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1 Introduction

The experiments at the Large Hadron Collider (LHC) are able to measure particle scat-
tering with unprecedented precision, approaching the percent level for some observables.
Precise theoretical predictions that are adapted to the specific experimental observables
and that match the accuracy of the experimental measurements are needed to extract
fundamental Standard Model parameters. Typically, theoretical predictions are obtained
using perturbation theory as an expansion in the coupling. The precision of the theoretical
predictions is generally limited by a dependence on unphysical renormalisation and factori-
sation scales, or through the modelling of complicated final states with relatively few final
state particles. This can be systematically improved by including higher-order corrections.
The leading order (LO) prediction captures the gross features of an observable. Inclusion
of next-to-leading order (NLO) corrections is required to estimate the normalisation of the
predictions. Even higher orders (NNLO, N3LO, . . . ) are needed to describe detailed event
properties or to achieve the goal of percent level precision.

In general, there are two obstacles to the perturbative expansion. First, knowledge
of the relevant tree and loop multiparticle scattering amplitudes. In the framework of
dimensional regularisation, gauge-theory loop amplitudes contain explicit infrared poles
in the regulator ε of up to two powers per loop. The computation of such amplitudes is
sufficiently complicated that it is a field in its own right. Second, a scheme to extract the
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implicit infrared divergences. These are produced by integration of amplitudes with fewer
loops and more external particles over the unresolved or infrared-singular regions of the
phase space. The explicit poles and implicit poles are cancelled in physical cross sections,
thereby enabling the numerical evaluation over the whole of phase space.

For multiparticle final states (corresponding to 2 → 4, 5, . . . kinematics), the state-
of-the-art are NLO perturbative corrections. Automated programmes exist for calculating
tree and one-loop amplitudes together with the necessary infrared subtraction terms. These
are encapsulated in a number of multi-purpose event generator programs [1–4], enabling
NLO-accurate predictions for essentially any relevant collider process.1 At NNLO, calcu-
lations are mostly limited to 2 → 2 kinematics like, for example, di-jet production [6, 7],
vector-boson-plus-jet production [8–10], photon-plus-jet-production [11, 12] or top quark
pair production [13, 14]. Recent progress in the derivation of two-loop 2 → 3 scattering
amplitudes has led to calculations for three-photon production [15], diphoton-plus-jet pro-
duction [16] and three-jet production [17]. Several infrared subtraction methods have been
developed for NNLO calculations (See ref. [18] for a review.). Implementations using these
methods are largely made on a process-by-process basis, and most methods scale either
poorly or not at all to higher multiplicities.

Recently, the first steps towards N3LO calculations for 2 → 1 processes have been
taken, with the computations of fully inclusive coefficient functions for Higgs produc-
tion [19, 20] and the Drell-Yan process [21, 22], which are now being extended towards
fully differential final states [23–26]. The infrared subtraction methods used for N3LO
calculations exploit the very special 2→ 1 kinematics, and no systematic method has been
established.

The need for NNLO and N3LO predictions for phenomenologically relevant high-
multiplicity processes highlights the importance of developing a more systematic and struc-
tured infrared subtraction formalism.

The universal factorisation properties of multiparticle amplitudes are important for
generating counter terms that can be used to isolate the infrared singularities that are
produced in particular regions of phase space, when one or more particles are unresolved.2
Most well studied are the single unresolved limits, where either one particle is soft, or two
are collinear, which are relevant for NLO calculations. At NNLO, one is concerned with
the double unresolved limits of tree amplitudes [34–37], as well as the single unresolved
limit of one-loop amplitudes [38–41]. At N3LO, one encounters the triple unresolved limits
of tree amplitudes [42–46], the double unresolved limits of one-loop amplitudes [47–52] and
the single unresolved limits of two-loop amplitudes [53–57]. And so on.

One of the complications immediately evident at NNLO is the overlap between it-
erated single unresolved and genuinely double unresolved limits. For example, the limit
in which three particles i, j and k become collinear (studied in refs. [34–36]) is obtained
when invariants in the set {sij , sjk, sik, sijk} are small and there are two inverse powers of

1See ref. [5] for a summary of available tools.
2See ref. [27] for a review. These factorisation properties are also key in quantifying the accuracy of

parton branching algorithms in event generators, and how these algorithms can eventually be extended to
increase their logarithmic accuracy, see for example refs. [20, 28–33].
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them. This limit contains both single and double unresolved limits — an iterated collinear
contribution (which overlaps with soft and collinear limits), as well as a genuinely double
unresolved contribution. In this paper we decompose the triple collinear limits into prod-
ucts of two-particle splitting functions, and a remainder that is explicitly finite when any
two of {i, j, k} are collinear.

To help with the discussion of the singularities present in the real radiation amplitudes,
we introduce the notion of internal and external singularities. Internal singularities are
associated with small invariants amongst the set of collinear particles. External singularities
involve other (spectator) particles involved in the scattering through the definition of the
momentum fraction. For example, when two particles, i and j are collinear we find the
well known single collinear limit proportional to the two-particle splitting function,

1
sij
Pab(xi).

The limit as sij → 0 references only particles in the collinear set and is therefore an internal
singularity. External singularities are both present in the splitting functon Pab(xi) and as-
sociated with the momentum fraction limits xi → 0 or xi → 1. These external singularities
correspond to situations where one of {i, j} is collinear with a spectator particle, or where
one of the particles is soft.

As in ref. [34], we work with colour-ordered amplitudes and consider spin-averaged
collinear limits, which are directly obtained by taking the collinear limit of partonic
“squared” matrix elements. One could equivalently work in colour space, and retain infor-
mation about the spin of the parton formed from the merger of the collinear particles, as
was done in refs. [35, 36]. The spin-unaveraged splitting functions contain additional az-
imuthal correlations when the parent parton is a gluon that reflect different orientations of
the final state particles with respect to the gluon polarisation (and effectively with respect
to other particles not involved in the triple collinear limit). These azimuthal correlations
are not present in the case where the parent parton is a quark, since the splitting function
is proportional to the unit matrix in the spin indices.

Our paper is organised as follows. Section 2 establishes our notation. We discuss
the infrared singularity structure of the triple collinear splitting functions in section 3. In
section 4 we discuss the general structure of the triple collinear limit, and explain how
to restructure it such that the strongly-ordered limit is explicit, and the remaining terms
are manifestly finite when any two of {i, j, k} are collinear. Results for the triple collinear
splitting function for all of the various parton configurations are collected in section 5. We
also analyse all of the internal and external single unresolved singularities of each of the
splitting functions. Finally, we summarise our findings in section 6.

