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ABSTRACT

We develop a machine learning based algorithm using a convolutional neural network (CNN) to identify low HI column density
Ly « absorption systems (log Nyj,/cm™2 < 17) in the Ly « forest, and predict their physical properties, such as their HI column
density (log Nyg,/cm™2), redshift (zy;), and Doppler width (by;). Our CNN models are trained using simulated spectra (S/N =~
10), and we test their performance on high quality spectra of quasars at redshift z ~ 2.5—2.9 observed with the High Resolution
Echelle Spectrometer on the Keck I telescope. We find that ~78 per cent of the systems identified by our algorithm are listed
in the manual Voigt profile fitting catalogue. We demonstrate that the performance of our CNN is stable and consistent for all
simulated and observed spectra with S/N 2 10. Our model can therefore be consistently used to analyse the enormous number of
both low and high S/N data available with current and future facilities. Our CNN provides state-of-the-art predictions within the
range 12.5 < log Ny,/cm~2 < 15.5 with a mean absolute error of A(log N /cm™2) = 0.13, A(zg;) = 2.7 x 107>, and A(by,) =
4.1kms~!. The CNN prediction costs < 3 min per model per spectrum with a size of 120000 pixels using a laptop computer.
We demonstrate that CNNs can significantly increase the efficiency of analysing Ly « forest spectra, and thereby greatly increase

the statistics of Ly o absorbers.
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1 INTRODUCTION

The forest of neutral hydrogen (H1) Lyman-o (Ly ) absorption
lines imprinted on a quasar spectrum — collectively known as the
Ly o forest (Lynds 1971; Sargent et al. 1980) — provides our best
understanding of the intergalactic medium (IGM) and circumgalactic
medium (CGM), on scales of tens to hundreds of kpc and to Mpc
(Cristiani et al. 1995; Fang et al. 1996). The photons emitted by
a background quasar are absorbed at the redshifted Ly « transition
(rest-frame wavelength = 1215.67 A) in addition to higher order
lines of the H1 Lyman series (Sargent et al. 1980).

By number, Ly o absorption systems with low H1 column density
dominate the Ly o forest and trace the underlying density of the
H1 clouds (e.g. Schaye 2001). They can be used to probe the
distribution and evolution of the baryonic matter, structure formation,
and constrain cosmological parameters (e.g. Davé et al. 2010, also see
reviews: Rauch 1998; Theuns, Leonard & Efstathiou 1998; Theuns
et al. 1999; Tytler et al. 2004; Lehner et al. 2007; Meiksin 2009).
Additionally, the thermodynamic properties of these systems are
primarily governed by two processes: (1) adiabatic cooling from the
expansion of the Universe; and (2) photoheating by the ultraviolet
background (UVB) light from quasars and galaxies (Abel & Haehnelt
1999; Theuns et al. 2002; Bolton, Oh & Furlanetto 2009; Puchwein
et al. 2015). The competition between these two effects tracks
the thermal state of the low-density IGM through a characteristic
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temperature—density relation (e.g. Hui & Gnedin 1997; Haehnelt &
Steinmetz 1998; Schaye et al. 1999, 2000; Ricotti, Gnedin & Shull
2000; Becker, Rauch & Sargent 2007; Bolton et al. 2008; Rudie,
Steidel & Pettini 2012b). Furthermore, the Ly o forest can also be
used to probe cosmological models and constrain the properties
of dark matter (e.g. Viel et al. 2013; Baur et al. 2016; Garzilli,
Boyarsky & Ruchayskiy 2017; IrSi¢ et al. 2017; Boera et al. 2019;
Rogers & Peiris 2021).

While the Ly o forest is easily identified in a quasar spectrum,
the identification of individual Ly o absorption systems within the
forest is challenging. Conventionally, these absorption lines in the
Ly o forest are fit with Voigt profiles! (e.g. Kim et al. 2002, 2013,
2021; Prochaska, Herbert-Fort & Wolfe 2005; Prochaska & Wolfe
2009; Rudie et al. 2012a, hereafter R12); however, a manual fit to
the entire Ly « forest is very time-consuming, and requires the aid of
visual inspection, and many human hours. To avoid human bias, there
are also studies that have developed automated Voigt profile fitting
algorithms? (Davé et al. 1997; Carswell & Webb 2014; Bainbridge &
Webb 2017; Gaikwad et al. 2017).

With future surveys and facilities such as the WHT Enhanced
Area Velocity Explorer (WEAVE; Pieri et al. 2016), and the 4-m

For example, the commonly used VPFIT package, which is available from:
https://people.ast.cam.ac.uk/~rfc/vpfit.html

2We provide a few example codes here, but note that many efforts to generate
an automated approach are unpublished. This problem is difficult, and an
automated solution is not currently at the same level of accuracy that a human
can produce.
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Multi-Object Spectroscopic Telescope (4MOST; de Jong et al. 2019),
thousands of high resolution (R 2~ 20000) quasar spectra are expected
in the coming years. It will therefore not be feasible to analyse
the enormous number of quasar spectra using conventional analysis
methods. To overcome big data problems, such as this, machine
learning techniques are essential.

