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a b s t r a c t 

Background and Objective: Chest X-ray imaging is a relatively cheap and accessible diagnostic tool that 

can assist in the diagnosis of various conditions, including pneumonia, tuberculosis, COVID-19, and oth- 

ers. However, the requirement for expert radiologists to view and interpret chest X-ray images can be a 

bottleneck, especially in remote and deprived areas. Recent advances in machine learning have made 

possible the automated diagnosis of chest X-ray scans. In this work, we examine the use of a novel 

Transformer-based deep learning model for the task of chest X-ray image classification. 

Methods: We first examine the performance of the Vision Transformer (ViT) state-of-the-art image clas- 

sification machine learning model for the task of chest X-ray image classification, and then propose and 

evaluate the Input Enhanced Vision Transformer (IEViT), a novel enhanced Vision Transformer model that 

can achieve improved performance on chest X-ray images associated with various pathologies. 

Results: Experiments on four chest X-ray image data sets containing various pathologies (tuberculosis, 

pneumonia, COVID-19) demonstrated that the proposed IEViT model outperformed ViT for all the data 

sets and variants examined, achieving an F1-score between 96.39% and 100%, and an improvement over 

ViT of up to +5.82% in terms of F1-score across the four examined data sets. IEViT’s maximum sensitivity 

(recall) ranged between 93.50% and 100% across the four data sets, with an improvement over ViT of up 

to +3%, whereas IEViT’s maximum precision ranged between 97.96% and 100% across the four data sets, 

with an improvement over ViT of up to +6.41%. 

Conclusions: Results showed that the proposed IEViT model outperformed all ViT’s variants for all the ex- 

amined chest X-ray image data sets, demonstrating its superiority and generalisation ability. Given the 

relatively low cost and the widespread accessibility of chest X-ray imaging, the use of the proposed 

IEViT model can potentially offer a powerful, but relatively cheap and accessible method for assisting 

diagnosis using chest X-ray images. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Chest X-ray (CXR) imaging is one of the most widely utilised 

edical imaging techniques for detecting and diagnosing diseases 

60] , including pneumonia, tuberculosis, COVID-19, malignancy, 

nd others [2,55,74] . Its great advantage lies in its relatively low 

ost, high accessibility, and easy operation [45] . Important infor- 
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ation about a patient’s health can be extracted from chest X-ray 

mages, and manual analysis and detection by chest X-ray imaging 

f marks and signs of diseases is done by expert radiologists. In- 

erpretations can be difficult and it is a long and complicated pro- 

ess. In addition, the requirement for expert radiologists can be a 

ottleneck, especially in remote or deprived areas. To address this 

ssue, recent research has focused on the use of machine learning 

ethods for automated diagnosis, with various approaches gain- 

ng popularity and aiming to become an important tool for clini- 

ians [19,20,29,37] . 

The cutting edge development of general-purpose graphics pro- 

essing unit (GPU) hardware [59] , medical image analysis tech- 

iques [57] , and deep learning techniques [17] , has allowed sci- 
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ntists to automatically detect diseases using chest X-ray images 

50] , and design powerful computer-aided diagnosis (CAD) systems 

5,38,70] . The potential gains from automated X-ray diagnosis are 

ncreased sensitivity for findings, automation of tedious daily tasks, 

rioritisation of time-sensitive cases, and solving the issue of radi- 

logists not always being available in remote areas or developing 

ountries [8] . Chest X-ray imaging is also relatively cheap and ac- 

essible, with modern digital radiography machines being afford- 

ble even in under-developed countries [45] . 

In recent years, the use of deep learning methods and convo- 

utional neural networks (CNNs) has proven to be very effective 

n various computer vision-oriented tasks, including image classi- 

cation, image segmentation, and object detection [35] . Based on 

his success, AI/machine learning systems have been extensively 

esearched to automate image analysis in the clinical field, such 

s for tuberculosis diagnosis [40] , and the detection of pneumo- 

ia [33] , COVID-19 [41,43] , pneumothorax [25] , pneumoconiosis 

69] , lung cancer [28] , as well as for other radiology analysis tasks

76] . 

Sharma et al. [56] and Stephen et al. [65] used CNNs for the 

urpose of detecting pneumonia in chest X-ray images, achiev- 

ng an accuracy of 90.68% and 93.73% respectively. Khan et al.’s 

32] CoroNet CNN-based architecture achieved an overall accuracy 

f 89.6% for the same task. Saraiva et al. [54] used a multilayer 

erceptron (MLP) and a CNN for the same task, achieving an av- 

rage accuracy of 92.16% with the MLP, and 94.40% with the CNN, 

hereas Ayan et al. [4] used the well-known Xception and VGG16 

NN models, along with transfer learning and fine-tuning tech- 

iques for training, with test results showing that VGG16 outper- 

ormed Xception, reaching accuracies of 87% and 82% respectively. 

n a later work, Ayan et al. [3] proposed a CNN-based ensemble 

ethod, achieving an accuracy of 95.83%. Liang et al. [36] com- 

ined dilated convolutions and residual approaches, achieving an 

ccuracy of 90%. Okolo et al. [41] examined the use of various CNN 

rchitectures to detect COVID-19 and viral pneumonia in chest X- 

ays, achieving a maximum accuracy of 98%. 

