l) are the f graphs of (4), the stress-tensor multiplet correlator described
in section 2 containing the hidden permutation symmetry. Here x2

i j are 10d conformal invari-
ants, constructed from 12 component SO(2, 10) variables obtained by appending the SO(2, 4)
external variable to the SO(6) internal variables xi = (xi, yi). So then

x2
i j := xi.x j = xi.x j − yi.y j = x2

i j − y2
i j = x2

i j(1 − gi j). (46)

All the integration variables live in 4d however, so yi = 0 for i = 5, . . . , 4 + l. We will discuss
later (at the end of section 4.6) a natural interpretation of (45) with arbitrary y at all points.

To illustrate we give the simplest example, namely one loop. The function f (1) is given in
(5) and we have

f (1)(x2
i j) =

1∏
1�i< j�5

x2
ij
=

1
ξ(4)

x2
13x2

24

x2
15x2

25x2
35x2

45

1∏
1�i< j�4

(1 − gi j)

=
1
ξ(4)

x2
13x2

24

x2
15x2

25x2
35x2

45

∏
1�i< j�4

⎛
⎝ ∞∑

bi j=0

g
bi j
i j

⎞
⎠. (47)

19



J. Phys. A: Math. Theor. 55 (2022) 443009 Topical Review

Then reading off from (45) this gives

ξ(4) f (1)
{bi j} =

x2
13x2

24

x2
15x2

25x2
35x2

45

(48)

so that all component correlators are equal and given by the one loop box function (with unit
coefficient). This is precisely the result derived in [93, 101].

In a similar way the conjectured 10d symmetry (45) correctly reproduces all the known
higher charge BPS correlators to five loops [98, 99] directly from the f -graphs (6)–(10) [100].
Furthermore, since we know the stress-tensor multiplet correlators to ten loops, conjecturing
this at higher loops immediately gives a concrete proposal for all half BPS planar correlators
to ten loops. Since the derivation of the higher charge correlators to five loops in [98, 99] relied
solely on the OPE considerations and planarity, it is presumably also possible to prove the 10d
symmetry at the level of the perturbative integrands from these.

One can rephrase the 10d symmetry in a suggestive way by writing all half BPS operators
in terms of a single operator generating all of them

O(x, y) =
∞∑

p=2

1
p

(
16π4

c

)p/4

Op(x, y). (49)

Then (in the planar theory) we have that the four point function of all single particle half BPS
operators can be combined into the following beautifully simple master correlator

〈OOOO〉 = free +
I(xi, y j)

2c
×

∞∑
l=0

λl

(4π2)l!

∫
d4x5

(−4π2)
..

d4x4+l

(−4π2)
f (l)(x2

i j). (50)

It would be interesting to see to what extent this perturbative 10d conformal symmetry
survives in the non-planar regime, especially given the relative simplicity of non planar cor-
rections at strong coupling (32) which is closely related with a 10d conformal symmetry
appearing at strong coupling. So far the perturbative non-planar corrections (which only start
to be non-trivial at four-loops) are only known for the lowest half BPS correlator [16, 37].

3.2. 10d correlator/amplitude duality

In the context of integrability approaches to correlators (which we will briefly summarise in
more generality in the conclusions) it has been useful to consider four-point half BPS correla-
tors with charges taken to certain limits. In particular in [102] a limit of large charge correlators
was introduced and called the ‘simplest’ correlator (not to be confused with the stress-tensor
correlator which we have referred to as the simplest half BPS correlator). It was shown to be
given by the square of a certain octagon form factor O [102] obtained by gluing two hexagons
[103] together. Now the large charge limit corresponds precisely to taking the 10d lightlike
limit of the master correlator (50) so [100] (taking the master correlator to be a function of
x2

i j, x2
i j rather than x2

i j, y2
i j)

lim
x2

12,..,x2
41→0

〈OOOO〉|1/c

x2
12x2

23x2
34x2

41

= O
2. (51)

This is very reminiscent of the correlator/amplitude duality (13). Indeed independently of the
above discussion of the simplest correlator one could ask about taking the 10d lightlike limit
of the master correlator (50) and it is natural to imagine it as some sort of amplitude. A natural
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object which then comes to mind is the four-point amplitude of N = 4 SYM regularised on
the coulomb branch, introduced in [104]. So the conjecture of [100] is that

lim
x2

12,..,x2
41→ 0

〈OOOO〉|1/c

〈OOOO〉|1/c,λ=0
= M(xi, yi)2 , (52)

where M(xi, yi)2 is the Higgs regulated amplitude (with 6d internal variables satisfying
yi.yi = 0). This can then be rephrased as a direct equality between the octagon of [102] and the
four-point amplitude regulated on the Higgs branch of [104]

O(xi, yi)
O(xi, yi)|λ=0

= M(xi, yi). (53)

Note that the octagon is known for arbitrary values of the coupling [105, 106]. Both sides of
this equality yield perfectly finite integrals and so this identification then works at the level of
the integrals as well as the integrand and produces new results for integrals from integrability
[100].

3.3. Strong coupling and 10d symmetry/effective action

Tree-level supergravity. We turn now to higher charge correlators at strong coupling. The tree-
level supergravity results of the lowest charge correlator (23) have been computed for various
higher charges by direct supergravity computations in a number of papers [59, 60, 93, 96,
107–111]. In [72, 112] analyticity and crossing symmetry arguments were used to bootstrap
the results for all half BPS four-point functions 〈Op1Op2Op3Op4〉 in the tree supergravity limit
in Mellin space (recovering and generalising the previous direct supergravity computations).

These tree-level results for all charges were instrumental in the unmixing needed to boot-
strap one-loop quantum gravity results for the simplest correlator, as mentioned in section 2.5.
We have now introduced the relevant ingredients to give more details of this now. The super-
multiplets which appearing in the large c OPE of two half BPS single particle operators at
strong coupling are two-particle operators: operators in the tensor product of two single par-
ticle operators. They have twist (dimension minus spin) τ , spin l and SU(4) representation
[a, b, a] and have the form:

Oτ ,l;[a,b,a]
pq = Op∂

l
x�

1
2 (τ−p−q)
x ∂a

y�
1
2 (p+q−b−2a)
y Oq, (p � q). (54)

The quantum numbers τ , l, a, b specify the free theory conformal representation of the operator,
then the labels p, q parameterise the free theory degeneracy. The possible values of p, q form
the nodes inside a finite rectangle of height roughly b/2 and width (τ − b − 2a − 4)/2, rotated
by 45 degrees within an integral lattice in p, q space [91]

(55)
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A conformal partial wave decomposition of the 〈Op1Op2Op3Op4〉 correlator in the free theory
and the log u coefficient of the 1/c correction (at strong coupling) then yields the following
combinations of OPE coefficients and anomalous dimensions

〈Op1Op2Op3Op4〉c0 =
∑
τ ,l,a,b

(∑
p,q

COp1Op2Opq COp3Op4Opq

)
× superblock(τ , l; [a, b, a])

(56)

〈Op1Op2Op3Op4〉 1
c ,log u,λ→∞ =

∑
τ ,l,a,b

(∑
p,q

COp1Op2Opq γOpq COp3Op4Opq

)
superblock(τ , l; [a, b, a]).

(57)

For fixed quantum numbers, these coefficients give precisely the right number of independent
equations to uniquely fix the OPE coefficients COp1Op2Opq and the anomalous dimensions γOpq .
The resulting OPE coefficients have a remarkable structure [75, 113] eventually understood in
terms of a 10d conformal symmetry [76] where it arises as the decomposition of 10d conformal
SO(2, 10) representations down to SO(2, 4) × SO(6) as we already mentioned in section 2.5.
The anomalous dimensions of all two-particle operators (54) have the simple form [91]

γOpq = −1
c

δ(8)(
l + 2p− 2 − a − 1+(−)a+l

2

)
6

(58)

with δ(8) = M(4)
t M(4)

t+l+1, M(4)
t ≡ (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2) and t ≡

(τ − b)/2 − a. Note the independence of q, indicating degeneracy of the anomalous dimen-
sions at this order, indicated in (55) by the vertical lines linking degenerate operators at
this order, and signalling the presence of the 10d symmetry. The numerator in (58) is the
eigenvalue of an eighth order Casimir operator, Δ(8), acting on the corresponding superblocks
[76]

Δ(8) =
xx̄yȳ

(x − x̄)(y − ȳ)

2∏
i, j=1

(
C[+α,+β,0]

xi
− C[−α,−β,0]

y j

) (x − x̄)(y − ȳ)
xx̄yȳ

(59)

where α = p21/2, β = p34/2 and C[α,β,γ]
x is the elementary 2d Casimir

C[α,β,γ]
x = x2(1 − x)∂2

x + x(γ − (1 + α+ β)x)∂x − αβx. (60)

These results can then be succinctly combined together to a single equation giving the mas-
ter correlator in the tree-level supergravity limit, displaying the same 10d conformal symmetry
described for perturbative correlators [76]

〈OOOO〉 1
c ,λ→∞ = free − I(xi, yi)

4c
D2422(xi)
x2

13x2
14x2

34

, (61)

where as always the bold variables are 10d. We see that this strong coupling formula exhibits
the 10d symmetry in a very similar way to the weak coupling case (50).

