
MANUSCRIPT DRAFT OF IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X,X,X 1

EfficientTDNN: Efficient Architecture Search for
Speaker Recognition

Rui Wang, Zhihua Wei, Haoran Duan, Student Member, IEEE, Shouling Ji, Member, IEEE,
Yang Long, Zhen Hong

Abstract—Convolutional neural networks (CNNs), such as the
time-delay neural network (TDNN), have shown their remarkable
capability in learning speaker embedding. However, they mean-
while bring a huge computational cost in storage size, processing,
and memory. Discovering the specialized CNN that meets a
specific constraint requires a substantial effort of human experts.
Compared with hand-designed approaches, neural architecture
search (NAS) appears as a practical technique in automating
the manual architecture design process and has attracted in-
creasing interest in spoken language processing tasks such as
speaker recognition. In this paper, we propose EfficientTDNN,
an efficient architecture search framework consisting of a TDNN-
based supernet and a TDNN-NAS algorithm. The proposed
supernet introduces temporal convolution of different ranges of
the receptive field and feature aggregation of various resolutions
from different layers to TDNN. On top of it, the TDNN-NAS
algorithm quickly searches for the desired TDNN architecture via
weight-sharing subnets, which surprisingly reduces computation
while handling the vast number of devices with various resources
requirements. Experimental results on the VoxCeleb dataset
show the proposed EfficientTDNN enables approximate 1013

architectures concerning depth, kernel, and width. Considering
different computation constraints, it achieves a 2.20% equal error
rate (EER) with 204M multiply-accumulate operations (MACs),
1.41% EER with 571M MACs as well as 0.94% EER with 1.45G
MACs. Comprehensive investigations suggest that the trained
supernet generalizes subnets not sampled during training and
obtains a favorable trade-off between accuracy and efficiency.

Index Terms—Speaker recognition, neural architecture search,
efficient search, time-delay neural network, progressive learning.

I. INTRODUCTION

Speaker recognition aims to identify the voice of the specific
targets. For speaker recognition, convolutional neural networks
(CNNs), including residual neural network (ResNet) [1] and
time-delay neural networks (TDNN) [2], have shown their
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Fig. 1. The proposed EfficientTDNN.

remarkable capability on learning speaker embedding and
achieved impressive results. The performance of CNNs always
comes with a considerable computational cost in terms of
storage size, processing, and memory. It is essential to explore
effective methods in designing neural architectures given the
limited computing capacity such as mobile devices.

Discovering the specialized convolutional neural network
that meets a certain constraint requires a substantial effort
of human experts. Compared with hand-designed approaches,
neural architecture search (NAS) [3] has made great achieve-
ments in the design of deep neural networks to automate the
manual process of architecture design. Specifically, weight
sharing NAS [4] can train a single large network (i.e., su-
pernet) capable of emulating any architecture (i.e., subnet) in
the search space. Recently, there have been increasing interests
in exploring NAS for spoken language processing tasks, such
as speech recognition [5]–[7], speech synthesis [8], [9], and
speaker recognition [10], [11].

However, applying NAS to speaker recognition to find
the CNN that fits the specific constraint remains not well
explored. There are two challenges: (1) the existing supernets
are deficient in some of the inductive biases inherent to
speaker networks, such as temporal convolution and feature
aggregation; (2) the practicality of searching a subnet on large-
scale datasets is discounted since retraining the standalone
models may cause prohibitive computation.

Inspired by once-for-all (OFA) [12], we attempt to propose
a novel NAS framework to achieve efficient architecture search
for speaker recognition. In this paper, we propose an efficient
architecture search framework, EfficientTDNN. As shown in
Figure 1, the proposed EfficientTDNN consists of a TDNN-
based supernet capable of emulating various TDNN archi-
tectures and a TDNN-NAS algorithm that quickly finds the
desired TDNN. Specifically, the proposed TDNN-based super-
net introduces temporal convolution of different ranges of the
receptive field and feature aggregation of various resolutions
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from different layers to TDNN, which improves the diversity
of locality to boost the capabilities of discriminating speakers.
The supernet is nested TDNN subnets that mutually share
weights, which helps transfer knowledge between subnets
of different sizes. On the top of the proposed supernet, the
TDNN-NAS is proposed to search for the desired architecture
without retraining, which significantly reduces computation
compared with [10] and [11] while handling the vast num-
ber of devices with various resources requirements. In the
proposed EfficientTDNN, different-grained channel numbers
in the search space allow exploring efficient architectures;
progressive architectural shrinking is introduced for training
with dynamic network layers, kernel sizes, and channel num-
bers. Experiments are conducted on the VoxCeleb dataset
show that the proposed EfficientTDNN enables approximate
1013 architectures concerning depth, kernel, and width and
attains superior results under different computation constraints
in that it achieves a 2.20% equal error rate (EER) with 204M
multiply-accumulate operations (MACs), 1.41% EER with
571M MACs, and 0.94% EER with 1.45G MACs. The models
and code are released1 to facilitate future research.

The contributions of this paper are summarized as follows.
• We propose EfficientTDNN as a NAS-powered alterna-

tive to automatically design efficient architectures given
the specific computing capacity for speaker recognition.
It consists of supernet design and subnets search.

• We present a novel TDNN-based supernet that aggregates
shallow-resolution and deep-resolution features with dif-
ferent ranges of the receptive field. It enables to sample
subnets with different sizes in terms of depth, kernel, and
width, which is essential to search for subnets that satisfy
different resource requirements.

• We present TDNN-NAS, an efficient search algorithm
to boost the efficiency of the supernet: The progressive
shrinking method requires no retraining and considerably
reduces computation; The different-grained search space
offers model efficiency balanced against accuracy.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss the related work in designing efficient
speaker neural networks. The problem formulation of efficient
architecture search are provided in Section III. We present
EfficientTDNN in Section IV. Subsequently, the proposed
method is evaluated on large-scale speaker datasets in Section
V. Sensitivity analysis is conducted to investigate multiple
factors in Section VI. We conclude this paper in Section VII.