Tuberculosis diagnosis from chest X-rays using machine learn- 

ng has also been widely researched. Yadav et al. [75] implemented 

arious deep learning techniques with the aim to detect Tubercu- 

osis in chest X-ray images. Significant improvement was achieved 

sing fine tuning and multiple data augmentation, reaching an ac- 

uracy of 94.89%. Deep learning was also used for the same task 

y Hooda et al. [24] , achieving an accuracy of 82.09%, and by 

asa et al. [42] , achieving an accuracy of 86.82%, whereas Eval- 

elista et al.’s [18] proposed CNN-based computer-aided diagnosis 

pproach reached an accuracy of 88.76%. Rahman et al. [48] carried 

ut an experiment for the detection of tuberculosis using various 

NN models and transfer learning, achieving an F1-score for the 

est performing model of 96.47%. 

The success of CNNs in generic image classification tasks led 

o their widespread adoption for the classification of various types 

f specialised images with or without transfer learning, as ex- 

lained above. Nevertheless, other architectures [16] have recently 

ained attention due to their enhanced performance compared to 

NNs. Inspired by the success of Transformers in Natural Language 

rocessing (NLP), researchers have recently tried to apply Trans- 

ormers directly to images [21] , using several approaches. Some 

orks combined CNN architectures with self-attention. Ramachan- 

ran et al. [51] suggested substituting all convolutional layers for 

elf-attention layers instead of using self-attention layers on top of 

hem, whereas Bello et al. [7] proposed to improve CNNs by sub- 

tituting some convolutional layers for self-attention layers. How- 

ver, these approaches exhibited high computational cost due to 

he large size of the images that led to an enormous growth 

n the complexity of self-attention. Wu et al. [73] used convolu- 
2 
ional layers to extract feature maps of the input images that were 

hen fed to stacked Transformer layers for computing the final 

utput. 

The Vision Transformer (ViT) [16] architecture is the first at- 

empt for a pure Transformer architecture that achieved state–

f-the-art results on image classification. ViT adapts the BERT 

15] Transformer-based architecture for understanding language to 

mage classification via some modifications. To this end, images are 

rst divided into rectangular patches, which are then treated as 

okens for which embeddings are computed. After the addition of 

ositional embeddings to encode the structure of the image, the 

atch embeddings are fed to a series of Transformer layers for the 

reation of the final feature map. Experimental results showed that 

he various ViT variants are able to achieve better performance 

n ImageNet, CIFAR, and VTAB classification compared to common 

NNs [16] . 

Following the success of the ViT model, various variants have 

een proposed. Touvron et al. [64] introduced the data-efficient 

mage transformers (DeiT), which performed better than the orig- 

nal ViT architecture on ImageNet, achieving an accuracy of 85.2%. 

uan et al. [77] proposed a layer-wise Tokens-To-Token Vision 

ransformer (T2T-ViT), to encode the significant structure for ev- 

ry token, contrary to the simple tokenisation utilised in ViT [16] . 

hey tested their method on ImageNet and achieved an 82.3% 

op-1 accuracy, outperforming the original ViT architecture. Chen 

t al. [9] proposed an original double-branch vision transformer 

hat also employed a cross-attention-based token fusion scheme, 

chieving a 82.8% Top-1 accuracy on ImageNet. Li et al. [34] intro- 

uced locality to vision transformers by incorporating 2D depth- 

ise convolutions. This basic concept was inspired from compar- 

sons between inverted residual blocks and feed-forward networks, 

nd achieved a 94.2% Top-5 accuracy on ImageNet, the best among 

he other evaluated architectures. Wang et al. [68] proposed the 

yramid Vision Transformer (PVT), which incorporates the pyramid 

tructure from CNNs to the vision transformer architecture, achiev- 

ng a 18.3% Top-1 error on ImageNet. Liu et al. [39] proposed a hi-

rarchical vision Transformer architecture that utilises shifted win- 

ows and has reduced computational complexity with respect to 

mage size compared to the original ViT model. 

Motivated from the importance of automating the diagnosis of 

hest X-ray images, from the success of self-attention in trans- 

ormer models, and from the increasing interest in models utilising 

ttention mechanisms within convnets [78] , in this work, we in- 

roduce the Input Enhanced Vision Transformer (IEViT), an enhanced 

ision Transformer architecture for classifying chest X-ray images. 

he proposed model builds on the ViT architecture and introduces 

 CNN block that is used to create an embedding of the full in- 

ut image, which is then iteratively fed to each Transformer en- 

oder layer by concatenating the image embedding to the output 

f each Transformer encoder layer. The proposed model, as well 

s the original ViT model, were then evaluated on four chest X- 

ay image data sets. Classification experiments demonstrated that 

EViT outperformed ViT for all the variants and data sets exam- 

ned, achieving a maximum F1-score of 98.48% for Normal vs. Chil- 

ren Pneumonia, 100% for Normal vs. Tuberculosis, 98.05% for Nor- 

al vs. Viral Pneumonia vs. COVID-19, and 96.39% for Normal vs. 

OVID-19. 

The contribution of this work can be summarised as follows: 

i) We evaluate the performance of the ViT “Base” and “Large”

ariants on four chest X-ray image data sets for the task of clas- 

ifying various pathological conditions reflected on the images. 

ii) We propose IEViT, a novel enhanced vision transformer ar- 

hitecture that improves the performance of both the “Base” and 

Large” ViT variants on all the examined chest X-ray image data 

ets. (iii) We provide a detailed performance evaluation of the pro- 
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Fig. 1. Sample X-ray images from the examined data sets: (a, b) Kermany, (c) Tuberculosis, (d, e) COVID-19 radiography, (f) COVIDx. 
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Table 1 

Data set details. 

