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We present theoretical results for the sensitivity of charm Yukawa coupling measurements in future 
high-luminosity LHC runs in three channels: Vector Boson Fusion (VBF), W Higgs-strahlung and Z Higgs-
strahlung production of a Higgs boson and its subsequent decay into charm quarks. To reduce the 
overwhelmingly large backgrounds and to reduce false positives, we apply a set of simple kinematic 
and jet feature cuts and feed neural network data structures of three types; jet features, jet images 
and particle level features. To facilitate straightforward comparison with experimental studies [1,2], we 
express our results in terms of signal strengths [3].

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The 2012 discovery of the Higgs boson H with a mass of 
125 GeV by the ATLAS and CMS collaborations at the LHC [4–6]
completed the Standard Model (SM) of particle physics, and ini-
tiated a step-change in our quest to understand nature at its 
fundamental scale. Since this discovery the focus has shifted to 
measuring the new boson’s properties and interactions, and to 
constrain effects of possible new physics manifesting itself through 
subtle deviations from SM predictions. A central part of these ef-
forts has been the determination of the Higgs boson couplings 
to the other SM particles. By the end of Run 2 couplings to 
the SM gauge bosons [7–9] and to the massive third-generation 
fermions [7,10–15] have been measured, and the first coupling to 
the second-generation fermions, i.e. to the muon, has been con-
strained [7,16,17].

Taking advantage of the significantly higher luminosity of the 
forthcoming phases of LHC data taking, the precision of these 
measurements will be further improved and couplings that have 
hitherto been inaccessible will become subject to scrutiny. This in-
cludes, in particular, a determination of the Higgs Yukawa coupling 
to charm quarks as a further, stringent test of the universal role of 
the Higgs boson in the generation of fundamental masses. Various 
channels have been suggested, some of them using the larger elec-
tromagnetic charge of the charm quark with respect to the bottom 
quark [18], or the decay into cc̄ quarkonia, for example in decays 
such as H → J/ψ +γ [19–21], or by recasting measurement of the 
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H → bb̄ branching ratio, for example in [22–24]. We will analyse 
the prospects for such a measurement in three channels, namely 
the production of Higgs bosons and their subsequent decay into 
charm quarks in association with Z or W bosons and in vector 
boson fusion,

pp → H→cc̄ j j + X (0-lepton channel, 0L)
pp → W→�ν�

H→cc̄ + X (1-lepton channel, 1L)
pp → Z→��̄H→cc̄ + X (2-lepton channel, 2L)

In all processes the relevant quantity is the branching ratio 
of the Higgs boson to the charm quark, in the SM given by 
BrH→cc̄ = 2.89% [7] and significantly smaller than its counterpart, 
the branching ratio to the b quarks, around 58.2% [7]. In previous 
studies [1,2], therefore, the production of b quarks has been iden-
tified as a significant non-trivial background, along with signatures 
from QCD, vector boson and tt̄ production.

To provide a simple interpretation of our results we will ex-
press the signal strength μ in the κ-framework [3] and use the CLs

method [25] to estimate the upper bound for κc at the 95% level. 
Modifying our observed signal counts, sx by the signal strength μi

in each bin, x of a given distribution,

Nx(μ) = bx + μsx , (1)

and assuming an unmodified background, μ = 1 defines the SM 
value and varying is equivalent to varying κc in some parametric 
way derived below. For different signal processes i, i.e. for the 0-
lepton, 1-lepton, and 2-lepton signatures, the μi represent ratios 
of cross sections σi times branching ratios in the narrow-width 
approximation:
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μi = σi · BrH→cc̄

σ SM
i · BrSM

H→cc̄

, (2)

where the σi denote the cross sections of the Higgs boson produc-
tion processes i and BrH→cc̄ is the branching ratio of the Higgs 
boson to charm quarks, �H→cc̄/�H . The superscript “SM” indicates 
the SM values, its absence refers to values obtained under vari-
ations of the signal strength. In the κ framework all couplings of 
particles X to the Higgs boson are independently modified by mul-
tiplying them with some κX ; here and in the following we will 
assume that only the charm Yukawa coupling is modified by a fac-
tor κc , which in turn will result in modified partial and total decay 
widths of the Higgs boson, and thus