II. RELATED WORK

A. Speaker Neural Architectures

For speaker recognition, deep neural networks (DNNs)
have successfully achieved state-of-the-art performance on
challenging benchmarks, including SITW [13], SRE 2018
[14], and VoxCeleb [15]–[17]. Specifically, McLaren et al. [18]
use DNN to extract bottleneck features to enhance robustness
to microphone speech. Huang et al. [19] apply a VGG-style
CNN to learn embeddings via triplet loss. Wan et al. [20]

1https://github.com/mechanicalsea/sugar

optimize LSTM by generalized end-to-end loss to improve
speaker representations on text-dependent speaker verification.
Snyder et al. [21] propose x-vector that maps variable-length
utterances to fixed-dimensional embedding, which uses data
augmentation to improve the performance of TDNN. Ramoji
et al. [22] extract neural embeddings from TDNN trained on
a speaker discrimination task. Xie et al. [23] use thin-ResNet
with a GhostVLAD layer to investigate the effect of utterance
length on the wild data. Garcia-Romero et al. [1] propose
a wider ResNet by increasing channels in the early stages
to achieve state-of-the-art performance. Desplanques et al.
[2] utilize several enhancements to TDNN, including residual
connection, dense connection, and channel-dependent frame
attention, which aggregate and propagate features of different
hierarchical levels. Safari et al. [24] alternatively employ
a transformer encoder as a frame-level feature extractor to
capture long-range dependencies. These works provide diverse
promising temporal modeling architectures, which boost the
performance of speaker embedding while remaining the same
degree of parameters or computation.

B. Neural Architecture Search

The NAS technique provides a systematic methodology
that designs neural architecture automatically. Zoph et al.
[3] propose an RL-based approach to find an architecture
that achieves state-of-the-art performance. However, such an
approach would be computationally expensive, requiring thou-
sands of different architectures trained from scratch. To avoid
prohibitive computation, Bender et al. [4] propose a simple
weight sharing for one-shot NAS. Liu et al. [25] formulate
the problem of NAS in a differentiable manner, which is
orders of magnitude faster than non-differentiable techniques.
On the other hand, these works optimized on proxy tasks are
not guaranteed optimal for the target task. To the end, Tan
et al. combines training-aware NAS and scaling in a search
space enriched Fused-MBConv to improve training speed and
model parameters [26]. Cai et al. [27] propose to directly
learn the architectures while handling hardware objectives
via regularization loss. Subsequently, a once-for-all network
[12] is proposed to further reduce the computational cost by
decoupling training and search, which provides a retraining-
free approach and allows network pruning in a larger search
space, i.e., depth, kernel size, and width.

In speaker recognition, AutoSpeech [10] identifies the op-
timal operation combination in a neural cell and derives a
CNN model by stacking the neural cell multiple times. Auto-
Vector [11] utilizes an evolutionary algorithm enhanced NAS
method to discover a promising x-vector network. SpeechNAS
[28] applies Bayesian optimization to conduct branch-wise
and channel-wise selection in the search space of Densely
connected TDNN. These works may suffer a weak correlation
between the performance of the searched architectures and
the ones trained from scratch [29]. Besides, the requirement
of retraining candidate networks causes linearly increasing
computation, making the NAS not effectively scaled while
handling various devices.

https://github.com/mechanicalsea/sugar
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TABLE I
FREQUENTLY USED NOTATIONS

Notation Description

A supernet that is nested in numerous a
a a subnet sampled from the supernet, a ∈ A
S subnet sampler used to sample a subnet, a← S(A)
WA weights of the supernet
wa weights of a network or subnet
D depth of a network or a sequence of layers
K kernel size of a convolution layer
C width of a convolution or linear layer
vi a cell in an architecture
vi→j a sequence of cells vi, vi+1, . . . , vj , j > i

III. PROBLEM FORMULATION

OFA [27] enables to quickly search for specialized ar-
chitectures via decoupling the training and search, which
significantly reduces the computational cost by getting rid of
retraining. It motivates us to consider the NAS problem a two-
stage problem consisting of supernet weights optimization and
subnets search.

A. Frequently Used Notations

Frequently used notations and their meanings are given in
Table I, where A, a, and S relate to architectures, WA and
wa are weights of architectures, D, K, and C are variable
dimensions, vi and vi→j represent cells in the supernet.

B. Efficient Architecture Search

The efficient architecture search for speaker recognition
aims to find a speaker network that can efficiently ex-
tract speaker representation. Since training architectures from
scratch is computationally prohibitive, the weight sharing
technique is introduced. The coupled methods in that the
supernet training and architecture search are coupled suffer
from a weak ranking correlation [30] probably caused by
the optimization gap between the supernet and subnets [31].
The decoupled one is thereby considered that the training
and search are decoupled into two sequential stages to make
real-world requirements feasible, such as parameters, multiply-
accumulate operations (MACs), and latency. The efficient
architecture search for speaker recognition can be formulated
as a two-stage optimization problem.

1) Supernet weights optimization is to minimize the loss
function of the supernet on the training dataset Dtrain:

WA = arg min
WA

Ltrain(A,WA) (1)

where supernet A contains all searchable architectures
as subnets a, and all a inherit weights directly from A.

2) Subnets search is to find an architecture that satisfies the
specific requirement on the evaluation dataset Deval:

a∗ = arg min
a∈A

Metriceval(a;WA(a)) (2)

where Metriceval(·) can be diverse, such as error rate,
parameters, MACs, and latency.
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Fig. 2. The proposed TDNN-based supernet of EfficientTDNN. The supernet
is shallow with eight cells, while it is wide with up to 512 channels in v1→5

and 1,536 features in v6→8.

IV. EFFICIENT ARCHITECTURE SEARCH METHOD

To address the problem of the efficient architecture search
for speaker recognition, we propose EfficientTDNN that con-
sists of a TDNN-based supernet and the TDNN-NAS algo-
rithm. The proposed supernet employs temporal convolution
and feature aggregation, allowing scaling networks in both size
and connection. The TDNN-NAS algorithm enables to search
for TDNN-based subnets under the specific constraint.

A. Supernet Design

Supernet determines the search space of the speaker network
and plays an essential role in improving the performance of
speaker representation. The TDNN-based supernet is proposed
for speaker recognition, and several enhancement techniques
are applied to further improve speaker representation perfor-
mance. There are two steps to design a supernet: the macro
and micro architectures of the space. The macro architecture
determines the overall backbone of the extractor, such as
TDNN architecture, while the micro architectures named cells
determine the details of each network unit, such as temporal
convolution and attentive feature aggregation.