Furthermore the free theory, when acted on by the eighth order Casimir, Δ(8) (which con-
verts the correlator of primaries to the correlator of certain Lagrangian-type superconformal
descendants 〈LpLqL̄rL̄s〉 where Lp ∼ Q4Op [76, 114]) also possesses this 10d conformal sym-
metry! Defining a master descendant operator L similarly to O (52), this carries the same
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conformal representation as a 10d massless (dimension 4) scalar field! Its four-point correlator
decomposes into 10d conformal blocks of 10d higher spin currents, Ol10d ≡ L∂ l10dL, one for
each spin

〈LLL̄L̄〉c0 =
1

x8
14x8

23

+
1

x8
13x8

24

=
∑
l10d

CLLOl10d
CL̄L̄Ol10d

× 10dblockl10d (xi). (62)

The 10d part of the tree level master correlator (61) on the other hand has a similar 10d block
decomposition

D2422(xi)
x2

13x2
14x2

34

=
∑
l10d

CLLOl10d
CL̄L̄Ol10d

1
(l10d)6

× 10dblockl10d (xi). (63)

We therefore see that the ratio of the 10d block coefficients in (62) and (63) is 1/(l10d)6. This
then explains the form of the anomalous dimensions (58). Since there is only a single 10d rep-
resentation for each 10d spin, there is no 10d unmixing problem. The δ(8) arises from the action
of Δ(8) to obtain the descendant correlator, whereas the denominator arises from 1/(l10d)6 with

the 10d higher spin currents l10d = l + 2p− 2 − a − 1+(−)a+l

2 . This then also then gives a very
more direct way of obtaining the leading, logg, divergence of higher g-loop correlators, which
arise from taking (1/(l10d)6)g, expanding in 10d bocks and acting with g powers of Δ(8) [76].

Note that in the strong coupling case the 10d symmetry has a stronger motivation than
at weak coupling, since here it seems to be intimately related to the fact that AdS5 × S5 is
conformally equivalent to 10d flat space, and a supergravity argument for the symmetry could
perhaps be envisaged starting from this point.

Tree level string corrections and 10d symmetry. The first (α′3 = 1/λ3/2) string corrections to
the strong coupling half BPS four-point correlators have been computed for arbitrary charges
in [66, 74, 115]. In [116] it was shown that these corrections for all half BPS correlators can
be rewritten in a way which explicitly exhibits the 10d conformal symmetry, after applying a
certain 6th order Casimir of the conformal and internal (SO(2, 4) × SO(6)) symmetry groups
acting at points 1 and 2, C(6)

1,2. All half BPS operators at this order are then given by the succinct
formula

〈OOOO〉|c−1λ−3/2 ∝ I(xi, yi) × C(6)
1,2

[
D4411(xi)

x6
34

]
10d

. (64)

Here the log u part of the 10d function D4411(xi), which is the part controlling the anomalous
dimension, is equal to a single spin 0, 10d conformal block. The obvious generalisation of
this structure for the next order α′5 correction would then be to write the master correlator in
terms of tenth order Casimirs acting on 10d spin 2 and spin 0 blocks. The order of the Casimir
is directly related to the mass dimension of the correction (as was already observed in the
supergravity case in [76]) whereas the maximum spin dependence arises from the relation to
the effective action following arguments of [117] applied to 10d. It seems though that the α′5

corrections, found for all charges in [118], cannot be rewritten in this above 10d form [116] and
this is consistent with the observations of the breaking of 10d symmetry found in the spectrum
of operators at this order in [115].

On the other hand a clear 10d (but non-conformal) structure has recently been discovered
in the higher charge correlators corresponding to string corrections [70]. The master correlator
generating all half BPS correlators can be written in terms of AdS × S integrals mimicking
scalar Witten diagrams, but as integrals over a full 10d AdS5 × S5 space-time rather than just
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the AdS part. This suggests that there is a simple scalar 10d effective action describing the quar-
tic terms of all string corrections to IIB supergravity on AdS5 × S5. The first string correction
(64) arises from a simple φ4 term

Sα′3 =
1

8.4!

(
α′

2

)3

× 2ζ3 ×
∫

AdS×S
d10zφ(z)4. (65)

To obtain the corresponding CFT correlators, we mimic the standard AdS/CFT procedure but
in a fully 10d AdS5 × S5 covariant way, using generalised AdS ×S bulk-to-boundary propaga-
tors. In this way we obtain the AdS × S Witten diagram for this contact interaction, yielding
the following proposal for the α′3 corrections to all higher charge correlators via the master
correlator:

〈OOOO〉|c−1λ−3/2 ∼ 2ζ3

8.4!

(
α′

2

)3 (C4)4

(−2)16
I(xi, yi)

∫
AdS×S

d10z
(z.x1)4(z.x2)4(z.x3)4(z.x4)4

. (66)

Here we use 12 component variables z to define the bulk AdS × S space, the first six compo-
nents are embedding space variables for AdS5 and the next six for S5. These then contract with
the 12 component variables x = (x, y) (with x six-component embedding space variables for
Minkowski space and y the 6 SO(6) internal variables) using an SO(2, 10) metric as z.x. The
AdS × S generalisation of the bulk to boundary propagator for a dimension Δ scalar in 10d
is then CΔ

(−2)Δ
(z.x)−Δ with the normalisation CΔ = Γ(Δ)

2πd/2Γ(Δ−d/2+1)
. Extracting the individual

higher charge component correlators from (66) is then a straightforward Taylor expansion, and
there is also a simple formula for obtaining the corresponding Mellin transform (see [70] for
more details).

Higher order corrections can similarly be read off from φ4 terms with derivatives in the
effective action. The derivatives are AdS × S covariant and so do not commute. The relation to
the flat space Virasoro amplitude—which can also be viewed via a quartic effective action with
derivatives—is then very direct: simply replace the covariant derivatives with flat space ones.
However, the uplift from flat space to curved space is not unique, due to the non commuting
derivatives. Remarkably the ambiguities in this process correspond precisely to ambiguities
one obtains from bootstrap approaches to obtaining higher charge correlators [119]. Some of
these ambiguities have been fixed by localisation [66]. So for example at O(α′5) one considers
a scalar effective action with four-derivative terms and below. The scalar 10d effective action
can be written

Sα′5 =
ζ5

8.4!

(
α′

2

)5∫
AdS×S

d10z
(
3(∇φ.∇φ)(∇φ.∇φ) − 9∇2∇μφ∇μ φφ2 − 30φ4

)
, (67)

where ∇μ are AdS ×S covariant derivatives. Replacing the scalars with bulk to boundary prop-
agators as in (66) converts this directly into a formula for the master correlator giving all higher
charge half BPS correlators at O(α′5). In (67), the coefficient of the first term is fixed by com-
paring with the flat space effective action (arising from the Virasoro amplitude) whereas the
coefficients of the remaining two terms need other mechanisms to fix them (but we emphasise
that there are just two coefficients unfixed by the effective action and flat space limit needed to
fix all half BPS operators). This result agrees precisely with the Mellin space formulae derived
by N = 4 bootstrap techniques in [118]. This agreement continues at higher orders and has
been checked to O(α′7). Some of the remaining coefficients arising from ambiguities can be
fixed by supersymmetric localisation in N = 4 SYM [66].
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There are a number of interesting open problems arising from this 10d effective action. The
first problem is to derive the scalar effective action from first principles in supergravity. It is
known that IIB supergravity linearised on the AdS × S superspace background is described by
a single chiral scalar superfield with a certain fourth order constraint [120] just as on flat space
[121]. It presumably then makes sense to integrate a superpotential consisting of a holomorphic
function of this scalar in chiral AdS × S superspace. But this does then lead to the question
of the existence of an effective chiral superpotential describing the full nonlinear theory. Such
an object has been discussed before, notably in [122–124]. An obstruction to its existence
was found (after some initial confusion) in [122, 123]. However, despite this it was shown in
[124] that all terms in the full non-linear effective action consisting of the curvature and five-
form field strength are correctly reproduced by such a superpotential. The second problem is
to understand the relation between this 10d structure and the afore-mentioned 10d conformal
symmetry. The above results would suggest that the covariant derivatives in the effective action
at O(α′5) break the conformal symmetry. Intriguingly though there is a different combination
of the three terms in the effective action at this order (67) for which the corresponding Witten
diagram integrand has 10d conformal symmetry [116], reminiscent of the symmetry of the
perturbative integrand of [100] discussed in section 3.1.