Machine learning techniques, in particular deep learning (LeCun,
Bengio & Hinton 2015), have been widely applied to a variety of
galaxy studies such as galaxy morphology (Cheng et al. 2020a,
2021; Walmsley et al. 2022), galaxy merger (Bottrell et al. 2019;
Ferreira et al. 2020), and strong gravitational lensing (Metcalf et al.
2019; Cheng et al. 2020b; Pearson et al. 2021). Applications to
analyse spectroscopic data or time-series data include spectra and
their star formation histories (Lovell et al. 2019), gravitational wave
analyses (George & Huerta 2018), transient objects (Muthukrishna
et al. 2019), and spectral classification (Bailer-Jones, Irwin & von
Hippel 1998). Recently, there has been a growing interest in applying
machine learning techniques to the Ly« forest, including: (1) a
Ly« forest emulator (Bird et al. 2019; Rogers et al. 2019); and
(2) the identification and properties of damped Ly « systems (DLAs;
Garnett et al. 2017; Parks et al. 2018; Wang et al. 2022). DL As are
defined to have H1 column densities that exceed Ny, > 10?3 cm 2,
and are easily identified by their strong, damped absorption features
superimposed on the Ly « forest. Unlike DLAs, the low HI column
density Ly« absorption systems associated with the Ly« forest
(Nu: < 10'7 cm™2) have a relatively shallow depth and narrow
absorption features. Furthermore, Ly o forest absorption features
outnumber DLA absorption lines by orders of magnitude, and occupy
a wider range of column density. These absorption lines are also often
blended and confused with metal lines, making this a challenging
and laborious problem. As a result, an efficient and reliable machine
learning based solution to harvest the Lya forest — both line detection
and characterization — does not exist. Given the utility of these low
column density Ly « systems in studying the physics of the IGM, it is
essential to develop a machine-learning-based detection algorithm to
identify and characterize these features in preparation for the coming
‘Big Data’ era.

In this paper, for the first time, we apply a convolutional neural
network (CNN) to efficiently identify Ly « forest systems (Ny, <
10" cm™2) and extract their physical properties, including the
redshift, Doppler width, and HI column density. While our primary
goal is to efficiently extract the properties of the observed Ly«
forest, our algorithm can also be used to identify Ly o absorbers
in simulated spectra. Since our approach is general, this allows a
more direct comparison between spectra extracted from state-of-the-
art hydrodynamic cosmological simulations and observations. The
paper is arranged as follows. Section 2 describes the generation of
our simulated quasar spectra for training and initial testing purposes,
and the observed quasar spectra that are used to validate our CNN
predictions. Section 3 explains the CNN models and the training
strategies, and we describe the evaluation metric in Section 4.
In Section 5, we test our pre-trained model with the simulated
spectra, while in Section 6, we apply the CNN models to predict the
parameters of the Ly « forest from observed spectra, and compare the
CNN’s predictions with the results based on Voigt profile fitting and
human inspection from R12. Finally, our conclusions are summarized
in Section 7.

2 QUASAR SPECTRA

In this section, we describe the simulated and observed quasar Ly o
forest data that are used to train and test our network. While the
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technique that we employ can be readily applied to quasars at any
redshift, the focus of our work is to study Ly o absorption in the
optical wavelength range. Since the Ly « forest is blueward of the
quasar Ly o emission line, to detect Ly « forest absorption features in
the optical range (i.e. ~3200 to 7200 A), the emission redshift of the
quasars is in the range z = 1.6—5. To satisfy the observed wavelength
range, we generate simulated spectra at z = 3 for training our CNN.
The details of the spectrum generation are outlined in Section 2.1,
while in Section 2.2, we describe the pixel-level labelling of each
Ly o absorption system. The observed spectra used to validate our
model are described in Section 2.3.

2.1 Mock Spectra

The number of human-analysed quasar spectra that have been fit
with Voigt profiles is currently limited by the time effort required
to carefully analyse and fit each individual absorption line in every
quasar spectrum. The quasar spectra that have been analysed are
subject to human choices that may not reflect the true underlying
properties of the absorption lines. For this reason, our training data
are based on simulated quasar spectra to provide a large quantity
of spectra together with ground-truth identifications of Ly o systems
and their properties. Our simulated spectra were generated using
packages in the PYIGM software.? The generated spectra represent a
typical quasar at redshift z = 3 and are convolved with an instru-
mental full width at half-maximum (FWHM) resolution of vpwpm =
7kms~!. These choices are motivated by the typical properties of
high resolution spectra of quasars in current observatory archives.
The velocity per pixel of these spectrais setto2.5km s~ pixel™!. The
impact of the model trained with this setup on predicting spectra with
different assumptions for the properties of the spectra are discussed
in Appendix A.

A catalogue of Ly o forest absorption lines are drawn randomly
from the column density distribution function (CDDF), fiNy,x),
following the default form implemented in PYIGM (the Hermite
spline model of Prochaska et al. 2014), where X is the absorption
distance. This provides a distribution of HI absorption systems with
Ny = 102 — 102 cm™? that can be imprinted on to a simulated
quasar spectrum to generate absorption features with ‘ground-truth’
labels (see Section 2.2). Note that this model was constrained at
redshift z & 2.5. PYIGM uses inverse transform sampling of the z =2.4
CDDEF to generate a list of HI column densities; the corresponding
Doppler parameters are drawn from the Hui & Rutledge (1999)
distribution. The redshifts of the mock lines are generated by inverse
transform sampling the redshift-dependent incidence of absorption
systems, [(z). Finally, the spectra are generated without noise;
additional noise is added later to test the sensitivity of our model
to the adopted S/N (Section 3.1). In Fig. 1, we show an example of a
simulated spectrum with different choices of the S/N. Our simulated
spectra contain only the absorption lines of the HI Lyman series, and
do not include metal lines.

Machine learning applications commonly require training samples
with a well-defined structure and clear corresponding labels, if
possible. Since Ly o absorption features are relatively simple and
have a well-defined structure that can be derived by only a few

3Primary Builders include: J. Xavier Prochaska, N. Tejos, and J. Burchett
(https://github.com/pyigm/pyigm). We also implemented a minor change to
this code; when generating Voigt profiles, we constructed a sub-pixellated
wavelength array to sample each native pixel by 10 sub-pixels. This accounts
for the curvature of the profile within each pixel.
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Figure 1. The top panel shows a simulated Ly « forest spectrum of a quasar at redshift z = 3 (no noise). The three subsequent panels show a zoom-in of the
top panel (see blue box, top panel) with different signal-to-noise ratios (S/N = oo, 50, and 10 per pixel for the second, third, and fourth panels, respectively).

physical properties, i.e. Voigt profiles, having robust labels are
more crucial than complexity of data set to avoid confusion in a
classification task. Hence, as a first attempt, this training data set
defines a clear structure of Ly o absorbers that helps a machine to
draw a cleaner decision boundary in a high dimensional parameter
space. Additionally, it helps us to analyse the performance of our
automated algorithm and identify its limitations. As an alternative, we
could generate simulated spectra with cosmological hydrodynamic
simulations to account for the clustering and complex structure that
exists in a real quasar spectrum. However, since the CGM structures
in these simulations are unresolved (Hummels et al. 2019; Rudie
et al. 2019; van de Voort et al. 2019), it might be more sensible to
train a machine using observed spectra in future works to account
for the clustering of absorbers.