Definition 1 (Supernet). Supernet is an over-parameterized
neural network that contains dynamic components and enables
sampling subnets with different architectures.

The supernet of EfficientTDNN is built illustrated in Figure
2, which employs several architectural enhancement tech-
niques from the design of ECAPA-TDNN [2], such as resid-
ual connections [32], dense connections [33], squeeze-and-
excitation (SE) blocks [34], and Res2Net blocks [35]. The
proposed supernet is summarized as follows.

1) v1: a stem of input supports dynamic kernel and width.
2) v2→5: a stack of blocks that contain Res2Net and SE

support dynamic depth, kernel, and width.
3) v6: a transformation of concatenated features supports

dynamic width.
4) v7: an attentive statistics pooling layer has dynamic

width determined by v6 output.
5) v8: a fully connected layer (FC) has dynamic width

determined by v7 output.
Accordingly, cells with the dynamic depth are v2→5, cells

with the dynamic kernel are v1→5, and cells with the dynamic
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width are v1→6. On the other hand, v7 and v8 are determined
by v6 width, which means they are constrained.

Compared to the original ECAPA-TDNN [2], there are
mainly two differences: (1) Two blocks of v4 and v5 can be
skipped; (2) Kernels of v1→5 are expanded to 5; (3) Width of
v1→8 varies and weight-sharing.

The supernet supports dynamic depth, kernel, and width.
Specifically, the depth is the number of blocks, where D ∈
{2, 3, 4}. It reduces as the last d blocks are skipped, where
d ∈ {0, 1, 2}. The kernel is the kernel size of the convolution
layers at v1 and the middle layer at v1→5, K ∈ {1, 3, 5}.
The width is the number of channels or features in v1→8,
where C ∈ {Cmin, Cmin + c, . . . , Cmax − c, Cmax}, Cmin is
the given minimum width, Cmax is the maximum width, and c
is an increasing step, which determines the density of sampled
networks. We give that Cmin = 128 and Cmax = 512 for v1→5

as well as Cmin = 384 and Cmax = 1536 for v6→8.

Definition 2 (Degrees of freedom). Degrees of freedom are
the number of independent dimensions that are allowed to be
variable in the formal description of the architecture of the
supernet.

According to Definition 2, the proposed supernet has 1 +
5 + 6 = 12 degrees of freedom, i.e., the depth has 1 degree,
the kernel has 5 degrees, and the width 6 degrees.

Definition 3 (Subnet). Subnet is a neural network that is
sampled from the supernet and can be encoded as a 3-
tuple of elements of degrees of freedom of the network,
a ≡ (D,K,C) ∈ A, where K = {Ki}D+1

i=1 , C = {Ci}D+2
i=1 ,

and the subscript i of K and C is the number of cells.

For example, (3, {3}4i=1, {256}4i=1 ∪{768}) denotes a sub-
net of 3 blocks with kernel sizes of 3, where v5 is skipped. The
width of v1→5 are 256, while v6→8 are 768. The bound of the
sampled architectures can be summarized: the largest subnet
sampled from the supernet is (4, {5}5i=1, {512}5i=1 ∪{1536}),
while the smallest one is (2, {1}3i=1, {128}3i=1 ∪ {384}).

We consider the number of subnets as the size of space.

Definition 4 (Sizes of space). Sizes of space are the number
of independent subnets that are derived from a supernet.

For example, the variable depth, kernel, and width lead to
145×((3×49)3 +(3×49)4 +(3×49)5) ≈ 1.0×1013 subnets
in a space of c = 8 while 10×((3×4)3+(3×4)4+(3×4)5) ≈
2.7× 106 subnets in a space of c = 128.

Figure 3 illustrates the details of dynamic cells. It is clear
to demonstrate how a subnet or a forward path is generated
from the supernet. There are five different types of cells, i.e.,
stem, block, transformation, pooling, and FC.

1) Stem v1 is a 1-dimensional convolution (Conv1d) fol-
lowed by ReLU activation and 1-dimensional batchnorm
(BN1d), as Conv1dReLUBN. The size of the input is
fixed with C0 channels and T frames, i.e., C0×T . The
input is first expanded to C1 channels and is applied to
ReLU and BN1d. The output is generated with the size
of C1 × T , where C1 ∈ [128, 512]. The kernel size is
dynamic and is chosen from {1, 3, 5}.
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Fig. 3. The details of micro architectures in the proposed EfficientTDNN,
such stem, blocks, transformation, pooling, and FC. The orange and blue
boxes are active and overall weights, respectively. The red text points to the
variable input and output size at a cell and bridges the forward path.

2) Block v2→5 consists of three parts, where the first and
last parts are Conv1dReLUBN with the kernel sizes of
1, and the middle part is a dilated convolution layer with
a Res2Net module followed by ReLU and BN1d. The
first part expands the input of C1×T to C2×T , where
C2 ∈ [128, 512]. There can be four different C2 as four
blocks in the supernet. The output from Res2Net has the
same size as the input, and then it is reduced to C1×T
after the last part. Thus, the sizes of input and output
are equal. The dynamic kernel of the Res2Net is done
as similar as that of v1.

3) Transformation v6 is a Conv1d followed by ReLU. The
splices of the output of v2→5 are concatenated and serve
as the input of this cell. The input is expanded to C3×T ,
where C3 ∈ [384, 1536].

4) Pooling v7 contains an attention and a temporal statistics
followed by BN1d. The attention calculates the impor-
tance of temporal features via a Conv1d with the kernel
size of 1. The channel-wise weighted statistics are then
calculated as a concatenated vector of mean and standard
deviation, which convert the input from C3×T to 2C3.

5) FC v8 consists of a linear layer and a BN1d, which
extracts an embedding that represents the speaker.

These dynamic components can be decomposed into three
basic operations: dynamic Conv1d, BN1d, and linear layer.
These dynamic operations are the same as the traditional ones
but perform with active weights as shown in Figure 4. The
weights of dynamic Conv1d at the i-th input channel and
the j-th output channel are derived from the overall weights
W with active input and output channels indexes. Likewise,
the dynamic BN1d calculates mini-batch mean and variance
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with active channels. The dynamic linear layer ignores inactive
weights associated with dropped inputs.