Loop corrections. Finally quantum gravity loop corrections O(1/c) have also been com-
puted for various higher charge correlators in position space [79] and Mellin space [92]. The
first string (α′3) correction is also known at one loop order for some higher charge correlators
in Mellin space [125]. For both string and supergravity one loop correlators, the higher dimen-
sional 10d conformal symmetry has a clear imprint on the results—they can be written in a
vastly simpler way by implementing the differential operators arising from the symmetry—but
the precise way this symmetry impacts on these corrections is not yet clear.

4. Higher points

In the final section of this review we turn to correlators of more than four half BPS opera-
tors. They are classified by their Grassmann odd degree. The four point loop integrands arise
from higher point correlators with maximal Grassmann odd degree (maximally nilpotent).
Going below the maximally nilpotent case (which can be viewed as 5 and higher point loop
level integrands) there is far less known, nevertheless we will review in detail the structure
superconformal symmetry imposes and the explicitly known results.

4.1. Analytic superspace

In order to fully understand half BPS correlators beyond four points (and indeed to derive
the results we have already used without proof at four-points) the most direct method is to
use analytic superspace. Analytic superspace was first introduced for N = 2 supersymmetric
theories in [126]. Later this was generalised to arbitraryN and placed within the mathematical
formalism of super flag manifolds, coset spaces of the superconformal group SU(2, 2|N ) in
[127, 128]. A particularly useful N = 4 analytic superspace is provided by the maximal super
Grassmannian, Gr(2|2, 4|4), the space of (2|2) planes in (4|4) dimensions [73, 129–134]. This
space is particularly natural for describing half BPS correlators and in particular manifesting
the superconformal symmetry. This space is a very natural generalisation of both 4d Minkowski
space viewed as a Grassmannian, as well as the internal space (ys) used in the previous section
for dealing with higher charge half BPS operators (see (33)). Thus we will begin by reviewing
in more detail these bosonic spaces from various points of view, before considering the full
superconformal symmetry in analytic superspace.
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Equivalent descriptions of 4d Minkowski space. There are several equivalent ways to view

4d complexified 6 Minkowski space, R3,1 C−→C4: the Grassmannian of 2 planes in a 4d vec-
tor space Gr(2, 4); a flag manifold coset space of the superconformal group; the embedding
space formalism (Klein quadric ⊂ P5); and lines in projective twistor space. They are straight-
forwardly related to each other. We will use Minkowski space indices μ = 0, . . . , 3, Weyl
spinor indices α = 1, 2, α̇ = 1, 2, twistor indices A = 1, . . . , 4 with vA = (vα, vα̇) which carry

the fundamental of the conformal group SU(2, 2)
C−→SL(4;C) (the 4d conformal group is

SU(2, 2) ∼ SO(2, 4)) and finally we also have embedding space indices I = −1, 0, . . . , 4 which

carry the fundamental of SO(2, 4)
C−→SO(6;C). These various formalisms are related to each

other as follows:

(68)

Minkowski space coordinates xμ ∈ C4 have spinorial form as a 2 × 2 matrix xαα̇ = xμσ
μ
αα̇.

The Grassmannian Gr(2, 4) can be viewed as the equivalence class of 2 × 4 matrices modulo
the left action of GL(2): Gr(2, 4) = {xαA ∼ mα

βxβA : mα
β ∈ GL(2)}. A natural way to fix a

representative of the GL(2) equivalence class is to use up the GL(2) by fixing the left 2 × 2
block of the 2 × 4 matrix xαA to the identity. This leaves a remaining 2 × 2 matrix which we
can then identify with the spinorial form of coordinates of Minkowski space xαB ∼ (δα

β , xαβ̇).
Twistor space is the vector spaceC4 and the Grassmannian is geometrically the space of two

planes through the origin in the four dimensional twistor space. To see this note that a two-plane
through the origin can be defined by giving any two independent twistors in the two-plane.
These are the rows of the 2 × 4 matrix, (x1)A and (x2)A. Then any such choice of two twistors
in the plane will be related by a GL(2) transformation. It is common to view the two-plane in
twistor space rather as a line in projective twistor space P3.

The coset space of SL(4;C):

coset space: {xA
B ∼ hA

CxC
B : xA

B ∈ SL(4;C), h = (
m 0

n p
) ∈ SL(4;C)}, (69)

(where m, n, p are 2 × 2 matrices) is equivalent to the Grassmannian Gr(2, 4). To see this note
that we can use up the matrices n, p of h to set the bottom two rows of the matrix xA

B to (02, 12)
so there is a coset representative yielding Minkowski coordinates given as the upper triangular
matrix at the top of (68).

Then the top two rows of the matrix, together with the remaining equivalence transformation
m comprise precisely the Grassmannian Gr(2, 4).

6 We consider complexified (super)spaces as coset spaces of the complexified (super)conformal group SL(4|N ;C) as
it makes things much simpler to describe and it is easy to go back to the real forms at the end if needed.
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Embedding space can be derived by noting that an alternative approach for dealing with the
GL(2) equivalence, rather than simply fixing it (which in particular breaks the linear action of
the conformal group) is to instead take two copies of xαA and contract the α indices with an
ε tensor to form xAB := xαAxβBεαβ . These coordinates xAB are known as Plücker coordinates
for the Grassmannian. Since xAB is antisymmetric in its four-indices it forms the six rep of
the conformal group SU(2, 2) which is the fundamental of SO(2, 4). This can be manifested
using appropriate 6d SO(2, 4) sigma matrices xI = xABσI

AB. The coordinates xI then transform
linearly under the conformal group SO(2, 4) and are invariant under SL(2) ⊂ GL(2). However
there is a C∗ ⊂ GL(2) transformation remaining and thus the xI are projective coordinates in a
six-dimensional space, xI ∈ P5 known in this context as the embedding space. The coordinates
xI are not independent. We can see that x[ABxCD] = xα[AxβBxγCxδD]εαβεγδ = 0 which becomes
xIxI = 0 where the I index is raised and lowered using an SO(2, 4) metric in the real case. Thus
the coordinates xI live in a hyperbolic surface (or in fact simply a complex sphere as we are
considering the complex case) inside P5.

Finally note that there is an orthogonal plane to any Grassmannian element x⊥
Aβ̇

which sat-

isfies xx⊥ = 0 and which can be thought of as the right hand half of the inverse of the coset
matrix (x−1)A

B so x⊥
Aβ̇

= (x−1)Aβ̇ . Its equivalence class is obtained by p−1 acting from the right,

x⊥ ∼ x⊥p−1. This orthogonal plane then allows us to form SL(4) invariant objects
(xi j)αα̇ := xiα

Ax⊥jAα̇ which transform locally on the left and right with different GL(2)s, (xi j) ∼
Mxi jP−1. If the coset representative at the top of (68) is chosen then this becomes the differ-
ence of Minkowski space coordinates: xi jαα̇ ∼ xiαα̇ − x jαα̇. We can form the SL(2) invariant
combination x2

i j = det(xi j). This transforms as x2
i j ∼ x2

i j det Mi det−1P j.
Internal SU(4) space. In section 3 we introduced coordinates yI with I = 1 . . . 6 satisfying

yIyI = 0 (34) in order to deal with the six fundamental scalars φI in N = 4 SYM. Remarkably,
these coordinates can themselves be viewed in exactly the same way as the embedding space
coordinates xI for Minkowski space. In the real case the xI transform under the fundamental
of the conformal group SO(2, 4) whereas the yI transform under the fundamental of the inter-
nal group SO(6), but after complexifying both groups are SO(6;C). In fact every aspect of
the equivalent descriptions in section 4.1 of Minkowski space above can be repeated for the
internal space. For the internal space we will use equivalent Latin versions of the same Greek
indices used for Minkowski space: they are transforming under different copies of the same
complexified groups. So in particular we have an internal Grassmannian Gr(2, 4), described
by a 2 × 4 matrix with elements ya

A7. These are then related to the coordinates yI in exact
analogy to the xI (68), i.e. yIσ

I
ab = ya

Ayb
Bεab. We have the orthogonal Grassmannian y⊥

Aḃ
with

yy⊥ = 0 just as for Minkowski space. We also have explicit coordinates for the coset space, yaȧ,
analogous to the spinor rep of Minkowski space coordinates. In short everything we say about
Minkowski space has a precise analogy for the internal space and indeed after complexification
this analogy is actually a precise equivalence locally.

