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Abstract

We investigate the computational complexity of finding temporally dis-
joint paths or walks in temporal graphs. There, the edge set changes
over discrete time steps and a temporal path (resp. walk) uses edges that
appear at monotonically increasing time steps. Two paths (or walks) are
temporally disjoint if they never visit the same vertex at the same time;
otherwise, they interfere. This reflects applications in robotics, traffic
routing, or finding safe pathways in dynamically changing networks.
On the one extreme, we show that on general graphs the prob-
lem is computationally hard. The “walk version” is W[1]-hard when
parameterized by the number of walks. However, it is polynomial-
time solvable for any constant number of walks. The “path version”

∗A preliminary version of this paper appeared at the Proceedings of IJCAI 2021 [1].
This revised version now contains all proof details.
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Fig. 1: A temporal graph where a label of an edge reflects at which time it is
available. There are two temporally disjoint (s, z)-paths P1 and P2, where P1

uses the solid (orange) edges and P2 the dashed (blue) edges. Here, P1 visits v
before P2.

remains NP-hard even if we want to find only two temporally dis-
joint paths. On the other extreme, restricting the input temporal
graph to have a path as underlying graph, quite counter-intuitively, we
find NP-hardness in general but also identify natural tractable cases.

Keywords: Temporal graph, temporal path, NP-complete problem,
parameterized complexity, polynomial-time algorithm.

1 Introduction

Computing (vertex-)disjoint paths in a graph is a cornerstone problem of algo-
rithmic graph theory and many applied network problems. It was among the
early problems that were shown to be NP-complete [2]. One of the deepest
achievements in discrete mathematics, graph minor theory [3, 4], as well as
the development of the theory of parameterized complexity analysis [5] are
tightly connected to it. The problem is known to be solvable in quadratic time
if the number of paths is constant, that is, it is fixed-parameter tractable when
parameterized by the number of paths [6]. Besides being of fundamental inter-
est in (algorithmic) graph theory, finding disjoint paths has many applications
and there exist numerous variations of the problem. In AI and robotics sce-
narios, for instance, multi-agent path finding is an intensively studied, closely
related problem [7, 8].

Coming from the graph-algorithmic side, we propose a new view on find-
ing disjoint paths (and walks), that is, we place the problem into the world
of temporal graphs. We add a “new dimension” to the classic, static graph
scenario by generalizing to a setting where the edges of a graph may appear
and disappear over (discrete) time. In our model, we consider two paths (or
walks) to be disjoint if they do not use the same vertex at the same point of
time. Consider Fig. 1 for an example. Moreover, the path finding also has to
take into account that edges are not permanently available, reflecting dynamic
aspects of many real-world scenarios such as routing in traffic or communica-
tion networks, or the very dynamic nature of social networks. We intend to
initiate studies on this natural scenario. Doing so, we focus on two extreme
cases for the underlying graphs, namely the (underlying) graph structure being
completely unrestricted or it being restricted to just a path graph. For these
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opposite poles, performing (parameterized) computational complexity studies,
we present surprising discoveries. Before coming to these, we discuss (excerpts
of) the large body of related work.

Related work. As mentioned above, the literature on (static) disjoint paths
and on multi-agent path finding is very rich. Hence, we only list a small frac-
tion of the relevant related work. In context of graph-algorithmic work, the
polynomial-time (in-)approximability of the NP-hard maximization version
has been studied [9]. Variants of the basic problem studied include bounds on
the path length [10] or relaxing on the disjointness of paths [11–14].

In directed graphs, finding two disjoint paths is already NP-hard [15],
whereas in directed acyclic graphs the problem is solvable in polynomial time
for every fixed number of paths [16].

As to multi-agent path finding, we remark that it has been intensively
researched (with several possible definitions) in the last decade in the AI
and robotics communities [7, 8, 17–19]. Timing issues (concurrency of moving
agents) and the various objective functions of the agents play a fundamental
role here; also a high variety of conflict scenarios is studied.1 The scenario we
study in this work can be interpreted as a basic variant of multi-agent path
planning, now translated into the world of temporal graphs.

In algorithmic graph theory, edge-colored graphs have also been studied.
Edge-colored graphs are essentially multilayer (or multiplex) graphs where
the fundamental difference to temporal graphs is that there is no order on
the graph snapshots (also referred to as layers). Here, path-finding scenarios
are motivated, for example, by applications in social and optical (routing)
networks [20–22].

Finally, as to temporal graphs, note that several prominent graph prob-
lems have been studied in this fairly new framework. This includes path
problems [23–30] and in particular another model of vertex-disjoint temporal
paths [31], where two temporal paths are considered vertex-disjoint if they
do not visit the same vertex. The problem of finding two such paths is NP-
hard [31]. Note that the major difference to our model is that we allow two
temporally disjoint paths to visit the same vertex as long as they do not both
visit that vertex at the same time. Apart from path-related problems, in the
previous years also various non-path temporal problems have been introduced
and studied, such as temporal separation problems [32, 33], vertex color-
ing [34], matching [35], vertex cover [36, 37], transitive orientation [38], and
betweenness [39].

Our contributions. Our results can be grouped into two parts. First, studying
temporal graphs where the underlying graph (which is obtained by making all
temporal edges permanent) is unrestricted, we show in Section 3 that finding
walks instead of paths turns out to be computationally easier. More specifically,
finding temporally disjoint walks is W[1]-hard with respect to the number of
walks but can be solved in polynomial time if this number is constant (that is,

1Also see the multi-agent path planning webpage: http://mapf.info/
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Temp. Disjoint Paths Walks

unrestricted NP-hard W[1]-hard wrt. |S|
underlying graph for |S| = 2 XP wrt. |S|

temporal line NP-hard
or tree FPT wrt. |S| open

temporal line &
S contains only pairs poly-time
of extremal points

Table 1: Overview computational complexity of Temporally Disjoint
(Paths/Walks). Here, S is the multiset of source-sink pairs. Temporal line
means that the underlying graph is a path.

in the language of parameterized algorithmics, we develop an XP algorithm),
whereas finding temporally disjoint paths already turns out to be NP-hard for
two paths. Second, restricting the input to be a temporal line or a temporal
tree (i.e., the underlying graph to be a path or a tree, respectively), we prove
in Section 4 that the problem is NP-hard (for both paths and walks). However,
we also provide a fixed-parameter tractability result with respect to the number
of paths. For the special case where, in an input temporal line, the given
multiset of source-sink pairs only contains pairs of the extremal points of the
temporal line, we provide a polynomial-time algorithm. We survey our results
in Table 1.

2 Preliminaries and problem definition

We denote by N and N0 the natural numbers excluding and including 0, respec-
tively. An interval on N0 from a to b is denoted by [a, b] := {i ∈ N0 | a ≤ i ≤ b}
and [a] := [1, a].