2.2 Ly « absorption systems

The Ly o absorption features in a spectrum can be described with
three physical properties: (1) the total HI column density (Ny;
cm™2), (2) the redshift (zy,;) of the H1 absorbers, and (3) the Doppler
width (by,; kms™"). The ANg,) model provides a distribution of H1
absorbers that samples the HT column densities of the Ly o forest.
With the ‘ground-truth’ information of the three aforementioned
properties, we generated four labelling arrays for each pixel in the
quasar spectrum (these labels are illustrated in Fig 2):

(1) LyaID: set to a value of 1 if a Ly o absorber exists in this pixel,
and 0 if not;

(ii) logNy;: H1 column density (in units of cm~2) of the corre-
sponding Ly o absorber on a logarithmic scale;

(iii) zloc: the relative location of the centre of an absorption feature
(in units of pixels*). A pixel centred on an absorption feature is set
to 0, and negative and positive values to pixels at the left and right,
respectively. For example, if the centre of a given pixel is 2.4 pixels

4Note that zloc is a floating point number, since the centre of the associated
absorption line is not coincident with the centre of a pixel.
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Figure 2. Example of the training labels: Ly «ID, log Ny, zloc, and log by,
in pixel scale from top to bottom. The grey dotted line in the top panel
represents the normalized quasar continuum level, and the blue dotted line in
the third panel shows zloc = 0. Note that the training labels are only defined
when Ly «ID = 1. The absorption features are labelled 1, 2, and 3, ordered
by column density.

to the left of the centre of an absorption profile, we assign the label
of this pixel to be —2.4;

(iv) logby,: Doppler width of the corresponding Ly o absorber on
a logarithmic scale (kms™").

First, to ensure that the absorption features used to train our machine
are Ly « lines, we applied a cut to exclude the pixels with wavelengths
where the Ly S transition of the highest redshift H1absorber appears.
The initial pixel values for the four training label arrays were set to
0. The labels were generated for all Ly o systems ordered from the
highest H1 column density to the lowest HI column density. For
each Ly @ system, we first check if the optical depth, T = Ny, o,
(04 1s the absorption cross-section for the Ly « transition), of the
pixel is high enough to saturate the absorption line using a criterion

MNRAS 517, 755-775 (2022)

220Z JaqWIBAON |.Z U0 Jasn weyn( 1o Ausieaiun Aq v€72029/SS 271/ LS/a1910e/Seluw/wod dno olwapeoe//:sdiy Wwolj papeojumoc]


art/stac2631_f1.eps
art/stac2631_f2.eps

758  T.-Y. Cheng, R. J. Cooke and G. Rudie

of exp(— 7) < 0.015, where the threshold is defined by 3/(S/N)
(where our fiducial S/N = 200). If any pixel satisfies this criterion,
we store the LyaID, log Ny, zloc, and log by of this absorber in the
label arrays. Note that ‘zloc’ represents the location of the centre of
an absorption feature, where the centre (zloc = 0) is drawn using
the redshift of the Ly o system. If the listed Ly o system does not
saturate a pixel, it is then used to provide values to the corresponding
pixels where the flux of the absorption features is <0.995. Note, if
multiple absorption components contribute to the total optical depth
in a pixel, we labelled only the dominant line. This means that in
this work we do not consider the impact of a secondary or additional
line blends in a single pixel. A more thorough investigation about the
effect of blended lines will be carried out in future work. Fig. 2 shows
an example of the labelling procedure that we use in this work. In
the example shown in Fig. 2, labels are first assigned to the leftmost
(strongest) feature, i.e. feature 1. Every pixel associated with this
absorption line that has a flux less than 0.015 is assigned a LyaID =
1; the column density and Doppler parameter is the same for all of
the associated pixels of this feature, and the zloc label represents the
non-integer pixel difference from the centre of the absorption line
profile. The next strongest absorption line, feature 2, is then labelled;
because the central optical depth is not saturated, we label all pixels
that have a flux < 0.995. The rightmost feature 3, which is partially
blended, is labelled using the same approach, however, the labels are
only applied to the pixels where the pixel optical depth contributed
by this feature is highest.

2.3 Archival quasar observations

To validate our machine’s prediction on real data, we use the 15
quasar spectra observed and reduced by R12. These data were
observed with the High Resolution Echelle Spectrometer (HIRES;
Vogt et al. 1994) on the Keck I telescope. The redshifts of these
quasars are in the range 2.5 < z < 2.9, and the spectra have
R = 45000 (vpwnm = 7kms™"), high signal-to-noise ratio (S/N ~
50200 pixel '), and cover the wavelength range 3100-6000 A We
resampled these spectra to 2.5 km s~! pixel ™! (while conserving flux)
to be consistent with the input of our CNN model (see Section 3.1
and Appendix A). Further details about the observations and data
reduction procedure are outlined by R12.3

3 DEEP LEARNING MODEL

We employ multi-task learning (Caruana 1998; Ruder 2017) by
training with and predicting four outputs (labels): Ly «ID, log Ny,
zloc, and log by, (see Section 2.2). The network is generalized to
approach these four tasks at the same time. The details of the CNN
structure for our multi-task learning are described in Section 3.2. The
prediction of each variable complements the prediction of the other
variables by combining their losses (details in Section 3.3)° as part
of the training process.