Data set 

Number of images per class 

Normal Pneumonia Tuberculosis COVID-19 

Kermany 1,349/234 3,883/624 - - 

Tuberculosis 3,500 - 700 - 

COVID-19 10,202 1,345 - 3,615 

COVIDx 13,992/200 - - 16,490/200 

Note: ∗/ ∗ refers to the official train/test split. 80%/20% split used otherwise. 
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osed enhanced Vision Transformer architecture on the examined 

hest X-ray image data sets. 

. Methods 

In this work, we propose the Input Enhanced ViT (IEViT), 

n enhanced vision transformer architecture for the classification 

f chest X-ray images. The proposed architecture was evaluated 

gainst the original ViT architecture on four chest X-ray image 

ata sets that contained images associated with children pneumo- 

ia, tuberculosis, COVID-19, viral pneumonia, as well as with no 

athology (healthy individuals). We opted to evaluate our proposed 

ethod on images originating from various sources, acquired using 

ifferent radiography devices, and associated with various patho- 

ogical conditions, in order to validate its robustness and generali- 

ation in comparison to the original ViT architecture. 

.1. Data sets 

The four data sets used in this work are the following: (i) The 

ermany et al. data set [30] , which consists of normal chest X-ray 

cans and scans associated with pneumonia of children patients 

1–5 years old), acquired from Kermany et al. [31] . (ii) The Tubercu- 

osis Chest X-ray Database [48] , which contains normal chest X-ray 

mages and chest X-ray images associated with Tuberculosis, col- 

ected from three publicly accessible databases [1,6,47] . (iii) The 

OVID-19 radiography database [11,49] , which consists of normal 

hest X-ray images, chest X-ray images associated with viral pneu- 

onia, and chest X-ray images associated with COVID-19, acquired 

rom multiple sources [22,26,27,30,47,71] . (iv) The COVIDx data set 

67] , which contains normal and COVID-19-positive chest X-ray im- 

ges, sourced from five different publicly available data repositories 

12–14,46,47] . To the best of our knowledge, COVIDx has the most 

OVID-19 positive images out of all the publicly available data sets. 

Sample X-ray images from the examined data sets are provided 

n Fig. 1 , whereas the number of images per class in each data set

s presented in Table 1 . 
3 
.2. The original vision transformer (ViT) architecture 

Proposed by Dosovitskiy et al. [16] , the Vision Transformer (ViT) 

rchitecture is a pure transformer approach that can perform on 

ar or even outperform common CNN architectures for image clas- 

ification when trained on large amounts of image data. The in- 

ut image to the ViT architecture is split into square patches, with 

ach patch flattened and concatenated across the image’s channels 

n order to create a vector representation of each image patch. An 

mbedding of each vector is then created via linear projection to a 

pecific dimension. A learnable position embedding is also added 

o each patch in order to allow the ViT model to learn about the 

tructure of the input images. The patch embeddings are then fed 

o stacked Transformer layers and the output is passed to an MLP 

ead for the final classification. Details about the various ViT vari- 

nts are provided in Table 2 . 

.3. The proposed input enhanced vision transformer (IEViT) 

The proposed IEViT approach is partially motivated by the 

esNet [23] architecture, which introduced the skip connection, i.e. 

he addition of the original input to the output of each convolu- 

ional block, which brought about the concept of a residual net- 

ork. Our approach builds on this concept for modifying the ViT 

16] architecture. To this end, a representation of the original in- 

ut image is iteratively added to the output of each Transformer 

ncoder layer. This is achieved by first designing a convolutional 
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Table 2 

Details of the ViT and IEViT model variants. 

Model Patch size Layers Hidden size MLP size Heads Params 

(P × P) (L ) (D ) 

ViT-B/16 16 × 16 12 768 3072 12 85.8M 

ViT-B/32 32 × 32 12 768 3072 12 87.4M 

ViT-L/16 16 × 16 24 1024 4096 16 303.3M 

ViT-L/32 32 × 32 24 1024 4096 16 305.5M 

IEViT-B/16 16 × 16 12 768 3072 12 90.8M 

IEViT-B/32 32 × 32 12 768 3072 12 92.4M 

IEViT-L/16 16 × 16 24 1024 4096 16 309.9M 

IEViT-L/32 32 × 32 24 1024 4096 16 312.1M 

Fig. 2. Overview of the proposed IEViT model. 
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lock in parallel with the ViT network. The CNN block takes as 

n input the whole input image and outputs an embedding of the 

hole image, which is then iteratively concatenated to the output 

f each Transformer encoder layer, thereby making the network to 

lways “remember” the full image at the end of each transformer 

lock output. An overview of the proposed IEViT architecture is 

rovided in Fig. 2 . 

The proposed CNN block consists of stacked 2D convolutional 

ayers, followed by a 1D global maximum pooling layer, as shown 

n Fig. 2 . Three 2D convolutional layers were used in our experi- 

ents, with the first using 16 filters with a kernel size of 3, the 

econd using 256 filters with a kernel size of 5, and the third us- 

ng D filters with a kernel size of 5. The input to the CNN block is

n image of size H × W × C, where H is the height of the image, W 

he width, and C the number of channels. Then, the max pooling 
q

4 
ayer is used in order to compute the output vector x img of size D ,

hich is a mapping of the input image to D dimensions. 

