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Abstract
We investigate the effects of anisotropic permeability and changing boundary conditions 
upon the onset of penetrative convection in a porous medium of Darcy type and of Brink-
man type. Attention is focussed on the critical eigenfunctions which show how many con-
vection cells will be found in the porous layer. The number of cells is shown to depend crit-
ically upon the ratio of vertical to horizontal permeability, upon the Brinkman coefficient, 
and upon the upper boundary condition for the velocity which may be of Dirichlet type or 
constant pressure. The critical Rayleigh numbers and wave numbers are determined, and it 
is shown how an unconditional threshold for nonlinear stability may be derived.

Highlights 

– Shows how number of convection cells depends upon the temperature of the upperlayer 
and the anisotropy of the permeability

– Shows how number of convection ceels depends upon the temperature of the upperlayer 
and the Brinkman coefficient

– Shows how number of convection cells patters depends upon the upper boundarycondi-
tion on the velocity or the ambient pressure

Keywords Penetrative convection · Anisotropy · Boundary conditions · Darcy porous 
media · Brinkman porous media

1 Introduction

Penetrative convection is a phenomenon whereby thermal convection may commence in 
a sub-layer of a horizontal layer of fluid, or in a horizontal layer of fluid saturated porous 
medium, and the ensuing convective motion will induce motion in other part(s) of the layer. 
It typically induces counter rotating convection cells. Mathematical models for penetrative 
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convection typically involve either a quadratic density in the buoyancy force or an internal 
heat source, see e.g. Straughan [1, pages 97–102]. We here concentrate on the model where 
density is a quadratic function of temperature, as introduced by Veronis [2], for the case of 
a layer of incompressible viscous fluid.

The fact that penetrative convection is of such interest is primarily due to the realization 
that it is an area with a multitude of real physical applications. As pointed out in Straughan 
[1], there are applications in planetary physics, DietrichWicht [3], van den berg et al. [4], 
in internally cooled convection,Berlengiero et  al. [5], in environmental fluid mechanics, 
Fernando [6],Pol and Fernando [7], in the cloud cover of Venus, Imamura et al. [8], in aid-
ing the rise of volcanic plumes in the Earth’s atmosphere, Kaminski et al. [9], in mixing 
in the Laptev Sea, Kirillov et al. [10], in cloud to ground discharges,Machado et al. [11], 
Mharzi et al. [12], in biochemical decay,Prudhomme and Jasmin [13], in flow in the Sun, 
Tikhomolov [14], and in particular in penetrative convection in a porous medium where 
application is to formation of stones into regular patterns, George et al. [15], and in build-
ing insulation, Straughan and Walker [16]. Theoretical analyses of penetrative convection 
have ensued such as Veronis [2], Musman [17], Carr [18, 19], Carr and Putter [20], Carr 
and Straughan [21], Harfash [22, 23], Krishnamurti [24], Larson [25], Straughan [26–28]. 
Further references may be found in the books of Straughan [29, 30].

DietrichWicht [3] write,...“Many celestial objects are thought to host interfaces between 
convective and stable stratified interior regions. The interaction between both, e.g. the 
transfer of heat, mass, or angular momentum depends on whether and how flows penetrate 
into the stable layer. Powered from the unstable, convective regions, radial flows can pierce 
into the stable region depending on their inertia (overshooting). Veronis [2] developed and 
analysed a model for penetrative convection in an infinite horizontal layer of water where 
the temperature at the bottom of the layer is kept fixed at 0 ◦ C while the temperature of 
the upper plane is kept fixed at temperature TU(≥ 4 ◦C) . Water possesses a density maxi-
mum at approximately 4 ◦ C and thus the Veronis [2] situation has water in the 0 ◦ C to 4 ◦ C 
range in a potentially gravitationally unstable configuration. When convective motion com-
mences it can penetrate into the part of the layer where the temperature is above 4 ◦ C, and 
if the upper temperature is sufficiently high then a second counter rotating fluid cell may 
arise in the upper part of the layer, see e.g. the streamlines shown in Musman [17]. In this 
article we are interested in finding critical Rayleigh numbers and wave numbers for when 
penetrative convection may occur in a porous medium saturated with water where the geo-
metric configuration is the Veronis [2] one, i.e. the lower boundary temperature held at 
0 ◦ C with the upper temperature fixed at TU . Of particular interest to us is to determine 
the conditions under which one convection cell occurs, and when two or more will occur. 
Since we are employing a porous medium we have several influences to consider, such as 
whether the porous medium is isotropic or anisotropic, what conditions are imposed on the 
fluid at the upper boundary, and what theory is employed to describe the porous medium, 
e.g. Darcy theory or Brinkman theory. Flow patterns in the porous medium are important 
in transporting micro particles or contaminants which may subsequently be distributed into 
the surrounding environment where they may degrade quantities such as air quality. There-
fore, an understanding of the flow patterns in saturated porous media due to penetrative 
motions is essential for a complete knowledge of the physics of the environment.