μi =
[

κ2
c �SM

H→cc̄

�tot
H

]
/

[
�SM

H→cc̄

�
tot, SM
H

]
(3)

Current analysis with such a framework sets the expected limit 
at 95% confidence at μVH(cc̄) ≤ 31+12

−8 at ATLAS [26] measured at an 
integrated luminosity of 139 fb−1 and μVH(cc̄) ≤ 37+16

−11) at CMS [2]

measured at 35.9 fb−1. The quadratic dependence of κc on μ leads 
to some limitations in the maximal resolvable value of μ that leads 
to a meaningful value of κc . This value sits at μ = 1/BrSM

H→cc̄ =
34.6.

2. Simulation

For our analysis, signal and background samples are gener-
ated with SHERPA 2.2.9 [27], using LO-merged samples through-
out [28–30]. For all signal and background processes considered, 
namely;

• vector boson fusion (0L),
• W H-associated production (1L),
• Z H-associated production (2L),
• vector boson (W → �ν , Z → ��̄) production + jets,
• vector-boson pair production + jets, where one of the two 

bosons decays hadronically,
• pure QCD multijets,
• tt̄ production + jets,

we merge up to two additional jets to the core process. We 
use the NNPDF 3.0 PDF [31] from LHAPDF [32], the COMIX ma-
trix element generator [33] for the LO matrix element, the 
CSSHOWER [34] for the simulation of QCD radiation, AHADIC++ as 
hadronisation model [35], PHOTONS++ [36] for the emission of 
photons in the decays of the W and Z bosons, and SHERPA’s 
built-in models for the underlying event and hadron decays. Us-
ing the default prescription for setting the renormalisation and 
factorisation scales in multi-jet merging, we obtain theoretical un-
certainties from their variation by a factor of f R,F = 2 in both 
directions and forming the envelope of the 7-points, schemati-
cally

{ f R , f F } =
{

1

2
,

1

2
; 1

2
, 1 ;1,

1

2
;1, 1 ;1, 2 ;2, 1 ;2, 2

}
. (4)

The rationale for using this approach is two-fold: First of all, 
including higher-order QCD corrections does not induce any siz-
able change in the shape of distributions, but only alters the 
overall cross section which can usually be captured by apply-
ing a flat K -factor to the overall sample. For the processes 
we consider, this K -factor is of the order of 1.3 or below, 
thereby increasing the total number of events by up to 30%, 
which in turn translates to a decrease of the statistical un-
certainty by about 10%. Secondly, apart from increasing total 

Table 1
Cut flow for each channel.

Cut # “0L” “1L” “2L”

MET ≤ 30 GeV 1 � X �
MET ≥ 30 GeV 1 X � X
0 Isolated Leptons 2 � X X
1 Isolated Leptons 2 X � X
2 Isolated Leptons 2 X X �
1+ Fat jet 3 � � �
Candidate Fat jet 4 � � �
2 forward QCD jets 5 � X X
/P T + P T ,L1 and J B2B 5 X � X
P T ,L0 + P T ,L1 and J B2B 5 X X �
1+ Secondary vertices 6 � � �
2 sub-jets 7 � � �
Simple Vertex cuts 8 � � �
Machine Learning cuts 9 � � �

event numbers, the higher-order corrections reduce scale un-
certainties, typically by a factor of 2 or more. As we are only 
able to roughly estimate experimental uncertainties, our ap-
proach of potentially overestimating the theory uncertainties 
therefore merely translates into our results being more conser-
vative.