2 Notation

We consider the time-like triple collinear limits of colour-connected particles that were
first discussed in ref. [34]. Following the notation of ref. [34], we employ colour-ordered
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amplitudes. If particle i is colour-connected to j which is colour-connected to k, the colour-
ordered amplitude is given by,

A(. . . , i, j, k, . . .). (2.1)

In the limit that three colour-connected particles become collinear, the squared colour-
ordered amplitude factorises as,

|A(. . . , i, j, k, . . .)|2 → Pabc→P (i, j, k)|A(. . . , P, . . .)|2. (2.2)

Here, i, j, k are labels for three colour-connected partons of particle type a, b, c with four-
momenta pµi , p

µ
j and pµk which become collinear in a process involving four or more partons.

In eq. (2.2), i, j and k are all colour-connected. There are also configurations in which
particles that are not colour-connected can usefully be thought of as colour-connected.
This happens when there is more than one colour-string — there is an antiquark at the
end of one colour-string and a like flavour quark at the beginning of another. For example,
the amplitude

A(. . . , Q̄|Q, . . .) (2.3)

represents a situation where there are two colour-strings, one terminated by the fundamen-
tal colour index of the Q̄ and another initiated by the fundamental colour index of the Q.
In this case, when the quark-antiquark pair are collinear, they combine to form a gluon,
which then connects, or pinches together, the two colour-strings,

|A(. . . , i, j|k . . .)|2 → PaQ̄Q→P (i, j, k)|A(. . . , P, . . .)|2. (2.4)

In the triple collinear limit, the collinear cluster has momentum

pµi + pµj + pµk = pµP .

We define Lorentz invariant quantities,

si,...,n ≡ (pi + . . .+ pn)2. (2.5)

For massless quarks and gluons, sij = 2pi · pj = 2EiEj(1 − cos θij), where Ei, Ej are the
energies of particles i, j and θij is the angle between them. sij approaches zero if either
particle is soft or they are collinear. We systematically work in dimensional regularisation
with d = 4 − 2ε. The triple collinear limit is defined as the kinematic regime where the
invariants sij , sjk, sik, sijk become small and therefore p2

P ∼ 0. In this limit, we can write
pi = xipP , pj = xjpP and pk = xkpP with xi + xj + xk = 1. In practice, a spectator
momentum ` is used to define the momentum fractions, si` = xisP`.

The particle P retains the quantum numbers of the collinear partons and there are
seven possible clusterings: ggg → g, qgg → q, qγγ → q, gq̄q → g, qgq̄ → γ, qQ̄Q → q

and qq̄q → q. The triple collinear splitting functions depend on the momentum fractions
and the small invariants. However, for brevity we will suppress these arguments and use a
shorthand notation,

Pabc→P (i, j, k) ≡ Pabc→P (xi, xj , xk; sij , sik, sjk, sijk). (2.6)
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Figure 1. The iterated single-collinear contribution to the triple collinear splitting function.

3 Singularity structure of the triple collinear splitting function

The primary aim of this paper is to rewrite the Pabc→P splitting function in a way that
exposes its singularity structure. In particular, we aim to isolate the strongly-ordered
iterated contributions. In other words, we aim to rewrite the spin-averaged and colour-
ordered three-particle splitting function as,

Pabc→P (i, j, k) =
∑

perms

1
sijk

P(ab)c→P (xk)
1
sij
Pab→(ab)

(
xj

1− xk

)
+ 1
s2
ijk

Rabc→P (i, j, k) (3.1)

where Pab→(ab) are the usual spin-averaged two-particle splitting functions (listed in the
appendix) and the remainder Rabc→P (i, j, k) depends on the momentum fractions and small
invariants.

An iterated (or strongly-ordered) contribution is obtained through the product of
leading-order splitting functions, P × P , as illustrated in figure 1 and is given by terms of
the type,

P(ab)c(xk)
sijk

× Pab(yj)
sij

(3.2)

where yj is the momentum fraction of the second splitting,

yj = xj
xi + xj

= xj
1− xk

.

The invariants in the denominator are simply those corresponding to the two- and three-
particle invariants, sij and sijk.3 The remainder (or uniterated) 1 → 3 splitting function
Rabc→P is illustrated in figure 2.

The triple collinear splitting functions contain both single and double unresolved limits:

1. single collinear limits when two of {i, j, k} are collinear or one of {i, j, k} is collinear
with a spectator particle,

3Note that one could have chosen to define the strongly-ordered limit in which sijk is replaced by sik+sjk.
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Figure 2. The remainder function Rabc→P contains the parts of the triple collinear splitting
function that are not contained in the strongly-ordered, iterated contribution.

2. single soft limits when one particle is soft and is colour-connected to either the other
two particles, or a spectator particle,

3. double collinear limits when two of {i, j, k} are collinear and the third is collinear
with a spectator particle,

4. soft-collinear limits when one particle is soft and the other two are collinear or one
is collinear with a spectator particle,

5. double soft limits when two particles are soft,

6. triple collinear limits when two of {i, j, k} are collinear with a spectator particle (this
occurs only in the double soft limits).

In order to explain what types of single unresolved singularities appear in the iterated
contributions, P × P , and the uniterated splitting function, Rabc→P , we must first discuss
the different types of single unresolved singularities present in Pabc→P .

There are two types of single collinear singularities present in a triple collinear split-
ting function. First, internal single collinear singularities like 1/sij , where i, j are collinear.
Internal single collinear singularities appear only in the iterated two-particle splitting con-
tributions. Second, external single collinear singularities like 1/xi, which indicate potential
collinear factors with the spectator particles used to define the momentum fractions. Ex-
ternal single collinear singularities which are present in Pabc→P appear only in the iterated
two-particle splitting contributions. Although, if Pabc→P does not contain external sin-
gle collinear singularities, there could be a cancellation between external single collinear
singularities in the P × P contribution and those in the remainder Rabc→P .

There are also two types of single soft singularities. First, internal soft j singularities
encoded through typical eikonal factors like sik/(sijsjk). This type of singularity is explic-
itly embedded in a triple collinear splitting function and only appears in the remainder
Rabc→P . This makes sense because internal single soft singularities are inherently unit-
erated — this type of eikonal factor contributes the full weight of a triple collinear term
without an sijk pole. Second, there are external soft j singularities that appear in ‘hidden’
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eikonal factors like xi/(xjsij). This type of singularity is produced when the soft parti-
cle is colour-connected to a spectator particle. If present, it only appears in the iterated
two-particle splitting contributions.

We can summarise these important features as follows:

- Internal single collinear singularities like 1/sij appear only in P × P terms (the
iterated two-particle splitting contributions).