For the vision transformer part of the architecture, similar to 

iT [16] , the input image is divided into N = 

H·W 

P 2 
patches, where 

P, P ) is the resolution of each patch, which are then flattened 

cross all dimensions to create a sequence of flattened patches x p 
f total size N × (P 2 · C) . Then, the patch embeddings are created 

y mapping the patches to D dimensions using a trainable linear 

rojection, as follows: 

 p = [ x 1 p E, x 2 p E, . . . , x N p E] , E ∈ R 

(P 2 ·C) ×D (1)

Then, as in ViT [16] , a learnable embedding x class of size D , sim-

lar to BERT’s [class] token [15] , is prepended to the sequence of 

atch embeddings, while position embeddings are added to the se- 

uence of patch embeddings in order to incorporate information 
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Table 3 

Data augmentation procedure. 

Augmentation step Options/Range 

Rotation at random angle [-40, 40] degrees 

Random flipping {horizontally, vertically} 

Random shifting across the height 10% of the total height 

Random shifting across the width 10% of the total width 

Random shifting of brightness [0.5, 1.5] 

Random shearing in counter-clockwise direction [0, 0.1] radians 

Random zooming within a range [0.9, 1.1] 

Rescaling by factor 1/255 

Note: “nearest” image filling mode used where needed. 
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bout the position of each patch in the original image. A stan- 

ard learnable 1D position embedding of size D is used for each 

f of the N + 1 embeddings in the patch embedding matrix, with 

he position for the additional x class embedding set as 0. The initial 

atch embeddings z 0 are computed as follows: 

 0 = [ x class , z p ] + E pos , E pos ∈ R 

(N+1) ×D (2)

Then, L transformer encoder layers [16,66] are stacked, with z 0 
eing the input of the first layer. ˆ z l is then computed by concate- 

ating the image embedding x img to the output z l of each Trans- 

ormer encoder layer l, l = 1 , 2 , ., L , as follows: 

ˆ 
 l = [ z l , x img ] , ˆ z l ∈ R 

(N+1+ l) ×D (3) 

ˆ 
 l is then fed to the next Transformer encoder layer, or to the next 

ayer of the architecture if l = L . As a result, contrary to ViT, each

ransformer encoder layer in IEViT is fed a representation of the 

hole input image in addition to the output of the previous Trans- 

ormer encoder layer, as also shown in Fig. 2 . 

As shown in Table 2 , the original ViT architecture supported dif- 

erent configurations that were adopted from BERT [15] . Follow- 

ng the same approach, the proposed IEViT architecture adopts the 

Base” and “Large” models using a similar notation to ViT. To this 

nd, IEViT-B/16 refers to the ”Base” variant with an image patch 

ize of 16 × 16 , whereas similarly, IEViT-L/32 refers to the ”Large”

ariant with an image patch size of 32 × 32 . Details about the pro-

osed model’s variants, as well as the variants of the original ViT 

re provided in Table 2 . 

It must also be noted that Keras and the vit-keras 4 implementa- 

ion of ViT were used for all our experiments and as the backbone 

or the implementation of IEViT. 

.4. Training and classification 

To evaluate the proposed IEViT architecture against the original 

iT architecture for the four examined chest X-ray data sets, we 

ompared each of the B/16, B/32, L/16, L/32 variants of the pro- 

osed architecture against the same variants of the original ViT ar- 

hitecture. Transfer learning was used for both architectures, with 

he ViT models and the ViT parts of the proposed models being 

nitialised with weights pre-trained on the ImageNet [53] data set. 

or the proposed architecture, the additional parts were initialised 

andomly and their weights were trained during the fine-tuning 

rocess. For each data set, the classifier on top of each model was 

et according to the number of classes in the data set, and end-to- 

nd training was used for the fine-tuning. 

Training was performed using Cross-Entropy as the loss func- 

ion ( Eq. (4) ), the Adam optimiser, a batch size of 16 and a 0.0 0 01

earning rate. The low learning rate was selected in order to better 

dapt the pre-trained weights to the new data. 

 CE = −
M ∑ 

c=1 

y o,c log (p o,c ) (4) 

ith M being the number of classes ( M Kermany = 2 , M Tuberculosis = 2 ,

 COVID-19 = 3 , M COVIDx = 2 ), y o,c having a value of 1 if observation

belongs to class c and a value of 0 if not, and p o,c being the

redicted probability that observation o belongs to class c. 

Label smoothing was also used for the training process in order 

o reduce over-fitting and encourage the model to be less confi- 

ent, thus leading to better generalisation. Label smoothing is a 

egularisation technique, proposed by Szegedy et al. [62] for im- 

roving the performance of the Inception architecture on the Im- 

geNet data set, which has since been adopted by many state-of- 

he-art deep learning classification approaches [52,79] . When using 
4 https://github.com/faustomorales/vit-keras 

fl

m

a

5 
ross-entropy as the loss function, training aims to minimise L CE , 

ith y o,c being a “hard” target ∈ { 0 , 1 } . When using label smooth-

ng, a “soft” target y LS 
o,c is used instead, computed as: 

 

LS 
o,c = y o,c (1 − α) + 

α

M 

(5) 

here M is the number of classes and α the label smoothing pa- 

ameter, which was set to α = 0 . 1 in this work. 