The goal of this work is to analyse models for penetrative convection in a porous 
material of Darcy or Brinkman type allowing for the porous structure to be of hori-
zontally isotropic type. We consider a fixed boundary condition for the fluid at the 
upper boundary of the layer but alternatively we allow a condition of constant pressure. 
We derive critical Rayleigh numbers and wave numbers for the onset of penetrative 
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convection and investigate in detail the conditions on the upper boundary temperature 
which give rise to a single convection cell or multiple cells. This is achieved by finding 
the associated eigenfunctions of the instability problem and our results vary strongly 
depending on the degree of anisotropy, the upper boundary condition on the velocity, or 
which porous medium theeory is utilized.

2  Equations for penetrative convection

Suppose the porous medium occupies the horizontal layer ℝ2 × {z ∈ (0, d)} with gravity 
g acting in the downward direction, i.e. gi = −gki , where � = (0, 0, 1) . The lower plane 
z = 0 is held at fixed temperature 0 ◦ C while the upper plane at z = d is held at fixed 
temperature TU ≥ 4 ◦C.

For a linear density–temperature relationship the governing equations for an isotropic 
Darcy porous medium are given by Straughan [30] in equations (4.1), p. 148, and we 
repeat these here but we allow for a density which is quadratic in temperature T. Thus, 
the governing equations are

where the density � is given by

with �0 the density of water at 4 ◦ C and where � is the coefficient of thermal expansion. In 
(1) vi,�,K, p, g and � are the velocity field, the dynamic viscosity of water, the permeabil-
ity of the porous material, the pressure of the water in the saturated porous medium, grav-
ity, and the thermal diffusivity of the porous medium. Standard indicial notation is used 
throughout in conjunction with the Einstein summation convention, so that for example, if 
� = (v1, v2, v3) ≡ (u, v,w) and � = (x1, x2, x3) ≡ (x, y, z) , then we write the divergence of the 
velocity field in the forms

For an example involving a nonlinearity, we write

Many porous materials display distinct anisotropy in their structure and this may be mani-
fest by replacing the scalar permeability K with a tensor Kij . In this case the relevant equa-
tions are

(1)

0 = −
�

K
vi − p,i − �(T)gki,

vi,i = 0,

T,t + viT,i = ��T ,

(2)�(T) = �0(1 − �[T − 4]2),

vi,i ≡
3∑

i=1

vi,i =
�v1
�x1

+
�v2
�x2

+
�v3
�x3

,

=
�u

�x
+

�v

�y
+

�w

�z
.

viT,i ≡
3∑

i=1

viT,i = u
�T

�x
+ v

�T

�y
+ w

�T

�z
.
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cf. Straughan [30, page 149].
If we consider an isotropic Brinkman theory then the equations are

where �̃� is a Brinkman effective viscosity, cf. Straughan [30, page 150].
The boundary conditions we consider in this article are

and either

or

where pa is a constant ambient surface pressure.
The steady temperature field for all cases is

where � = TU∕d . The steady velocity field in whose stability we are interested is

3  Effects on penetrative convection

Our main concern here is to investigate the effect of anisotropy via Kij , the changes due to 
the Brinkman term with coefficient �̃� , and the effect of the boundary conditions (6) or (7), 
upon the critical parameters of penetrative convection.

Anisotropic effects upon thermal convection in saturated porous media have been the 
subject of many recent investigations, see e.g. Capone et  al. [31–35], Hemanthkumar 
et al. [36–38]. In particular the ramifications of anisotropy in porous media have proved of 
interest in the application to healthcare materials and in human tissues, see Fang et al. [39], 
Mirbod et al. [40].

The Brinkman effect upon thermal convection in porous media has also inspired recent 
research such as Rees [41], Gentile and Straughan [28, 42] and Wu and Mirbod [43]. Of 
particular note is the observation by Wu and Mirbod [43] that � and �̃� in (4)1 will not in 
general be the same. In [28] it is also shown that the Darcy theory in equations (1) and the 
Brinkman theory in (4) can lead to very different physical effects and thus the two theories 
should always be considered separately.