However, sampling subnets from the supernet is challenging
because the weights of dynamic components are shared and
required to adapt to each other. For example, the weights
of the centering sub kernel serve the subnets with different
kernel sizes. Forcing these weights same probably degrades the
performance of subnets with different depth, kernel, or width.
Inspired by [12], a dynamic kernel of Conv1d is proposed to
address this problem. As shown in Figure 4, when reducing
the kernel size, a linear transformation is applied to the center
of a larger kernel to create a weighted smaller kernel, e.g., the
center of a kernel 5 serves a kernel 3. Kernel transformation
matrices are employed as (3) and (4). These separate matrices
are used for two sizes, i.e., W 1

K ∈ R3×3 is applied to kernel
5, while W 2

K ∈ R1×1 is applied to kernel 3. There are
extra parameters in the supernet in v1→5, which is negligible
compared to the whole architecture. Also, these parameters
are eliminated when a subnet is derived from the supernet by
performing kernel transformations.

W 1
kernel = W 1

KCenter(Wkernel) (3)
W 2

kernel = W 2
KCenter(W 1

kernel) (4)

where Wkernel ∈ R5×1, W 1
kernel ∈ R3×1, and W 2

kernel ∈ R1×1

denote the weights of kernel sizes of 5, 3, and 1, respectively.
W 1

K and W 2
K are initialized in the form of the identity matrix.

The inference time complexity of a subnet O(a) can be
summarized as Theorem 1, regardless of the number of
nonzero weights and nonzero MACs that reflect the theoretical
minimum requirements of storage and computation [36].

Theorem 1 (Bound of inference time). Let a ∈ A, then
the inference time of a subnet with the minimum depth, the
minimum kernel size, and the minimum width is a lower bound
of O(a), while the inference time of a subnet with the maximum

depth, the maximum kernel size, and the maximum width is an
upper bound of O(a) so that ∀ a ∈ A we have

O(amin) ≤ O(a) ≤ O(amax)

where

amin ≡ (Dmin,Kmin,Cmin)

amax ≡ (Dmax,Kmax,Cmax)

Proof: By Definition 3, the minimum and maximum
subnets are (Dmin,Kmin,Cmin) and (Dmax,Kmax,Cmax),
respectively, amin and amax for clarity.

amin = (2, {1, 1, 1}, {128, 128, 128, 384})
amax = (4, {5, 5, 5, 5, 5}, {512, 512, 512, 512, 512, 1536})

It clearly indicates that ∃ a1, a2 ∈ A we have

O(a1) = O(amin)

O(a2) = O(amax)

Let a ∈ A, the inference time of a comes from static units
and dynamic components as Definition 1 and 3. The inference
time of those static units is constant, but the inference time of
dynamic components is affected by dynamic transformations.

As the transformations of (3) and (4), ∀ a ∈ A, for v1→5

we have

Wkernel(a) ∈ {W 2
kernel,W

1
kernel,Wkernel}

By the formulation of the dynamic Conv1d, the inference
time increases as the kernel size enlarges. This implies that
for v1→5 we have

O(W 2
kernel) < O(W 1

kernel) < O(Wkernel)

The dynamic components of amax and amin involve Wkernel

and W 2
kernel, respectively, for v1→5. Furthermore, the inference

time of dynamic BN1d and linear layer increase as the size of
input and output enlarge. Thus ∀a ∈ A we conclude

O(amin) ≤ O(a) ≤ O(amax)

Therefore, the minimum and maximum efficiency can be
estimated by performing inference on amin and amax.

B. Architecture Search

The supernet comprises various subnets of different sizes,
where small subnets are nested in large subnets. The TDNN-
NAS algorithm is proposed to enable efficient architecture
search from the TDNN-based supernet. The proposed algo-
rithm consists of the progressive training method and con-
strained search algorithm. The progressive training method
ensures that the sampled subnets extract the speaker embed-
ding effectively without retraining. The constrained search
algorithm searches for the specialized subnet efficiently that
satisfies the given budget.

The progressive training method is proposed based on the
TDNN-based supernet with dynamic depth, kernel, and with as
illustrated in Figure 5, which is helpful to mitigate interference
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Algorithm 1: Progressive Training Method
Input: supernet A, weights WA, subnet sampler S,

loss function L, training data Dtrain

Output: the trained weights of the supernet WA
Set sampling space s← ∅ for A
Initialize the weights of the supernet WA
for task in {largest, kernel, depth, width} do

if task is largest then
A ← set A as the largest architecture

else if task is kernel then
s← s ∪ {kernel : {1, 3, 5}}

else if task is depth then
s← s ∪ {depth : {2, 3, 4}}

else
for phase in {1, 2} do

if phase is 1 then
s← s ∪ {width : {0.5, 0.75, 1}}

else
s← s ∪ {width : {0.25, 0.35}}

end
end

end
WA ← update WA using Algorithm 2

end
return WA

Train the 
largest net

Enlarge 
search space

Fine-tune 
weights

Trained 
supernet

Dynamic

Kernel Size

Dynamic

Depth

Dynamic

Width 1

Dynamic

Width 2

Search space expands progressively

Fig. 5. The process of the progressive training method.

between subnets and overcome the challenge of optimizing
a huge search space. Specifically, the weights optimization
problem (1) is decomposed into five stages as follows.

WA− = arg min
WA−

Ltrain(A−,W−) (5)

where A− is a variant of the search space with the specific
sampling dimensions, and W− represents the weights. For
example, Akernel is a supernet with variable kernel sizes with
the weights W kernel.