In addition to label smoothing, data augmentation was used 

uring training, as it has been proven to be an effective tool for 

mage classification [44] , and is mostly used in deep learning ap- 

roaches to increase the amount of training data and assist in 

voiding over-fitting [72] . To this end, more training images were 

reated using the original training images by following the aug- 

entation steps described in Table 3 . A uniform probability distri- 

ution was used to create the random values for the data augmen- 

ation procedure, and batches of augmented images were created 

n real-time during each training procedure using the Keras Image- 

ataGenerator class. It must also be pointed out that data augmen- 

ation was used only for training. Consequently, the reported re- 

ults on the test data refer to original images only. 

. Results 

.1. Classification experiments 

The proposed IEViT models, as well as the original ViT mod- 

ls, for the B/16, B/32, L/16, and L/32 variants were evaluated via 

upervised classification experiments on the four examined chest 

-ray data sets for the respective 2-class and 3-class problems, i.e. 

ormal vs. Pneumonia for the Kermany data set, Normal vs. Tu- 

erculosis for the Tuberculosis data set, Normal vs. COVID-19 vs. 

iral Pneumonia for the COVID-19 data set, and Normal vs. COVID- 

9 for the COVIDx data set. The training set of each data set was 

urther split into a training (90%) and validation (10%) set, whereas 

nal performance results were reported on the unseen test sets in 

rder to provide a fair estimate of classification performance and 

educe over-fitting. 

For all models, classification performance was measured using 

he following metrics: Accuracy, Recall (Sensitivity), Precision, and 

1-score, which is the harmonic mean of Precision and Recall, de- 

ned as: 

1-score = 2 · P recision · Recall 

P recision + Recall 
(6) 

n the case of F1-score, recall, and precision, the metrics were com- 

uted for all classes and the average across classes (macro aver- 

ge) was reported as the final value of the metric. It must also be 

oted that due to the class imbalance of some data sets, F1-score 

as used as the primary performance benchmark, as classification 

ccuracy can be biased in cases of unbalanced data sets. Tensor- 

ow and the Keras API were employed for the proposed experi- 

ental evaluation. It must also be noted that input images were 

ll rescaled to 224 × 224 . The classification performance achieved 

https://github.com/faustomorales/vit-keras
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Table 4 

Classification performance (%) on the Kermany et al. children 

pneumonia data set. 

Model Accuracy Recall Precision F1-score 

IEViT-B/16 97.76 98.46 97.96 98.21 

IEViT-B/32 97.12 98.98 96.50 97.72 

IEViT-L/16 97.60 99.23 96.99 98.10 

IEViT-L/32 98.08 99.74 97.25 98.48 

ViT-B/16 92.63 97.18 91.55 94.28 

ViT-B/32 90.71 98.21 88.25 92.96 

ViT-L/16 91.99 98.97 89.35 93.92 

ViT-L/32 90.22 98.72 87.30 92.66 

CNN-block-B 69.55 91.28 69.53 78.94 

CNN-block-L 67.95 88.21 69.08 77.48 

Note: Results in bold denote the highest value per metric. 

Table 5 

Classification performance (%) on the Tuberculosis data set. 

Model Accuracy Recall Precision F1-score 

IEViT-B/16 99.76 100.0 98.59 99.29 

IEViT-B/32 100.0 100.0 100.0 100.0 

IEViT-L/16 99.76 100.0 98.59 99.29 

IEViT-L/32 99.29 97.14 98.55 97.84 

ViT-B/16 99.64 100.0 97.90 98.94 

ViT-B/32 99.41 96.43 100.0 98.94 

ViT-L/16 98.81 98.57 94.52 96.50 

ViT-L/32 98.69 92.14 100.0 95.91 

CNN-block-B 89.43 68.21 94.37 73.72 

CNN-block-L 88.48 65.36 93.93 70.27 

Note: Results in bold denote the highest value per metric. 

Table 6 

Classification performance (%) on the COVID-19 radiography data 

set. 

Model Accuracy Recall Precision F1-score 

IEViT-B/16 97.93 95.54 98.29 96.82 

IEViT-B/32 97.37 95.28 98.34 96.74 

IEViT-L/16 96.18 91.17 97.26 93.90 

IEViT-L/32 98.59 97.09 99.06 98.05 

ViT-B/16 97.96 94.17 98.77 96.27 

ViT-B/32 97.01 94.36 98.17 96.16 

ViT-L/16 96.54 90.02 97.10 92.95 

ViT-L/32 96.08 91.40 97.64 94.21 

CNN-block-B 81.54 70.24 74.38 71.99 

CNN-block-L 83.68 72.00 77.41 74.24 

Note: Results in bold denote the highest value per metric. 
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Table 7 

Classification performance (%) on the COVIDx data set. 

Model Accuracy Recall Precision F1-score 

IEViT-B/16 96.50 93.50 99.47 96.39 

IEViT-B/32 95.00 91.00 98.91 94.79 

IEViT-L/16 95.25 91.00 99.45 95.04 

IEViT-L/32 95.00 90.50 99.45 94.76 

ViT-B/16 95.00 90.50 99.45 94.76 

ViT-B/32 92.00 85.00 98.84 91.40 

ViT-L/16 93.25 87.00 99.43 92.80 

ViT-L/32 92.75 88.00 97.24 92.39 

CNN-block-B 90.50 90.50 90.50 90.50 

CNN-block-L 91.00 91.00 91.00 91.00 

Note: Results in bold denote the highest value per metric. 
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y the examined IEViT and ViT variants on the Kermany, Tuber- 

ulosis, COVID-19 and COVIDx data sets is reported in Tables 4 , 5 ,

 , and 7 respectively, in terms of the examined metrics, whereas 

onfusion matrices for the IEViT variants are provided in Fig. 3 . 