- When external single collinear singularities like 1/xi appear in Pabc→P , they are all
contained in P × P terms.

- When external single collinear singularities like 1/xi do not appear in Pabc→P , there
could be terms proportional to 1/xi in P × P and Rabc→P which cancel.

- Internal single soft singularities like sik/(sijsjk) appear only in Rabc→P .

- External single soft singularities like xi/(xjsij) appear only in the iterated P × P
terms.

4 General structure of the triple collinear splitting function

As mentioned earlier, the triple collinear limit is defined as the kinematic regime where
the invariants sij , sjk, sik and sijk all become small. In this region, the singular factor has
at most two net inverse powers of the small invariants. Additionally, since the splitting
functions are limits of squared amplitudes, there is the additional physics constraint that
there are at most two inverse powers of double invariants (sIJ where I, J = {i, j, k}) and at
most two inverse powers of the triple invariant sijk. Therefore, any triple collinear splitting
function can be represented by coefficients βi(xi, xj , xk, ε) of 37 invariant pole structures:

Pabc→P (i, j, k) = β1
sjksijk

+ β2
sijsijk

+ β3
siksijk

+ β4
s2
jk

+ β5
s2
ij

+ β6
s2
ik

+ β7
sjksij

+ β8
sjksik

+ β9
sijsik

+ β10sij
s2
jksijk

+ β11sij
s2
iksijk

+ β12sjk
s2
ijsijk

+ β13
s2
ijk

+ β14sij
sjks

2
ijk

+ β15sij
siks

2
ijk

+ β16sjk
sijs2

ijk

+
β17s

2
ij

s2
jks

2
ijk

+
β18s

2
ij

s2
iks

2
ijk

+
β19s

2
jk

s2
ijs

2
ijk

+
[
β20sjk
s2
iksijk

+ β21sjk
siks

2
ijk

+
β22s

2
jk

s2
iks

2
ijk

+
β23s

2
ij

siksjks
2
ijk

+ β24sij
siksjksijk

+ β25sjk
siksjksijk

+ β26sik
s2
ijsijk

+ β27sik
s2
jksijk

+ β28sik
sijs2

ijk

+ β29sik
sjks

2
ijk

+ β30s
2
ik

s2
ijs

2
ijk

+ β31s
2
ik

s2
jks

2
ijk

+ β32sik
sijsjksijk

+ β33s
2
ik

sijsjks
2
ijk

+
β34s

2
jk

sijsiks
2
ijk

+ β35sijsik
s2
jks

2
ijk

+ β36sijsjk
s2
iks

2
ijk

+ β37siksjk
s2
ijs

2
ijk

]
. (4.1)

Using momentum conservation, any triple collinear splitting function can be expressed in
the basis of the first three lines of eq. (4.1) (i.e. β1 — β19, the non-square bracketed terms).
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The factorisation properties of squared amplitudes impose six additional relationships
amongst the βi. Of these there are two relationships between β4, β10, β17, which are due
to the absence of 1/s2

jk single collinear contributions. Similar relationships hold for the
coefficients of 1/s2

ij and 1/s2
ik. Therefore, we propose an alternative basis in terms of 13

αi(xi, xj , xk, ε) invariant structures that make the physical constraints more evident,

Pabc→P (i, j, k) = α12
sjksijk

+ α13
sijsijk

+ α14
siksijk

+ α1
s2
ijk

+ α2Tr(/j/k/i/̀)
sjks

2
ijk

+ α3Tr(/i/j/k/̀)
sijs2

ijk

+ α4Tr(/k/i/j/̀)
siks

2
ijk

+α23Tr(/i/j/k/̀)
sijsjksijk

+ α24Tr(/j/k/i/̀)
sjksiksijk

+ α34Tr(/k/i/j/̀)
siksijsijk

+α22Wjk

s2
jks

2
ijk

+ α33Wij

s2
ijs

2
ijk

+ α44Wik

s2
iks

2
ijk

. (4.2)

Here ` is a suitably normalised spectator momentum such that,

Tr(/i/j/k/̀) = xksij − xjsik + xisjk, (4.3)

while the quantity Wij is defined as

Wij = (xisjk − xjsik)2 − 2
(1− ε)

xixjxk
(1− xk)

sijsijk. (4.4)

In eq. (4.2), the first three coefficients (α12, α13, α14) display any strongly-ordered structure
present, like in eq. (3.1). The remaining structures are written in combinations that are
designed to be less singular in the single collinear limits. For example, in the sij → 0 limit,

Tr(/i/j/k/̀) = O(√sij) (4.5)

so that there is no singular contribution in the ij collinear limit from the α3, α23 or α34
terms.4

Similarly, the α33 term also has no contribution in the sij → 0 limit. Wij has been
constructed from terms that appear in the triple collinear limit, and a second term that
is added to α13 (and subtracted from α33 in order to have the full spin-averaged splitting
functions in the strongly-ordered contributions). Both terms in Wij are individually O(sij)
when expanded but have opposite signs so that Wij/s

2
ij = O(1/√sij). This is an integrable

singularity that vanishes upon azimuthal integration (in d-dimensions). To make this clear,
strictly in the collinear i, j limit, we can interpret Wij in terms of the azimuthal angle with
respect to the (ij) direction. Following ref. [30], we find that we can write

(xisjk − xjsik)2 = 4xixjxk
(1− xk)

sijsijk cos2 φij,kl, (4.6)

such that Wij has the form,

Wij = 4xixjxk
(1− xk)

sijsijk

(
cos2 φij,kl −

1
2(1− ε)

)
. (4.7)

4Note that an alternative basis to the α basis could be chosen with somewhat different structures to
the trace structure used here. We choose the trace structure for its ‘natural’ interpretation and see that
it reflects the colour-ordering in the results. Another suitable basis would require properties which follow
equations similar to eq. (4.5).