(3)

0 = −�vi − Kijp,j − �(T)gKijkj,

vi,i = 0,

T,t + viT,i = ��T ,

(4)

0 = −
𝜇

K
vi − p,i + �̃�𝛥vi − 𝜌(T)gki,

vi,i = 0,

T,t + viT,i = 𝜅𝛥T ,

(5)T = 0 ◦C at z = 0; T = TU at z = d; W = 0 at z = 0,

(6)W = 0 at z = d,

(7)p = pa at z = d,

(8)T̄ = 𝛽z,

(9)W̄ ≡ 0.
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The influence of non-Dirichlet boundary conditions on either the velocity field or the 
temperature field is also an area which has attracted much recent attention in thermal 
convection in porous media, see e.g. Barletta et al. [44], Barletta [45], Barletta [46], Bar-
letta and Celli [47], Barletta and Rees [48], Celli and Kuznetsov [49], Mohammad and 
Rees [50], Nield and Kuznetsov [51], Rees and Barletta [52], Rees and Mojtabi [53, 54], 
Brandao et al. [55].

In order to place the mathematical theories of flow in porous media on a firm math-
ematical footing there have been many recent articles studying structural stability aspects 
of the equations themselves, see e.g. Li et al. [56],Liu and Xiao [57], Liu et al. [58], Liu 
et al. [59], Liu et al. [60],Gentile and Straughan [61].

We next investigate instability of the basic solution (8), (9), under variation of the 
effects of anisotropy, the Brinkman coefficient, boundary conditions, and the upper tem-
perature TU.

4  Instability

To investigate instability of the conduction solution (8), (9), we introduce perturbations 
ui,�, � to vi, p, T  as

and we then non-dimensionalize with the scales given in George et al. [15] and Straughan 
[37]. The scalings needed are

with K replaced by KH in the anisotropic permeability case. This yields the non-dimen-
sional perturbation equations for (1) as

where the domain is ℝ2 × {z ∈ (0, 1)} × {t > 0} , Pr = �∕��0 is the Prandtl number, 
� = (T0 − TL)∕(TU − TL) , T0 = 4 ◦C , TL = 0 ◦C , and R is defined by

When dealing with the Darcy models we present results in terms of a Rayleigh number

which reflects the depth of the destabilizing layer in the steady state, cf. George et al. [15].
For the Darcy anisotropic case we suppose the permeability tensor is that appropri-

ate to horizontal isotropy so that Kij ≡ diag{KH ,KH ,KV} cf. Straughan [37]. Then with 
�
2 = KH∕KV the non-dimensional perturbation equations are

vi = v̄i + ui, p = p̄ + 𝜋, T = T̄ + 𝜃,

ui = u∗
i
U, 𝜃 = 𝜃∗T♯, xi = x∗

i
d, t = t∗T,

T =
d2𝜌0
𝜇

, U =
𝜇

𝜌0d
, P =

𝜇Ud

K
T♯ = U

[ 𝛽d2𝜇

𝜅𝜌0g𝛼(TU − TL)K

]1∕2
,

(10)
0 = −�,i − ui − 2R�(� − z)ki + Pr�2ki,

ui,i = 0,

Pr(�,t + ui�,i) = −Rw + ��,

(11)R2 =
g��0�

2d3K

��
.

(12)Ra = �3R2,
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which are again defined on the domain ℝ
2 × {z ∈ (0, 1)} × {t > 0} , and where 

Dij ≡ diag{1, 1,�2} , and now R2 = g��0�
2d3KH∕�� . It is worth observing that Straughan 

[37] provides many instances of real geophysical situations where the horizontally iso-
tropic form Dij is valid.

For the Brinkman system (4), a form of the non-dimensional perturbation equations 
which incorporates a horizontally isotropic permeability is

where B = �̃�KH∕𝜇d
2 is a non-dimensional form of �̃� and the domain of definition is 

ℝ
2 × {z ∈ (0, 1)} × {t > 0}.

For equations (10) the boundary conditions are that (ui,�, �) satisfies a plane tiling 
periodicity in x and y commensurate with the form of periodic cells (typically hexagonal 
shaped) and on the planes z = 0, 1,

We shall also consider the case where the upper boundary is such that the pressure is con-
stant there at the ambient atmospheric pressure pa , and then the boundary conditions (15) 
are replaced by

We only consider equations (16) for the Darcy isotropic case. From equation (10)1 applied 
on the boundary z = 1 , � = 0 when z = 1 , and this yields u, v zero there, and so from the 
equation of continuity wz = 0 when z = 1 . This case is referred by Barletta et al. [44] as 
corresponding to a perfectly permeable upper boundary. For the non - penetrative convec-
tion situation boundary conditions (16) are analysed in detail by Barletta et  al. [44], by 
taking a1 = a2 = b1 = 0 , b2 = ∞ , in their notation. They analyse this class of solutions in 
section 4.2.4 of their paper and the Rayleigh number against wavenumber curve is given in 
their Fig. 5 (lower frame) with a1 = 0.