Analytic superspace. Finally we come to analytic superspace itself which combines the
above two Gr(2, 4) Grassmannian descriptions of Minkowski space and the internal space into
a super Grassmannian Gr(2|2, 4|4), the space of (2|2) dimensional super planes inside a (4|4)
dimensional vector space. So we introduce new superindices, calligraphic Latin versions of the
corresponding Minkowski (Greek) or internal (Latin) indices. So a = (α|a), ȧ = (α̇|ȧ) are (2|2)

7 These are usually labelled u in the literature on N = 4 harmonic/analytic superspace, e.g. ua
i in [127–129, 135]

and u+a
A in [101]. They are viewed as elements of the coset space SU(4)/(S(U(2) × U(2))) which on complexification

becomes the Grassmannian.
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superindices andA are (2|4|2) (a convenient permutation of the (4|4) vector space) superindices
with VA = (Va, Vȧ) = (Vα|Va, Vȧ|Vα̇). Then the super Grassmannian is

Gr(2|2, 4|4) = {Xa
A ∼ Ma

bXb
A : Ma

b ∈ GL(2|2)} (70)

and using the GL(2|2) we can fix the first block to the identity to arrive at the coordinates Xaȧ
of analytic superspace XaB ∼ (δa

b, Xaḃ). The coordinates of analytic superspace include the
coordinates of Minkowski space xαα̇ and of the internal space yaȧ as well as Grassmann odd
superspace variables ραȧ and ρ̄α̇a in the supermatrix

(71)

Just as for Minkowski space, this super Grassmannian can also be viewed as the top half of the
supercoset space (compare with (69))

supercoset space:

{
XA

B ∼ HA
BXC

B : XA
B ∈ SL(4|4;C), HA

B =

(
Ma

b 0
Nȧb Pȧ

ḃ

)}
(72)

with M, N, P ∈ GL(2|2) so that we obtain the same coordinates via the coset representative

XA
B ∼

(
δa

b Xaḃ
0 δȧ

ḃ

)
. (73)

We also mention here that we also have available to us the inverse of the supercoset matrix
(X−1)A

B. The non-trivial part of this is the right hand half of the matrix X⊥
Aḃ

:= (X−1)Aḃ which

in the Grassmannian language represents the plane perpendicular to XaA,

(X)a
AX⊥

Aḃ = 0. (74)

Note that the orthogonal complement transforms under the GL(2|2) Pȧ
ḃ rather than Mab in H

(72), so we have the equivalence transformation X⊥
Aḃ

∼ X⊥
AȧPȧ

ḃ.

4.2. Half BPS operators in analytic superspace

Analytic superspace can be used to solve the Ward identities for correlators of any operator in
the theory [132, 134] but is especially suited to describing half BPS operators which are simply
scalar fields on this space. The simplest half BPS representation contains the fundamental
fields of the theory, the six scalars φ(x, y) (see (33)), four complex fermions λαA(x) and their
conjugates and the Yang–Mills field strength tensor Fμν(x) in spinor form

W(x, y, ρ, ρ̄) = φ+ λαAy⊥Aȧραḃε
ȧḃ + λ̄α̇

Aya
Aρ̄bα̇ε

ab + Fαβρ2
αβ + F̄α̇β̇ ρ̄2

α̇β̇
. (75)

A key point is that the multiplet is an unconstrained superfield on analytic superspace. It has
a finite expansion in the Grassmann odd variables ρ, ρ̄ since they are nilpotent, but also in the
internal variables y. This is because the internal space is the complexification of a compact
space (to be compared with the x which are non-compact and thus produce an infinite expan-
sion). The multiplet transforms in the adjoint representation of the gauge group and is not itself
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a gauge-invariant operator. However all half BPS operators are built out of W. For example the
simplest stress tensor multiplet is

O2 := Tr(W2) = Tr(φ2) + · · ·+ ρ4L + · · ·+ ρ̄4L̄ + ..+ (ρ2)αβ(ρ̄2)α̇β̇Tαβα̇β̇ + · · · , (76)

where we just display a few of the component fields in the multiplet. The lowest weight state
Tr(φ2), the chiral Lagrangian L and its conjugate, and the stress-tensor multiplet Tμν in the
spinor representation, from which the multiplet gets its name.

4.3. Ward identities (part 1)

Having set up the analytic superspace formalism, we can now turn to the question of solving the
superconformal Ward identities for correlation functions of half BPS operators inN = 4 SYM.
The presentation here is similar to that in [134] but we here do this explicitly in the language
of the super Grassmannian whereas there it was done in coordinate language. In the Grass-
mannian formulation, the superconformal transformations are linear transformations on the A
indices. An n-point correlator is a function of n elements of the Grassmannian Gr(2|2, 4|4),
(X1)a

A, .., (Xn)a
A or their orthogonal complements. It must be invariant under SL(4|4), and

have transformation properties under the local GL(2|2) transformations Mab, Pȧ
ḃ in H (72)

which are specified by the operator inserted at each point. To obtain SL(4|4) invariant quanti-
ties we simply need to contract the A indices, the only possibility is to pair planes with their
orthogonal complements at different points:

(Xi j)aḃ = (Xi)a
A(X⊥

j )Aḃ. (77)

These then transform as (Xi j) ∼ MXi jP−1. Note that if we fix to the coordinates XaB ∼
(δa

b, Xaḃ) then the orthogonal Grassmannian is (X⊥)Aḃ ∼ (−Xaḃ, δȧ
ḃ, ) and (Xi j)aḃ is simply

the difference of coordinates (Xi j)aḃ ∼ (Xi)aḃ − (X j)aḃ.
Now in the Grassmannian language the (Xi j)aḃ have already solved the superconformal

SL(4|4) Ward identities! However, the catch is that we now also need to ensure the result
transforms correctly under the two GL(2|2) transformations at each point Mi, Pi (so the result
actually lives on the Grassmannian). Up to this point the presentation is valid for correlators of
any operators in the theory—different operators have different transformation properties under
the two GL(2|2)s. Specialising to half BPS correlators Op(Xi) these transform under M, P only
via a scaling of s det M = s det−1P. (This latter equality arises from the fact that we are consid-
ering SL(4|4) rather than GL(4|4) and so 1 = s det H = s det Ms det P (see (72).) This scaling
under s det M = s det−1P can be accounted for by taking the s det of Xi j, gi j := sdet(X−1

i j ). These
are superpropagators in analytic superspace, proportional to the two-point function of two
fundamental scalars and if we consider the coordinates (71) and switch off the Grassmann
odd coordinates we find gi j = y2

i j/x2
i j matching up with the notation we introduced previously

(see (40)). Thus by taking appropriate powers and products of the superpropagators we can
straightforwardly obtain a function which transforms correctly as a half BPS correlator under
the local GL(2|2)s M, P.

It remains therefore to multiply this prefactor by quantities which are invariant under the
two GL(2|2)s M, P (with s det M = s det−1P). To obtain these we need to contract away all the
a, ȧ indices, recalling that they must contract ‘locally’ with indices associated at the same point.
To contract away the indices we make use of the inverse (X−1

i j )ȧa := ((X ji)aȧ)−1 to get upstairs,
indices with which to contract. Then simply link them together pointwise to arrive at traces
such as str(Xi jX−1

jk XklX−1
li ) or s dets of similar objects e.g. sdet(Xi jX−1

jk XklX−1
li ). A systematic

analysis [133, 134] shows that the Ward identities can be reduced to finding functions of the
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(2|2) × (2|2) matrices (Zi)a
b = (X12X−1

2i Xi3X−1
31 )a

b
for i = 4, 5, . . . , n, invariant under SL(2|2)

transformations8 G, so f (Zi) = f (G−1ZiG)9.

4.4. Deriving the structure of four-point correlators

Before continuing the discussion of Ward identities, let us consider this first at four points. The
above description on solving the Ward identities implies that the correlator of four half BPS
operators takes the form (with Z :=Z4)

〈Op1Op2Op3Op4〉 = prefactor × f (Z) f (Z) = f (G−1ZG), (78)

where the prefactor is an appropriate monomial in gi j absorbing the transformations of the
operators. For a bosonic matrix, a function f (Z) = f (G−1ZG) is simply a symmetric function
(meaning symmetric under permutation) of its eigenvalues. For a super matrix it is a super-
symmetric function of its eigenvalues. A supersymmetric function has two sets of eigenvalues,
and is doubly supersymmetric in these two sets and satisfies the additional constraint that on
setting an eigenvalue from one set equal to the eigenvalue of the other set, the dependence
on the eigenvalue disappears [136]. In the current context the eigenvalues of the (2|2) × (2|2)
matrix Z we denote (x, x̄|y, ȳ) and this becomes

f (x, x̄|y, ȳ) = f (x̄, x|y, ȳ) = f (x, x̄|ȳ, y) ∂t f (x, t, |y, t) = 0, (79)

which are the four-point Ward identities first derived in [60, 137]. This has general solution
(which can be found for example by considering an appropriate basis of such functions e.g.
super Schur polynomials, see [73, 133])

f (x, x̄|y, ȳ) = a +

[(
(x − y)(x − ȳ)(x̄ − y)

(x − x̄)(y − ȳ)
b(x, y) + x ↔ x̄

)
+ y ↔ ȳ

]
+ (x − y)(x − ȳ)(x̄ − y)(x̄ − ȳ)c(x, x̄|y, ȳ), (80)

where the functions b, c are (doubly) symmetric and non singular at x = y. The constant a is
just the value of f when y = x and ȳ = x̄ and the function b(x, y) is related to f at ȳ = x̄ only

a = f (x, x̄|x, x̄) b(x, y) =
a − f (x, x̄|y, x̄)

x − y
. (81)

One can easily check that any supersymmetric function (i.e. satisfying (79)) decomposes
uniquely as (80)10.