– 8 –



J
H
E
P
0
9
(
2
0
2
2
)
0
5
9

5 Results

In this section, we summarise our results for the triple collinear splitting functions. In
each case, we find that the remainder Rabc→P can be expressed in terms of a single trace
(rather than three in general). The α1 term from eq. (4.2) is always some combination of
two auxiliary functions and they are a feature of the α basis:

A0(x, y) = 1− (1− x)
(1− y) , (5.1)

B0(x, y) = 1 + 2x(x− 2)
(1− y)2 + 4x

(1− y) . (5.2)

5.1 Three collinear gluons

We consider the case where gluons i, j, k are in a particular colour-ordering. In other words,
the outer gluons i and k play a different role to the inner gluon j. We find that,

Pggg→g(i, j, k) = Pgg(xi)
sijk

Pgg
(

xk
1−xi

)
sjk

+ Pgg(xk)
sijk

Pgg
(

xi
1−xk

)
sij

+ 1
s2
ijk

Rggg→g(i, j, k), (5.3)

We define Rg(gg)(i, j, k) as the contribution where a “hard” gluon i radiates a potentially soft
j, k pair. This exposes the manifest i, k symmetry between the outer gluons. We find that,

Rggg→g(i, j, k) = Rg(gg)(i, j, k) +Rg(gg)(k, j, i), (5.4)

where

Rg(gg)(i, j, k) = 2(1− ε)Wjk

(1− xi)2s2
jk

+ 4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+a0(xi, xj , xk) + a(xi, xj , xk)
sijkTr(/i/j/k/̀)

sijsjk
, (5.5)

and

a0(xi, xj , xk) = (1− ε)B0(xk, xi), (5.6)

a(xi, xj , xk) = −xkPgg(xk)
xj(1− xi)

− Pgg(xj)
xk

+ 2
xj(1− xk)

− 1− 1
(1− xi)(1− xk)

. (5.7)

We note that a contains poles in xi, xj and xk. Therefore, we write a in a manner that
exposes the residue of these poles, in terms of two-particle splitting functions. Eqs. (5.3)–
(5.7) are equivalent to eq. (5.4) in ref. [34] up to a normalisation of a factor of 4.

As expected, there are no internal single collinear limits (i.e. relating to any of the
single collinear limits (sij → 0, sjk → 0 or sjk → 0) present in eq. (5.5). All of the
internal single collinear limits are contained in the iterated contribution. However, there
are possible external and internal singularities when

(i) gluon I (for I ∈ {i, j, k}) is collinear with the spectator particle `, indicated when
there is one singular power of xI ,

– 9 –
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(ii) gluon I is soft, indicated when there are two singular factors in the set {sIJ , sIK , xI}.

These collinear and/or soft singularities can be present in the Pgg×Pgg contribution and/or
in the remainders. Within the remainders, they are produced entirely by the final term in
eq. (5.5) when,

a(xi, xj , xk) ∝
1
xI
. (5.8)

Given that
Tr(/i/j/k/̀) = xksij − xjsik + xisjk, (5.9)

there are two types of contribution in the remainders. Let us consider the two cases in
turn:

• I = k (or I = i)
1
xk

sijkTr(/i/j/k/̀)
sijsjk

−→ xi
xk

sijk
sij
− xj
xk

sijksik
sijsjk

, (5.10)

• I = j
1
xj

sijkTr(/i/j/k/̀)
sijsjk

−→ xk
xj

sijk
sjk

+ xi
xj

sijk
sij
− sijksik
sijsjk

. (5.11)

(i) Gluon I is collinear with the spectator particle ` — external collinearity.

Let us first consider the external limits where the particle with small momentum
fraction is collinear to the spectator particle, sI` = xI → 0. These singular structures
are tabulated in table 1.

The xi → 0 and xk → 0 contributions are shown in the first and third rows of table 1.
These limits are related by the i↔ k symmetry, so let us focus on the xk → 0 limit
in the third row. All contributions are proportional to Pgg(xi). They originate in
the iterated two-particle splitting and the second term of eq. (5.7). Note that by
construction, there are no contributions from Rg(gg)(k, j, i).

In the xj → 0 limit, there are contributions from the iterated two-particle splitting
and the double unresolved Rg(gg) splitting. However, these contributions cancel and
the Pggg→g splitting function does not exhibit a singularity in this limit. This is as
expected, since gluon j is only colour-connected to gluons i and k.

(ii) Gluon I is soft.

The soft I limit is obtained when those in the set {sIJ , sIK , xI} are small and there
are two inverse powers of them. The external soft contributions of the form 1/sIJ/xI
can be read off from table 1. However there are also internal soft j contributions
coming from the third term in eq. (5.11).

When gluon k is soft, we recover the expected limit describing collinear gluons i and
j with the soft gluon k radiated between the colour-connected partners j and `,

Pggg→g(i, j, k) k soft−→ 2xj
sjkxk

1
sij
Pgg(xi). (5.12)
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This limit comes entirely from the iterated two-particle splitting. The soft i limit is
obtained by k ↔ i symmetry.

In the soft j limit, the 1/xj/sij and 1/xj/sjk terms cancel between the Pgg×Pgg and
Rg(gg) contributions, such that

1
s2
ijk

Rg(gg)(i, j, k) j soft−→
(
− xk
xjsjk

− xi
xjsij

+ sik
sijsjk

)
2
sik

P sub
gg (xk), (5.13)

Pggg→g(i, j, k) j soft−→ 2sik
sijsjk

1
sik

Pgg(xk). (5.14)

This is precisely as expected for the emission of a soft gluon between the hard (and
collinear) radiators i and k.

The limit where both j and k are soft encodes xj → 0, xk → 0 and therefore xi → 1.
There are two types of contribution. First, there are iterated double soft singularities in
Pgg × Pgg,

Pgg(xi)
sijk

Pgg
(

xk
1−xi

)
sjk

+ Pgg(xk)
sijk

Pgg
(

xi
1−xk

)
sij

j,k soft−→ 2
(1− xi)sijksjk

Pgg

(
xk

1− xi

)
+ 4
xjxksijksij

.

(5.15)
Second, there are double soft contributions in Rg(gg)(i, j, k),

1
s2
ijk

Rg(gg)(i, j, k) j,k soft−→ 2(1− ε)Wjk

(1− xi)2s2
jks

2
ijk

−
(

2
xk(1− xi)

+ 4
xj(1− xi)

)
Tr(/i/j/k/̀)
sijsjksijk

. (5.16)

The second term in eq. (5.16) is produced by a(xi, xj , xk).
The double soft singularities, when gluons i, j are soft, are obtained by the i ↔ k

interchange in eqs. (5.15) and (5.16).
Finally, there are also double soft singularities when gluons i, k are soft, however,

because they are not colour-adjacent, they only appear in the Pgg ×Pgg contributions as a
product of two eikonal factors.