3. Analysis strategy

3.1. Initial cuts

For each of the three signal topologies, there is a unique set 
of cuts, summarised in Table 1. They are encoded in a RIVET [37]
analysis and detailed by:

1. MET is reconstructed from the total sum of visible particles, 
with

|η| < 4 and pT > 100 MeV (5)

and it is particularly powerful in enhancing or suppressing 
events with (1L) and without (0L, 2L) decaying W bosons.

2. to isolate leptons, we demand that the total transverse energy 
of all particles in a cone of size R iso = 0.2 around the lepton 
direction is constrained by 5% of the lepton transverse energy 
ET ,� ,∑

Ri<R iso

ET ,i ≤ 0.05 · ET ,� (6)

We require the exact number of 0, 1, or 2 isolated leptons for 
the 0L, 1L, and 2L topologies.

3. we demand the Higgs decay products to form a fat jet, de-
fined by the anti-kT algorithm [38,39] with R = 1.0 and pT >

250 GeV, and we require events to contain at least one such 
fat jet.

4. to identify the required single candidate fat jet, the highest-pT

fat jet must contain at least three particles, but no isolated 
lepton, and its invariant mass must satisfy

75 GeV < m J < 175 GeV , (7)

cf. Fig. 1 for an illustration that motivates our choice.
5. in addition, we place some cuts that uniquely identify specific 

signal topologies:
• for the VBF (0L) topology, we require two forward anti-kT

jets (R = 0.4, pT > 20 GeV), and with a minimal rapidity 
separation and combined invariant mass,


y jj > 2.5 and m jj > 400 GeV . (8)
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Fig. 1. Normalised histogram of the reconstructed fat jet mass in the “0L” channel. 
Shaded region indicates the error estimated from PDF4LHC scale variation conven-
tion and statistics.

• for the two V H topologies (1L and 2L), we demand that the 
combined momentum of the two isolated leptons (2L) or of 
the isolated lepton and MET (1L) is anti-parallel to the fat-
jet momentum within a tolerance of R = 0.4.

6. The fat jet must contain at least one reconstructed secondary 
vertex with at least two charged tracks. An adapted vertex 
fitter [40,41] performs a minimisation of weighted impact pa-
rameters, d2

i over points of closest approach of charged parti-
cles contained within the fat jet. Vertices within 1 mm of each 
other are considered unresolved and are merged.

7. The fat jet must contain at least two sub-jets (anti-kT : 
R =
0.4, pT > 20 GeV).

8. Further cuts are applied on the reconstructed primary vertex, 
namely mass flowing through it and the root mean square dis-
tance (RMSD) of particle tracks to the vertex,

Mv p < 1 TeV and RM S D v p < 3 mm , (9)

which are determined empirically studying histograms of dis-
tributions over signal and background.

In Fig. 2 we exhibit, as an example, the resulting cut flow for the 
0L channel (vector boson fusion).

4. Machine learning improvements

4.1. ML “booster”

In a second step, we boost the cut-based analysis through a 
set of multivariate neural networks (MVA) trained with Tensor-
Flow [42] on ∼10,000 events of each background and signal pro-
cesses that have survived the initial cuts:

1. “Observable”: a dense fully connected network trained with 
global event and fat jet features.
A large selection of features is fed into the multivariate neural 
network. A number of global event and jet observables can be 
considered in order to best distinguish between the classes, 
and only the features with the strongest Shapley values [43]
for the signal classes are used (see Fig. 3):

Fig. 2. Example cut flow for the “0L” channel. The Nth cut, Nveto is performed in the 
Nth bin of the x-axis. Shaded region indicates the error estimated from PDF4LHC 
scale variation convention and statistics. Backgrounds where Nprocess << NVBFH→cc̄

are omitted.

• jet mass: mJ ,
• missing transverse energy: /E T ,
• total perpendicular momentum in jet: pJ⊥ ,

pjet⊥ =
√

p2
x + p2

y � p
jet

· ẑ = |p
jet

|, (10)

• 2-subjettiness: τ2 [44], The sub-jets required for the N-
subjettiness calculation are clustered by the kt algorithm 
with R = 1.0 where clustering is stopped when exactly two 
sub-jets remain.