On top of this we must also impose that the full correlator is polynomial in the Yi variables.
By choosing the prefactor judiciously this means the function f must be polynomial in y, ȳ of
degree determined by the weights of the external operators. This, then yields the most general

8 They only need to be invariant under SL(2|2) rather than GL(2|2). A non-trivial transformation under s det(Mi) can
be cancelled by appropriate products of gi js (recalling that s det M = s det−1P).
9 The quickest way to see that the Ward identities reduce to this is to adapt the standard CFT argument of using
conformal transformations to fix X1, X2, X3 to 1,∞, 0 which in the Grassmannian language becomes (X1)aB →
(δab, δa ˙b), (X2)aB → (0, δa ˙b), (X3)aB → (δab, 0).. Then the remaining transformations on the remaining coordinates

X4, X5, . . . leaving X1, X2, X3 invariant are G−1XiG. One can check that Xi = Zi when X1, X2, X3 are fixed thus.
10 Note that subtracting the first line on the rhs of (80) from f and setting y = x gives zero when using the definitions
in (81) for any doubly symmetric function f . Thus the factor x − y can be pulled out and by symmetry the other three
factors multiplying the function c.

30



J. Phys. A: Math. Theor. 55 (2022) 443009 Topical Review

solution of the N = 4 superconformal Ward identities. As we will see, it turns out that only
the function c can depend on the coupling [9] and so the a and b pieces may as well be replaced
by the free theory. This then reproduces the structure quoted in (35).

4.5. Ward identities (part 2): nilpotent invariants

Returning to the general n-point case, we have the most general solution to the superconfor-
mal Ward identities in terms of functions f (Zi) = f (G−1ZiG) with G ∈ SL(2|2). At first sight
one would imagine such functions can only be built from s det or str of products of the Zi or
their inverses as was the case at four points. Indeed this is the solution derived through a num-
ber of early papers on the subject [3, 138–141]. But there is a puzzle which was first pointed
out in [2]. The puzzle is that the above procedure produces functions f (Zi) = f (G−1ZiG) for
G ∈ GL(2|2) not only SL(2|2). This then in turn means the correlation functions are covariant
under the larger group GL(4|4), rather than just the superconformal group SL(4|4), since the
result will be invariant even when s det(M) �= s det(P)−1 (see (72) and footnote 8)11. The addi-
tional ‘bonus’ symmetry (transformations in GL(4|4) but not in SL(4|4)) leaves the bosonic
variables xαα̇, yaȧ invariant and scales the odd variables ρ→ λρ and ρ̄→ λ−1ρ̄, so that ρρ̄ is
invariant. The problem is that loop corrections to correlators are correlators with an insertion
of the Lagrangian operator. But the Lagrangian sits in the half BPS multiplet O2 at O(ρ4) (76).
Thus the l-loop correction of a bosonic correlator must be ∝ ρ4l and will not be GL(4|4) invari-
ant but only SL(4|4) invariant. Put another way, if all correlators are GL(4|4) invariant then they
can not have any loop corrections and there is no interacting theory!

The resolution of this puzzle is simply that there exist functions f (Zi) = f (G−1ZiG) invari-
ant under G ∈ SL(2|2) but not under G ∈ GL(2|2)—so called nilpotent O(ρ4l) invariants
[6, 15, 16, 101, 134, 142]. This possibility arises from the existence of a non-trivial constant
tensor (introduced in [134] and denoted E). This tensor is invariant under SL(2|2) transforma-
tions but not under GL(2|2). It is the analogue for the group SL(2|2) of the more familiar SL(n)
completely antisymmetric tensor εA1..An which is invariant under SL(n) transformations, but
scales under GL(n). Unlike the completely antisymmetric tensor however, E has both upstairs
and downstairs indices, an equal number of both, allowing for an alternative way to produce
invariants by contracting the indices of Zis with E . The upstairs and downstairs indices of E
are anti-symmetrised differently and so one needs at least two different Zi to obtain a non-zero
answer, thus they only exist for n � 5. Note that the resulting SL(2|2) invariant will scale under
s det(M1). This can be cancelled by taking appropriate factors of gi j when s det(M) = s det(P−1)
to produce an SL(4|4) (but not GL(4|4)) invariant object.

In [15, 16, 101] an alternative method was used for obtaining these nilpotent invariants
which reveals a crucial hidden permutation symmetry of the invariants. In this approach one
obtains invariants by simply writing down any function on analytic superspace, and then inte-
grating over the action of the superconformal group on this function. Note that this approach
will also work for a (compact) bosonic group (for example consider U(1) invariant functions
of z, z̄ by integrating arbitrary functions of zeiθ and z̄e−iθ over θ) but becomes extremely useful
for supersymmetric groups. It is very useful at this point to make a simplifying assumption,
namely we set the coordinates ρ̄ = 0 and thus break half of the superconformal symmetry.
This assumption was motivated by the duality between supercorrelators and superamplitudes

11 Note that somewhat confusingly any matrix proportional to the identity has unit s det and thus lies inside SL(4|4).
Such a transformation acts trivially on the coordinates and on all operators, thus only PSL(4|4) can act non-trivially.
However this is not really relevant for the above discussion: one can consider the superconformal group to be SL(4|4)
rather than PSL(4|4). The same discussion arises for GL(4|4) versus PGL(4|4).
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[19, 27–31] (for which this half supersymmetry is broken) and is present from the start in the
twistor approach to correlators [30, 38] (although this can be restored in that context using
the closely related Lorentz harmonic chiral formalism [143–145]). The assumption makes the
resulting expressions much simpler, but means they are only correct up to ρ̄ corrections. With
this assumption then, the super Grassmannian has coordinates

(82)

This includes the Minkowski space Grassmannian xαA and the internal space Grassmannian yA
a

as well as Grassmann odd variables θα
A in the (2|2) × (4|4) matrix. Now the local SL(2|2) trans-

formation is broken to the upper block triangular part by our assumption ρ̄ = 0. The remaining
Grassmann odd part, χα

a, leaves x, y invariant and transforms θα
A → θα

A + χα
aya

A. Thus the
variable ραȧ = θα

Ay⊥Aȧ is invariant underχα
a and only transforms under the bosonic SL(2) sub-

groups of SL(2|2) as dictated by its indices. Note that this variable is equal to the ραȧ of (71)
when we fix the coset representative (73).

Now consider the remaining Grassmann odd superconformal transformation which leaves
ρ̄ invariant. It is generated by ΞA

B (this combines supersymmetry Qα
B generated by Ξα

B and
the special superconformal transformation S̄α̇B generated by Ξα̇B) acting as

(83)

So x, y are invariant but θα
B → θα

B + xαAΞA
B and so ρ→ ρ̂(Ξ) where

ρ̂αḃ(Ξ) := ραḃ + xα
AΞA

By⊥
Bḃ
. (84)

Now we can build nilpotent objects invariant under Q, S̄ by taking a function of the trans-
formed ρ̂i and integrating over the superconformal transformations Ξ∫

d16Ξ F(ρ̂i(Ξ)). (85)

We have now dealt with all the (local and global) Grassmann odd transformations. How-
ever we still need to deal with the local SL(2) symmetries indicated by any remaining α, ȧ
indices from the (ρi)αȧ. We can contract them with (xi)αA and (y⊥i )Aȧ locally, so at the same
point i. Then we are left with remaining global transformations, the bosonic conformal trans-
formation and internal SL(4) symmetries carried by A, A. These can be absorbed using the
objects xAB

i := xiα
Axiβ

Bεαβ and εA1A2A3A4 for the conformal group and the analogous objects
yAB

i := yia
Ayib

Bεab and εA1A2A3A4 . Finally we need to make sure they have the right charge under
the determinants of the local GL(2) groups (we only considered SL so far not GL). This can be
achieved using appropriate powers of x2

i j and y2
i j.

We will look at the simplest cases of doing this explicitly in the next sections.

4.6. Proof of hidden symmetry and new prediction

We now have all the ingredients needed to prove the hidden symmetry of section 2.1. Firstly we
relate the four point loop corrections to higher point correlators via insertion of the Lagrangian

32



J. Phys. A: Math. Theor. 55 (2022) 443009 Topical Review

〈O2O2O2O2〉 =
∞∑

l=0

λl

(4π2)ll!

∫
d4x5..d

4x4+l

〈
O2O2O2O2

l︷︸︸︷
L..L

〉
|λ=0

=
∞∑

l=0

λl

(4π2)ll!