We employ similar training strategies to that adopted by Parks et al.
(2018) to ‘scan’ through a spectrum with a fixed-size window (ws)
and a 1-pixel step size. To do this, we used the fit_generator

5Some spectra contain DLA absorption lines. Our CNN model is sensitive to
Ly o systems with low column density, and it then ignores the DLA features.
Hence, these features do not impact the results.

©The loss quantifies the difference between the expected output (i.e. truth)
and the predicted output by a machine learning model, while the loss function
is the function used to calculate the loss.
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function in KERAS. This method increases the machine’s performance
by analysing hundreds of pixels in a segmentation per step rather
than tens of thousands of pixels in a whole spectrum in one go.
A fit_generator has the added benefit that each window is
generated at run-time from the full spectrum, and therefore reduces
the amount of VRAM required (or, equivalently, allows us to include
more training data). The schematic diagram of the scanning process
is shown in Fig. 3.

3.1 Data input

In each spectral window used as input (of size ws), there are four
training labels, and these labels correspond to the properties of the
centre pixel in this window. Our CNN is therefore trained with and
only predicts the corresponding values at the central pixel within this
window from each labelling array. For example, in Fig. 3, the labels
that correspond to the red spectral window are listed in the red labels
box, and the ones that correspond to the green spectral window are
in the green labels box, etc. The size of the spectral window, ws, is
a hyperparameter that is objectively selected using an optimization
algorithm (Section 3.2). We scan each training spectrum from left to
right during each epoch. Each batch contains one spectral window
from each training spectrum. This approach ensures that all training
spectra are fully ‘scanned’ and their training losses are taken into
account in each epoch (see also Section 3.3).

To ensure that the CNN prediction is primarily sensitive to
absorption features that are located at the centre of the window,
we define an additional hyperparameter, cnpix. This hyperparameter
is defined by the absolute value of zloc, |zloc|<cnpix, and determines
the pixels that are recognized as the ‘centre’ of an absorption feature.
For example, in Fig. 3, if cnpix = 1, the yellow shaded area is defined
as the ‘centre’ region, and the true values outside this range are set to
0 as highlighted by the yellow labels. The CNN is trained with, and
predicts the labels associated with, the central pixel of the window.
The variable cnpix ensures that the training process only learns from
an absorption feature that overlaps with the pixel in the centre of a
window.

Additionally, we noticed that training our machine with noiseless
spectra results in a significantly worse performance when predicting
a noisy spectrum (see Appendix C). To overcome this issue so that
our machine can sensibly be applied to predict accurate labels to
real data, we included additional noise to each spectrum. The S/N
of a given spectrum is drawn from a Gaussian distribution, with a
mean of 10 and a standard deviation of 2. Given this S/N value,
we randomly perturb every pixel in the perfect normalized spectrum
by a Gaussian distribution with a standard deviation of 1/(S/N).
In previous studies, Ly « forest analyses have primarily relied on
spectra with S/N > 20. Hence, we chose a low S/N value as a
typical value to allow our machine to produce reliable results when
analysing observed quasar spectra that are of somewhat lower S/N.
Appendix C outlines the tests we performed to validate this approach,
and demonstrate that this stabilizes the predictions for spectra with
different S/N.

3.2 CNN architecture

Fig. 4 shows our CNN architecture, which follows the same form
as the one used in Parks et al. (2018), including three 1-dimensional
convolutional layers (i.e. Conv 1, Conv 2, Conv 3) and each of them
is followed by a pooling layer with a kernal size of 2. A dropout is
inserted after the third pooling layer (Pool 3), and the array is flattened
to connect with a dense layer (Dense 1). Four separate dense layers
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Figure 3. Schematic diagram of the scanning process that we use to train the data. The scanning window size is ws, and the step size is 1 pixel. All of the pixels
in a given window are used as input to the CNN, and the corresponding output label of each window is assigned to the pixel located at the centre of the window.
The red, green, and blue boxes demonstrate how the corresponding labels change when the window shifts by 1 pixel. Labels are only assigned if the centre
pixel of the window is within cnpix = +£1 pixels of the centre of an absorption feature (this is represented by the yellow box). Outside of this defined area, the
corresponding labels are set to 0. Note that the value of cnpix is a hyperparameter of the network.

are then connected with the ‘Dense 1° layer and dropouts are applied
to each dense layer. The dropout rate is consistent throughout the
network and is one of the hyperparameters that is selected with an
optimization algorithm.

The activation function used before the output layer is consistently
ReLu: flx) = max(0, x) (Agarap 2018), and the activation functions
for the outputs depend on the desired output range of the target
variables. Hence, for Ly «ID, we applied the sigmoid function:
fix) = 1/(1 4+ e™), which outputs a value between 0 and 1 as a
probability. For zloc we adopted a 1 inear function: fix) = x, and for
both log by 7 and log Ny, we used ReLiu, which outputs a value flx) =
max(0, x). Several crucial hyperparameters in our CNN architecture
were objectively selected by a Bayesian optimization process (Snoek
etal. 2012, also see appendix B) over a range of possible values. The
results are listed in Table 1. In addition to the hyperparameters of the
CNN architecture, we include two additional hyperparameters from
Section 3.1: (1) the window size (ws) and (2) the number of pixels that
are used to define the centre of an absorption feature (cnpix). These
two hyperparameters are critical in determining the types of Ly «
systems that our CNN is sensitive to®; the values of these parameters
depend on the science question being addressed. We therefore use a
Bayesian optimization process to decide their values without human
intervention.

Finally, the learning rate was set to 0.0001 and we applied the
Adam optimizer (Kingma & Ba 2015). The maximal number of
iteration for each training is 20 epochs, but only the model with the
minimal validation loss within the 20 epochs is saved.

7The minimal value of by in this work is 15kms~!. Hence, the logarithmic
value is always >0.

80ne can use a larger size of scanning window to help improve the sensitivity
in detecting systems with higher column density. Note that these systems are
fewer. To carry out this optimization, one also needs to consider the issues of
strongly imbalanced number of different systems.