A variant of the single path one-shot routing approach [37]
is proposed to solve these subproblems sequentially as shown
in Algorithm 1 and 2. As shown in Figure 5, the proposed
training method enforces training from large subnets to small
subnets in a progressive manner to overcome the limitation
of dramatically enlarging search space makes the weights of
cells hard to adapt to each other. First, the largest network is
optimized with the maximum kernel, depth, and width. Next,
the supernet is fine-tuned progressively to support smaller

Algorithm 2: Dynamic Path Training
Input: weights WA, subnet sampler S, sampling space

s, forward paths M , loss function L, training
data Dtrain, epochs T , data augmentation Faug

Output: the trained weights WA
def DynamicTrain(WA, S, s, M , L, Dtrain, T , Faug):

S← update S by using s
t← 0
while t < T do

for batchi in Dtrain do
faug ← choose from Faug randomly
batchi ← faug(batchi)
∇ = ∅
for i = 1 to M do

a← S(A)
w ←WA(a)
L ← cross-entropy on batchi
∇ ← ∇∪ ∂L/∂w

end
WA ← update WA using Adam with ∇

end
t← t + 1

end
return WA

end

TABLE II
SIZES OF SPACE IN TRAINING TASKS

Stage Dynamic Dimension Sizes of Space

largest ∅ 1
kernel ∪ {kernel : {1, 3, 5} 243
depth ∪ {depth : {2, 3, 4} 351
width 1 ∪ {width : {0.5, 0.75, 1} 199,017
width 2 ∪ {width : {0.25, 0.35} 4,066,875

subnets by gradually expanding the search space. Specifically,
after the largest architecture is trained, the dynamic kernel
is supported and is chosen from {1, 3, 5} at v1→5, while the
depth and width keep the maximum value. Subsequently, the
dynamic depth and width are supported. Since the range of
dynamic width is large, the search space of width is separate
by taking half of the maximum value as the dividing line.
According to Definition 4, sizes of space at different stages
are listed in Table II, which reveals a significant increase in
sizes of space after depth.

As shown in Algorithm 1, the proposed training approach
divides the search space into five sequential parts and sep-
arately optimizes those weights, i.e., largest, kernel, depth,
width 1, and width 2. In each stage, the subnets sampler
S samples one or more forward paths randomly, which is
employed to update the used parameters in the supernet.
Specifically, in the stage of largest, the supernet retains the
maximum architecture, where the weights except W 1

K and W 2
K

are updated. Next, in kernel, the forward path allows sampling
subnets from multiple kernel sizes, e.g., {1, 3, 5}. As outlined
in Algorithm 2, the weights of subnets are updated at each
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training step, including W 1
K and W 2

K . In each step, M subnets
are applied to aggregate gradients, and the weights are updated
along these forward paths. The stage of depth is performed
after the stage of kernel. It makes the number of blocks within
[2, 4]. The width is divided into two stages, where the width
of {0.5, 0.75, 1.0} and {0.25, 0.35} of the maximum value are
sequentially added into sampling space.

Once the supernet is trained, the constrained search algo-
rithm is proposed to derive the specialized subnet for the given
budget without retraining. The objective of the proposed search
algorithm is to find the optimal architecture that optimizes the
accuracy while satisfying the efficiency constraints as follows.

arg max
a∈A

ACCval(a;WA(a))

s.t. Efficiency(a) ≤ Budget
(6)

where ACCval is an accuracy metric, Efficiency is an effi-
ciency metric, and Budget is its budget.

The design of sampling space and search strategy plays
an essential role in solving search problems. Three modes
of the search space are considered to investigate the impact
of sampling space: the grid, coarse-grained, and fine-grained
spaces. In the grid space, depth, kernel, and width are supposed
as three independent integers. Specifically, the widths of v1→5

are the same, while the widths of v6→8 are three times as large
as v1→5, e.g., (4, {3}5i=1, {256}5i=1 ∪ {768}). The exhaustive
search is applied to such a small space, where architectures
can be enumerated. The coarse-grained space uses a sampling
space used in the training process, where depth is chosen
from {2, 3, 4}, kernel size is chosen from {1, 3, 5}, and width
is chosen from {0.25, 0.35, 0.5, 0.75, 1.0} of the maximum
value. Compared to the coarse-grained space, the fine-grained
space uses the width of c = 8, which provides a subtle
solution space. For the large space, a random strategy is
introduced as the baseline method. Then, a model predictive
evolutionary algorithm (MPEA) is introduced as the advanced
search algorithm based on the random search results, where a
population of architectures is estimated in the given constraint,
and the ones with a lower budget are retained.

MPEA employs the accuracy predictor and efficiency es-
timator to guide the direction of architecture search. The
accuracy predictor and efficiency estimator are established for
quickly estimating the accuracy and efficiency of an archi-
tecture. The accuracy predictor is built based on the pairs of
accuracy metrics and one-hot subnet encoding. The efficiency
estimator consists of a latency estimator, MACs counter, and
parameters counter. The latency estimator is created via an
operator-wise manner, e.g., measuring the stem with different
widths and kernel sizes. The MACs and parameter coun-
ters are used to calculate MACs and parameters of subnets.
Since the time cost by counting MACs and parameters with
forwarding inference is non-trivial, a recursive manner that
supports dynamic architectural hyperparameters is developed
without inference. Specifically, the MACs and parameters are
determined via dynamic Conv1d, BN1d, and linear layers.

TABLE III
CONSIDERED OPTIONS OF SEARCH SPACE

Dimension Options # Options

Depth 2, 3, 4 3
Kernel Size 1, 3, 5 3
Coarse-grained Width v1→5 128, 176, 256, 384, 512 5
Coarse-grained Width v6→8 384, 536, 768, 1152, 1536 5
Fine-grained Width v1→5 128, 136, . . . , 512 49
Fine-grained Width v6→8 384, 392, . . . , 1536 145

V. EXPERIMENTS SETTINGS AND RESULTS

A. Datasets

Experiments are conducted on the VoxCeleb datasets in-
cluding VoxCeleb1 (Vox1) [15] and VoxCeleb2 (Vox2) [16].
The corpora are extracted from videos uploaded to YouTube as
large-scale speaker recognition datasets collected in the wild.
The VoxCeleb2 development set includes 1,092,009 utterances
from 5,994 celebrities, and the VoxCeleb1-O (Vox1-O) test
set includes 4,708 utterances from 40 speakers. There is no
overlapping speaker between the development and test sets.

The feature is an 80-dimensional log Mel-filterbanks ex-
tracted from spectrograms within the given frequency limit of
20-7600 Hz. Pre-emphasis is first applied to the input signal
using a coefficient of 0.97. Spectrograms are extracted with
a hamming window of width 25 ms and step 10 ms with an
FFT size of 512. The average and variance normalization is
applied to the feature using instance normalization.