For the Brinkman perturbation equations (14) the boundary conditions are again perio-
dicity in the (x, y) plane and on the boundaries z = 0, 1,

To find the critical Rayleigh number, wavenumber, and associated eigenfunction, we dis-
card the Pr�2 terms and take curlcurl of each of equations (10)1 , (13)1 , (14)1 . We then look 
for a normal mode solution of form

(13)

0 = −�,i − Dijuj − 2R�(� − z)ki + Pr�2ki,

ui,i = 0,

Pr(�,t + ui�,i) = −Rw + ��,

(14)

0 = −�,i − Dijuj + B�ui − 2R�(� − z)ki + Pr�2ki,

ui,i = 0,

Pr(�,t + ui�,i) = −Rw + ��,

(15)w = 0, z = 0, 1; � = 0, z = 0, 1.

(16)w = 0, z = 0;
�w

�z
= 0, z = 1; � = 0, z = 0, 1.

(17)ui = 0, z = 0, 1; � = 0, z = 0, 1.

w = e�tW(z)h(x, y), � = e�t�(z)h(x, y),
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where h(x, y) is a plane tiling function, which satisfies �∗h = −a2h , for a wavenumber a 
where �∗ is the horizontal Laplacian, cf. [29, page 51]. This results in having to solve the 
system of equations

in the isotropic Darcy case,

in the horizontally isotropic Darcy case, and

in the horizontally isotropic Brinkman case, where D = d∕dz and z ∈ (0, 1).
The boundary conditions for (18) and (19) are

or for the constant pressure case

and for (20) for two fixed surfaces

5  Global nonlinear stability

For any of the systems of equations (10), (13), or (14), a standard energy stability analysis 
will not lead to global nonlinear stability due to the presence of the quadratic term Pr�2ki . 
Instead, we may employ an energy function which has a weight, of form

where 𝜁 > 2 is a constant at our disposal and V is a period cell for the solution, cf. [29, 
pages 342–343]. When dE/dt is calculated the weight � − 2z gives rise to a term of form 
−w�2 and this cancels out with the analogous term which arises from the momentum equa-
tion. Thus, the energy equation which arises contains only quadratic terms which then lead 
to unconditional (global) nonlinear stability. This leads to an energy equation of form, in 
the Darcy situation,

where the dissipation D and the production term I are given by

(18)
(D2 − a2)W − 2R(� − z)a2� = 0,

(D2 − a2)� − RW = ��,

(19)
(D2 − a2�2)W − 2R(� − z)a2� = 0,

(D2 − a2)� − RW = ��,

(20)
(D2 − a2�2)W − B(D2 − a2)2W − 2R(� − z)a2� = 0,

(D2 − a2)� − RW = ��,

(21)W = 0, z = 0, 1; � = 0, z = 0, 1;

(22)W = 0, z = 0; DW = 0, z = 1; � = 0, z = 0, 1;

(23)W = DW = 0, z = 0, 1; � = 0, z = 0, 1.

(24)E(t) =
Pr

2 ∫V

(� − 2z)�2dx,

(25)
dE

dt
= RI − D,
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and

A global nonlinear stability analysis may be developed from (25) as follows

where

with H = {ui ∈ L2(V), � ∈ H1(V)} with (x,  y) periodicity, being the space of admissible 
solutions. One has then to calculate the Euler-Lagrange equations from (27) and solve these 
for the critical value of RE . This calculation is similar to that done for the linear instability 
problem in Sect. 7 of this paper. We do not present numerical results for this calculation 
here since we are primarily interested in the effects of anisotropy and boundary conditions 
upon penetrative convection. However, the numerical results follow those of Straughan and 
Walker [16] on a different problem and show that the nonlinear stability threshold is close 
to the linear instability one for TU values not exceeding 8 ◦C.Veronis [2] shows that sub-
critical instabilities are possible in the pure fluid penetrative convection problem and so 
we do not expect coincidence of the energy stability and linear instability Rayleigh number 
values, especially for TU larger, where in Sect. 7 we find multi-cellular structures form.