Static graphs. An undirected graph G = (V,E) consists of a set V of ver-
tices and a set E ⊆ {{v, w} | v, w ∈ V, v 6= w} of edges. For a graph G,
we also denote by V (G) and E(G) the vertex and edge set of G, respec-
tively. For a vertex set W ⊆ V , the induced subgraph G[W ] is defined as the
graph (W, {{v, w} ∈ E | v, w ∈ W}). A path P = (V,E) is a graph with a
set V (P ) = {v1, . . . , vk} of distinct vertices and edge set E(P ) = {{vi, vi+1} |
1 ≤ i < k} (we often represent path P by the tuple (v1, v2, . . . , vk)). We say
that P is a (v1, vk)-path and that P visits all vertices in V (P ).

Temporal graphs and temporally disjoint paths. A temporal graph G =
(V, (Ei)i∈[T ]) consists of a set V of vertices and lifetime T many edge
sets E1, E2, . . . , ET over V . The pair (e, i) is a time edge of G if e ∈ Ei.
The graph (V,Ei) is called the i-th layer of G. The underlying graph of G
is the static graph (V,

⋃T
i=1 Ei). A temporal (s, z)-walk (or temporal walk

from s to z) of length k from vertex s = v0 to vertex z = vk in G is a
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sequence P = ((vi−1, vi, ti))
k
i=1 of triples such that for all i ∈ [k] we have that

{vi−1, vi} ∈ Eti and for all i ∈ [k− 1] we have that ti ≤ ti+1. The arrival time
of P is tk. We say that P visits the vertices V (P ) := {vi | i ∈ [0, k]}. In par-
ticular, P visits vertex vi during the time interval [ti, ti+1], for all i ∈ [k − 1].
Furthermore, we say that P visits v0 during time interval [t1, t1] and P visits vk
during time interval [tk, tk]. A temporal (s, z)-walk P = ((vi−1, vi, ti))

k
i=1 of

length k is called a temporal (s, z)-path (or temporal path from s to z) if vi 6= vj
whenever i 6= j. Given two temporal walks P1, P2 we say that P1 and P2 tempo-
rally intersect if there exists a vertex v and two time intervals [a1, b1], [a2, b2],
where [a1, b1] ∩ [a2, b2] 6= ∅, such that v is visited by P1 during [a1, b1] and
by P2 during [a2, b2]. Now, we can formally define our problem.

Temporally Disjoint Paths

Input: A temporal graph G = (V, (Ei)i∈[T ]) and a multiset S of source-
sink pairs containing elements from V × V .

Question: Are there pairwise temporally non-intersecting temporal
(si, zi)-paths for all (si, zi) ∈ S?

Analogously, Temporally Disjoint Walks gets the same input but
asks whether there are pairwise temporally non-intersecting temporal (si, zi)-
walks for all (si, zi) ∈ S. From the NP-hardness of Disjoint Paths [2], we
immediately get the following.

Observation 1 Temporally Disjoint (Paths/Walks) is NP-hard even if T = 1.

For an instance (G = (V, (Ei)i∈[T ]), S) of Temporally Disjoint (Path-
s/Walks) we assume throughout this paper that in the input, G is given by the
vertex set V followed by the ordered (by time label) subsequence of E1, . . . , ET ,
only containing the non-empty edge sets. To make the presentation simpler,
we apply a linear-time preprocessing step to the input by renumbering these
non-empty edge sets Ei (still keeping their relative order the same) such that
all non-empty sets are consecutive. Note that this preprocessing step creates
an instance that is equivalent to the original input instance. Therefore, with-
out loss of generality we assume in the remainder of our work that all edge
sets Ei, i = 1, 2, . . . , T , are non-empty (where the new lifetime T is now the
number of non-empty edge sets in the original input). Hence, the size of G is

|G| := |V |+
∑T

t=1 |Et|.

Parameterized complexity. Let Σ denote a finite alphabet. A parameterized
problem L ⊆ {(x, k) ∈ Σ∗×N0} is a subset of all instances (x, k) from Σ∗×N0,
where k denotes the parameter. A parameterized problem L is (i) FPT (fixed-
parameter tractable) if there is an algorithm that decides every instance (x, k)
for L in f(k) · |x|O(1) time, and (ii) contained in the class XP if there is an
algorithm that decides every instance (x, k) for L in |x|f(k) time. where f is
any computable function only depending on the parameter. If a parameterized
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problem L is W[1]-hard, then it is presumably not fixed-parameter tractable.
We refer to Downey and Fellows [5] for more details.

3 The case of few source-sink pairs

In this section, we study the computational complexity of Temporally
Disjoint (Paths/Walks) for the case that the size of the multiset S of
source-sink pairs is small. We start by showing that Temporally Disjoint
Paths is NP-hard even for two sink-source pairs. This is a similar situation
as for finding vertex-disjoint paths in directed static graphs, which is also NP-
hard for two paths [15]. However, in the temporal setting there is a surprising
difference between finding walks and paths that does not have an analogue in
the static setting. We will show that Temporally Disjoint Walks is W[1]-
hard for the number |S| of source-sink pairs and is contained in XP for the
same parameter. First, however, we consider the computationally seemingly
even more intractable path variant.

Theorem 2 Temporally Disjoint Paths is NP-hard even if |S| = 2 and T = 3.

Proof We show that Temporally Disjoint Paths is NP-hard even if |S| = 2 and
T = 3 by a polynomial-time reduction from the NP-complete Exact (3, 4)-SAT
problem [40]. Exact (3, 4)-SAT asks whether a Boolean formula φ is satisfiable,
assuming that it is in conjunctive normal form, each clause has exactly three literals,
and each variable appears in exactly four clauses.

Construction. Let φ be an instance of Exact (3, 4)-SAT with n vari-
ables x1, x2, . . . , xn and m clauses. We construct an instance I = (G =
(V, (E1, E2, E3)), S = {(s1, z1), (s2, z2)}) in the following way. Intuitively, the first
two layers contain the assignment gadget for the variables. The idea is that in time
step one the temporal (s1, z1)-path P1 goes from s1 to s′ and hereby sets all variables
to true or false depending on which route was taken. At time step two, the unique
temporal (s2, z2)-path departs and arrives. Moreover, this unique temporal (s2, z2)-
path visits all vertices of the assignment gadget except s′. This ensures that P1

does not “wait” at any other vertex than s′. In the third layer, P1 must go from s′

to z1 through all clause gadgets. Since P1 cannot visit a vertex twice, this validates
whether the assignment satisfies φ. Fig. 2 depicts the resulting temporal graph.