• sub-jet energy fraction: z1 and z2,

Zi = Esub-jet,i

E J
(11)

• planar flow: P f [45].
These observables are standardised and normalised,

O ′
i = O i − Ō

σO

O ′′
i = O ′

i − min(O )

max(O ) − min(O )

(12)

This improves the gradient decent performance since it works 
more efficiently over variables with roughly equal ranges and 
magnitudes.

2. “Image”: a dense fully connected convolutional neural network 
trained on rotated “jet images”. We create “2D calorimeter” 
images for the fat jet centred on its axis, and apply simple 
pre-processing steps to standardise the images using standard 
computer vision techniques,
(a) Centre: Rotate the jet in (η, φ) such that the jet axis lies at 

(0,0),
(b) Rotate: Rotate (η, φ) such that any sub-jets align on the 

φ-axis,
(c) Image set-up: An ‘image’ which spans η′, φ′ ∈ (−R, R) with 

21x21 pixels,
(d) Build: For each particle, i in the jet add some variable x in 

the bin (η′
i, φ

′
i ),

(e) Scale: For each image scale such that 0 < Iη′,φ′ < 255,

3
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Fig. 3. Absolute Shapley contributions to classification of each coloured class in each channel “0L”, “1L”, “2L”.

Fig. 4. Example mean fat jet images for signal and background: QCD (left) vs. VBF(H→cc̄ ) (right).

The algorithm above can be extended from grey-scale to a 
colour image, in this work we consider RGB images where the 
pixel variable x is,

R = −
particles log(Ei/E jet)

G = −
particles log(pT ,jet)

B = 
particles,Q �=0

Jet images exemplified in Fig. 4 are fed into the CNN. A pre-
processing function centres and normalises the images to con-
tain integer values between 0-255. Similarly to the observables 
dataset this improves the gradient decent performance, allow-
ing the network to be more sensitive to the full range of pixel 
values and enables faster learning during back-propagation. 
The Image datasets also undergo some on-the-fly augmenta-
tion; once imported, there is a random chance of pixel shifting 
and randomised horizontal and vertical flipping. These changes 
artificially generate more data and enforce discrete symmetries 
and any make the network robust to any centring issues en-
countered.

3. “Flow”: a dense fully connected recursive neural network 
trained on ordered particle level features within the fat jet.
Particle level features are fed into a recursive neural network. 
To provide the neural network with a structured sequence of 
particles, up to 10 fat jet constituents are ordered in energy. 
The particle level features are:
• η displacement w.r.t. fat jet axis: 
η = ηp − ηJ ,
• φ displacement w.r.t. fat jet axis: 
φ = φp − φJ ,
• Perpendicular momentum: log(pT ,p),

• Perpendicular momentum fraction: log(
pT ,p

pT ,J
),

• Energy: log(E p),

• Energy fraction: log(
E p

E J
),

• R displacement w.r.t. fat jet axis, 
R = R p − R J ,
Again we standardise these particle features across the train-
ing data set and all particles,

F ′
i = Fi − F̄

σF

F ′′
i = F ′

i − min(F )

max(F ) − min(F )
.

(13)

The structure of each of these parts is shown in Appendix B, 
Fig. B.9.

The neural networks are trained over many epochs with a test–
validation split of 90%-10%, and the network with the highest 
validation accuracy from any epoch is kept. We note that at this 
stage there is confusion between the H → cc̄ and H → bb̄ class as 
this ML “booster” makes no attempt to build a b and c jet clas-
sifier. The distinction between H → bb and H → cc is addressed 
with another network architecture, see below. In each channel we 
report overall retention of signal excluding H → bb̄. The results 
can be summarised in Table 2 for εs and εb the signal acceptance 
and background rejection efficiencies (excluding H → bb̄). Only the 
events which are predicted to be the signal class for the appro-
priate channel are kept. The trained models are converted into 
a format suitable to run natively in RIVET [37] using the Frugally 
Deep header library [46].