3.3 Loss function

With our multi-task learning model, four outputs were pro-
duced for a given input: Ly «ID, log Ny, zloc, log by;. With the
fit_generator function, the final loss per epoch for each output
is an average value of the losses of all steps. For a binary classification
task, the loss of ‘Ly «ID’ uses a binary cross-entropy loss function

1 N
Lip == yeilog(ped) + (1 = yei) log(l = pe.), €]

i=1
where N is the total number of training windows per epoch, i.e. the
number of input training spectra (= number of data per step) times
the number of pixels in each spectrum (= number of steps),’ y.
represents the true classification label (i.e. Ly«wID = y. = 1 for a
Ly o absorption system), and p, is the probability of being a Ly «
system predicted by the CNN. The loss functions of the remaining
outputs use a masked mean square error (MSE)
1N
Lj= 7D yeilvis = 91 @)

i=1

where N is the total number of training windows per epoch where
ye equals to 1, and j = {Ny,, z, bu,} represents the loss functions
of log Ny, zloc, log by, respectively. The y;; are the true values of
J = {Nui, z, bu,}, while the §;; are the predicted values from the
CNN. With this ‘masked’ form of the loss function for log Ny, z,
and log by, losses are only contributed to the final loss per epoch
when y, = 1.9 The final loss function of the CNN training process
per epoch is the sum of the above-mentioned losses

L=0L;p+ Ly +L:+ Ly, 3)

9Recall that the model is trained by scanning through all spectra.
10We note that this masked loss function ensures that our machine is not biased
by the log N1, z, and log by labels in pixels where there is no absorption.
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Figure 4. Schematic diagram of the CNN architecture used in this work. It is composed of three 1-dimensional convolutional layers with pooling layers
following each, one dense layer to connect each component, and four dense layers for four target outputs. The values of relevant hyperparameters are listed in

Table 1.

Table 1. Hyperparameters used in our CNN architecture. These values are
selected using a Bayesian optimization algorithm (Snoek, Larochelle &
Adams 2012).

Hyperparameters Optimized value
Data input window size (ws) 179
central pixels (cnpix) 1
CNN L2 0.0
Architecture dropout 0.1
conv _filter_1 512
conv filter_2 512
conv_filter_3 512
conv _kernel_1 6
conv _kernel_2 7
conv _kernel_3 4
dense_1 64
dense_2_ID 32
dense 2_N 64
dense 2 z 256
dense_2_b 128

MNRAS 517, 755-775 (2022)

Note that the scale of each loss needs to be comparable in order to
prevent a biased weighting due to a single label that contributes most
of the loss. For example, in our preliminary test, we found that a large
uncertainty in predicting linear by, values (range of 15—75km s™")
contributes a significant loss which therefore decreases the CNN’s
capability of precisely predicting the other labels. Hence, we opted
to predict the logarithmic by, values in this work.

4 EVALUATION METRICS

Before showing the results of our CNN models, we first introduce
the metrics that were used to evaluate the CNN performance. For
the classification of Ly o absorbers, we use recall and precision, as
defined below, to evaluate the CNN performance.

TP .. TP
————; precision = —,
TP +FN TP + FP
where “TP’ is a true positive (i.e. a correct classification), ‘FP’ is a
false positive (i.e. a mis-classified system), and ‘FN’ is false negative
corresponding to true systems that are missed by our CNN. Recallis a

measure of completeness: the fraction of true absorbers identified by
the CNN. Precision is a measure of the fraction of identified systems

recall =

“
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that are real. We have designed the CNN to have high precision at the
expense of recall, so that we are confident that a CNN-classified Ly o
system is a real Ly o system. This choice may need to be different,
depending on the scientific question being addressed.

On the other hand, when estimating the physical properties of a
Ly o absorber such as redshift, HI column density, and Doppler
width, we consider two metrics: (1) the root mean square error
(RMSE) and (2) mean absolute error (MAE), to assess the ‘accuracy’
of the CNN predictions. The RMSE is defined as

Niya N
St Gk — D)
NLyot

RMSE = , (5)
where Ny, is the number of matched Ly« systems, and y; and
9 represent the ‘true’ and ‘predicted’ values of each Ly o system,
respectively. The RMSE is strongly impacted by the outliers due
to the square of the residual. Hence, we also introduce MAE
(equation 6) which is more resilient to outliers than the RMSE.

N yo A~
Zk:L'l |yi — il
NLytx

MAE = , (6)
where the definition of each variable is the same as equation (5). The
MAE is more useful, since we do not expect the CNN to be absolutely
correct. For example, in many cases our CNN predicts that a single
Ly o absorber is required to recover an absorption feature, while there
are in fact many neighbouring lines that contribute to this absorption
feature (see discussion in Section 5.3). For this example, we will
have poor estimates of the physical properties when comparing with
the ‘true’ values, and this yields strong outliers. Thus, the MAE is
a more robust indicator of the CNN performance than the RMSE in
the context of this study. In later sections, we will list both quantities,
but the discussion will be based on the MAE.

5 PREDICTION TO SIMULATED SPECTRA

With the aforementioned setups in Section 3, we trained a CNN
model with 900 simulated spectra'! with an S/N randomly drawn
from a Gaussian distribution with a mean of 10 and a standard
deviation of 2. An independent set of 25 simulated spectra (a noiseless
set and a S/N = 10 set) were used to examine our pre-trained CNN
model.

5.1 CNN-classified Ly « forest systems

With a CNN prediction for each pixel in all spectra, we used the
following two criteria to identify Ly « systems: (1) Ly «ID > 0.3,
and (2) |zloc|<cnpix, where cnpix = 1. The former criterion judges if
apixel contains a Ly « system by the binary classification probability.
The initial probability threshold > 0.3 used for Ly «ID is considered
to have the maximum number of identified systems without decreas-
ing the precision by selecting pixels with low predicted probabilities.
The second criterion is applied in order to identify the centre of an
absorber.