The construction is done as follows. For each variable xj , 1 ≤ j ≤ n, we construct

the variable gadget Gxj = ({axj , axj+1} ∪ {xji, xji | i ∈ [4]}, (Exj

i )i∈[2]), where

E
xj

1 = E
xj

T ∪ E
xj

F and

E
xj

2 = E
xj

T ∪ {{xj
i, xj

i+1} | i ∈ [3]} ∪ {{xj4, xj+1
1} | j < n} with

E
xj

T = {{axj , xj
1}, {xj4, axj+1}} ∪ {{xj

i, xj
i+1} | i ∈ [3]} and

E
xj

F = {{axj , xj
1}, {xj4, axj+1}} ∪ {xj

i, xj
i+1 | i ∈ [3]}.

Let Ci = (`fj ∨ `
g
p ∨ `hq ) be a clause, where `βα is a literal of variable xα and its

β-th appearance when iterating the clauses in the order of the indices. We now
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Fig. 2: An excerpt of layers Gj = (V,Ej), j ∈ [3] of the temporal graph G
used in the proof of Theorem 2. Vertex z1 and the vertices corresponding to
the clauses are isolated in G1 and G2 and omitted in the illustration. In G3

exemplary the edges for clause Ci = (x1∨x2∨x3) are drawn, where Ci contains
the fourth appearance of x1 and the third appearance of x2 and x3.

abuse our notation and say `βα ≡ xβα if `βα is a negation of xα and otherwise we say

`βα ≡ xβα. We construct the clause gadget GCi := ({Ci, Ci+1, `
f
j , `

g
p, `

h
q }, (ECi

t )t∈[3])

where ECi
1 = ECi

2 = ∅ and

ECi
3 = {{Cr, `fj }, {Cr, `

g
p}, {Cr, `hq } | r ∈ {i, i+ 1}}.

Now we set G = (V, (Et)t∈[3]), where

V =

n⋃
j=1

V (Gxj ) ∪
m⋃
i=1

V (GCi) ∪ {s1, s2, z1, z2, s′},

E1 =

n⋃
j=1

E
xj

1 ∪ {{s1, ax1}, {axn+1 , s
′}},

E2 =

n⋃
j=1

E
xj

2 ∪ {{s2, x1
1}, {xn4, ax1}, {axn+1 , z2}}, and

E3 =

m⋃
i=1

ECi
4 ∪ {{s

′, C1}, {z1, Cm+1}}.

Observe that I can be constructed in polynomial time.

Correctness. (⇐): Assume I is a yes-instance. Hence, there are non-intersecting
P1, P2 such that Pi is a temporal (si, zi)-path, for i ∈ [2]. Observe that there is only
one unique temporal (s2, z2)-path in G. Hence, P1 visits s′, otherwise P1 intersects P2.
Moreover, on its way to s′ the temporal path P1 visits for each variable xi either
x1i , x

2
i , x

3
i , x

4
i or x1i , x

2
i , x

3
i , x

4
i . We set variable xi to true if and only if P1 visits x1i .

Now observe that P1 visits all vertices C1, C2, . . . Cm+1 (in that order) at time 3.
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In particular, the only way from Ci to Ci+1 leads via one of literals of Ci. Since P1

cannot visit a vertex twice, one of the literals is set to true by our assignment of the
variables. Thus, φ is satisfiable.

(⇒): Assume φ is satisfiable. We fix one assignment for the variables which
satisfy φ. It is straightforward to verify that by construction G contains one unique
temporal (s2, z2)-path. Let P2 be the unique temporal (s2, z2)-path in G. Our P1

starts with the time edge ({s1, ax1}, 1) and to get from ax1 to axn+1 at time one, P1

takes for each j ∈ [n] the induced path (V,E1)[{axj , axj+1}∪{xij | i ∈ [4]}] if xj is set

to false, otherwise P1 takes the induced path (V,E1)[{axj , axj+1} ∪ {xji | i ∈ [4]}].
Afterwards, P1 takes the time edges ({axn+1 , s

′}, 1), ({s′, C1}, 1). Let i ∈ [m] and

Ci = (`fj ∨ `
g
p ∨ `hq ) be a clause, where `βα is a literal of variable xα and its β-

th appearance. To get from Ci to Ci+1 at time three, P1 takes the induced path

(V,E3)[{Ci, Ci+1, `
β
α}], where `βα is a satisfied literal in Ci. Finally, P1 takes the

time edge ({Cm+1, z1}, 3). Note that P1 does not visit a vertex twice, and hence
it is a temporal (s1, z1)-path in G. Moreover, it visits s′ at times {1, 2, 3} and all
other vertices either at time one or time three. Note that P2 is a temporal path
that exclusively visits vertices at time two and does not visit vertex s′. Thus, P1 is
temporally non-intersecting with P2. It follows that I is a yes-instance. �

The reduction behind Theorem 2 heavily relies on the fact that we are deal-
ing with paths. Indeed, for temporally disjoint walks we presumably cannot
obtain NP-hardness for a constant number of sink-source pairs since, as we
will show at the end of this section, Temporally Disjoint Walks can be
solved in polynomial time if the number of source-sink pairs is constant. How-
ever, before that we show W[1]-hardness for Temporally Disjoint Walks
parameterized by the number |S| of source-sink pairs, presumably excluding
the existence of an FPT-algorithm for this parameter.

Theorem 3 Temporally Disjoint Walks is W[1]-hard when parameterized
by |S|, even if all edges have exactly one time label.

Proof We present a parameterized reduction from Disjoint Paths on DAGs. In
this problem, we are given a directed acyclic graph (DAG) D = (U,A) and ` source-
sink pairs {(s1, t1), . . . , (s`, t`)} ⊆ U × U , and we are asked whether there exist `
paths Pi from si to ti that are pairwise vertex-disjoint. This problem parameterized
by the number ` of paths is W[1]-hard [16].2

Construction. Let (D = (U,A), {(s1, t1), . . . , (s`, t`)} ⊆ U × U) be an instance of
Disjoint Paths on DAGs. We first compute a topological ordering σ for the vertices
in U [41, Theorem 4.2.1]. Recall that σ is a linear ordering on the vertices in U with
the property that (u, v) ∈ A⇒ u <σ v. We denote with σ(u) the position of vertex
u in the ordering σ.

Using this ordering, we construct a temporal graph G as follows. We add the
following vertices to V :

2Slivkins [16] shows W[1]-hardness for the arc-disjoint version of this problem. However,
there are straightforward (parameterized) reductions between Disjoint Paths on DAGs and
Arc-Disjoint Paths on DAGs.
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• For every vertex u ∈ U we add a “vertex-vertex” xu to V .

• For every arc (u, v) ∈ A we add an “arc-vertex” y(u,v) to V .

Next, we add the following time edges: For every arc (u, v) ∈ A we add an edge
from xu to y(u,v) with time label 2σ(u) − 1 and we add an edge from y(u,v) to xv
with label 2(σ(v)− 1).