∫
d4x5..d

4x4+ld
4ρ5..d

4ρ4+l

〈 l+4︷ ︸︸ ︷
O2..O2

〉
|λ=0 (86)

So we see that the integrand of l-loop four point function is derived from the 4 + l point cor-
relator at order ρ4l. These are variously known as maximally nilpotent or maximally U(1)Y

violating correlators and they are known at tree-level up to 14 points, since they are equivalent
to the four point correlator integrands described in section 2.1 and known to ten loops. Recently
the first few cases have also been found at large Nc to all orders in the string coupling [146].

According to (85) this 4 + l point correlator at O(ρ4l) (and with ρ̄ i = 0 which will be
implicit from now on) can be obtained in terms of a function of ρ̂ i(Ξ) integrated over the
16 Ξs (for l > 0). The integration over Ξ will reduce the Grassmann degree by 16 and so to
obtain a correlator of O(ρ4l) we need to integrate a function of O(ρ4(l+4)). But since we only
have 4(l + 4) odd variables ρi, the only function available is simply the product of all the
variables. We thus arrive at the very simple solution of the Ward identities:

〈 l+4︷ ︸︸ ︷
O2..O2

〉∣∣∣∣∣∣
ρ4l,λ=0

=
8c

(−4π2)4+l

(∫
d16Ξ ρ̂ 4

1.. ρ̂
4
4+l

)
× f (l)(x1, .., x4+l). (87)

Note that since all the indices of the ρα ȧ indices are contracted, there is no remaining bosonic
SL(2) symmetry to deal with. The only remaining symmetries to consider are related to the y
and x weight at each point (the scaling under the det of the local bosonic GL(2)s). But nicely
the yi weight of ρ4

1.. ρ
4
4+l is four at each point, which is exactly the correct weight for the

correlator 〈O2 . . .O2〉. This means any function multiplying the integral must be independent
of the ys (cross ratios in y would inevitably introduce non polynomial terms). We are thus
left by multiplication of an x dependent function, which is SL(2) invariant (and so must be a
function of x2

i j).
Now the correlator in (87) is crossing symmetric. On the lhs each operator is a function

O2(xi, yi, ρi) and so this crossing symmetry means the rhs is invariant under the simultaneous
permutation xi ↔ x j, yi ↔ y j, ρi ↔ ρ j. However since the first factor in (87) is also invariant
under this exchange, it means that the function f is invariant under interchange of xi ↔ x j, for
any i, j. This is precisely the hidden permutation symmetry of section 2.1.

Let us now explicitly see how this all relates back to previous expressions for the four-point
correlator in section 2.1. First plug (87) into (86). Recalling (84), we see that the integrals over∫

d4ρ5 . . . d4ρ4+l are trivial and we are left with

∫
d16Ξ ρ̂ 4

1 ρ̂
4
2 ρ̂

4
3 ρ̂

4
4 =

∫
d16Ξ

4∏
i=1

(xiα
AΞA

By⊥
iB ḃ

)4 = det xA
iαy⊥

iB ḃ
= I(xi, y j). (88)

The penultimate equality gives the Grassmann integral as the determinant of xA
iαy⊥

iB ḃ
viewed as a 16 × 16 matrix where one 16 dimensional vector space is labelled by
the multi-index iα ḃ and the other by the multi-index A

B. Then the last equality is the
statement that evaluating this determinant yields the expression (37). In practice the
best way to check the last equality is to fix the coordinates using conformal symme-
try similarly to footnote 9 in analytic space. Specifically we can use conformal and
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internal symmetry to fix (x1)αB → (δα
β , δα β̇ ), (x2)αB → (0, δα β̇ ), (x3)αB → (δα

β , 0), and

then fix (x4)αB → (δα
β , (x4)α β̇ ) with (x4)α β̇ = diag(x, x̄ ). Then take the same for the

ys, which gives (y⊥1 )A β̇ → (−δα β̇ , δ α̇
β̇ ), (y⊥2 )A β̇ → (δα β̇ , 0), (y⊥3 )A β̇ → (0, δ α̇

β̇ ), (y⊥4 )A β̇ →
(−(y4)α β̇ , δ α̇

β̇ ) with (y4)a ḃ = diag(y, ȳ ). Then plugging these values into the 16 × 16 matrix
xA

iαy⊥
iB ḃ

one can compute the determinant to be (x − y)(x − ȳ )( x̄ − y)( x̄ − ȳ ). This equals
the expressions for I(xi, y j) in (38) and in turn (37) when the above choices for xi, y j are made.

So the conclusion of this is that the four point function of four O2 operators has the pertur-
bative form

〈O2O2O2O2〉 = 〈O2O2O2O2〉|λ=0 +
8c

(4π2)4

∞∑
l=1

(
λ

4π2

)l

×
∫

d4x5

(−4π2)
..

d4x4+l

(−4π2)
I(xi, y j) f (l)(xi) (89)

with the hidden permutation symmetry f (l)(. . . , xi, . . . , x j, . . .) = f (l)(. . . , x j, . . . , xi, . . .).
Inputting the choice of yis in (41) to yield the component correlator 〈O ŌO Ō 〉, this reduces
to the form stated in equations (2)–(4).

Note that following the argument of this subsection through, but starting with higher charge
correlators 〈Op1Op2Op3Op4〉 we find that their l-loop corrections are given in terms of mixed
charge (4 + l)-point half BPS correlators 〈Op1Op2Op3Op4O2..O2〉 at O(ρ4l).

〈Op1Op2Op3Op4〉=
∞∑

l=0

λl

(4π2)ll!

∫
d4x5..d

4x4+ld
4ρ5..d

4ρ4+l

〈
Op1Op2Op3Op4

l︷ ︸︸ ︷
O2..O2

〉∣∣∣∣∣∣
λ=0

.

(90)

These will then in turn be given by a formula like (87)〈
Op1Op2Op3Op4

l︷ ︸︸ ︷
O2..O2

〉∣∣∣∣∣∣
ρ4l,λ=0

=
Cp1 p2 p3 p4

(−4π2)l

(∫
d16Ξ ρ̂ 4

1.. ρ̂
4
4+l

)
f (l)

pk
(xi, y j) (91)

where f (l)
pk

are loop integrands in the expansion of Fpk in (35) (the precise relation is just as
in (3) and (4)). This then explains the structure for the four-point correlators quoted without
proof in (35) as well as being consistent with the solution of the four-point Ward identities
(80) whilst implying that there are no loop corrections to a, b(x, y). This thus proves the partial
non-renormalisation result of the four point correlator discussed below (81) and first proven
in [9].

But the 10d symmetry observed for four-point higher charge integrands [100] and reviewed
in section 3.1 suggests that we can go further. We propose the following simple generalisa-
tion giving all n-point, arbitrary charge, maximally nilpotent, half BPS, planar, Born-level
correlators in a compact formula〈 4+l︷ ︸︸ ︷

O..O
〉∣∣∣∣∣∣

ρ4l,λ=0

=
(4c)−l/2

2c

(∫
d16Ξ ρ̂ 4

1.. ρ̂
4
4+l

)
× f (l)(x2

i j). (92)

In the case that y5 = . . . = y4+l = 0 this formula reproduces the loop corrections to arbitrary
charge four point correlators in the 10d symmetric form (50) (using (90) and (91)). But it also
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gives a proposal for correlators with higher charge versions of the Lagrangian operator that
have not previously been considered to our knowledge. This could presumably be proven using
OPE considerations in a similar manner to the proof we hinted at above (49) of the four-point
perturbative 10d symmetry.

4.7. Bootstrapping higher point correlators

We saw the simplest class of nilpotent invariant in the previous section, obtained by integrating
all 4n ρ̂ variables of an n-point correlator over Ξ and producing an invariant with the maximal
number 4(n − 4)ρ variables. We called this the maximally nilpotent invariant.