To compare the CNN-classified Ly & systems with the ground-
truth labels, we match the input and predicted catalogue of systems;
our matching criteria require that the velocity difference between the
input and prediction is smaller than half of the minimum FWHM that

"'This number of training set is sufficient since each spectrum includes
over 20 000 segmentation windows for the training process. Using additional
spectra did not improve our result.
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can be detected by a machine. This FWHM threshold is estimated
by the minimum by, value our CNN predictor can detect, i.e. by, =
15kms~!, using the relation: FWHM = 2,/Iog(2) b. Hence, the
threshold applied is /T0g(2) bpin ~ 12.5 km s~

The comparisons between the true and predicted systems with
Ly «ID > 0.3 using noiseless spectra and S/N = 10 spectra are
shown in Fig. 5. This figure provides an indication of the upper and
lower ranges of CNN predictions for mock spectra of different noise
levels. With low S/N, the total number of matched systems decreases
when using the same probability threshold. However, the overall
CNN performance remains consistent, with only a minor increase of
the MAE. We summarize the evaluation metrics of different data sets
in Table 2.

When applying a higher probability threshold to Ly «ID for spectra
of the same noise, fewer systems with a high accuracy are matched.
For example, in Table 2, when applying Ly «ID > 0.7 to predict
noiseless spectra, the recall drops while our CNN predictions show
an improvement.

For either noiseless or S/N = 10 simulated spectra, the overall
precision of our CNN is over 0.98. In the following sections, we
investigate the causes of the FP and FN classifications.

5.2 False positive

A false positive (FP) is an absorption system identified by our
CNN classifier that cannot be matched to a Ly« system in the
simulated true label catalogue. When predicting the labels of a
simulated spectrum that only contains Ly « absorbers, our CNN
reaches a precision of over 0.98 for spectra with S/N = 10 (over
0.99 for noiseless spectra). The FP in this case is exclusively a
simple mismatch due to the velocity threshold (~12.5kms™!) used
in matching systems between true and predicted catalogues. An
example is shown in Fig. 6. The velocity difference between our
CNN-classified system and the closest neighbour is 17.5kms™!
in this example. FPs occur when an absorption feature comprises
multiple nearby lines, while our CNN tends to use one line to describe
the absorption feature. This results in a shift of the defined centre and
the mismatch of the true and predicted Ly o systems. Through visual
inspection, we noticed that the parameters of the FPs predicted by
the CNN classifier fit the absorption feature as well as the true labels,
especially given that our classifier is trained on data of S/N =~ 10. This
type of failure can also happen when using conventional methods
such as Voigt profile fitting (e.g. human bias, or indistinguishable
absorption profiles). This reflects a potential underestimation of the
number of Ly o systems that are indifferentiable due to confusion or
insufficient S/N, or because they are due to sub-structures of HI gas
within a larger H1 gas cloud. This may be improved by including
higher order Lyman series lines as part of the CNN training process
in future work.

5.3 False negative

False negatives (FN) occur when a system is listed in the true
label catalogue, but it is not identified by our CNN. Examples are
shown in Fig. 7. Since we train our CNN with noisy spectra, some
detailed structures are buried in the noise, resulting in either a non-
detection or low predicted probability (Ly «ID) to these pixels. This
is a compromise between the accuracy and the feasibility of a CNN
technique to spectra with low S/N. One can train a CNN with a higher
S/N to increase the accuracy of a CNN detection and therefore reduce
potential FN that are impacted by noise. In our test, when training
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Figure 5. Comparisons between the true and predicted values of log Nyg;/cm =2 and byy; with Ly «ID > 0.3 using noiseless spectra (top) and spectra with S/N =
10 (bottom). The black solid line shows f(x) = x, the dashed lines indicate the scatter range defined by the MAE of each plot, and the dotted lines are the range
defined by the RMSE of each plot. Dark blue data points show the median values within different bins of the true values. The y-axis error bar presents the MAE
of each bin.

our CNN with noiseless spectra,'? the machine reaches a high recall
(~0.88) and a high precision (~0.90) when testing on a noiseless
spectrum. However, the ability to predict physical properties such
as by, and Ny, drops significantly for a CNN that is trained on
noiseless data, but applied to noisy spectra (for further details, see

2Note that this result used a CNN architecture with hyperparameters that
were specifically tuned to noiseless data.
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Appendix C). This severely limits the utility of a CNN model, since
most spectroscopic data are of low S/N.
We summarize four main cases that contribute to FNs:

(1) Weak absorption features that are not significantly detected in
the noisy data (S/N ~ 10) used for the training process. Our CNN
then has difficulty distinguishing these features from the noise, and
provides either a non-detection or a low predicted probability, i.e.
Ly «ID < 0.3, even for data with much higher S/N.
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Table 2. Evaluation metrics (precision, recall, MAE) of CNN-classified systems on different test data sets. All of the results
tabulated here are based on the same model, which is trained on noisy spectra (where the S/N is drawn from a Gaussian
distribution with a mean = 10 and a standard deviation = 2).