4
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Table 2
Neural network efficiencies for each channel.

NN “#L” εs εb

MVA 0 82.0% 77.8%
MVA 1 82.4% 76.0%
MVA 2 69.0% 82.0%

Table 3
Neural Network efficiencies for each channel.

NN “#L” εs εb

Vertex MVA 0 54.8% 89.5%
Vertex MVA 1 42.2% 90.1%
Vertex MVA 2 46.6% 90.0%

4.2. ML charm vs. bottom discriminator

Finally, we construct a neural network to discriminate the H →
cc̄ signal from the H → bb̄ background, based on the structure of 
the displaced vertices. There are many examples of superior classi-
fiers for c and b jet classifiers used by the experiments, including 
MV2 and DL1 [47]. However, here we construct our own multivari-
ate neural network that uses primary and secondary vertex fea-
tures to discriminate between fat jets with only light constituents, 
with c hadrons, and with b hadrons. This network has two in-
puts,

1. “vertex observable”: a time-distributed fully connected net-
work with input features describing up-to 5 reconstructed ver-
tices, V i with 10 features:
• number of reconstructed vertices: NV i ,• total number of tracks: Np,V i ,• vertex invariant mass: MV i ,• vertex Energy: E V i ,• distance from primary vertex: D(V i, V P ),
• transverse distance from primary vertex: DT (V i, V P ),

• RMSD of impact parameters: 
√

(d2
i ),

• polar angle of vertex: θV i ,• order of vertex: OV i .
OV i is necessarily 0 for the primary vertex; then any vertices 
within a cone with opening angle θ = π/4 are subsequently 
numbered in order of distance from the primary vertex. This 
provides the neural network with reinforcement of a natural 
ordering in displaced vertices in any event.

2. “vertex flow” uses particle-level features of the 5 hardest par-
ticles of each vertex V i with the following inputs,
• longitudinal impact parameter: dL,p ,
• transverse impact parameter: dT ,p ,

• energy fraction: log(
E p

E J
),

• η displacement w.r.t. fat jet axis: 
η = ηp − ηJ ,
• φ displacement w.r.t. fat jet axis: 
φ = φp − φJ ,
• R displacement w.r.t. fat jet axis: 
R = R p − R J .

All of these features are normalised over a weighted mean 
over all features for all classes, leading to the results sum-
marised in Table 3. The vertex booster network was also in-
dependently trained on a streamlined data set consisting of 
H → bb̄, H → cc̄ and QCD fat jets with a minimal cut flow for 
comparison to other analyses. We find εH→cc̄ = 72% and back-
ground rejection εb = 75%. Comparing directly with the JetFit-
terCharm Algorithm [48] and demanding similar signal efficien-
cies we obtain background rejection rates summarised in Ta-
ble 4.

Table 4
Summary of neural network efficiencies selected εc

on the streamlined fat jet data set, resulting in εl

light jet, εb bottom jet and εc charm jet efficiencies.

εc 1/εb 1/εl

“Loose” 0.95 1.65 1.03
“Medium” 0.21 13.2 149

5. Results

5.1. Limitations of the κ framework

To determine the 95% confidence limit on the signal strength, 
μ0L , μ1L and μ2L we use a CLs [25] frequentist approach im-
plemented in RooFit/RooStats [49–51] and treat SHERPA as a stan-
dard model simulator. μ(κ, Br) is derived from equation (3)
as

μc = κ2
c

1 + BrSM
H→cc̄(κ

2
c − 1)

(14)

The CLs method uses a binned likelihood to determine the con-
fidence limits on μi . This likelihood incorporates uncertainties due 
to statistics σN,x = √

N , luminosity σL = 2.5% [52], and scale vari-
ations σα . Therefore,

L(μ, s,b) = N (L′, L,σL)N (α′
s,αs,σαs )N (α′

b,αb,σαb )

×
∏

x

P(bx + sx, L′(α′
bb′

x + μα′
ss′

x))N (b′
x,bx)N (s′

x, sx)
(15)

The uncertainties are parameterised with a Gaussian smearing 
over our expected values, and the priors N and P are Gaus-
sian and Poisson distributions, respectively. Profiling the likelihood 
function for each channel determines the confidence limits as a 
function of μi , with i = “0L”, “1L” or “2L”. These independent 
channels are combined into one confidence limit which could be 
inverted to a confidence limit on κc . However, inverting equa-
tion (14) is not well defined for μc > 1/BrH→cc̄ .