We now consider the next simplest class, the next to maximally nilpotent invariant, fol-
lowing [101]. The internal SU(4) group contains a centre given by diag(i, i, i, i) which acts as
ρ→ iρ, ρ̄ →−i ρ̄ and leaving x, y invariant. Therefore to obtain an O(ρK) invariant we must
have K = 4k. So the next simplest example is O(ρ4(n−5)), obtained by integrating 4(n − 1) ρ̂
variables. It is simpler to view this by removing 4 ρ̂ variables from the maximal case. We thus
arrive at the following set of Q, S̄ next-to-maximally-nilpotent invariants:∫

d16Ξ
∂

∂ ρ̂ iα ȧ

∂

∂ ρ̂ jβ ḃ

∂

∂ ρ̂ kγ ċ

∂

∂ ρ̂ lδ ḋ

(
ρ̂ 4

1 . . . ρ̂
4
n

)
. (93)

These transform locally under the various SL(2)s as indicated by theα, ȧ indices. As discussed
at the end of section 4.5 we can remove these by contracting with xiα

A and (y⊥i )A ȧ at the appro-
priate points leaving left over global conformal A, B and internal A, B indices which themselves
need to be contracted with the only available objects xAB

i , εA1A2A3A4 , y AB
i and εA1A2A3A4 . How-

ever the y weight is exactly right for the correlator of O2 at each point and therefore we can
not use yAB

i , since doing so would require using a non-polynomial yi to reduce the charge to
the correct value. So we have to contract the A, B indices with εA1A2A3A4 . We are thus left with
the basis

IA1A2A3A4
i1i2i3i4

= εA1A2A3A4

∫
d16Ξ (y⊥∂ ρ̂ x)A1

i1A1
(y⊥∂ ρ̂ x)A2

i2A2
(y⊥∂ ρ̂ x)A3

i3A3
(y⊥∂ ρ̂ x)A4

i4A4

(
ρ̂ 4

1 . . . ρ̂
4
n

)
(94)

where

(y⊥∂ ρ̂ x)A
iA := ( y⊥i )A ȧ x A

iα
∂

∂ ρ̂ iα ȧ
. (95)

Thus the correlator can be written in terms of functions f ijkl
A1A2A3A4

of x only

〈 n︷ ︸︸ ︷
O2..O2

〉
|ρ4(n−5) =

∑
IA1A2A3A4

i1i2i3i4
× f i1i2i3i4

A1A2A3A4
(xAB

i ). (96)

The invariants satisfy various symmetries and constraints. Firstly, from the definition they
are symmetric under simultaneous interchange of position and SL(4) index so

IA1A2A3A4
i1i2i3i4

= IAσ1 Aσ2 Aσ3 Aσ4
iσ1 iσ2 iσ3 iσ4

σ ∈ S4. (97)
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This then implies further symmetries when there are repeated positions, e.g. if i1 = i2 then it is
symmetric in A1, A2 etc. If three positions coincide then the invariant vanishes IA1A2A3A4

iiij = 0
since it contains the factor (y⊥i )A ȧ (y⊥i )B ḃ (y⊥i )C ċ ε

ABCD = 0. The crossing symmetry of the cor-
relator means it is invariant under the simultaneous interchange (xi, yi, ρi) → (x j, y j, ρ j) and so
the coefficient functions satisfy the crossing symmetry

f i jkl
ABCD(xσ1 , .., xσn) = f

σiσ jσkσl
ABCD (x1, .., xn) σ ∈ Sn. (98)

We can thus write the general next-to-maximally nilpotent correlator in terms of eight scalar
functions f (a)(x) as〈 n︷ ︸︸ ︷

O2..O2

〉
|ρ4(n−5) = IABCD

1122 x3ACx4BD f (1)
34 (x) + IABCD

1123

×
(

x3ACx2BD f (2)
32 (x) + x3ACx4BD f (3)

34 (x) + x4ACx5BD f (4)
45 (x)

)
+ IABCD

1234

(
x2ACx1BD f (5)

21 (x) + x2ACx5BD f (6)
25 (x)

+ x5ACx6BD f (7)
56 (x) + εABCD f (8)(x)

)
+ Sn perm. (99)

The functions f (a)
i j are scalar functions of x of conformal weight 5 at points i, j and 4 at all other

points.
Finally, the invariants are not all independent but rather satisfy the constraint

n∑
i=1

IABCD
i jkl = 0 (for all j, k, l, A, B, C, D). (100)

This can be understood by noticing from (84) that

∂

∂ΞA
B =

n∑
i=1

xA
iα( y⊥)iB ḃ

∂

∂ ρ̂ iα ḃ

(101)

and so the sum in (100) using (94) gives an expression of the form
∫

d16 Ξ ∂Ξ f (Ξ) which
vanishes.

The above expression (99) is a non-perturbative statement valid for all λ, c. At zeroth order
in λ however, we know that all the coefficient functions are rational and can only have simple
poles in x2

i j, putting further constraints on the result. Remarkably, for n = 6 this system is
constrained enough to fix the result up to just four unfixed constants [101]. These constants
can then be fixed up to a single overall coefficient by considering OPE limits. We refer the
reader to [101] for the explicit result. Apart from this case there is very little known for half
BPS correlators beyond the four-point/maximally nilpotent sector. One loop, i.e. O(λ), n-point
correlators at O(ρ0) were studied in [147] and recently the five-point O(ρ0) correlator was
also obtained at strong coupling [148]. We note here that the form (99) is also valid for the
interacting part of the n = 5 non-nilpotent O(ρ0) correlator to all orders in λ and it would
be interesting to explore the non perturbative structure at five points in more detail12. It is
also tempting to propose lifting (99) to a formula for all half BPS correlators of all charges,

12 Thanks to Congkao Wen for discussions on this point.
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by simply promoting the correlator on the lhs to a master correlator, and the variables of the
functions f (k)

i j to 10d variables just as we did in (92).

4.8. Supercorrelator/superamplitude duality

The correlator/amplitude duality, already discussed in the context of four-point amplitudes in
section 2.2, extends to stress-tensor correlators at any number of points [29, 31]. Indeed this
extends in principle to correlators of higher charge half BPS operators as well as non BPS
operators [30, 149]. Focussing on the stress-tensor correlators, the duality states that in the
planar, c →∞ limit

lim
(Xi)

A
2 →ZA

i
(Xi+1)A1 →ZA

i

〈O2..O2〉
〈O2..O2〉|λ0,θ0

= A2. (102)

Both sides are functions of the ’t Hooft coupling λ. On the lhs the correlators are functions of
n copies of analytic superspace (see section 4.1) but we turn off the conjugate Grassmann
odd variables, so θ̄ = 0 (in fact θ̄ can be turned back on via a simple shift of variables
[143, 144]). On the rhs, the superamplitude (divided by tree level MHV amplitude)A is taken in
momentum super twistor space [150, 151] whose (4|4) component variables are ZA

i = (zA
i ,χA

i ).
These relate to the analytic superspace variables in the super Grassmannian formulation (75)
with coordinates XA

iα (the internal y coordinates arising from the other half of the Grassmannian,
XA

ia , drop out in the ratio on the lhs) as (Xi)A2 = (Xi+1)A1 = ZA
i . Geometrically the XA

iα define a
line in supertwistor space, and the limit is one in which the lines intersect consecutively with
intersection points defining the ZA

i .
Expanding both sides in λ (the loop expansion) as well as in the Grassmann odd variables,

gives versions of the duality refined by Grassmann degree and/or loop order:

lim
XA

i2→XA
i+1 1

〈O2..O2〉|λlθ4k

〈O2..O2〉|λ0,θ0
= (A2)(l)

k , (103)

where we define the square of the superamplitude at l loops and Grassmann degree 4k, (A2)(l)
k ,

by expanding the superamplitude to that order, explicitly

(A2)(l)
k : =

l∑
l′=0

k∑
k′=0

A(l′)
k′ A

(l−l′)
k−k′ , (104)

where A(l)
k is the l loop, NkMHV superamplitude.

Now this duality holds at the level of the integrand. However as alluded to previously,
loop level stress-tensor multiplet correlator integrands are themselves tree-level higher point
correlators

〈
n︷ ︸︸ ︷

O2..O2 〉|λlθ4k =

∫
d4xn+1d4ρn+1..d

4xn+ld
4ρn+l 〈

n+l︷ ︸︸ ︷
O2..O2 〉|λ0θ4(k+l) . (105)

Putting this together with the duality (103) we see that a single tree level correlator gives
many different squared amplitude loop level integrands within it by taking different polygonal
lightlike limits
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(106)

A special case of this occurs when we consider the maximally nilpotent case k = n − 4
which is related via (105) to the four-point (n − 4)-loop correlator. This thus explains the dual-
ity stated in (17) between n point amplitudes and the four-point (n + l − 4)-loop amplitude
arises. As mentioned there, this duality between the simplest and by far best understood corre-
lator, the four-point correlator, may by itself contain enough information to fix all amplitudes
[33]. But from (106) we see it is just one example of the duality and higher point versions will
give amplitudes more directly.

4.9. The twistor approach

Twistor space provides a practical method for computing stress-tensor multiplet correlators
explicitly (at least when θ̄ is turned off). This was first considered in [30] for arbitrary oper-
ators and then developed further to give concrete practical Feynman rules for stress-tensor
correlators in [38]. The case of correlators of more general operators was then taken up again
and made more precise in [149]. In this formulation an n-point stress-tensor multiplet of Grass-
mann odd degrees θ4k is obtained by summing over all n-point graphs with n + k edges. The
vertices can have arbitrary degree>1. Colour indices are associated to the graph in the standard
way for adjoint representations (eg gluons). Each edge between vertex i, j corresponds to the
superpropagator gi j = y2

i j/x2
i j. Each vertex i with incoming edges from j1, . . . , jp corresponds

to an R vertex R(i; j1, . . . , jp).