6  Numerical method

To solve equations (18), (19), (20) with boundary conditions (21), (22), (23) numerically 
we employ a D2 Chebyshev tau method, as described in Dongarra et al. [62]. We treat � 
as the eigenvalue and recast each system into a generalized matrix eigenvalue problem of 
form

where

for the Darcy cases with

where Ti(z) are Chebyshev polynomials. For the Brinkman case we introduce a variable � 
by � = (D2 − a2)W and then we still have a system like (28) to solve but now

I = −∫V

(2� + � − 4z)w� dx ,

D = ∫V

Dijuiujdx + ∫V

(� − 2z)|∇�|2dx.

(26)
dE

dt
≤ −D

(
R

RE

− 1

)
,

(27)
1

RE

= max
H

I

D
,

(28)A� = �B�,

� = (W0,⋯ ,WN ,�0,⋯ ,�N),

(29)W =

N∑

i=0

WiTi(z), � =

N∑

i=0

�iTi(z),
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The boundary conditions (21) and (23) are inserted as rows N − 1,N, 2N − 1, 2N for the 
Darcy problem and rows N − 1,N, 2N − 1, 2N, 3N − 1, 3N for the Brinkman problem. 
For these cases the resulting generalized matrix eigenvalue problem was solved by the 
QZ algorithm of Moler and Stewart [63]. The eigenfunctions W(z) are calculated from the 
eigenvalues Wi as in (29) or (30).

For the constant pressure boundary condition (22) we found significant problems with 
the production of spurious eigenvalues if we used the method of writing in the boundary 
conditions as rows of the matrices. To overcome this it was necessary to use the discrete 
form of the boundary conditions to remove variables WN+1 and WN+2 and in this manner to 
incorporate the boundary conditions into all rows of the matrices. The relevant expressions 
are given by (2.15) and (2.16) of Payne and Straughan [64] taking their variable A = 0 . In 
our case the appropriate conditions are

The conditions on WN+1 and WN+2 may be found by using the relations Tn(±1) = (±1)n, 
T �
n
(±1) = n2(±1)n−1. The domain (0,1) is transformed to the Chebyshev domain (-1,1) by 

z = 2ẑ − 1 and then the boundary conditions W = 0, z = 0 and DW = 0, z = 1 are

The expressions for WN+1 and WN+2 are obtained by elimination from these two equations.
We put � = �r + �1 , �r, �1 ∈ ℝ , and the secant method is employed to locate where 

�r = 0 . We then minimize the value of Ra so found in a2 to yield the critical values of Ra 
and a. It is of interest to note that for all the cases we have performed we found �1 = 0 
at criticality. While we do not have a rigorous proof that � ∈ ℝ , i.e. that the principle of 
exchange of stabilties holds, it is certainly found numerically in all the results shown here.

7  Numerical results

Numerical results for critical wavenumbers, a, and Rayleigh numbers, Ra, are presented 
in tables 1 - 6. The W eigenfunctions associated to the critical values of a and Ra are dis-
played in Figs. 1, 2, 3, 4.

Tables  1, 2, 3 concentrate on isotropic theory and concern, respectively, the Darcy 
model with W = 0 on the upper surface, the Darcy model with constant pressure on the 
upper surface, and the Brinkman model for two fixed surfaces. The corresponding eigen-
functions are presented in Figs. 1, 2, 3. For the Brinkman model the results are presented in 
terms of a Rayleigh number

so that the depth of the destabilizing layer is reflected in that case.

(30)� = (W0,⋯ ,WN ,�0,⋯ ,�N ,�0,⋯ ,�N).

WN+1 = −

N∑

i=0

(
i2 + (−1)i(N + 2)2

2N2 + 6N + 5

)
Wi,

WN+2 =

N∑

i=0

(
−i2 + (−1)i(N + 1)2

2N2 + 6N + 5

)
Wi.

W0 −W1 +W2 −⋯ +WN+1 −WN+2 = 0,

W1 + 4W2 +⋯ + (N + 1)2WN+1 + (N + 2)2WN+2 = 0.

Ra = �5R2,



 Environmental Fluid Mechanics

1 3

Table 1 shows that the critical wavenumber increases as TU increases, which is equiv-
alent to the aspect ratio of the convection cell (width/depth) for constant depth decreas-
ing. We do not witness counter cells for TU = 4, 6, but there is one counter cell when 
TU = 8, but the aspect ratio is less. When TU = 12 we find 3 cells and when TU = 16 
there are 4 cells, with the cell width being approximately one third of that when TU = 4 . 
The pattern of cell formation is repeated in Tables 2, 3, for Darcy theory with a constant 
pressure boundary condition, and Brinkman theory, respectively. As TU increases the 
critical Ra values tend to a constant which is different in the Brinkman case to the two 
Darcy theories. The value of Ra as TU increases is the same for both of the Darcy theo-
ries and the eigenfunctions are very similar which suggests that for TU ≥ 12 the upper 
boundary condition on W is less relevant. The narrowness of the convection cells and 
greater temperature variation appears to be more influential to cell formation.