We note that projecting the splitting function onto the α-basis of eq. (4.2) forces a
link between the trace-like structures and the B0 terms that appear in a0, which is evident
in the xi → 1 limit. This corresponds to the xj → 0, xk → 0 limit because the three
momentum fractions sum to unity. We see that the second and third terms of eq. (5.5) are
separately singular in this limit,

4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

→ 4(1− ε)xk
(1− xi)2 ,

a0(xi, xj , xk) = (1− ε)B0(xk, xi) → −
4(1− ε)xk
(1− xi)2 , (5.17)

and that the singular behaviour cancels when the terms are combined. The link between
the trace-like structures and the B0 terms (including A0 terms in generality) is a feature
of the α-basis of eq. (4.2) and is repeated in all of the triple collinear splitting functions.
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5.2 Two gluons with a collinear quark or antiquark

There are two distinct splitting functions representing the clustering of two gluons and a
quark which depend on whether or not the gluons are symmetrised over.

(a) In the case where gluon j is colour-connected to quark i and gluon k, we find that,

Pqgg→q(i, j, k) = Pqg(xk)
sijk

Pqg
(

xj

1−xk

)
sij

+ Pqg(1− xi)
sijk

Pgg
(

xj

1−xi

)
sjk

+ 1
s2
ijk

Rqgg→q(i, j, k), (5.18)

where

Rqgg→q(i, j, k) = 2(1− ε)
(1− xi)2

Wjk

s2
jk

+ 4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+ (1− ε)2

(1− xk)
Tr(/i/j/k/̀)

sij

+b0(xi, xj , xk) + b(xi, xj , xk)
sijkTr(/i/j/k/̀)

sijsjk
, (5.19)

and

b0(xi, xj , xk) = (1− ε) (B0(xk, xi)− 1 + (1− ε)A0(xi, xk)) , (5.20)

b(xi, xj , xk) = − xjPqg(xj)
xk(1− xi)

− 2xkPqg(xk)
xj(1− xi)

+ 4
(1− xi)

− 3(1− ε). (5.21)

Eqs. (5.18)–(5.21) are equivalent to eq. (5.5) in ref. [34] up to a normalisation of a factor
of 4. By charge conjugation, we also have,

Pq̄gg→q̄(i, j, k) = Pqgg→q(i, j, k). (5.22)

We observe that b contains inverse powers of xj and xk. The behaviour of the Pqgg→q
triple collinear splitting function in the limit where individual momentum fractions are
small is tabulated in table 2. We see that there is no singular behaviour as xi → 0. This
reflects the fact that there is no singularity when the quark and spectator momentum are
collinear and that there is no soft quark singularity. When xj → 0, we see that there are
contributions from both the strongly-ordered contribution and from Rqgg→q which cancel
in the full Pqgg→q splitting function,

Pqgg→q(i, j, k) xj→0
−→ 0. (5.23)

When xk → 0, we see that the contributions from the strongly-ordered contribution and
from Rqgg→q do not cancel in full Pqgg→q splitting function.

In the soft k limit, only the strongly-ordered term contributes and we recover the
expected limit describing collinear partons i and j with the soft gluon k radiated between
the colour-connected partners j and `,

Pqgg→q(i, j, k) k soft−→ 2xj
sjkxk

1
sij
Pqg(xj). (5.24)
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qgg → q

Pqg(xk)
sijk

Pqg

(
xj

1−xk

)
sij

+ Pqg(1−xi)
sijk

Pgg

(
xj

1−xi

)
sjk

1
s2

ijk
Rqgg→q(i, j, k) 1

s2
ijk
Pqgg→q(i, j, k)

xi → 0 0 0 0

xj → 0 + 1
sijsijk

xi
xj

[
2Pqg(xk)

]
+ 1
sjksijk

xk
xj

[
2Pqg(xk)

] + 1
sijsijk

xi
xj

[
− 2Pqg(xk)

]
+ 1
sjksijk

xk
xj

[
− 2Pqg(xk)

] 0

xk → 0 + 1
sijsijk

1
xk

[
2Pqg(xj)

]
+ 1
sjksijk

xj

xk

[
2Pqg(xj)

]
+ 1
sijsjk

xj

xk

[
Pqg(xj)

]
+ 1
sijsijk

1
xk

[
− Pqg(xj)

]
+ 1
sjksijk

xj

xk

[
− Pqg(xj)

]
+ 1
sijsjk

xj

xk

[
Pqg(xj)

]
+ 1
sijsijk

1
xk

[
Pqg(xj)

]
+ 1
sjksijk

xj

xk

[
Pqg(xj)

]
Table 2. Singular behaviour of the Pqgg→q triple collinear splitting function in the limit where
individual momentum fractions are small.

However, in the soft j limit the 1/xj/sij and 1/xj/sjk terms cancel between the P ×P
and Rqgg→q contributions, such that

1
s2
ijk

Rqgg→q(i, j, k) j soft−→
(
− 2xi
xjsij

− 2xk
xjsjk

+ 2sik
sijsjk

)
1
sik

Pqg(xk), (5.25)

Pqgg→q(i, j, k) j soft−→ 2sik
sijsjk

1
sik

Pqg(xk). (5.26)

This is precisely as expected for the emission of a soft gluon between the hard (and collinear)
radiators i and k.

As in the three gluon splitting function, there are double soft singularities when
gluons j, k are soft. These are contained iteratively in the P × P contributions and in
Rqgg→q(i, j, k), and are identical to eqs. (5.15), (5.16),

Pqg(1− xi)
sijk

Pgg
(

xj

1−xi

)
sjk

+Pqg(xk)
sijk

Pqg
(

xj

1−xk

)
sij

j,k soft−→ 2
(1− xi)sijksjk

Pgg

(
xj

1− xi

)
+ 4
xjxksijksij

, (5.27)

1
s2
ijk

Rqgg→q(i, j, k) j,k soft−→ 2(1− ε)Wjk

(1− xi)2s2
jks

2
ijk

−
(

2
xk(1− xi)

+ 4
xj(1− xi)

)

× Tr(/i/j/k/̀)
sijsjksijk

. (5.28)

There are no other double soft singularities.
As noted earlier, eq. (5.19) also appears to have spurious singularities in both the

xi → 1 and xk → 1 limits. As in the three gluon splitting function, the singular xi → 1
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behaviour present in the second term in eq. (5.19) cancels against the B0(xk, xi) term in b0.
The singularity as xk → 1 in the third term cancels against a similar singularity produced
by the A0(xi, xk) term in b0.