Finally, for every source-sink pairs (si, ti) of the Disjoint Paths on DAGs
instance, we add the source-sink pair (xsi , xti) to S. The reduction can clearly be
performed in polynomial time and the number of source-sink pairs in the constructed
instance is the same as the number of source-sink pairs in the given Disjoint Paths
on DAGs instance.

Correctness. We now show that the given Disjoint Paths on DAGs instance is a
yes-instance if and only if our constructed instance is a yes-instance of Temporally
Disjoint Walks.

(⇒): Assume (D = (U,A), {(s1, t1), . . . , (s`, t`)} ⊆ U × U) is a yes-instance of
Disjoint Paths on DAGs. Then there is a set P of pairwise vertex-disjoint paths for
all source-sink pairs {(s1, t1), . . . , (s`, t`)}. Let Pi = ((vj−1, vj))

k
j=1 ∈ P with v0 = si

and vk = ti be the path from si to ti. Then, by construction of G, we have that
Qi = ((xsi , y(si,v1), 2σ(si) − 1), (y(si,v1), xv1 , 2(σ(v1) − 1)), (xv1 , y(v1,v2), 2σ(v1) −
1), . . . , (y(vk−1,ti), xti , 2(σ(ti) − 1))) is a strict temporal path from xsi to xti in G
that alternatingly visits the vertex-vertices and arc-vertices that correspond to the
vertices and arcs visited by Pi in D. Since the paths Pi ∈ P are pairwise vertex
disjoint (and hence also arc-disjoint), it is clear that the temporal paths {Qi}`i=1 are
vertex-disjoint, and hence also temporally disjoint.

(⇐): Note that a temporal walk can visit vertices multiple times. But there
are only two ways in which a temporal walk W visits a vertex xvj multiple
times: either W contains subwalk ((xvj , y(vj ,vj′ ), 2σ(vj)−1), (y(vj ,vj′ ), xvj , 2(σ(vj)−
1))) for some j′, or W contains the subwalk ((xvj , y(vj ,vj′ ), 2σ(vj′) − 1),

(y(vj ,vj′ ), xvj , 2(σ(vj′) − 1))) for some j′. In both cases we can remove the sub-

walk from W and still obtain a temporal walk from the same starting vertex to the
same end vertex as W . We can remove subwalks of this kind repeatedly until we
obtain a temporal path. The observations above allow us to assume that if we face
a yes-instance of Temporally Disjoint Walks, then there is a set P of pairwise
temporally disjoint paths for all source-sink pairs in S.

Now observe that all vertices in G are xvj -incident with time edges of exactly two
time labels: 2σ(vj)−1 and 2(σ(vj)−1). Hence, our paths “enter” a vertex-vertex xvj
with a time edge that has time label 2σ(vj)−1 and “leave” xvj with a time edge that
has time label 2(σ(vj)−1). It follows that no two of the temporally disjoint paths in P
visit the same vertex-vertex xvj . The same holds for arc-vertices y(vj ,vj′ ) since they

are only incident with two time edges. It follows that the temporal paths in P are
pairwise vertex-disjoint. Furthermore, by the construction of G, they alternatingly
visit vertex-vertices and arc-vertices, where the latter correspond to arcs in D that
connect the vertices corresponding to the vertex-vertices visited directly before and
after. It follows that we can translate temporal paths in P directly to a set of pairwise
vertex-disjoint paths in D that connect the corresponding source-sink pairs of the
Disjoint Paths on DAGs instance. �

We contrast Theorem 3 by showing that Temporally Disjoint Walks
is contained in XP for the parameter number |S| of source-sink pairs.
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Theorem 4 Temporally Disjoint Walks is in the class XP when parameterized
by |S|, as it can be solved in O(|V |2|S|+2 · T ) time.

Proof Consider an instance I = (G, S = {(s1, z1), (s2, z2), . . . , (sk, zk)}) of Tempo-
rally Disjoint Walks. We use the following dynamic programming table D with
Boolean entries. Intuitively, we want that for all t ∈ {1, . . . , T} and v1, . . . , vk ∈ V
we have that D[t, v1, . . . , vk] = > if and only if there are temporally non-intersecting
temporal (si, vi)-walks P1, . . . , Pk with arrival time ti ≤ t. However, for technical rea-
sons, we have slightly stronger requirements for D. First of all, we have a “dummy”
time label zero that we use to encode the sources in the dynamic program. Formally,
we initialize D as follows:

For all v1, . . . vk ∈ V we have that

D[0, v1, . . . , vk] :=

{
>, if ∀i ∈ [k] : vi = si

⊥, otherwise.

Furthermore, we have to model that the temporal walks we are looking for do not
have to start immediately at their respective sources. Hence, if a temporal walk is still
“waiting” at its source, the source vertex is not “blocked” for other temporal walks.
We have a symmetric situation if temporal walks already arrived at their respective
sink. In other words, if we have an entry D[t, v1, . . . , vk] with vi = vj for some i 6= j,
then it is a necessary condition for D[t, v1, . . . , vk] = > that at least one of the two
temporal walks i, j is either still waiting at its source or already arrived at its sink.
In the latter case, we additionally need that the temporal walk arrived at the sink in
a previous time step, otherwise the sink would still be blocked. We now look up in D
whether there all these conditions are met for a set of temporally disjoint walks that
arrive at some vertices at time t − 1 such that they can be extended in time step t
to reach the vertices v1, . . . , vk.

Formally, for all t ∈ [T ] we have that D[t, v1, . . . , vk] = > if for all i, j ∈ [k]
with vi = vj such that there exists p ∈ {i, j} with vp ∈ {sp, zp}, and there exist
u1, . . . , uk ∈ V the following holds:

• ∀i, j ∈ [k], i 6= j, vi = zi : ui = zi ∨ vi 6= vj , and

• D[t− 1, u1, . . . , uk] = >, and

• ((V,Et), {(ui, vi) | i ∈ [k], {ui, vi} 6= {zi}, vi 6= si}) is a yes-instance of
Disjoint Paths.

Otherwise we have D[t, v1, . . . , vk] = ⊥.
Here, Disjoint Paths is the problem, where we are given an undirected graph G

and a set of k terminal pairs {(s′i, z
′
i) | i ∈ [k]}, and we ask whether there are k vertex-

disjoint paths P1, . . . , Pk in G such that Pi is an (s′i, z
′
i)-path and Pi and Pj are

vertex-disjoint for all i ∈ [k] and j ∈ [k] \ {i}. Note that s′i = z′i is a valid input
and that in this case s′i is the only vertex on an (s′i, z

′
i)-path. We report that I is a

yes-instance if and only if D[T, z1, . . . , zk] = >.