B. Supernet Preparation

The considered options of the search space are given in
Table III. According to Theorem 1, the inference time of a
subnet O(a) is between O(aC2min) and O(amax).

aC2min = (2, {1}3i=1, {128, 128, 128, 384})
amax = (4, {5}5i=1, {512, 512, 512, 512, 512, 1536})

Different spaces lead to the different lower bound of infer-
ence time. For the training task of kernel, depth, and width 1,
their minimum inference time are derived from aKmin, aDmin,
and aC1min, respectively,

aKmin = (4, {1}5i=1, {512, 512, 512, 512, 512, 1536})
aDmin = (2, {1}3i=1, {512, 512, 512, 1536})
aC1min = (2, {1}3i=1, {256, 256, 256, 768})

C. Training Details

Each stage in Algorithm 1 is performed under AAM-
Softmax [38], [39] within 64 epochs using the 16-epoch cyclic
learning rate between 10−8 and 10−3. The number of dynamic
paths M is set to 1 with a uniform sampling strategy for
all tasks except for largest. The largest task uses 2-second
segments as input with data augmentation that consists of RIR
dataset (reverb) [40], MUSAN dataset (music, speech, noise)
[41], open-source SoX effects (speedup, slowdown, compand)
[42], and SpecAugment (time masking, frequency masking)
[43]. The other training tasks use 3-second segments with the
data augmentation as the largest task except SpecAugment.
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D. Evaluation Details

There are two different indexes to evaluate, i.e., accuracy
and efficiency. Accuracy reports two metrics, namely, the equal
error rate (EER) and the detection cost function (DCF0.01).
The former is the rate at which both acceptance and rejection
errors are equal. The latter is adopted in NIST SRE 2018 [14]
and VoxSRC 2019 [44] given Ctarget = 0.01. Efficiency met-
rics contain CPU latency, CPU latency, MACs, and parameters,
where CPU and GPU latency are estimated via their latency
tables, and MACs are measured using a 3-second utterance.
The latency table on Intel Xeon E5-2698 v4 CPU and NVIDIA
Tesla V100 GPU are measured to estimate the latency of
different architectures, where CPU latency uses a 3-second
utterance and GPU latency uses 64 3-second utterances.

The scores for EER are calculated as similar as [45] if there
is no special mention. Specifically, two 4-second temporal
segments are sampled at regular intervals from each test
utterance. 2 × 2 = 4 cosine similarities are computed from
each pair of segments, and their average is used as the score.
Before scoring, the mean and standard deviation of BN1d are
calibrated via training utterances since changes of subnets lead
to a mismatch of feature maps within layers. BN1d is reset
using 6,000 3-second utterances in a batch of 32.

E. Search Details

There are three different approaches, i.e., manual grid
search, random search, and MPEA. The manual grid search
constrains the search space as (D, {K}D+1

i=1 , {C}D+1
i=1 ∪{3C}),

which contains 441 subnets. The random search considers
two different-grained spaces, including the coarse-grained and
fine-grained spaces, in which 10,000 subnets are sampled
randomly. In MPEA, a three-layer feedforward neural network
with 400 hidden units followed by ReLU activation in each
layer is used as the accuracy predictor. The model is supervised
by the mean absolute error between the normalized ground-
true and predicted EER or DCF0.01 on the Vox1-O test set. The
MPEA is conducted as a constrained single objective using the
Geatpy tool [46] with the population of 50, the mutation of
0.1, and the generation of 200.

F. Speaker Verification

Pruning a network reduces the requirements of storage
and computation but degrades the accuracy. The accuracy of
EfficientTDNN is first shown in order to study the effects
of the network pruning. Table IV reports a comparison be-
tween EfficientTDNN and state-of-the-art CNN models on
VoxCeleb1 Test, where ? denotes that MACs and parameters
are obtained by reproducing the model, and the superscripts of
1/2/3 represent TDNN-based, ResNet-based, and NAS-based
architectures, respectively. Three subnets of EfficientTDNN
are considered from different training stages of the supernet,
i.e., the Small of (2, {3}3i=1, {256}3i=1∪{400}) from width 2,
the Mobile of (3, {5, 3, 3, 3}, {384, 256, 256, 256, 768}) from
width 1, and the Base of (3, {5, 3, 3, 3}, {512}4i=1 ∪ {1536})
from depth, respectively, which are produced via taking the
whole utterance as inputs and applying top-300 adaptive score

TABLE IV
COMPARISON OF ACCURACY ON THE VOX1-O TEST BETWEEN

EFFICIENTTDNN AND STATE-OF-THE-ART CNN MODELS

Sytems MACs Params EER ↓ DCF0.01 ↓

D-TDNN?,1 [47] 14.93G 2.36M 1.81% 0.200
ResNet-20?,2 [48] 12.89G 16.11M 4.30% 0.413
Dual Attention?,2 [49] 4.01G 21.67M 1.60% -
H/ASP?,2 [45] 3.46G 6.06M 1.18% -
ARET-251 [50] 2.9G 12.2M 1.39% 0.199
ECAPA-TDNN?,1 [2] 1.45G 5.79M 1.01% 0.127
Fast ResNet-34?,2 [51] 672M 1.40M 2.22% -

AutoSpeech?,3 [10] 3.63G 15.11M 8.95% -

EfficientTDNN-Small 204M 0.90M 2.20% 0.219
EfficientTDNN-Mobile 571M 2.42M 1.41% 0.124
EfficientTDNN-Base 1.45G 5.79M 0.94% 0.089

normalization based on the imposter cohort of the utterance-
wise embeddings of 6,000 training utterances.

Compared with Fast ResNet-34, EfficientTDNN-Small at-
tains competitive performance using 30% MACs and 64%
parameters. It demonstrates the effectiveness of the small-size
network sampled from the supernet trained after width 2.

EfficientTDNN-Mobile from the supernet trained after width
1 achieves 1.41% EER and 0.124 DCF0.01 with 571M MACs
in the mobile setting (< 600M MACs). It outperforms D-
TDNN, ResNet-20, Dual-Attention, and Fast ResNet-34 with
less storage or computation. It suggests that the search space
design provides a well-behaved supernet, creating an efficient
architecture for resource-limited devices.