Test sets Precision  Recall Alog N/em™2 AzZH1 Aby (kms™!)
Noiseless mock spectra (Ly ID >0.7) 0.992 0.127 0.08 1.7 x 107 14
Noiseless mock spectra (Ly 1D >0.3) 0.994 0.322 0.10 24 %107 2.3

S/N = 10 mock spectra (Ly «ID >0.3) 0.987 0.273 0.12 3.0x 1073 2.8

R12 spectra (Ly «ID >0.3):

All predictions 0.782 0.260 0.14 2.7 x 1073 4.2

12.5 < log Ngy/em™2 < 15.5 0.792 0.258 0.13 2.7 x 1077 4.1

FP in predicting mock spectra

FN in predicting mock spectra (S/N=10)

10” 11 | 11 11 | | [ N 2 LT 13
( A2 1.0
0. \/\/\/W
0.8+
0.6
0.6
0.47 0.41
0.2 0.2
0.0 v y T J T v 0.0 y y y y
-500 -300 -100 0 +100 +300 +500 4608 4612 4616 4620
velocity relative to FP (km s™1) wavelength (4)
FN in predicting mock spectra (S/N=10)
Figure 6. An example of a FP (red curve). The grey curve shows the 0 0 0 Y T 0 T
contribution of all absorption lines. Short tick marks above the spectra indicate
the centre of a Ly « system (black for catalogue lines, red for FP). The velocity 1.0
between the red prediction and the closest neighbour system from the true
catalogue of primary absorption lines is AV = 17.5km s~!. 0.81
(ii) A strong absorption feature composed of multiple neighbour-
ing lines (e.g. see Fig. 6). This type of FN occurs when our CNN 0.6
uses one line to fit an absorption feature while this feature is in
fact composed of several Ly « systems (Section 5.2). This mismatch 0.41
therefore contributes several FNs, and one FP.
(iii) A strong, broad absorption feature with a size that is larger 0.2
than the scanning window, i.e. AV > 447.5kms~". Due to the fixed
size of our scanning window, our CNN is restricted to features that 0.0 y y y v
4608 4612 4616 4620

are well-defined within the window size.

(iv) Complex absorption features contributed by many nearby
lines. Similar to case (ii) above, our CNN only fits a dominant feature
from this complex structure and misses other overlapped absorption
features formed by nearby, usually weaker, Ly « systems.

We find that the dominant FN contribution comes from weak
absorption features that are within 30 of the continuum; our 25
test spectra indicate this type of FN contributes ~86 per cent of the
total number of FNs. These weak absorption features have an average
value of logNH./cm_2 =1240+025and b =289 £ 9.8 km s~ .
If we exclude this kind of FN, the recall improves from ~0.32 to
~0.77 for noiseless spectra.

In Fig. 8, we present the change of recall and the MAE values of
log Ny, zui, and by, grouped by column density using noiseless
spectra (solid line) and S/N = 10 spectra (dashed line). This
demonstrates that our CNN model has better recall to Ly « systems
with a column density range of 13 < log Ny,/em =2 < 16. By visual

wavelength (A)

Figure 7. Several examples of FN. The centres of each true Ly & system
are labelled by black short tick marks above the spectra, while the red arrow
indicates a match between the true and predicted systems. Hence, a black tick
mark without a matching red arrow represents a FN. The top panel shows a
noiseless spectrum and the bottom panel is a spectrum with S/N = 10. The
grey histogram represents the data and the red curve is a reconstruction based
on all of the predicted lines by our CNN.

inspection, we found that the FNs for systems with column density
in this range are only the cases (ii)—(iv) listed above. Compared to
other bins, low H1 column density systems (i.e. log Ny /em™2 < 13)
contribute weak absorption features which can be hidden in the noise,
and result in much lower recall value (50.1), i.e. a higher fraction of
FNss.
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evaluation versus different Ny, bin

1o Recall AlogNy, /cm™2 Az (x1075) Abyy (km s71)
. 0.5 5.5] —*— noiseless
091 ot ; 5ol —*- SIN=10
0.4 | 4.51 ——
\ | e
0.35 RN 4.0 "
3.51 3
0.31 3 0‘ ‘\\\\ ///
0.25 ' ~
2.51 =
0.2 2.01
0.151 1.51
0.17 1 1.0_
0.05 1 0.51
0.0 0.0

12 13 14 15 16 17 12 13 14 15 16 17

12 13 14 15 16 17 12 13 14 15 16 17

log Ny /cm~2 (True)

Figure 8. Evaluation graphs of recall and the MAE of log NHI/cm_z, redshift (zy1), and by; values, within different log Nl.“/cm_2 bins. The horizontal lines

of each data point represent the range of each bin.

6 APPLICATION TO OBSERVATIONAL DATA

Following the setup described in Section 3, we train five individual
CNN models, and each model is trained with a set of 900 noiseless
spectra that we perturb with Gaussian noise (Section 2.1). We then
use these CNN models to predict the Ly « forest parameters of the 15
HIRES quasar spectra from R12 (Section 2.3) and build a catalogue of
Ly « absorption systems with minimum Ly «ID >0.3 for each quasar
spectrum. The final determinations of the physical properties (i.e.
log Nui, zu1, and log by,) are a weighted-average of the predictions
for a given absorption line, using Ly «ID as the weights. The mean
value of Ly oID is used as the final probability of a CNN prediction.
In order to evaluate the performance of our CNN models, we compare
the CNN-classified Ly o absorbers with the catalogue built by R12.
These authors identified Ly o systems and estimated the HI column
density, redshift, and Doppler width by Voigt profile fitting. To avoid
the proximity effect, Ly o systems are excluded if they are within
3000 km s~! of the quasar. Additionally, each Ly & system identified
by R12 was validated by confirming the existence of at least one other
higher order Lyman series transition; when higher order Lyman series
lines were available, they were jointly fit. Our network only uses the
Ly « absorption line.

6.1 Predicting 15 HIRES observed spectra

Although our CNN reaches high precision (equation 4) when
predicting fake spectra that only contain Ly « absorbers, observed
quasar spectra are much more complex and challenging due to the
existence of other Lyman series absorption lines and metal lines.
Hence, we carry out a post-processing procedure to exclude CNN-
classified absorption line systems that: (1) have a redshift greater than
the quasar Ly o emission redshift; (2) are within a region including
higher order Lyman series lines such as Ly § lines; or (3) do not
exhibit a Ly 8 absorption line.