Correctness. We show by induction that for all t ∈ {0, 1, . . . , T} and v1, . . . , vk ∈ V
we have that D[t, v1, . . . , vk] = > if and only if there are temporally non-intersecting
temporal walks P1, . . . , Pk such that

• (a) Pi is a temporal (si, vi)-walk in G with arrival time ti ≤ t, and

• (b) ∀i, j ∈ [k], vi 6= vj : ∃p ∈ {i, j} : vp = sp ∨ (vp = zp ∧ tp < t) is true.
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Here, we say that an empty edge list (∅) is a temporal (v, v)-walk with arrival
time 0 which does not visit any vertex, for all v ∈ V . Hence, for t = 0 this claim is
true by the definition of D. Now let t ∈ [T ] and assume that this claim holds true
for all t′ < t.

(⇐): Assume that there are temporally non-intersecting temporal walks
P1, . . . , Pk such that (a) and (b) hold true. Let Ks := {i ∈ [k] | si = vi},
Kz := {i ∈ [k] | zi = vi, ti < t − 1}, and K := [k] \ (Ks ∪ Kz). We set ui = si,
for all i ∈ Ks. We set ui = zi, for all i ∈ Kz . For all i ∈ K, let ui be the first ver-
tex which is visited at time t (in the visiting order), or vi if Pi does not visit any
vertex at time t. Observe that ∀i, j ∈ [k], vi = vj : ∃p ∈ {i, j} : vp ∈ {sp, zp} and
∀i, j ∈ [k], i 6= j, vi = zi : ui = zi ∨ vi 6= vj are both true. Observe for all i ∈ K

that we can split Pi into two parts P 1
i and P 2

i , where P 1
i is a (possibly empty)

temporal (si, ui)-walk in G with arrival time at most t − 1 and P 2
i is a (possibly

empty) (ui, vi)-path in the graph (V,Et). Note that {P 2
i | i ∈ K} is a solution for

the Disjoint Path instance ((V,Et), {(ui, vi) | i ∈ [k], {ui, vu} 6= {zi}, vi 6= si}).
We set P 1

i = (∅) for all i ∈ Ks, and P 1
i = Pi for all i ∈ Kz . Clearly, P 1

1 , . . . , P
1
k are

temporally non-intersecting such that

• (a) Pi is a temporal (si, ui)-walk in G with arrival time ti ≤ t− 1, and

• (b) ∀i, j ∈ [k], ui 6= uj : ∃p ∈ {i, j} : up = sp ∨ (up = zp ∧ tp < t− 1).

Hence, D[t−1, u1, . . . , uk] = > and thus by definition of D we have D[t, v1, . . . , vk] =
>.

(⇒): Assume that D[t, v1, . . . , vk] = >. By definition of D, we know that there
are vertices u1, . . . , uk such that

• (i) ∀i, j ∈ [k], vi = vj : ∃p ∈ {i, j} : vp ∈ {sp, zp}
• (ii) ∀i, j ∈ [k], i 6= j, vi = zi : ui = zi ∨ vi 6= vj are true,

• (iii) D[t− 1, u1, . . . , uk] = >, and

• (iv) ((V,Et), {(ui, vi) | i ∈ [k], {vi, ui} 6= {zi}, vi 6= si}) is a yes-instance of
Disjoint Path.

By assumption and (iii), there are temporally non-intersecting temporal walks
P1, . . . , Pk such that

• (a) Pi is a temporal (si, ui)-walk in G with arrival time ti ≤ t− 1, and

• (b) ∀i, j ∈ [k], ui 6= uj : ∃p ∈ {i, j} : up = sp ∨ (up = zp ∧ tp < t− 1).

Let Ks := {i ∈ [k] | si = vi}, Kz := {i ∈ [k] | ui = zi = vi}, and K = [k]\ (Ks∪Kz).
For all i ∈ Ks we set P ′i = (∅). For all i ∈ Kz we set P ′i = Pi. Due to (iv), there
are vertex-disjoint paths P 2

1 , . . . , P
2
|K| such that P 2

i is a (ui, vi)-path in (V,Et), for

all i ∈ K. For all i ∈ K we construct a temporal (si, vi)-walk P ′i by concatenating
Pi and P 2

i . Note that P ′1, . . . , P
′
k are temporally non-intersecting such that (a) P ′i is

a temporal (si, vi)-walk with arrival time t′i ≤ t, for all i ∈ [k]. Moreover, if we have
for some i, j ∈ [k] that vi = vj , then there is a p ∈ {i, j} such that either vp = sp
or vp = zp, because of (i). If vp = zp, then up = zp and thus t′i < t, because of (ii).
Hence, (b) ∀i, j ∈ [k], i 6= j : vi 6= vj ∨ vi = si ∨ (vi = zi ∧ t′i < t) is true.

So, I is a yes-instance if and only if D[T, z1, . . . , zk] = >.

Running time. The table size of D is O(|V |k · T ). To compute one entry of D we
look at up to O(|V |k) other entries of D and then solve an instance of Disjoint
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Paths in O(n2) time3 [6]. This gives an overall running time of O(|V |2k+2 · T ) if k
is a fixed constant. �

Finally, we point out that Theorem 2 implies that for Temporally Dis-
joint Paths we presumably cannot achieve a result similar to Theorem 4
while Theorem 3 implies that we presumably cannot improve this result on
a classification level, that is, we cannot expect to find an FPT-algorithm for
Temporally Disjoint Walks for parameter |S|.

4 Temporal lines and trees

In this section, we investigate the computational complexity of Temporally
Disjoint (Paths/Walks) for restricted classes of underlying graphs, in par-
ticular so-called temporal lines and temporal trees. The former are temporal
graphs that have a path as underlying graph and the latter are temporal
graphs that have a tree as underlying graph. In particular, we first show that,
surprisingly, the problems remain NP-hard on temporal lines (and thus also
on temporal trees). On the positive side, we show that, on temporal trees,
Temporally Disjoint Paths is fixed-parameter tractable with respect to
the number of source-sink pairs. This result stands in stark contrast to the
general case, where the problem is NP-hard even when the number of source-
sink pairs is two (Theorem 2). If we further restrict all source-sink pairs to
consist of the two end-points of the temporal line, however, then we obtain a
polynomial-time algorithm.

Before we proceed with our results in this section, first we recall some
useful background. Given a temporal graph G and two specific vertices s, z of
it, a foremost temporal path from s to z starting at time t is a temporal path
which starts at s not earlier than at time t and arrives at z with the earliest
possible arrival time. A foremost temporal path from s to z starting at time t

can be computed in linear O
(
|V |+

∑T
i=1 |Ei|

)
time [27].

Theorem 5 Temporally Disjoint (Paths/Walks) is NP-hard even on a tempo-
ral line where all temporal paths are to the same direction.