Table 1  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �3R2 , number of convection 
cells (if any, denoted by change 
of sign in W), for varying upper 
temperature, TU . Isotropic Darcy 
theory with W = 0 at z = 1

TU a Ra W < 0 (no. cells)

4 3.20 38.540 No
6 3.51 29.338 No
8 4.675 29.461 Yes (2 cells)
10 5.88 29.502 Yes
12 7.05 29.501 Yes (3 cells)
14 8.23 29.501 Yes
16 9.40 29.501 Yes (4 cells)

Table 2  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �3R2 , number of convection 
cells (if any, denoted by change 
of sign in W), for varying upper 
temperature, TU . Isotropic Darcy 
theory with DW = 0 at z = 1

TU a Ra W < 0 (no. cells)

4 2.45 30.933 No
6 3.25 28.645 No
8 4.71 29.523 Yes (2 cells)
10 5.80 29.500 Yes
12 7.05 29.502 Yes (3 cells)
14 8.23 29.501 Yes
16 9.40 29.501 Yes (4 cells)

Table 3  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �5R2 , number of convection 
cells (if any, denoted by change 
of sign in W), for varying upper 
temperature, TU . Isotropic 
Brinkman theory with W = 0 at 
z = 1

TU a Ra W < 0 (no. cells)

4 3.13 1738.830 No
6 3.20 649.256 No
8 4.01 593.110 Yes (2 cells)
10 5.11 596.476 Yes
12 6.11 593.689 Yes (3 cells)
14 7.12 592.509 Yes
16 8.14 591.757 Yes (4 cells)
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The transition value from one cell to two cells varies for each model. For the Darcy 
theory with W = 0 on the upper boundary we find two cells are present when TU = 6.5 , 
whereas with a constant pressure boundary condition TU = 6.6 . For the Brinkman the-
ory with B = 1 or 10 we find two cells when TU = 7.2 . When B = 0.1 the relevant value 
is TU = 7.1 and when B = 0.01 , TU = 6.8.

The eigenfunctions for Darcy theory with W = 0 on the upper surface or for a con-
stant pressure boundary condition are very close for TU = 8, 12, 16 , apart from near to 
the upper surface z = 1 . When TU = 8 the strength of the counter cell is 0.0877 for the 
constant pressure boundary condition whereas it is 0.0718 for W = 0 at z = 1 . When 
TU = 12 the second cells have the same strength with the strength of the third cell being 
1.6 times greater for the constant pressure case. When TU = 16 the strengths of the sec-
ond and third cells are the same for W = 0 or constant pressure boundary conditions, but 
the fourth cell is approximately 1/3 times stronger for the constant pressure boundary 
condition.

There is a greater variation of strength in the Brinkman case where the Laplacian 
term plays a strong role. The second counter cells for TU = 12, 16 are much stronger for 
the Brinkman theory as is witnessed in Fig. 3.

In Table 4 we show critical wavenumber and Rayleigh number values for the Darcy 
problem with TU = 6 and W = 0 on the upper boundary, the corresponding W(z) eigen-
function behaviour is seen in Fig. 4. The effect of anisotropy is observed. This was also 
investigated by Carr and Putter [20], but for different values. The horizontal isotropy 
has a strong effect upon critical values and, indeed, upon convection cell structure. As 
�
2 increases a decreases which means the aspect ratio increases and the cells become 

wider. Also, for �2 = 10 we see a second cell has formed. This is in complete agree-
ment with the observations by Musman [17] for penetrative convection in a layer of pure 
water, who writes,... “The most important penetration of convective motions takes place 
in the form of nearly horizontal motions in the lowest part of the stable region, corre-
sponding to the upper part of the principal cell." For �2 large the horizontal permeabil-
ity is significantly larger than the vertical one and this will assist horizontal motion and 
so extra cells will be expected physically for larger values of �2.

In Table 5 critical Ra and a values are given for the Darcy theories and they are com-
pared with the Brinkman values over a similar TU range. The variation of critical wave-
numbers and Rayleigh numbers as �2 changes for the Brinkman theory is noticeable. 
When TU = 6.8 we see that �2 has to be very large for a counter cell to form.