As we explore this region of μ-values with our analysis, and 
in order to avoid counter-intuitive results for κc , we only quote 
projections for limits on μ. Expanding on ideas formulated for 
example in [22,23], we also suggest an indirect measurement, in 
which H → cc̄ and H → bb̄ are combined to the signal class and 
modified together with μcb . This extension transforms Eq. (14)
into,

μcb =
κ2

c BrSM
H→cc̄ + κ2

b BrSM
H→bb̄

(BrSM
H→cc̄ + BrSM

H→bb̄
)

× 1

(1 + BrSM
H→bb̄

(κ2
b − 1) + BrSM

H→cc̄(κ
2
c − 1))

(16)

and the limitation to resolve κc becomes;

BrH→bb̄

(BrH→bb̄ + BrH→cc̄)

1

1 − BrH→cc̄
<

μcb <
1

BrH→cc̄ + BrH→bb̄

(17)

If we further introduce H → cc̄ and H → bb̄ discrimination in the 
cutflow with the MLb↔c network Eq. (16) becomes,

5
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Fig. 5. κ(μi) plotted in three instances. Blue: direct H → cc̄ defined in equa-
tion (14). Green: The indirect measurement defined in Eq. (16). Purple: The indirect 
measurement with charm bottom discrimination defined in Eq. (18) evaluated with 
mean values of the efficiencies given in Table 3.

μcb =
εcκ

2
c BrSM

H→cc̄ + (1 − εb)κ
2
b BrSM

H→bb̄

(εc BrSM
H→cc̄ + (1 − εb)BrSM

H→bb̄
)

× 1

(1 + BrSM
H→bb̄

(κ2
b − 1) + BrSM

H→cc̄(κ
2
c − 1))

(18)

the factors εc and 1 − εb re-weight the expected event counts con-
tributing to the signal strength based on the performance of the 
charm bottom discriminator, MLb↔c . Now the limitation on κc is 
given by;

(1 − εb)BrH→bb̄

(1 − εb)BrH→bb̄ + εc BrH→cc̄)

1

1 − BrH→cc̄
<

μcb <
εc

(εc BrH→cc̄ + (1 − εb)BrH→bb̄)
.

(19)

The limits of μ leading to a resolvable κc are determined for 
κb = 1. These expressions are illustrated in Fig. 5.

5.2. μ results

In each channel we consider the primary contributions of un-
certainties in the determination of μ. This can be done by fixing 
nuisance parameters in turn and varying each quantity by its pre-
fit (initial uncertainties fed into likelihood) and post-fit (post fitted 
values from maximisation of profiled likelihood) values. In Fig. 6
we exhibit four classes of uncertainties,

1. Statistical
2. Luminosity
3. Systematics (“Sys”)
4. Monte-carlo (“MC”)

Statistical uncertainties occur from the total counts in each bin 
in the likelihood function. The systematics from the 7-point en-
velope function in scale variations of f F , f R and lastly the Monte 
Carlo uncertainty from SHERPA. From this we can read off which 
backgrounds have the largest impact on the precise determination 
of μ: QCD, W +jets (W ) production and Z+jets (Z ) production 
processes for the “0L”, “1L” and “2L” channels, respectively. Pro-
filing nuisance parameters to calculate their marginal error allows 
the determination of correlations between other parameters. It is 

Table 5
Summary of the cut flows and neural networks architec-
tures used in each of the methods and which of the κc , κb

that are allowed to vary. Here MLbooster refers to the ML 
“booster” network and MLb↔c the ML b ↔ c discriminator 
network.