Proof We present here a polynomial-time reduction for Temporally Disjoint
Walks. Towards the end of this proof, we argue that the same reduction also works
for Temporally Disjoint Paths. The reduction is done from Multicolored inde-
pendent set on unit interval graphs, which is known to be NP-complete [42,
Lemma 2]. In this problem, the input is a unit interval graph G = (V,E) with n ver-
tices, where V is partitioned into k subsets of independent vertices; we interpret each
of these subsets as a vertex color. The goal is to compute an independent set of size
k in G which contains exactly one vertex from each color. By possibly slightly shift-
ing the endpoints of the intervals in the given unit interval representation of G, we

3This running time bound considers k to be a constant. There is a factor f(k) for some function f
hidden in the O-notation.



Springer Nature 2021 LATEX template

Interference-free Walks in Time: Temporally Disjoint Paths 13

can assume without loss of generality that all endpoints of the intervals are distinct.
Furthermore, we can assume without loss of generality that each interval endpoint is
an integer between k + 1 and k + n2 (while all intervals still have the same length).

Construction. From the given multi-colored unit intervals in G, we construct a
temporal line P using the following procedure. Let {c1, . . . , ck} be the set of all colors
of the intervals in G. First we fix an arbitrary linear ordering c1 < c2 < . . . < ck of the
k colors, and we add to the underlying path P of P two vertices v1i and v2i , for every
color ci. We add to P also three basis vertices v`, v

?, vr. The vertices of P are ordered
starting from v11 , v

1
2 , . . . , v

1
k, followed by the basis vertices v`, v

?, vr, and finishing
with v21 , v

2
2 , . . . , v

2
k. At the end we have P = (v11 , v

1
2 , . . . , v

1
k, v`, v

?, vr, v
2
1 , v

2
2 , . . . , v

2
k).

We construct the multiset S of source-sink pairs as follows. Let mi be the number
of intervals of color ci. For every color ci we add the pair (v1i , v

2
i ) to S. We refer to

this source-sink pair as “the verification source-sink pair for color ci”. Furthermore,
we add mi − 1 copies of the pair (v1i , v`) to S and we add mi − 1 copies of the pair
(vr, v

2
i ) to S. We call these 2mi − 2 source-sink pairs the “dummy source-sink pairs

for color ci”.
To fully define the temporal line P, we still need to add time labels to the edges

of P . Denote by aji and bji the start and end points of the jth interval of color ci. We

set up the edge labels of path P from v1i to v2i as follows. To edge {v1s , v1s+1} with

s ∈ [k − 1], we add the labels aji with i ≤ s. To edges {v1k, v`} and {v`, v?}, we add

all labels aji . To edge {v2s , v2s+1} with s ∈ [k − 1], we add the labels bji with i > s.

To edges {v?, vr} and {vr, v21}, we add all labels bji . See Fig. 3 for an example. The
construction can clearly be performed in polynomial time.

a11 b11 a21 b21 a31 b31

a12 b12 a22 b22 a32 b32

a13 b13 a23 b23 a33 b33

a14 b14 a24 b24 a34 b34

(a) Instance of the multicolored
unit interval problem.

v11 v12 v13 v14 v` v? vr v21 v22 v23 v24

a11, a
2
1, a

3
1 a

1
1, a

2
1, a

3
1

a12, a
2
2, a

3
2

a11, a
2
1, a

3
1

a12, a
2
2, a

3
2

a13, a
2
3, a

3
3

a11, a
2
1, a

3
1

a12, a
2
2, a

3
2

a13, a
2
3, a

3
3

a14, a
2
4, a

3
4

a11, a
2
1, a

3
1

a12, a
2
2, a

3
2

a13, a
2
3, a

3
3

a14, a
2
4, a

3
4

b11, b
2
1, b

3
1

b12, b
2
2, b

3
2

b13, b
2
3, b

3
3

b14, b
2
4, b

3
4

b11, b
2
1, b

3
1

b12, b
2
2, b

3
2

b13, b
2
3, b

3
3

b14, b
2
4, b

3
4

b12, b
2
2, b

3
2

b13, b
2
3, b

3
3

b14, b
2
4, b

3
4

b13, b
2
3, b

3
3

b14, b
2
4, b

3
4 b14, b

2
4, b

3
4

(b) Temporal graph constructed from the given
multicolored unit intervals.

Fig. 3: Example of the reduction described in the proof of Theorem 5.

Correctness. (⇒): Assume there is a multicolored independent set V ′ ⊆ V in
G. Let vi ∈ V ′ be the vertex in the independent set with color ci and let
[aji , b

j
i ] be the interval of vi. Then for the verification source-sink pair of ci we

use the following temporal path: ((v1i , v
1
i+1, a

j
i ), (v

1
i+1, v

1
i+2, a

j
i ), . . . , (v

1
k−1, v

1
k, a

j
i ),

(v1k, v`, a
j
i ), (v`, v

?, aji ), (v
?, vr, bji ), (vr, v

2
1 , b

j
i ), (v

2
1 , v

2
2 , b

j
i ), . . . , (v

2
i−1, v

2
i , b

j
i )). For the

dummy source-sink pairs (v1i , v`) of ci we use the temporal paths ((v1i , v
1
i+1, a

j′

i ), . . . ,

(v1k−1, v
1
k, a

j′

i ), (v1k, v`, a
j′

i )) with j′ 6= j. Note that there are exactly mi − 1 pairwise

different paths of this kind. Analogously, for the dummy source-sink pairs (vr, v
2
i )
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of ci we use the temporal paths ((vr, v
2
1 , b

j′

i ), (v21 , v
2
2 , b

j′

i ), . . . , (v2i−1, v
2
i , b

j′

i )) with
j′ 6= j. It is easy to check that the temporal paths for the dummy source-sink pairs
of all colors do not temporally intersect. Now assume, for the sake of contradiction,
that temporal paths of two verification source-sink pairs of colors ci and ci′ tempo-
rally intersect. Then they have to intersect in v?, since this is the only vertex where
the paths wait. By construction, the temporal path for the verification source-sink
pairs of color ci visits v? during the interval [aji , b

j
i ] and the verification source-sink

pairs of color ci′ visits v? during the interval [aj
′

i′ , b
j′

i′ ]. These two intervals correspond
to the intervals of the vertices of colors ci and ci′ in the multicolored independent
set V ′. Hence, those intervals intersecting is a contradiction to the assumption that
V ′ is in fact an independent set.