The effect of the variation of the Brinkman parameter B is displayed in Table 6. It is 
noted that the counter cell occurence does not appear to be influenced much by B vari-
ation, e.g. for TU = 7.1 , B = 1, 10 indicates only one principal cell, and when TU = 7.2 
a counter cell appears for B = 0.1, 1 and 10. The effect of variation of TU for B = 0.01 is 
given and a counter cell is observed when TU = 6.8.

Table 4  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �3R2 , whether W changes 
sign in (0, 1), for fixed upper 
temperature, TU = 6 , with 
varying anisotropy parameter �2 . 
Darcy theory with W = 0 at z = 1

�
2 a Ra W < 0

10 2.01 124.944 Yes
2 2.96 42.675 No
1 3.51 29.338 No
0.5 4.18 21.337 No
0.1 6.35 12.494 No
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Table 7 shows how the critical Rayleigh number varies with the upper surface temperature 
TU (which is equivalent to varying � ) for fixed values of the Brinkman number, 0.1 and 1. Fig-
ures 5 and 6 display this variation. The behaviour is similar in each figure although the scale 
is different. Tables 8, 9, 10 show how the critical Rayleigh number varies with the Brinkman 
number B for fixed values of TU and anisotropy �2 . These results are displayed graphically in 
Fig. 7. For �2 = 1 or 10 we find that the graphs of log10 Ra against log10 B are almost straight 
lines, thus displaying nearly linear variation. For �2 = 100 where the horizontal permeability 
is much greater than the vertical one this is not true for small B although as B increases the 
curves approach a linear relationship. This is understandable since for B small the Darcy term 
is dominating via the strong horizontal permeability.

Table 5  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �3R2 , whether W changes 
sign in (0, 1), for various upper 
temperatures, with varying 
anisotropy parameter �2 , for 
Darcy theory, Darcy theory 
with constant pressure boundary 
condition, or Brinkman theory as 
indicated. For the Darcy theories 
Ra = �3R2 , whereas for the 
Brinkman theory Ra = �5R2

Theory TU �
2 a Ra W < 0

Darcy 6.6 1 3.78 29.169 Yes
Constant Pressure 6.6 1 3.76 29.237 Yes
Darcy 6.7 1 3.83 29.183 Yes
Constant Pressure 6.7 1 3.84 29.298 Yes
Brinkman B = 1 6.7 1 3.32 580.678 No
Brinkman B = 1 6.0 10 3.11 712.821 No
Brinkman B = 1 6.0 100 2.57 1271.420 No
Brinkman B = 1 6.8 10 3.26 630.591 No
Brinkman B = 1 6.8 100 2.78 1095.691 Yes

Table 6  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �5R2 , whether W changes 
sign in (0, 1), for various upper 
temperatures, with varying 
Brinkman parameter B 

B TU a Ra W < 0

0.07 7.1 3.56 51.283 Yes
0.09 7.1 3.54 62.564 Yes
0.1 7.1 3.53 68.196 Yes
1 7.1 3.46 573.094 No
10 7.1 3.45 5619.834 No
0.1 7.2 3.58 68.035 Yes
1 7.2 3.50 573.799 Yes
10 7.2 3.49 5629.156 Yes
0.1 6.5 3.33 71.582 No
0.1 7.0 3.49 68.447 No
0.01 6.5 3.57 18.681 No
0.01 6.6 3.61 18.290 No
0.01 6.7 3.65 17.929 No
0.01 6.8 3.70 17.597 Yes
0.01 7.0 3.80 17.001 Yes
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Table 7  Critical wavenumber, 
a, critical Rayleigh number, 
Ra = �5R2 , with varying TU 
(alternatively varying � ≡ 4∕TU ) 
for B = 0.1, 1 . Brinkman theory 
with �2 = 1

TU � B a Ra B a Ra

4 1 0.1 3.16 213.181 1 3.13 1738.830
4.25 0.9412 0.1 3.17 177.989 1 3.13 1452.232
4.5 0.8889 0.1 3.17 151.246 1 3.14 1234.526
4.75 0.8421 0.1 3.18 130.665 1 3.14 1067.076
5 0.8 0.1 3.18 114.676 1 3.15 937.119
5.5 0.7273 0.1 3.21 92.419 1 3.17 756.762
6 0.6667 0.1 3.25 79.004 1 3.20 649.256
6.5 0.6154 0.1 3.33 71.582 1 3.27 592.240
7 0.5714 0.1 3.49 68.447 1 3.42 573.302
8 0.5 0.1 4.08 68.040 1 4.01 593.110
9 0.4444 0.1 4.68 66.924 1 4.62 600.961
10 0.4 0.1 5.16 65.220 1 5.11 596.476
11 0.3636 0.1 5.65 64.064 1 5.60 594.323
12 0.3333 0.1 6.16 63.266 1 6.11 593.689