Cut flow MLbooster MLb↔c κ dependence

1 � � X μc(κc)

2 � � X μcb(κc , κb)

3 � � � μc(κc)

4 � � � μcb(κc , κb)

worth stressing that measurements in the “2L” channel, while be-
ing the most sensitive channel in this analysis, are dominated by 
the statistics from the limited cross-section of the signal process 
and lower luminosity.

We explored four ways for the μ extraction, direct (1), in-
direct (2), direct with b ↔ c discrimination (3), and indirect 
with b ↔ c discrimination (4). We summarise the interplay of 
the different analysis steps and the variation of μc and μcb
in Table 5. Fitting to distributions of various observables or to 
pairs of observables yields constraints of the signal strengths 
μc . The following observables showed the best discriminating 
power:

• planar flow: P f ,
• 2-subjettiness: τ2,
• boosted sub-jet separation angle: θ j1, j2,
• fat jet mass: MJ ,
• sub-jet energy fraction: Z1.

In Appendix A we show results for the four methods over all dis-
tributions for an integrated luminosity of 150 fb−1 in Fig. A.7, and 
for 3 ab−1 in Fig. A.8. The figures exhibit the 95% confidence lim-
its of all considered 1 dimensional fits and 2 dimensional fits with 
the 1σ and 2σ uncertainty bands.

One way, in which the impact dominant statistical uncertain-
ties can be counteracted, is by performing a two-dimensional fit 
and constraining the sum of bins on each axis to one another and 
therefore their uncertainty to one another. We summarise the μ
limits we obtain in Table 6 for the standard choice H(M J ), used 
by the experimental analyses so far, and our most powerful com-
bination of distributions, Hbest. Due to the low branching fraction 
of H → cc̄ we have a very low signal count at low luminosity, 
and moving forward into the high-luminosity phase of the LHC 
with around 3000 fb−1 we will be less limited by statistics. This 
impacts on the efficiency of the ML “booster” cuts, which greatly 
improve our confidence limit by a factor of 2 over the initial cuts 
at 150 fb−1.

The two-dimensional fitting technique leads to an improvement 
in the obtained confidence limits by on average a factor of 2 over 
their one-dimensional counterparts. We also see that while distri-
butions involving M J provide good fits, other choices of observable 
work just as well or even better hinting at possible new avenues 
of exploration. The ML b ↔ c discriminator network provides an 
improvement to the value of the confidence limit of a factor 2
in the direct case but only 1.1 in the indirect case. Our best fit 
result is μc ≤ 8.0+3.6

−2.3 at 150 fb−1 (κc ≤ 3.18+0.94
−0.60) at the 95% con-

fidence limit. This result is compatible to SM within 4.0 standard 
deviations and is competitive with current ATLAS and CMS val-
ues of 31+12

−8 [26] and 37+16
−11 [2]. These results may have scope for 

enhancement by considering a wider range of features and multi-
dimensional fitting rather than the using the “standard” choice as 
we have demonstrated in our findings.
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Fig. 6. Uncertainty contributions to the 95% confidence limit of signal strength μ for HM J for the jet mass distribution. Uncertainties are shown for total statistics, luminosity, 
systematic uncertainty and Monte Carlo simulation uncertainty over all signal and background classes for each channel, “0L”, “1L”, “2L”, and compared with the total 
uncertainty. Pre-fit uncertainties shown in the outlined bars and post-fit uncertainties by the filled in bars.

Table 6
Combined μ bounds at 95% confidence for 4 methods for the HM J and Hbest distributions. 
We compare results obtained from the fat jet distribution (HM J ) – the method of choice 
for the experimental analyses so far – with results we obtained from a best combination of 
two observables, Hbest and indicate them in the last column.