.2. Classification results per data set 

Classification results for the proposed model’s variants, as well 

s for the original ViT model variants, on the Kermany et al. chil- 

ren pneumonia data set are presented in Table 4 . From this ta- 

le, as well as from Table 8 that shows the per variant perfor- 

ance difference in terms of F1-score, it is evident that all the 

roposed IEViT model’s variants outperformed their respective ViT 

odel variants for all the examined metrics. The achieved im- 

rovement in terms of F1-score spans from +3 . 93 % for the B/16

ariant to +5 . 82 % for the L/32 variant, with an average improve-

ent of +4 . 67 % across all variants. Results demonstrated stability 

cross the examined models, with an average F1-score within the 

ange of 92.66%-94.28% for the original ViT variants, compared to 
6 
7.72%-98.48% for the proposed IEViT model’s variants. The best 

erformance for the Kermany et al. children pneumonia data set 

as achieved by the IEViT-L/32 model, reaching an F1-score of 

8.48%, an accuracy of 98.08%, a recall of 99.74%, and a precision 

f 97.25%, as shown in Table 4 . 

Results for the proposed model’s variants, as well as for the 

riginal ViT model variants, on the Tuberculosis data set are pre- 

ented in Table 5 . From this table and from Table 8 , it is evident

hat all the proposed IEViT model’s variants outperformed their 

espective ViT model variants for all the examined metrics. The 

chieved improvement in terms of F1-score spans from +0 . 35 % for 

he B/16 variant to +2 . 79 % for the L/16 variant, with an average

mprovement of +1 . 72 % across all variants. F1-scores for the ViT 

odel variants ranged from 95.91%-98.94%, compared to 97.84%- 

00% for the proposed IEViT model’s variants. The best perfor- 

ance for the Tuberculosis data set was achieved using the IEViT- 

/32 model, reaching an F1-score, accuracy, recall, and precision of 

00%, as shown in Table 5 . 

For the COVID-19 radiography data set, results for the proposed 

odel’s variants, as well as for the original ViT model variants, are 

resented in Table 6 . As shown in this table, as well as in Table 8 ,

ll the proposed IEViT model’s variants outperformed their respec- 

ive ViT model variants for all the examined metrics. The improve- 

ent achieved in terms of F1-score ranged between +0 . 58 % for 

he B/16 variant to +3 . 84 % for the L/32 variant, with an average

mprovement of +1 . 49 % across all variants. F1-scores for the ViT 

odel variants ranged from 92.95%-96.27%, compared to 93.90%- 

8.05% for the proposed IEViT model’s variants. The best perfor- 

ance for the COVID-19 radiography data set was achieved using 

he IEViT-L/32 model, reaching an F1-score of 98.05%, an accuracy 

f 98.59%, a recall of 97.09%, and a precision of 99.06%, as shown 

n Table 6 . 

Results for the COVIDx data set for the original ViT variants, 

s well as the proposed IEViT variants are reported in Table 7 . 

rom this table and from Table 8 , it is evident that all the pro-

osed IEViT model’s variants outperformed their respective ViT 

odel variants for all the examined metrics. The achieved im- 

rovement in terms of F1-score ranged from +1 . 63 % for the B/16

ariant to +3 . 39 % for the B/32 variant, with an average improve-

ent of +2 . 41 % across all variants. For the ViT model variants, F1-

cores ranged from 91.40%-94.76%, compared to 94.76%-96.39% for 

he proposed IEViT model’s variants. The best performance for the 

OVIDx data set was achieved using the IEViT-B/16 model, reach- 

ng an F1-score of 96.39%, an accuracy of 96.50%, a recall of 93.50%, 

nd a precision of 99.47%, as shown in Table 7 . 

.3. Ablation study 

The acquired experimental results demonstrate that the addi- 

ion of the CNN block in the ViT architecture and the concatenation 
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Fig. 3. Confusion matrices for all the IEViT variants for the four examined data sets. Results refer to the test set of each dataset. 

Table 8 

F1-scores (%) and their difference ( �) for IEViT and ViT for all examined data sets. 

Data set ViT-B/16 IEViT-B/16 � ViT-L/16 IEViT-L/16 � ViT-B/32 IEViT-B/32 � ViT-L/32 IEViT-L/32 � Avg �

Kermany 94.28 98.21 3.93 93.92 98.10 4.18 92.96 97.72 4.76 92.66 98.48 5.82 4.67 

Tuberculosis 98.94 99.29 0.35 96.50 99.29 2.79 98.18 100.0 1.82 95.91 97.84 1.93 1.72 

COVID-19 96.27 96.85 0.58 92.95 93.90 0.95 96.16 96.74 0.59 94.21 98.05 3.84 1.49 

COVIDx 94.76 96.39 1.63 92.80 95.04 2.24 91.40 94.79 3.39 92.39 94.76 2.38 2.41 

Average 96.06 97.69 1.62 94.04 96.58 2.54 94.67 97.31 2.64 93.79 97.28 3.49 2.57 
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Table 9 

F1-scores (%) for each data set using IEViT variants and the examined CNN 

models. 