Table 8  Critical wavenumber, a, critical Rayleigh number, Ra = �5R2 , with varying B, TU = 8 , ( � = 0.5 ). 
Brinkman theory, with horizontally isotropic Darcy coefficient

B log10B �
2 a Ra log10Ra �

2 a Ra log10Ra

0.1 −1 1 4.08 68.04 1.8328 10 3.65 104.86 2.0206
0.2 −.69897 1 4.04 126.46 2.1019 10 3.79 165.63 2.2191
0.5 −.301 1 4.02 301.48 2.4793 10 3.90 342.77 2.5350
1 0 1 4.01 593.11 2.7731 10 3.95 635.31 2.8030
3.2 .50515 1 4.00 1876.18 3.2733 10 3.98 1919.10 3.2831
10 1 1 4.00 5841.98 3.7666 10 3.99 5885.14 3.7698
32 1.50515 1 4.00 18672.52 4.2712 10 4.00 18715.76 4.2722
100 2 1 4.00 58330.52 4.7659 10 4.00 58373.78 4.7662

Table 9  Critical wavenumber, a, critical Rayleigh number, Ra = �5R2 , with varying B, TU = 6 , 
( � = 0.6667 ). Brinkman theory, with horizontally isotropic Darcy coefficient

B log10B �
2 a Ra log10Ra �

2 a Ra log10Ra

0.1 -1 1 3.25 79.00 1.8976 100 1.76 559.47 2.7478
0.2 -.69897 1 3.23 142.43 2.1536 100 1.97 663.33 2.8217
0.5 -.301 1 3.21 332.51 2.5218 100 2.31 912.43 2.9602
1 0 1 3.20 649.26 2.8124 100 2.57 1271.42 3.1043
3.2 .50515 1 3.20 2042.87 3.3103 100 2.92 2716.52 3.4340
10 1 1 3.20 6350.36 3.8028 100 3.09 7048.31 3.8481
32 1.50515 1 3.20 20286.35 4.3072 100 3.16 20993.64 4.3221
100 2 1 3.20 63361.24 4.8018 100 3.19 64071.60 4.8067
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8  Conclusions

Penetrative convection in a horizontal layer of water saturated porous material has been 
studied. The problem is much richer in a porous material than in the pure fluid case since 
one must consider the appropriate porous medium model, the porous medium may be 
strongly anisotropic, and if a Brinkman theory is employed the strength of this effect has to 
be investigated.

We have analysed two porous medium theories, that of Darcy and also that of Brink-
man. We have also allowed for different boundary conditions on the velocity on the upper 
surface of the layer. We have shown that anisotropy and the Brinkman effect may alter 
the critical wave and Rayleigh numbers substantially, and may also affect the structure of 

Table 10  Critical wavenumber, a, critical Rayleigh number, Ra = �5R2 , with varying B, TU = 4 , ( � = 1 ). 
Brinkman theory, with horizontally isotropic Darcy coefficient

B log10B �
2 a Ra log10Ra �

2 a Ra log10Ra

0.1 -1 1 3.16 213.18 2.3287 100 1.59 1582.88 3.1994
0.2 -.69897 1 3.15 382.78 2.5830 100 1.82 1849.65 3.2671
0.5 -.301 1 3.13 891.33 2.9500 100 2.17 2505.11 3.3988
1 0 1 3.13 1738.83 3.2403 100 2.45 3460.17 3.5391
3.2 .50515 1 3.13 5467.74 3.7378 100 2.82 7321.66 3.8646
10 1 1 3.13 16993.43 4.2303 100 3.01 18910.14 4.2767
32 1.50515 1 3.13 54282.40 4.7347 100 3.09 56223.06 4.7499
100 2 1 3.13 169539.21 5.2293 100 3.11 171488.07 5.2342
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Fig. 1  Graph of W against TU for Darcy isotropic theory with W = 0 at z = 1 . The values of TU are marked 
on the graph
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Fig. 2  Graph of W against TU for Darcy isotropic theory with DW = 0 at z = 1 . The values of TU are marked 
on the graph
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= 1 being in figure 1
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convection cell formation. For the Darcy theory the upper boundary condition of zero ver-
tical velocity or constant pressure is important when the upper temperature is less than 
8 ◦ C, but the difference in the effect of the boundary conditions becomes much less when 
the upper temperature takes the values of 12 ◦ C or 16 ◦C.
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