(b) In the case where the gluons are abelianised (g̃) or two photons are collinear to the
quark, then the splitting function is symmetric under the exchange of the two bosons (j, k).
We find,

Pqγγ→q(i, j, k) = Pqg(xk)
sijk

Pqg
(

xj

1−xk

)
sij

+ Pqg(xj)
sijk

Pqg
(

xk
1−xj

)
sik

+ 1
s2
ijk

Rqγγ→q(i, j, k), (5.29)

where

Rqγγ→q(i, j, k) = − (1− ε)2

(1− xk)
Tr(/j/i/k/̀)

sij
− (1− ε)2

(1− xj)
Tr(/j/i/k/̀)

sik

+b̃0(xi, xj , xk) + b̃(xi, xj , xk)
sijkTr(/j/i/k/̀)

sijsik
, (5.30)

and

b̃0(xi, xj , xk) = (1− ε) (2− (1− ε)A0(xj , xk)− (1− ε)A0(xk, xj)) , (5.31)

b̃(xi, xj , xk) = − xjPqg(xj)
xk(1− xi)

− xkPqg(xk)
xj(1− xi)

+ 4
(1− xi)

− 4(1− ε) + (1− ε)2. (5.32)

Eqs. (5.29)–(5.32) are equivalent to eq. (5.6) in ref. [34] up to a normalisation of a factor
of 4. By charge conjugation, we have

Pq̄γγ→q̄(i, j, k) = Pqγγ→q(i, j, k). (5.33)

The behaviour of the Pqγγ→q triple collinear splitting function in the limit where indi-
vidual momentum fractions are small is tabulated in table 3. As in the previous case, there
is no singular behaviour as xi → 0 reflecting the fact that there is no singularity when the
quark and spectator momentum are collinear and that there is no soft quark singularity.
We also see that there are contributions from both the strongly-ordered contribution and
from Rqγγ→q when xj → 0 and xk → 0 that do not cancel in the full Pqγγ→q splitting
function. However, only the strongly-ordered term contributes in the soft j or soft k limits,

Pqγγ→q(i, j, k) j soft−→ 2xi
sijxj

1
sik

Pqg(xk), (5.34)

Pqγγ→q(i, j, k) k soft−→ 2xi
sikxk

1
sij
Pqg(xj). (5.35)

It can be seen that the strongly-ordered terms contribute the full double soft j, k limit (a
product of two eikonal factors) and there are no contributions from b̃(xi, xj , xk). There are
no other double soft singularities.
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qγγ → q
Pqg(xk)
sijk

Pqg

(
xj

1−xk

)
sij

+ (j ↔ k)
1
s2

ijk
Rqγγ→q(i, j, k) 1

s2
ijk
Pqγγ→q(i, j, k)

xi → 0 0 0 0

xj → 0 + 1
sijsijk

xi
xj

[
2Pqg(xk)

]
+ 1
siksijk

1
xj

[
2Pqg(xk)

]
+ 1
sijsik

xi
xj

[
Pqg(xk)

]
+ 1
sijsijk

xi
xj

[
− Pqg(xk)

]
+ 1
siksijk

1
xj

[
− Pqg(xk)

]
+ 1
sijsik

xi
xj

[
Pqg(xk)

]
+ 1
sijsijk

xi
xj

[
Pqg(xk)

]
+ 1
siksijk

1
xj

[
Pqg(xk)

]

xk → 0 + 1
sijsijk

1
xk

[
2Pqg(xj)

]
+ 1
siksijk

xi
xk

[
2Pqg(xj)

]
+ 1
sijsik

xi
xk

[
Pqg(xj)

]
+ 1
sijsijk

1
xk

[
− Pqg(xj)

]
+ 1
siksijk

xi
xk

[
− Pqg(xj)

]
+ 1
sijsik

xi
xk

[
Pqg(xj)

]
+ 1
sijsijk

1
xk

[
Pqg(xj)

]
+ 1
siksijk

xi
xk

[
Pqg(xj)

]
Table 3. Singular behaviour of the Pqγγ→q triple collinear splitting function in the limit where
individual momentum fractions are small.

5.3 Quark-antiquark pair with a collinear gluon

There are also two distinct splitting functions representing the clustering of a gluon with
a quark-antiquark pair into a parent gluon.

(a) When the gluon is colour-connected to the antiquark, we find that,

Pgq̄q→g(i, j, k) = Pqq̄(xk)
sijk

Pqg
(

xi
1−xk

)
sij

+ Pgg(xi)
sijk

Pqq̄
(

xk
1−xi

)
sjk

+ 1
s2
ijk

Rgq̄q→g(i, j, k), (5.36)

where

Rgq̄q→g(i, j, k) = − 2
(1− xi)2

Wjk

s2
jk

− (1− ε)
(1− xk)

Tr(/i/j/k/̀)
sij

− 4xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+c0(xi, xj , xk) + c(xi, xj , xk)
sijkTr(/i/j/k/̀)

sijsjk
, (5.37)

and

c0(xi, xj , xk) = −B0(xk, xi) + 1− (1− ε)A0(xi, xk), (5.38)

c(xi, xj , xk) = − Pqq̄(xk)
xi(1− xi)

+ 2
(1− xi)

+ 1− 2xi + 2(xj − xk − 2xjxk)
(1− ε)(1− xi)

. (5.39)

Eqs. (5.36)–(5.39) are equivalent to eq. (5.8) in ref. [34] up to a normalisation of a factor
of 4. By charge conjugation, we have that,

Pgq̄q→g(i, j, k) = Pgqq̄→g(i, j, k). (5.40)
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gq̄q → g

Pqq̄(xk)
sijk

Pqg( xi
1−xk

)
sij

+ Pgg(xi)
sijk

Pqq̄( xk
1−xi

)
sjk

1
s2

ijk
Rgq̄q→g(i, j, k) 1

s2
ijk
Pgq̄q→g(i, j, k)

xi → 0 + 1
sijsijk

xj

xi

[
2Pqq̄(xk)

]
+ 1
sjksijk

1
xi

[
2Pqq̄(xk)

]
+ 1
sijsjk

xj

xi

[
Pqq̄(xk)

]
+ 1
sijsijk

xj

xi

[
− Pqq̄(xk)

]
+ 1
sjksijk

1
xi

[
− Pqq̄(xk)

]
+ 1
sijsjk

xj

xi

[
Pqq̄(xk)

]
+ 1
sijsijk

xj

xi

[
Pqq̄(xk)

]
+ 1
sjksijk

1
xi

[
Pqq̄(xk)

]
xj → 0 0 0 0
xk → 0 0 0 0

Table 4. Singular Behaviour of the Pgq̄q→g triple collinear splitting function in the limit where
individual momentum fractions are small.