Search μ w/ HM J μ w/ Hbest Hbest∫
Ldt = 150 fb−1

Direct, μc 53.7+22.7
−15.9 42.7+17.4

−12.4 H(M J , P f )

Indirect, μcb 4.0+1.3
−0.9 3.1+1.0

−0.7 H(M J , θp)

Direct, μc with b ↔ c discrimination 48.1+19.2
−13.8 8.0+3.6

−2.3 H(Z1, P f )

Indirect, μcb with b ↔ c discrimination 4.7+1.6
−1.1 2.0+0.6

−0.4 H(Z1, P f )∫
Ldt = 3000 fb−1

Direct, μc 35.5+14.0
−10.3 12.1+5.1

−3.4 H(M J , P f )

Indirect, μcb 3.0+0.8
−0.6 1.5+0.2

−0.2 H(M J , θp)

Direct, μc with b ↔ c discrimination 33.9+13.2
−8.9 2.1+0.6

−0.4 H(Z1, P f )

Indirect, μcb with b ↔ c discrimination 4.0+1.2
−0.8 1.1+0.1

−0.1 H(Z1, P f )

Moving into the high–luminosity regime we see a again an en-
hancement in the benefit from 2D fits by a factor of about 2 over 
1D fits. At 3 ab−1 our best fit μ values tighten and the limits are 
now resolvable under the κ framework. The direct measurement 
provides the best expected limit of κc ≤ 1.47+0.21

−0.16 at the 95% con-
fidence limit.

6. Conclusions

We studied prospects for a determination of the charm Yukawa 
coupling or its constraints with present and future LHC data. We 
considered the production of the Higgs boson in Higgstrahlung 
and weak boson fusion processes, leading to final states with 0, 
1, or 2 leptons, and the subsequent decay of the Higgs boson 
into a fat jet. We augmented a simple cut-based strategy with a 
multi-variate “booster” step and showed that this enhances the 
sensitivity of the analysis. We also investigated the impact of a 
neural-network based discriminator for fat jets containing only 
light partons, charm or bottom quarks and found a non-negligible 
impact. As a by-product we suggested an indirect measurement 
strategy where the branching ratio of a Higgs boson into heavy 
quarks – charm or bottom – is used in conjunction with the known 
value of the bottom Yukawa coupling to infer the charm Yukawa 
coupling. The signal strength in any case is extracted from fits to 
observable distributions, and we found that the fat jet mass is not 
necessarily the best-suited observable. We also found that two-
dimensional fits further boost the sensitivity by about factors of 

two to four compared to fits to a single observable, motivating fur-
ther investigations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We are indebted to Marumi Kado and Francesco Di Bello for 
enlightening discussions and important feedback throughout the 
project, and we wish to thank the other members of the SHERPA

team for ongoing collaboration.
This work was supported by the UK Science and Technology Fa-

cilities Council (STFC) under grant ST/P001246/1. FK acknowledges 
support from the European Union’s Horizon 2020 research and in-
novation programme as part of the Marie Sklodowska-Curie Inno-
vative Training Network MCnetITN3 (grant agreement no. 722104), 
and support by the Royal Society and Wolfson Foundation under 
award RSWF\R1\191029.

7



J. Walker and F. Krauss Physics Letters B 832 (2022) 137255

Appendix A. Likelihood distributions

Fig. A.7. Comparison over binned likelihood distributions showing the 95% confidence limit on the signal strength μ.

Fig. A.8. Comparison over binned likelihood distributions showing the 95% confidence limit on the signal strength μ.
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Appendix B. Neural network architectures

Fig. B.9. The neural network architectures for the MLbooster (top) and MLb↔c (bottom). The abbreviation layer names are; FCD: Fully connected dense layer, Conv2D: A two 
dimensional convolutional layer, MaxPool2D: A two dimensional maximum pooling layer, GRU+Seq: A Gated recurrent unit which returns output from each unit not only 
the last, GRU: A gated recurrent unit, TDFCD: Time distributed fully connected dense layer and lastly TDFCD: Time distributed gated recurrent unit. Drop out layers used in 
training are omitted from these diagrams.
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