(⇐): Assume we have a set of pairwise temporally disjoint walks for all source-
sink pairs in S. Note that all edges except {v`, v?} and {v?, vr} have as many time
labels as temporal walks that need to go through them. Furthermore, note that
{v`, v?} has the same labels as {v1k, v`} and {v?, vr} has the same labels as {vr, v21}.
This in particular implies that all temporal walks are in fact paths since the only
vertex that could be visited by a path for more than one time step is v?. Therefore,
for every pair (s, z) ∈ S, no temporal path from s to z can ever stop and wait at any
vertex different from v?. Furthermore, the only paths going through vertex v? are the
paths connecting vertices v1i and v2i (which correspond to color ci); we will refer to
this path as the color path of ci. Consider color c1 and its dummy source-sink pairs
(v11 , v`). By construction, the edge {v11 , v12} has time labels corresponding to the start

points aj1 of intervals from the m1 vertices of G that have color c1. It follows that the
temporal paths for these dummy source-sink pairs and the color path of c1 use only
time labels corresponding to the start points aj1 of intervals from the m1 vertices
of G that have color c1 until they are at v` or arrive at v?, respectively, since they
cannot wait at any vertex. Now by induction, this holds for all other colors ci and
by an analogous argument, this also holds for the “second half”. More specifically,
we also have that temporal paths for the dummy source-sink pairs (vr, v

2
i ) as well

as the “second part” of the color path of ci use time labels corresponding to end
points bji of intervals from the vertices of G that have color ci when going from vr
(respectively v?) to their corresponding destinations.

It follows that each color path can enter and leave vertex v? only at the time
corresponding to the start and end points of its color intervals. In any other case some
of the other vertices are blocked, which prevents the completion of other temporal
S-paths. Recall that intervals of the same color are non-overlapping. Hence, for every
color path corresponding to a color ci we can find one interval [aji , b

j
i ] such that

the color path visits v? in an interval that includes [aji , b
j
i ]. Since the color paths

are temporally non-intersecting, the vertices corresponding to the intervals form a
multicolored independent set in G.

This completes the proof for the case of Temporally Disjoint Walks. As,
in the constructed reduction, all walks are actually just paths, it follows that also
Temporally Disjoint Paths is NP-hard. �

NP-hardness even in the case of temporal lines motivates to study the
potential for parameterized tractability results. Next, we show fixed-parameter
tractability of Temporally Disjoint Paths parameterized by the number
|S| of source-sink pairs if the underlying graph is a tree.
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v1 v2 v3 v4 v5 v6 v7

1 2, 4 3, 5 4, 6, 8 7, 9 6, 10

P1
P2 P3

Fig. 4: Temporally disjoint walks on a temporal line are not necessarily equal
to temporally disjoint paths. Suppose that one wants to determine edge-labels
of the following walks: P1 from v1 to v7, P2 from v2 to v4 and P3 from v7
to v5 on the depicted temporal graph. In the feasible solution P2 and P3 are
temporal paths, but P1 has to be a walk.

Theorem 6 Temporally Disjoint Paths on temporal trees is fixed-parameter

tractable when parameterized by |S|, as it can be solved in O
(
|S||S|+2 · |G|

)
time.

Proof Let I = (G, S) be an instance of Temporally Disjoint Paths, the underlying
graph G being a tree and S consisting of k source-sink pairs (s1, z1), . . . , (sk, zk). We
solve I using the following procedure.

First we can observe that, since G is a tree, every source-sink pair (si, zi) in S
corresponds to exactly one path Pi in G. Furthermore, if in a tree two paths Pi and Pj
intersect, then their intersection Pi ∩ Pj is a path in G (potentially containing only
one vertex). If Pi and Pj intersect, then there are two ways that their intersection
can be traversed: either first by Pi and then Pj , or Pj and then Pi. We enumerate
all possible permutations π of the k source-sink pairs (si, zi). For every permutation
π and for every i = 1, 2, . . . , k, we compute the foremost path Pi(π) from si to zi
(i.e., a temporal path with the earliest arrival time). Let vx be an arbitrary internal
vertex of Pi(π), and suppose that vx is visited by Pi(π) within the time interval
[ax, bx]. Then, for all the edges that are incident to vx, we remove all labels ` ≤ bx,
as these temporal edges cannot be used by any further temporal path Pj(π), where
j > i. We proceed by computing the foremost path Pi+1(π) from si+1 to zi+1 which
only uses unmarked temporal edges. The permutation π leads to a feasible routing
of the paths between the k source-sink pairs if and only if we can compute all these
k foremost paths P1(π), P2(π), . . . , Pk(π) as described above.

During the above procedure we construct O(k!) = O(kk+1) different permu-
tations π. For every permutation we calculate |S| = k foremost paths, each in

O(|V | +
∑T
i=1 |Ei|) time [27]. In total, all above computations can be done in

O
(
|S||S|+2 ·

(
|V |+

∑T
i=1 |Ei|

))
time. �

We remark that it remains open whether a similar result can be obtained
for Temporally Disjoint Walks, since we cannot assume w.l.o.g. that the
temporally disjoint walks are actually paths, even on temporal lines (for an
example see Fig. 4). Presumably (and in contrast to the general case) the walk
version is computationally more difficult than the path version of our problem
on temporal paths and trees.

Finally, we show that we can solve Temporally Disjoint (Path-
s/Walks) in polynomial time if the underlying graph is a path and all
source-sink pairs consist of the endpoints of that path.
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Theorem 7 Let G be a temporal line having P = (v0, v1, v2, . . . , vn) as its underlying
path. If S contains k times the source-sink pair (v0, vn) and ` = |S| − k times the
source-sink pair (vn, v0), then Temporally Disjoint (Paths/Walks) can be solved
on G in O (k` (k + `) · |G|) time.

Proof We first consider the problem version Temporally Disjoint Paths. Let
I = (P, S) be an instance of Temporally Disjoint Paths, where P is a given
temporal line with P = (v0, v1, v2, . . . , vn) as its underlying path. Assume that there
have to be k (resp. ` = |S|−k) temporally disjoint (v0, vn)- (resp. (vn, v0)-) paths in
the output, i. e., they must have the orientation from v0 to vn, (resp. from vn to v0).

We solve the instance I using dynamic programming. The main idea is that, since
all temporal paths start and end in endpoints of P , in any optimal solution, once
a temporal path starts, it proceeds in the fastest possible way (without interfering
with previously started paths). Therefore, assuming we start with (v0, vn)-temporal
paths, we only need to find out how many (v0, vn)-temporal paths follow the starting
path, after that how many (vn, v0)-temporal paths follow, then after that how many
(v0, vn)-temporal paths follow, etc.