(107)

where

R(i; jk) = 1

R(i; j1 j2 j3) = −δ2
(
〈σi j1σi j2〉Ai j3 + 〈σi j2σi j3〉Ai j1 + 〈σi j3σi j1〉Ai j2

)
〈σi j1σi j2〉 〈σi j2σi j3〉 〈σi j3σi j1〉

R(i; j1.. jp) = R(i; j1 j2 j3)R(i; j1 j3 j4)..R(i; j1 jp−1 jp)

(108)
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Aa
i j =

[
σα

jiρ jαb′ + σα
i jρiαb′ + θA

∗ y⊥jAb′
]
(y−1

i j )b′a σα
i j = εαβ

〈xiβz∗x j1x j2〉
〈xi1xi2x j1x j2〉

. (109)

Here ZA
∗ = (zA

∗ , θA
∗ ) is a reference supertwistor. Although each individual diagram depends on

Z∗ , this drops out after summing over all diagrams.
This twistor Feynman diagram approach works at the planar (for which one restricts to

planar graphs) or non-planar level. In fact this approach has been used to fully fix the four-loop
non-planar four-point function [37] (as discussed in section 2.3).

In the planar case this approach gives a very direct, diagrammatic way of seeing the afore-
mentioned amplitude/correlatorduality. In the consecutive light-like limit x2

i i+1 → 0 and so this
will project onto Feynman diagrams which contain edges (i, i + 1) = y2

i i+1/x2
i i+1 thus contain-

ing an n cycle. The remaining part of the graph is planar and thus has a well-defined part ‘inside’
and ‘outside’ the n-cycle. The graphs which can appear ‘inside’ the n-cycle are precisely the
graphs which appear in a planar n-gon lightlike Wilson loop in twistor space [25, 30]. Similarly
for the ‘outside’. Thus summing over all valid planar correlator graphs containing an n-cycle
is the same as summing over all planar graphs contributing to the product of Wilson loops.
Furthermore I can be shown that the expressions for the graphs reduce to the expressions for
the corresponding Wilson loop diagrams in the limit [30, 38].

4.10. Correlahedron

The above twistor space approach to correlation functions together with its close relation to
amplitudes suggest a geometric description of correlators, mimicking the geometric descrip-
tion of amplitudes discovered in [152, 153] known as the amplituhedron (see SAGEX review
chapter 7 [154]). From (105) we only need to consider tree-level correlators since the loop
level ones are obtained from these.

This suggests the following simple (to write down anyway) proposal for a (n, k)
correlahedron [155]

{Y ∈ Gr(n + k, n + k + 4), Xi ∈ Gr(2, n + k + 4) : 〈YXiX j〉 > 0}. (110)

Here the external data Xi, i = 1, . . . , n are themselves two-planes, Xi ∈ Gr(2, n + k + 4), and
are equivalent to points in chiral superspace, bosonised in the standard amplituhedron way.
The geometrical reduction of this geometry corresponding to taking consecutive lightlike lim-
its gives a geometry known as the squared amplituhedron which contains the amplituhedron
geometry with other almost disconnected pieces. The amplituhedron geometry in question can
be tree or loop depending on whether all the X variables take place in the lightlike limit or if
there are some left free to become the loop variables. This resulting squared amplituhedron
geometry is that of the amplituhedron but without an additional topological winding condition
[156]. It has been thoroughly checked and indeed carefully proved in many cases [157] that for
the maximally nilpotent, n = k + 4, case the squared amplituhedron indeed gives the square of
the amplitude via the oriented canonical form. The different almost-disconnected pieces, aris-
ing from different winding sectors and dubbed ‘amplituhedron-like’ in [157], correspond to the
different amplitude products appearing in the sum of (17). Direct checks of the correlahedron
proposal itself (rather than its limits) are much more difficult, even in this simplest n = k + 4
case. Indeed it is clear that one will need some generalisation of the canonical form to obtain
the correlator from the geometry. For k < n − 4 things are less clear even at the squared ampli-
tuhedron level. The proposal (110) needs more detail in this case, namely constraints on the
positions of the Xs which would for example yield convexity in the lightlike limit.
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5. Conclusions

We have attempted a review of all that is known about half BPS correlators in N = 4 SYM.
This has been a huge area of research over the last two decades and new features are being
discovered even now. Inevitably many areas have lacked detail and some key areas have been
neglected entirely. To conclude therefore we will mention briefly some of these neglected areas
as well as a few closely related areas.

Conformal bootstrap. There is a large current research program aiming at bootstrapping
CFTs using crossing symmetry at four points with unitarity and the OPE. This programme
has also been applied to half BPS correlators in N = 4 SYM giving fully non-perturbative
constraints in the space of allowable correlation functions in N = 4 SYM [158–161].

Integrability. A key development in planarN = 4 SYM has been the presence of integrabil-
ity in various quantities, giving ways of computing them non-perturbatively at finite coupling.
This initially focussed on two point correlators of non BPS operators, however in the last few
years integrability has been applied to higher point functions beginning with three-points and
the introduction of the hexagon approach [103]. Then [162–164] showed that four and higher
point functions can be obtained by appropriately gluing together the hexagons. This then allows
an integrability approach to the study of the half BPS correlators studied here. This has been
pursued in a number of works [102, 105, 106, 165–173]. See SAGEX review chapter 9 [174]
for a review of the related integrability approach to amplitudes.

Finite Nc and other gauge groups. A sector of the half BPS correlator family that has been
neglected in this review is that of going deep into the finite Nc sector, and beyond single par-
ticle operators. Indeed we started by saying that the first non-trivial correlator of half BPS
operators was at four points, since lower point correlators are independent of the coupling.
However they do depend in a highly non-trivial and interesting way on the number of colours
in the gauge group, Nc. The two-point functions of half BPS operators were diagonalised
using a Schur polynomial basis of half BPS operators [175] and their two-point and extremal
higher-point correlators computed. More recently, the space of non-extremal higher point cor-
relators in the free theory at arbitrary Nc have also been explored [90]. Here the single particle
basis—corresponding to single-particle supergravity states via AdS/CFT—was employed.

The exploration of half BPS correlators in N = 4 SYM with other (non SU(Nc)) gauge
groups has also been recently initiated both in the free theory [176] and at strong coupling
[177, 178].

Integrated correlators. Certain infrared finite observables of the type used to describe events
in colliders can be computed in conformal field theories [179]. In N = 4 SYM they can be
computed from the stress tensor four-point functions of section 2 and this has been investigated
in a series of papers [180–183].

As well as obtaining the above physical objects by integrating known four-point correlators,
recently it has been shown how to obtain certain other types of integrated correlators directly
to all orders in the coupling from localisation in N = 4 SYM [68, 69, 178, 184–186] (see also
SAGEX review chapter 10 [187]).

Generalised correlators/form factors involving half BPS operators. Various generalisations
of half BPS correlators have been considered in great detail, e.g. correlator of a null polygonal
Wilson loop and half BPS operators [188–194] and form factors involving half BPS operators
[195, 196] (see also SAGEX review chapter 1 [197].

Other theories. We have focussed exclusively onN = 4 SYM which is by far the most stud-
ied and best understood theory with half BPS correlators, but there are many other interesting
theories one could similarly consider. The two most obvious cases to consider are the 6d theory
with (2, 0) supersymmetry and its cousin the 3d theory with N = 8 supersymmetry. These are
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the theories on the worldsheet of the M5 and M2 branes respectively in M theory. They have no
Lagrangian description and indeed are inherently non-perturbative, but in many respects look
quite similar to N = 4 at least in the AdS/CFT context. However it also seems that many of
the additional symmetries that have helped in N = 4 do not seem to have an obvious analogue
for these theories. Furthermore they are technically much more complicated e.g. the solution
of the superconformal Ward identities is much more involved. Nevertheless much impressive
work has been done computing half BPS correlators in the 6d theory [198–213] as well as the
3d theory [214–217] and the one loop quantum gravity corrections to the four-point supergrav-
ity amplitude on AdS7 × S4 and AdS4 × S7 (or their Z2 orbifolds) have even been computed
[210, 217] overcoming a number of these technical difficulties.

A number of theories with non maximal supersymmetry whose half BPS correlators exhibit
higher dimensional conformal symmetry (which does not seem to be present for the 3d N = 8
or the 6d (2, 0) theories) have been investigated recently in 1d (dual to theories on AdS2 × S2)
[116] and 2d (dual to theories on AdS3 × S3) [218–221] as well as theories dual to AdS5 × S3

[222, 223]. Also of recent interest has been the theories which live inside defects in QFT, and
in this context many results for half BPS operators in the 1d theory living on a Wilson line
within N = 4 SYM have been found [224–236].

Finally, the basic tools of the superconformal bootstrap are the superconformal blocks, and
those of half BPS correlators in many of these and other theories have recently been given in
a universal formalism [237] (see also the earlier work [238]) and found to be equal to certain
objects in the theory of symmetric polynomials/CMS wave functions on BC super root systems,
generalising connections made for scalar blocks in [239, 240].
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