As the budget of storage and computation is neglected,
Efficient-Base, the same architecture as ECAPA-TDNN, ob-
tains 0.94% EER and 0.089 DCF0.01, which comes from the
supernet trained after depth. The architecture is superior to
H/SAP, ARET, and ECAPA-TDNN, which suggests that the
progressive training method concerning dynamic kernel and
depth is helpful. It implies that the training in a dynamic
architecture manner provides an alternative for improving
speaker representation.

Compared to the NAS method, AutoSpeech, EfficientTDNN
achieves a significant improvement, which is a consequence of
designing a search space more suitable for speaker recognition.

G. Generalizing Different-grained Space

Two sets of 10,000 subnets are sampled from different-
grained spaces randomly to study the granularities of search
space, and the distributions of their accuracy and efficiency are
illustrated in Figure 6. It is intuitively problematic to achieve
favorable accuracy on those architectures sampled from the
fine-grained space that do not perform forward during the
training process. However, in Figure 6, no subnet from the
fine-grained space achieves the accuracy out of the range as
those subnets from the coarse-grained space. It implies that
the supernet trained progressively generalizes unseen cells.

Figure 6 shows evident differences in EER, DCF0.01,
MACs, and parameters between the distributions of the coarse-
grained and fine-grained spaces. The accuracy of subnets
sampled from the fine-grained space emphasizes a higher
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Fig. 6. Distribution of accuracy and efficiency of two sets of 10,000 subnets randomly sampled from the coarse-grained and fine-grained spaces. The accuracy
includes EER and DCF0.01, and the efficiency includes MACs and parameters. The percentage of each bin is given for clarity.
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Fig. 7. Trade-off between accuracy and efficiency with different search methods. ‘Coarse Random’ denotes random search on a coarse-grained space, and
‘Coarse MPEA’ conducts MPEA on it as the actual accuracy. In contrast, ‘Predicted Coarse MPEA’ reports predicted accuracy from an accuracy predictor.
‘Fine Random,’ ‘Fine MPEA,’ and ‘Predicted Fine MPEA’ are notations similar to ‘Coarse’ methods. In each subfigure, the x-axis denotes the given constraints
of an efficiency metric, and the y-axis denotes the accuracy of the found subnet.

accuracy, e.g., the percentage of the first and second bins
is around 38% and 37% compared to around 31% and 29%
from the coarse-grained spaces. It probably results from that
subnets sampled from the fine-grained space highlight larger
computation, such as MACs between 0.3G and 1.2G and
parameters between 2M and 5M, as shown in the bottom
subfigures of Figure 6. Searching for these candidates is
helpful to find specialized architectures that maintain accuracy
under computation-limited conditions.

H. Trade-off between Accuracy and Efficiency

As shown in Figure 7, the trade-off between accuracy and
efficiency are investigated under different efficiency budgets
among multiple metrics and search algorithms, where the
algorithm includes random search and MPEA. As the budget
of the efficiency increases, the accuracy of the found subnet
tends to improve consistently. It indicates that the trained

supernet creates such a subnet space that increasing the budget
brings accuracy gain.

In Figure 7, the predicted EER derived from MPEA on
the fine-grained space outperforms other methods. However,
their actual accuracy has extremely slight improvement and
even leads to inferior performance in DCF0.01. One reason is
that the fine-grained space contains significantly larger subnets
(i.e., ≈ 1013) than the coarse-grained space, which makes it
challenging to learn from the number of pairs of accuracy
and subnets as equal to the pairs from the coarse-grained.
In contrast, the accuracy predictor trained on the coarse-
grained space generates approximately equal performance as
the actual. It suggests that it is feasible to create an accuracy
predictor that learns an appropriate-grained space for finding
a subnet with more subtle architectures.

The bottom row in Figure 7 shows that the subnets found
by random search achieve superior accuracy, e.g., CPU latency
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TABLE V
ACCURACY PROFILE AT DIFFERENT TRAINING STAGE ON VOX1-O TEST

Subnet MACs Params largest kernel depth width 1 width 2
EER(%) / DCF0.01 EER(%) / DCF0.01 EER(%) / DCF0.01 EER(%) / DCF0.01 EER(%) / DCF0.01

amax 1.93G 7.55M 1.30 / 0.126 1.18 / 0.122 1.11 / 0.120 1.29 / 0.131 1.44 / 0.163
aKmin 1.74G 6.93M - 3.07 / 0.336 2.79 / 0.308 3.24 / 0.299 3.54 / 0.344
aDmin 936.82M 3.98M - - 3.18 / 0.315 3.65 / 0.353 3.58 / 0.334
aC1min 267.44M 1.25M - - - 4.12 / 0.405 3.98 / 0.360
aC2min 83.47M 443.97K - - - - 5.29 / 0.478

ranges 12ms to 16ms, GPU latency ranges 13ms and 17ms,
MACs range 0.8G to 1.0G, and parameters range 1.5M to
4.0M. It suggests that under a specific budget of efficiency,
the random search can produce efficient architectures while
maintaining DCF0.01. It implies that an advanced evolutionary
algorithm is not necessary to find an efficient network in the
proposed supernet.

VI. SENSITIVITY ANALYSIS

Several factors are considered to study the impact of the
architectural settings on the performance of speaker networks
from the proposed supernet, such as training stage, architec-
tural dimensions, and accuracy predictor. Specifically, these
subnets in Section V-B are evaluated to profile the performance
of the supernet at different training stages. Then, a manual
grid space is employed to investigate the relationship between
accuracy and depth, kernel, width. Finally, the performance of
subnets is reported using different accuracy predictors.

A. Training Stage

Since the supernet has numerous subnets, it is challenging
to determine its performance via a single architecture. To this
end, amax, aKmin, aDmin, aC1min, and aC2min are summarized
to profile the accuracy of the supernet.

Table V reports the accuracy of these subnets with the
bounded inference time on the Vox1-O test set. The accuracy
varies across different training stages. Specifically, as training
tasks undergo from largest to width 2, the accuracy improves at
first but degrades after width 1. amax derived from the weights
of depth becomes the optimal solution in EER. It implies that
using dynamic kernel and depth during training can benefit the
optimization of weights. However, the dynamic width training
degrades accuracy. It probably results from that pruning the
supernet in width removes a large number of parameters that
causes the problem of over-regularization [52].