Model 

Data set 

Kermany Tuberculosis COVID-19 COVIDx 

InceptionV3 94.76 99.28 97.86 97.19 

Xception 95.24 96.68 96.92 97.70 

ResNet50V2 95.13 98.55 97.70 98.48 

EfficientNetB4 94.15 94.74 98.05 98.48 

InceptionResNetV2 95.20 97.06 96.26 98.22 

IEViT-B/16 98.21 99.29 96.85 96.39 

IEViT-B/32 97.72 100.0 96.74 94.79 

IEViT-L/16 98.10 99.29 93.90 95.04 

IEViT-L/32 98.48 97.84 98.05 94.76 

Note: Results in bold denote the best performance for each dataset. 
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f its output to the output of each Transformer encoder layer led 

o a consistently improved classification performance of IEViT over 

iT for all the examined data sets and variants. To further validate 

he contribution of the CNN block to the improvement in perfor- 

ance and to examine whether the combination of the CNN block 

nd ViT is justified or the CNN block on its own is able to perform

n par with IEViT, we evaluated the performance of the CNN block 

y creating a model consisting of only the CNN block and the MLP 

ead. The “Base” ( D = 768 ) and “Large” ( D = 1024 ) variants of the

NN block were evaluated on the four examined data sets, using 

he same training parameters (including data augmentation) as for 

he ViT and the IEViT experiments. 

Classification results for the CNN block variants are provided in 

ables 4, 5, 6 , and 7 for each data set respectively. From these ta-

les, it is evident that the CNN block variants on their own provide 

ignificantly worse performance than the respective IEViT and ViT 

ariants. For the Kermany et al. children pneumonia data set, the 

NN block achieved a maximum F1-score of 78.94%, compared to 

8.48% for IEViT and 94.28% for ViT, whereas for the Tuberculosis 

ata set, the CNN block achieved a maximum F1-score of 73.72%, 

ompared to 100% for IEViT and 98.94% for ViT. For the COVID- 

9 radiography data set, the CNN block achieved a maximum F1- 

core of 74.24%, compared to 98.05% for IEViT and 96.27% for ViT, 

hile for the COVIDx data set, the CNN block achieved a maximum 

1-score of 91%, compared to 96.39% for IEViT and 94.76% for ViT. 

onsequently, the superiority of the IEViT variants over their re- 

pective ViT variants indicates that the introduction of the CNN 

lock is significant for boosting the performance of the proposed 

EViT model. 

.4. Comparison to established CNN models 

To further assess the suitability of the proposed model, the per- 

ormance of five well-established CNN models was evaluated on 
7 
he four examined data sets. The CNN models used for the compar- 

son with IEViT were InceptionV3 [62] , Xception [10] , ResNet50V2 

23] , EfficientNetB4 [63] , and InceptionResNetV2 [61] . All models 

ere initialised with weights pre-trained on the ImageNet data set 

nd were then fine-tuned on the examined data sets using end- 

o-end training and the same training parameters (including data 

ugmentation) as for the ViT and the IEViT experiments. It must 

e noted that the default Keras implementations of the examined 

NN models were used for the experimental evaluation. 

The F1-scores achieved by the examined CNN models, as well 

s by the four IEViT variants, are provided for each data set in 

able 9 . The IEViT-L/32 variant achieved the best performance for 

he Kermany et al. children pneumonia data set, with an F1-score 

f 98.48% compared to 95.24% achieved by the best performing 

NN model (Xception). Regarding the Tuberculosis data set, the 

EViT-B/32 variant performed the best, achieving an F1-score of 

00% compared to 99.28% for the best performing InceptionV3 CNN 
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Fig. 4. F1-score (%) achieved for each data set and model variant vs. the number of parameters (millions) of the model. (a) “Base” variant, (b) “Large” variant. 

Table 10 

Best performing IEViT model per data set. 

Data set Model Accuracy Recall Precision F1-score 

Kermany IEViT-L/32 98.08 99.74 97.25 98.48 

Tuberculosis IEViT-B/32 100.0 100.0 100.0 100.0 

COVID-19 IEViT-L/32 98.59 97.09 99.06 98.05 

COVIDx IEViT-B/16 96.50 93.50 99.47 96.39 
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odel. For the COVID-19 radiography data set, the best perfor- 

ance was provided by both the IEViT-L/32 variant and the Effi- 

ientNetB4 CNN model, with both achieving an F1-score of 98.05%. 

inally, the EfficientNetB4 model provided the best performance 

or the COVIDx data set, achieving an F1-score of 98.48% compared 

o 96.39% achieved by the best performing IEViT variant (IEViT- 

/16). 

. Discussion 

By examining the experimental results, it is evident that the 

roposed IEViT enhancement of the ViT architecture consistently 

esults in improved performance for all the examined variants and 

ata sets. As shown in Table 8 , the average improvement across 

ata sets over the original ViT model in terms of the F1-score was 

1 . 62 % for the B/16 variant, +2 . 64 % for B/32, +2 . 54 % for L/16, and

3 . 49 % for L/32. For the B/16, B/32, and L/16 variants, the low-

st improvement was achieved for the COVID-19 radiography data 

et, ranging from +0 . 58 % to +0 . 95 %, whereas the lowest improve-

ent for the L/32 variant was achieved for the Tuberculosis data 

et ( +1 . 93 %). 