The behaviour of the Pgq̄q→g triple collinear splitting function in the limit where indi-
vidual momentum fractions are small is tabulated in table 4. There are no collinear limits
between the quark/antiquark and the spectator. There is singular behaviour as xi → 0. In
the soft i limit only the strongly-ordered term contributes,

Rgq̄q→g(i, j, k) i soft−→ 0, (5.41)

Pgq̄q→g(i, j, k) i soft−→ 2xj
sijxi

1
sjk

Pqq̄(xk). (5.42)

There are double soft singularities when the qq̄ pair are both soft. These are contained
iteratively in the Pgg × Pqq̄ contribution and in Rgq̄q→g(i, j, k),

Pgg(xi)
sijk

Pqq̄
(

xk
1−xi

)
sjk

j,k soft−→ 2
(1− xi)sijksjk

Pqq̄

(
xk

1− xi

)
, (5.43)

1
s2
ijk

Rgq̄q→g(i, j, k) j,k soft−→ − 2Wjk

(1− xi)2s2
jks

2
ijk

. (5.44)

We identify the double soft terms in eq. (5.44) as uniquely double unresolved. There are
no other double soft singularities.

(b) The QED-like splitting, where the gluon, quark and antiquark form a photon-like
colour singlet is given by,

Pqgq̄→γ(i, j, k) = Pqq̄(1− xk)
sijk

Pqg
(

xj

1−xk

)
sij

+ Pqq̄(1− xi)
sijk

Pqg
(

xj

1−xi

)
sjk

+ 1
s2
ijk

Rqgq̄→γ(i, j, k), (5.45)

where

Rqgq̄→γ(i, j, k) = (1− ε)
(1− xk)

Tr(/i/j/k/̀)
sij

+ (1− ε)
(1− xi)

Tr(/i/j/k/̀)
sjk

+c̃0(xi, xj , xk) + c̃(xi, xj , xk)
sijkTr(/i/j/k/̀)

sijsjk
, (5.46)
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qgq̄ → γ
Pqq̄(1−xk)

sijk

Pqg(
xj

1−xk
)

sij

+ (i↔ k)
1
s2

ijk
Rqgq̄→γ(i, j, k) 1

s2
ijk
Pqgq̄→γ(i, j, k)

xi → 0 0 0 0

xj → 0
+ 1
sijsijk

xi
xj

[
2Pqq̄(xk)

]
+ 1
sjksijk

xk
xj

[
2Pqq̄(xk)

] + 1
sijsijk

xi
xj

[
− 2Pqq̄(xk)

]
+ 1
sjksijk

xk
xj

[
− 2Pqq̄(xk)

] 0

xk → 0 0 0 0

Table 5. Singular behaviour of the Pqgq̄→γ triple collinear splitting function in the limit where
individual momentum fractions are small.

and

c̃0(xi, xj , xk) = −2 + (1− ε)A0(xi, xk) + (1− ε)A0(xk, xi), (5.47)

c̃(xi, xj , xk) = −Pqq̄(xi)
xj

− Pqq̄(xk)
xj

+ 2ε
(1− ε)xj . (5.48)

Eqs. (5.45)–(5.48) are equivalent to eq. (5.10) in ref. [34] up to a normalisation of a factor
of 4. Note that because of charge conjugation this splitting function is symmetric under
the exchange of the quark and antiquark i, k.

The behaviour of the Pqgq̄→γ triple collinear splitting function in the limit where in-
dividual momentum fractions are small is tabulated in table 5. There are no collinear
limits between the quark/antiquark and the spectator. In the xj → 0 limit, the contri-
butions from the strongly-ordered terms and Rqgq̄→γ cancel. In the soft j limit only the
strongly-ordered term contributes,

1
s2
ijk

Rqgq̄→γ(i, j, k) j soft−→
(
− 2xi
xjsij

− 2xk
xjsjk

+ 2sik
sijsjk

)
1
sik

Pqq̄(xk), (5.49)

Pqgq̄→γ(i, j, k) j soft−→ 2sik
sijsjk

1
sik

Pqq̄(xk). (5.50)

There are no double soft singularities.

5.4 Quark-antiquark pair with a collinear quark or antiquark

Finally, we consider the clustering of a quark-antiquark pair (QQ̄) and a quark q to form
a parent quark with the same flavour as q. There are two splitting functions, one where
the quark flavours are different and one where the quarks have the same flavour.

(a) For distinct quarks, we have

PqQ̄Q→q(i, j, k) = Pqg(1− xi)
sijk

Pqq̄
(

xj

1−xi

)
sjk

+ 1
s2
ijk

RqQ̄Q→q(i, j, k), (5.51)
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where

RqQ̄Q→q(i, j, k) = − 2
(1− xi)2

Wjk

s2
jk

− 2xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

− 2xj
(1− xi)2

Tr(/i/k/j/̀)
sjk

+d0(xi, xj , xk), (5.52)

and
d0(xi, xj , xk) = −1

2(B0(xj , xi) +B0(xk, xi)) + 1 + ε. (5.53)

Eqs. (5.51)–(5.53) are equivalent to eq. (5.12) in ref. [34], up to a normalisation of a
factor of 4. Note that this splitting function is symmetric under the exchange of the quark
and antiquark j, k of the same flavour and by charge conjugation we have that,

PqQ̄Q→q(i, j, k) = PqQQ̄→q(i, j, k). (5.54)

Note that we have chosen to make this symmetry explicit in the trace structures. There
are no collinear limits between the quark/antiquark and the spectator, and no soft limits.

The double soft singularities when the QQ̄ pair are both soft are contained iteratively
in the Pqg × Pqq̄ contribution and in the Wjk term in RqQ̄Q→q(i, j, k), and are equivalent
to those given in eqs. (5.43), (5.44),

Pqg(1− xi)
sijk

Pqq̄
(

xj

1−xi

)
sjk

j,k soft−→ 2
(1− xi)sijksjk

Pqq̄

(
xj

1− xi

)
, (5.55)

1
s2
ijk

RqQ̄Q→q(i, j, k) j,k soft−→ − 2Wjk

(1− xi)2s2
jks

2
ijk

. (5.56)

There are no other double soft singularities.