Let 0 ≤ i ≤ k, 0 ≤ j ≤ `, and 1 ≤ t ≤ T . Then L(i, j, t) denotes the earliest arrival
time of (k− i) + (`− j) temporally non-intersecting temporal paths with k− i being
(v0, vn)-temporal paths and ` − j being (vn, v0)-temporal paths, assuming that the
earliest-starting temporal path is a (v0, vn)-temporal path that starts at time t. If it
is not possible to route such (k − i) + (` − j) temporally non-intersecting temporal
paths starting at time t, then let L(i, j, t) = ∞. Similarly we define R(i, j, t), with
the only difference that here the earliest-starting temporal path needs to start at
time t from vn and finishes at v0. For the sake of completeness, we let L(i, j,∞) =
R(i, j,∞) = ∞ for every i ≤ k and every j ≤ `. Furthermore, for every t, every
i ≤ k − 1, and every j ≤ ` − 1, we let L(k, j, t) = R(i, `, t) = ∞. Finally we let
L(k, `, t) = R(k, `, t) = t− 1. Note that, the input instance I is a yes-instance if and
only if min{L(0, 0, 1), R(0, 0, 1)} 6=∞. Furthermore, note that, for every triple i, j, t,
the value min{L(i, j, t), R(i, j, t)} is the earliest arrival time of all temporal paths in
the subproblem where, until time t− 1, exactly i and j temporally non-intersecting
temporal (v0, vn)- and (vn, v0)-paths, respectively, have been routed.

The value L(i, j, t) can be recursively computed as follows. Suppose that, in the
optimal solution, 1 ≤ p ≤ k − i temporally non-intersecting (v0, vn)-temporal paths
are first routed (starting at time t) before the first (vn, v0)-temporal path (among
the ` − j ones) is routed. Let tp be the earliest arrival time of these p paths if they
can all be routed; if not, then we set tp =∞. Then:

L(i, j, t) = min{R(i+ p, j, tp + 1) | 1 ≤ p ≤ k − i}. (1)

The value R(i, j, t) can be computed similarly:

R(i, j, t) = min{L(i, j + p, t∗p + 1) | 1 ≤ p ≤ `− j}, (2)

where (vn, v0)-temporal paths are routed.
The values {tp | 1 ≤ p ≤ k − i} can be computed as follows. If p = 1, then tp is

the arrival time of the (v0, vn)-foremost temporal path P1. To determine t2, we first
compute P1 and then, for every internal vertex vx of P, if vx is visited by P1 within
the time interval [ax, bx], then we remove from the edges {vx−1, vx}, {vx, vx+1} of P
all labels l ≤ bx. In the resulting temporal line we then compute the foremost tempo-
ral path P2, which arrives at vn at time t2. By applying this procedure iteratively, we
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either compute p temporally non-intersecting temporal paths P1, P2, . . . , Pp, start-
ing at time t and arriving at time tp, or we conclude that tp = ∞. The values
{t∗p | 1 ≤ p ≤ `−j} (for the (vn, v0)-temporal paths) can be computed in a symmetric
way. All these computations together can be done in linear time.

From the above it follows that we can decide Temporally Disjoint Paths
by checking whether min{L(0, 0, 1), R(0, 0, 1)} is finite or not. In total, there are
2k`T values L(i, j, t) and R(i, j, t). Observe that, for every pair i, j, we only need to
compute the value L(i, j, t) (resp. R(i, j, t′)) for one specific value of t (resp. t′). This
observation ensures that the running time of the algorithm is polynomial. For this
we need the following observation. Assume that, in the recursion tree originated at
L(0, 0, 1), we need to compute at two different places the values L(i, j, t) and L(i, j, t′),
where t′ > t. Then, since obviously L(i, j, t) ≤ L(i, j, t′), at the second place we can
just replace L(i, j, t′) by∞, thus stopping the recursive calculations at that branch of
the recursion tree. Similarly, if we need to compute at two different places the values
R(i, j, t) and R(i, j, t′), where t′ > t, we replace R(i, j, t′) by ∞ at the second place
of the recursion tree. That is, for every pair i, j, we just need to compute only one
value L(i, j, t) (resp. R(i, j, t)). Therefore, we can build two matrices ML and MR,
each of size (k + 1)× (`+ 1), such that ML(i, j) (resp. MR(i, j)) stores the unique
value of t for which we need to compute L(i, j, t) (resp. R(i, j, t)). That is, in the
recursion tree originate at L(0, 0, 1), for every pair i, j we only need to compute the
values L(i, j,ML(i, j)) and R(i, j,MR(i, j)).

Similarly, for the recursion tree originating at R(0, 0, 1) we need to build two
other matrices NL and NR (each of size (k+1)×(`+1)) for the same purpose, as the
recursion tree originated at R(0, 0, 1) is different to the one originated at L(0, 0, 1).
That is, in the recursion tree originating at R(0, 0, 1), for every pair i, j we only need
to compute the values L(i, j,NL(i, j)) and R(i, j,NR(i, j)).

Each of these four (k+1)×(`+1) matrices can be computed by running O(k`(k+
`)) times the foremost temporal path algorithm (in order to compute at each step

in linear time O
(
|V |+

∑T
i=1 |Ei|

)
the values {tp | 1 ≤ p ≤ k − i} and {t∗p | 1 ≤

p ≤ `− j}, respectively). Once we have built these four matrices, we can iteratively
compute the value L(0, 0, 1) (resp. R(0, 0, 1)) in at most k` computations, each of
which takes at most O(k + `) time (see equations (1)-(2)). Thus, all computations

can be done in O
(
k` (k + `) ·

(
|V |+

∑T
i=1 |Ei|

))
time.

This completes the proof for the case of Temporally Disjoint Paths. Finally,
it is easy to see that in the problem Temporally Disjoint Walks, in any optimal
solution every temporal walk is a temporal path, as every temporal walk is from
v0 to vn or from vn to v0. Hence, the above algorithm for Temporally Disjoint
Paths also solves Temporally Disjoint Walks. �

5 Conclusion

Formally introducing temporally disjoint paths and walks, we modeled the
property that agents moving along these never meet, even though they might
visit the same vertices. We identified an unexpected difference in their com-
putational complexity: Temporally Disjoint Paths is NP-hard even for
two paths, while Temporally Disjoint Walks can be solved in polynomial
time for a constant number of walks (however it becomes W[1]-hard when
parameterized by the number of walks). On the contrary, while Temporally
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Disjoint Paths becomes fixed-parameter tractable for the number of paths
if the underlying graph is a path, we leave open whether we can obtain a sim-
ilar result for Temporally Disjoint Walks which seems to be much more
complicated than the path version.

Table 1 surveys our main results and the central (concrete) open question
of this work. Furthermore, we leave open whether Temporally Disjoint
(Paths/Walks) is in FPT or W[1]-hard for parameters of the underlying
graph that are unbounded on paths, such as the vertex cover number or the
treedepth. Employing temporal graph parameters such as the so-called timed
feedback vertex number [25] might also be worthy to investigate in future
research.

Lastly, we believe that this work can be a starting point for the investigation
of many well-motivated variants or generalizations of our problem. One can e.g.
consider the case where a certain set of vertices need to be visited or a certain
“amount” of intersection is acceptable. It is also of interest to investigate our
problem for restricted temporal path model such as so-called restless temporal
paths or walks [23, 25, 43].
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