It is also worth mentioning that different IEViT variants per- 

ormed the best for each data set, as shown in Table 10 . Variant

/32 provided the best performance for the Kermany and COVID-19 

adiography data sets, B/32 for the Tuberculosis data set, and B/16 

or the COVIDx data set. Consequently, the selection of the most 

uitable variant depends on the task at hand and would require 

xperimentation and validation experiments on the related data. 

urthermore, as shown in Table 9 , well-established CNN models 

an achieve comparable (COVID-19 data set) or better (COVIDx data 

et) performance than IEViT in some cases, whereas IEViT performs 

etter in other cases (Kermany and Tuberculosis data sets). Con- 

equently, the task at hand and the computational complexity of 
8 
he models used must be taken into consideration when selecting 

he most appropriate model. Nevertheless, as shown in Table 8 , the 

EViT-B/16 variant achieved the highest average F1-score (97.69%) 

cross all data sets, indicating that it can be a good generic solu- 

ion for X-ray image classification tasks. To this end, the B/16 vari- 

nt can be selected when there are computational or other con- 

trains that do not allow a thorough experimentation with all the 

vailable variants. 

The proposed IEViT enhancement of the ViT architecture comes 

t a cost in terms of computational complexity. The addition of 

onvolution layers, as well as the increase in size of the input to 

he Transformer encoder layers, results in an increase in the num- 

er of trainable parameters of the proposed models compared to 

he original ViT models. As shown in Table 2 , the IEViT “Base”

ariants have approximately 5 million more trainable parame- 

ers compared to the respective ViT “Base” variants, whereas the 

EViT “Large” variants have approximately 6.5 million more train- 

ble parameters compared to the respective ViT “Large” variants. 

evertheless, as shown in Fig. 4 , this increase in complexity (num- 

er of parameters) led in all cases to improved performance, with 

ome cases exhibiting a substantial improvement (up to +5 . 82 % in 

1-score for the L/32 variant and the Kermany data set), thus this 

ncrease in complexity can be justified. 

To ensure the generalisation ability of the proposed models, 

arious measures were taken to avoid overfitting. For each data set, 

he models were trained and tested on independent sets, where 

he final test set was completely “unseen” to the training process. 

odels were optimised for a validation set which was selected out 

f the training set. Furthermore, a stratified random sampling was 

sed to create the train/validation/test splits when no official split 

as available, in order to ensure that the class distribution within 

he various sets was the same. The use of data augmentation dur- 

ng the training procedure further helped in addressing overfitting 

s it introduces variation in the training data and has been shown 

o improve the generalisation ability of deep learning models and 

educe overfitting [58] . Similarly, the use of the employed label 

moothing technique has also been shown to reduce overfitting 

nd lead to better generalisation [62] . The proposed IEViT variants, 

s well as the original ViT variants were trained and evaluated 

n four diverse X-ray image data sets. Performance was consistent 

cross data sets for both models, with IEViT consistently outper- 

orming ViT for all the data sets. Finally, the F1-score was used as 

he benchmark metric for the performance of the examined mod- 
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ls in order to ensure a fair performance evaluation, as the accu- 

acy metric can be heavily biased towards the majority class in the 

ata set and thus lead to erroneous conclusions. 

The proposed IEViT model built upon the state-of-the-art orig- 

nal ViT model for image classification and achieved consistently 

etter performance than ViT for the classification of chest X- 

ay images, using transfer learning via weights pre-trained on 

mageNet. Given their widespread availability, the ability to use 

eights pre-trained for the original ViT model is also an advanta- 

eous characteristic of IEViT, as IEViT models can be easily trained 

sing transfer learning for various image classification tasks, with- 

ut the need to train the model on huge data sets. Furthermore, 

he use of various data sets that contained chest X-ray images ac- 

uired from various sources, using different radiography devices, 

ndicates that IEViT is able to generalise well and is not limited to 

mages acquired under specific settings and using specific radiogra- 

hy devices. Considering this and given the reported experimental 

esults, it is evident that the proposed IEViT model constitutes a 

owerful solution for chest X-ray image classification that is able 

o consistently outperform the original ViT model variants on a set 

f diverse chest X-ray image data sets. 

. Conclusion 

In this work, we evaluated the performance of the state-of-the- 

rt Vision Transformer (ViT) architecture for the task of classify- 

ng various pathological conditions in chest X-ray images, and pro- 

osed the novel IEViT architecture that outperformed the original 

iT for all the variants and data sets examined. Experiments on 

 data set for children pneumonia, a data set for Tuberculosis, a 

ata set for COVID-19 and viral pneumonia, as well as a data set 

or COVID-19, demonstrated the consistent improvement in classi- 

cation performance of the proposed IEViT model’s variants over 

he respective original ViT model’s variants. Classification perfor- 

ance in terms of F1-score reached 98.4% for the children pneu- 

onia data set using the IEViT-L/32 variant, 100% for the Tubercu- 

osis data set using the IEViT-B/32 variant, 98.05% for the COVID- 

9 and viral pneumonia data set using the IEViT-L/32 variant, and 

6.39% for the COVID-19 data set using the IEViT-B/16 variant. 

Given the relatively low cost and the widespread accessibility 

f chest X-ray imaging, the use of the proposed IEViT model can 

otentially offer a powerful, but relatively cheap and accessible 

ethod for assisting diagnosis using chest X-ray images. Further- 

ore, the variety of data sets and image sources within the data 

ets indicates that the proposed solution is not constrained to im- 

ges acquired using a specific device under specific settings, but 

an be generalised. Finally, the successful use of transfer learning, 

y using weights pre-trained on generic images, suggests that the 

roposed approach can be easily extended and re-trained for the 

lassification of chest X-ray images with various pathologies. Fu- 

ure work will focus on examining the performance of the pro- 

osed IEViT model on multiple pathologies, on exploring ways to 

educe the overall computational complexity of the model, and on 

xamining the use of transfer learning based on X-ray images in- 

tead of generic natural images. 
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