(b) For identical quarks, we have

Pqq̄q→q(i, j, k) = 1
s2
ijk

Rqq̄q→q(i, j, k), (5.57)

where

Rqq̄q→q(i, j, k) = −2(1− ε)
(1− xi)

Tr(/i/j/k/̀)
sjk

− 2(1− ε)
(1− xk)

Tr(/i/j/k/̀)
sij

+d̃0(xi, xj , xk) + d̃(xi, xj , xk)
sijkTr(/i/j/k/̀)

sijsjk
, (5.58)

and

d̃0(xi, xj , xk) = −2(1− ε)(ε+A0(xi, xk) +A0(xk, xi)), (5.59)

d̃(xi, xj , xk) = − 2xj
(1− xi)(1− xk)

+ (1− ε)
((1− xk)

(1− xi)
+ (1− xi)

(1− xk)
+ 2 + ε

)
. (5.60)

Eqs. (5.57)–(5.60) are equivalent to eq. (5.14) in ref. [34], up to a normalisation of a factor
of 4. Because of charge conjugation,

Pq̄qq̄→q̄(i, j, k) = Pqq̄q→q(i, j, k). (5.61)

There are no collinear limits between the quark/antiquark and the spectator, and no soft
limits. There are no double soft singularities.
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5.5 N=1 SUSY identity

The two particle and three particle splitting functions are related by an N = 1 supersym-
metry (SUSY) identity that relates the mass of the spin-1 gluon to the spin-1/2 gluino.
The gluino can be identified as a quark in this scenario. At one loop, the two particle cuts
of the one-loop self energy are equal, leading to the identity [58]

Pgg(x) + Pqq̄(x) = Pqg(x) + Pgq(x), (5.62)

which only holds in the D = 4, ε = 0 limit. This is because in dimensional regularisation
the number of degrees of freedom of the gluon and gluino are not equal and SUSY is broken.
The left-hand side of eq. (5.62) are the two particle cuts of the one-loop gluonic self energy
— i.e. the splitting functions which split from a gluon, while on the right are those which
split from a quark (gluino).

Similarly the triple collinear splitting functions are related by the three-particle cuts
of the two-loop self energies leading to the N = 1 SUSY identity [34] (where ε = 0),

(Pggg→g + 2Pgq̄q→g + Pqgq̄→γ)(i, j, k) + (5 perms.)
= (2Pqgg→q + Pqγγ→q + 2PqQ̄Q→q + Pqq̄q→q)(i, j, k) + (5 perms.). (5.63)

The strongly-ordered contributions automatically satisfy eq. (5.63) through repeated use
of eq. (5.62). The remaining contributions satisfy,

(Rggg→g + 2Rgq̄q→g +Rqgq̄→γ)(i, j, k) + (5 perms.)
= (2Rqgg→q +Rqγγ→q + 2RqQ̄Q→q +Rqq̄q→q)(i, j, k) + (5 perms.). (5.64)

In eq. (5.64), the terms proportional to each possible kinematic pole structure, 1/s2
ijk,

1/(sijksij), 1/(sijsjk), 1/s2
ij and cyclic permutations separately cancel. This leads to re-

lations amongst the coefficients of the trace-structures, and amongst the functions multi-
plying 1/s2

ijk. Additionally, by analysing terms proportional to 1/(sijsjk), the following
relationship holds (where ε = 0):

2a(xi, xj , xk) + 2c(xi, xj , xk) + c̃(xi, xj , xk) + (i↔ k)
= 2b(xi, xj , xk) + b̃(xj , xi, xk) + d̃(xi, xj , xk) + (i↔ k).

(5.65)

6 Summary

In this paper, we have rewritten the triple collinear splitting functions Pabc→P in a way that
exposes the single and double unresolved limits. In particular, we have isolated the strongly-
ordered iterated contributions as products of the usual spin-averaged two-particle splitting
functions (generically P × P ) and a remainder function Rabc→P (i, j, k) that is finite when
any pair of {i, j, k} are collinear. We considered spin-averaged splitting functions, and paid
particular attention to the azimuthal correlations produced when an intermediate gluon
splits into two particles. This configuration is intimately linked to double soft singularities.

To help with the discussion of the unresolved limits, we introduced the notion of
internal and external singularities.
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Internal singularities are only associated with small invariants in the set
{sij , sik, sjk, sijk} and correspond to single collinear, single soft or triple collinear i, j, k
contributions. By construction,

- Internal single collinear singularities between a pair of {i, j, k} lead to a factor of
1/sij and are captured by the iterated two-particle splitting contributions (P × P ).
We write Rabc→P in a way that makes it visibly finite in each of these single collinear
limits.

- Internal single soft singularities, when the soft particle is colour-connected to the
other two collinear particles, produce terms like sik/(sijsjk) and appear only in
Rabc→P .

External singularities reference other particles involved in the scattering — for exam-
ple, the spectator particles used to define the momentum fractions of the three collinear
particles. This includes external single collinear singularities involving one of the collinear
particles and a spectator particle, soft radiation where one of the spectator particles is
colour-connected to the collinear particle or other external double unresolved singularities.
These show up in the following way,

- When external single collinear singularities like 1/xi are present in the full Pabc→P
splitting function, they are all contained in P × P terms.

- When external single collinear singularities like 1/xi do not appear in the full
Pabc→P splitting function, then any terms proportional to 1/xi in P × P will cancel
with analagous terms coming from Rabc→P .

- External single soft singularities where the soft particle is colour-connected to a
spectator particle produce terms like xi/(xjsij) and appear only in the iterated P×P
terms.

In the triple collinear splitting function, there are two inverse powers of the small invariants.
Double collinear (two pairs of collinear particles), soft-collinear, double soft or other triple
collinear limits than i, j, k, all depend on singularities involving one or more of the mo-
mentum fractions and are all therefore external singularities. In particular, the double soft
limit requires at least one singular factor involving the momentum fractions and is classed
as an external singularity. These singularities appear in both the iterated P ×P terms and
in Rabc→P . Double soft singularities are always the overlap between triple collinear {i, j, k}
and external triple collinear singularities.

We find it useful to think of a hard radiator particle that emits possibly unresolved ra-
diation, together with a spectator particle. In the case of the three-gluon splitting function,
we have further decomposed Rggg→g into two functions, Rg(gg)(i, j, k) and Rg(gg)(k, j, i). In
Rg(gg)(i, j, k), i can be viewed as a hard radiator emitting unresolved radiation j and k.

Our hope is that decomposing the triple collinear splitting functions will prove useful
in developing more efficient infrared subtraction schemes, both at NNLO and by extension
to the quadruple collinear case, at N3LO.
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A Two-particle splitting functions

For reference, we list the QCD two-particle splitting functions (averaged over the initial
particles’ polarisations) that are used to build the iterated strongly-ordered limits in the
triple collinear decomposition:

Pqg(x) = 2(1− x)
x

+ (1− ε)x, (A.1)

Pgg(x) = 2(1− x)
x

+ 2x
(1− x) + 2x(1− x), (A.2)

Pqq̄(x) = 1− 2x(1− x)
(1− ε) , (A.3)

where the universal soft terms in Pqg and Pgg have been made explicit. We also define a
sub-splitting function for the gg → g splitting function,

P sub
gg (x) = 2(1− x)

x
+ x(1− x), (A.4)

such that P sub
gg (x) + P sub

gg (1− x) = Pgg(x).
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