In Table V, the minimal available architecture results in
inferior accuracy. For example, the EER of aKmin in kernel,
aDmin in depth, aC1min in width 1, and aC2min in width 2
generate low accuracy. On the other hand, architecture accu-
racy can be improved using the progressive training method.
Specifically, the accuracy of aKmin in depth outperforms that
in kernel, and the aC1min in width 2 is superior to that in width
1. It suggests that for some specific subnets, the progressive
training with smaller architectures can achieve accuracy gain.
However, aDmin in width 1 has a lower accuracy than that in
depth. It probably implies a trade-off between pruning smaller
subnets and maintaining the accuracy of larger subnets.

B. Architectural Dimensions

The trained supernet is used to analyze the relationship be-
tween accuracy and architectural factors, e.g., network depth,
kernel size, and layer width. The grid space is created in the
form of agrid(D,K,C) ≡ (D, {K}D+1

i=1 , {C}D+1
i=1 ∪ {3C}),

where D is chosen from {2, 3, 4}, K is chosen from {1, 3, 5},
and C is chosen from {128, 136, . . . , 512}.

1) Network Depth: In order to investigate the relationship
between depth and accuracy, the subnets are sampled from
grid space with different depths. As illustrated in Figure 8, the
networks with the depth of 2 achieve slightly inferior accuracy
compared to that with the depth of 3 or 4, and the accuracy of
subnets with depths of 3 and 4 are comparable. It suggests
that in the trained supernet, different frame-level features
contribute to the accuracy of subnets equally approximately.

2) Kernel Size: As shown in Figure 9, the accuracy of the
kernel sizes of 3 and 5 significantly outperforms the kernel size
of 1 in EER and DCF0.01. It indicates that learning adjacent
information helps networks extract discriminative embeddings
for speaker recognition. On the other hand, the subnets with
a kernel size of 5 have an EER or DCF0.01 similar to that
with a kernel size of 3, which means that further increasing
the receptive field in the dilated form obtains little accuracy
gain. Accordingly, reducing kernel size from 5 to 3 leads to
smaller architectures with a slight accuracy loss.

3) Layer Width: Figure 10 shows that the increasing width
consistently improves the accuracy of subnets. It indicates a
monotonic relationship between accuracy and width. Also, the
width of around 384 creates an accuracy approximately equal
to the largest one. It suggests that reducing the width from
512 to 384 retains the accuracy of subnets but requires less
computation and storage.

In summary, Table 11 shows the Spearman rank correlation
between architectural dimensions and the performance of
speaker representations, where the higher value denotes the
stronger relevance. Figure 11a shows that the network depth
has a slight impact on the accuracy of subnets, while the
kernel size and the layer width are essential and consistent
correlation. However, in the absence of subnets with a kernel
size of 1, the kernel sizes of 3 and 5 create similarly low cor-
relation coefficients, as illustrated in Figure 11b, which meets
the analysis of kernel sizes. We can conclude that the subnet
agrid(3, 3, 384) can achieve comparable accuracy to the largest
one. As shown in Table VI, compared with agrid(4, 5, 512),
the subnet agrid(3, 3, 384) reduces 57% MACs and 55%
parameters and suffers a slight loss in EER.
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Fig. 8. Distribution between accuracy and depth under grid space, where a
box denotes the accuracy of architectures of the specific depth.
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a box denotes the accuracy of architectures with a kernel size.
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Fig. 11. Spearman rank correlation between accuracy and architectural
factors, including network depth, kernel size, and layer width.

C. Accuracy Predictor Performance

Figure 7 indicates that MPEA achieves different accuracy
as the predictor varies. The accuracy predictor is conducted
with different training data to investigate the predicted and
actual accuracy relationship. Figure 12 shows the results
of the selected subnets with 600M MACs among different
accuracy predictors. It illustrates that subnets derived from the
coarse-grained space have lower predicted errors and higher
recognition accuracy than that from the fine-grained space. It
suggests that the coarse-grained space predictor is more robust
than the fine-grained space predictor. Considering the sizes
of the fine-grained space are 106× larger than the sizes of
the coarse-grained space, it implies that a more subtle space
requires an increasing number of training data.
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Fig. 12. Performance of MPEA-selected subnets with 600M MACs using
predictors with different training data.

TABLE VI
PERFORMANCE OF SUBNETS DERIVED FROM GRID SEARCH AND

ANALYSIS ON THE VOX1-O

Subnet MACs Params EER(%) DCF0.01

agrid(3, 3, 384) 826.11M 3.42M 1.54% 0.148
agrid(4, 5, 512) 1.93G 7.55M 1.44% 0.163

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose EfficientTDNN to address the
problem of searching for the specialized network for speaker
recognition that meets specific constraints. Experimental re-
sults on the VoxCeleb dataset show the proposed Effi-
cientTDNN enables a significantly large number of architec-
tural settings (≈ 1013) concerning depth, kernel, and width.
Considering different computation constraints, it achieves
2.20% EER with 204M MACs, 1.41% EER with 571M
MACs as well as 0.94% EER with 1.45G MACs, which
outperforms D-TDNN, ResNet-20, Dual Attention, H/ASP,
ARET-25, ECAPA-TDNN, Fast ResNet-34, and AutoSpeech.
Comprehensive investigations suggest that the trained supernet
generalizes cells with more subtle widths and provides a fa-
vorable trade-off between accuracy and efficiency by reducing
or expanding the size of architectural settings.

In the future, this work could be improved from the fol-
lowing aspects. Firstly, the designed supernet ranging from
83.47M and 1.93G MACs is possibly not suitable for network
pruning since the lower bound of efficiency is so low that
large subnets have to adapt to smaller ones which may cause
over-regularization. Secondly, the sensitivity analysis of archi-
tectural factors shows that a kernel size of 1 leads to inferior
accuracy but still serves as an option for the architecture
search. Thirdly, the fine-grained space provides subtle width
options. However, it makes training an accuracy predictor hard.
Therefore, follow up work will include the following: (1)
Building a supernet that has an appropriately lower bound of
network efficiency; (2) Designing an adaptive search method
that eliminates options that lead to inferior performance; (3)
Establishing a search space that balances the granularities of a
sampling space and data requirements for training an accuracy
predictor.
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