In detail, we first remove the systems with a CNN-estimated
redshift larger than or equal to the quasar redshift. To avoid regions
including other higher order Lyman series lines, we focus on the
region where only Ly o absorbers of the Lyman series exist. This is
carried out by removing systems located at the wavelengths blueward
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from the potential highest-redshift Ly  absorber estimated by the
quasar emission redshift. Additionally, as in R12, we remove systems
that are within 3000 kms~' of the quasar to avoid the proximity
effect. Finally, we examine the corresponding Ly 8 absorption lines
for each CNN-classified Ly o system using the CNN-predicted
redshift, column density, and Doppler width. A CNN-classified Ly o
system is removed if the following criteria are satisfied: (1) the
estimated Ly B flux is much lower than the observed flux, i.e. the
difference of fluxes (CNN Ly 8 flux — observed flux) is negative
and its absolute value > lo, where o is the median value of the
noise spectrum near the centre of the absorption line, defined by the
FWHM (i.e. pixels within ~+12.5km s~!, see Section 5.1); and (2)
the Ly 8 absorption line is not saturated, i.e. Ly 8 observed flux >
3o (following the definition of saturation in Section 2.2).
Additionally, we add two additional flags to our CNN catalouge
— LyB_inspec_flag and sml_LyB _flag. The former decides if the
wavelength of a corresponding Ly 8 absorber of a CNN-classified
system is within the observed wavelength range; thus, 1 if yes and 0
if no. The latter flag assesses if the estimated flux of a corresponding
Ly B absorber can be hidden within the noise level, i.e. Ly g flux >(1
— o). If the Ly B absorption feature can be hidden within 1o, this flag
sml_LyB flag is set to 1, and the opposite case has sm/_Lyp _flag = 0.

6.2 Comparison with R12 catalogue

To assess the confidence of the CNN results by the R12 catalogue, we
focus on the spectral region that only contains Ly o absorption lines
(Section 6.1). We match the CNN-classified Ly « absorbers with the
R12 catalogue using the same criteria for simulated spectra described
in Section 5.1, i.e. the velocity difference between the identified
systems of our CNN and R12 is smaller than half of the minimum
FWHM that can be detected by our machine: ~12.5kms~!.

Since the R12 catalogue is based on a consistent fit of all available
Lyman series lines (i.e. Ly« and at least one other Lyman series
transition), a mismatch between R12 and our CNN could happen if:
(1) the corresponding Ly  absorber of a CNN-classified system is out
of the wavelength range of the spectrum, or (2) weak Ly § absorption
lines that are buried within the noise level of a broad absorption
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feature. By applying two additional flags'3: (1) LyB_inspec_flag =
1 and (2) sml_LyB_flag = 0, ~78 percent of the ML-classified
Ly o systems are matched with R12, i.e. precision = 0.78.* The
comparison of column density (log Nyy,/em~2) and Doppler width
(bu;) between our CNN and R12 are shown in Fig. 9 (also check
Table 2). Dark blue data points are the median values of each bin
of R12. The bin interval is 0.5 for log Nyy,/em™2 and 5kms~' for
by,. There is a statistical uncertainty associated with each quantity
in the R12 catalogue based on Voigt profile fitting; the x-axis error
bar uses the median value of the deviations to represent the typical
error of each quantity in R12 within different bins. On the other
hand, the y-axis error bar presents the MAE of the data points in
each bin.

Compared to the simulated spectra results in Fig. 5, the CNN
performance decreases when predicting real spectra. This is due to
the more complex blending of features that are seen in observational
data. As discussed in Section 5.3, our CNN tends to use only one
line to recover a broad absorption feature while it is generally
composed of multiple neighbouring lines. In this case, even though
there is a matched Ly « system between the two catalogues, the CNN
predictions of log Ny, and by, will not be consistent with the values
listed in the R12 catalogue.

Nevertheless, our CNN models do a good job in predicting H1
column density log Nyj,/cm~2 with MAE = 0.139. In particular, the
range between 12.5 < log Nu/em™2 < 15.5 shows a tight one-to-one
relation with MAE = 0.135 (also see Table 2). Outside this column
density range, the number of CNN-classified Ly o systems are much
fewer (42 out of 1930 CNN-classified Ly o systems) which results
in a larger scatter within this range. This indicates that our CNN has
difficulty in correctly classifying these absorption lines and leads to
arelatively poor estimate of the HI column density for Ly o systems
with log Nyy,/em™2 < 12.5 or log Nyj,/em™2 > 15.5. Note that the R12
data are of considerably higher S/N compared to the simulated data
that were used to train our CNN model. As described in Section 5.3,
weak low H1 column density systems are often buried in noise near
the continuum level for data of S/N ~ 10. To improve the prediction
of lower HI column density systems, one may train a model with
higher S/N input spectra, and apply this model to observational data
of comparably high S/N (see Appendix D).

The catalogue comparison of by, (bottom panel of Fig. 9) shows
a similar trend to the results of simulated spectra in Fig. 5 with a
larger scatter. Within the range of by, < 20 km s~!, our CNN tends to
overestimate the by, value, because the CNN models use a single Ly o
line to recover a feature that is composed of multiple lines. On the
other hand, for larger by, values, our CNN has difficulty in predicting
systems with broader absorption features due to the restriction of
the scanning window size [see point (iii) of the FN summary in
Section 5.3]. The window size is a hyperparameter tuned to optimize
the predictions for the majority of Ly « absorbers (Section 3.2). There
are ~93 per cent of Ly o absorbers with by; < 35kms~! from R12
(~97 per cent of them with by, < 40 km s~1), and the predictions
for the systems with a larger by, value are worse (this also occurred
for the simulated spectra).

3Without applying the two flags, one can just compare the systems that are
within the same redshift ranges as the ones that were fit in R12. The precision,
recall, and MAE of Alog Ny [/cm_z, Az, and Aby; are 0.778, 0.284, 0.14
dex, 2.7 x 1075, and 4.3 km s~ !, respectively.

141t may be possible to include Ly § lines in the training process. This may
improve the precision of the predictions of the Ly « lines. We leave this as an
exercise for future work.
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Figure 9. Comparisons between the CNN and R12 values of log Nyj;/cm ™2
(top) and by (bottom). The black solid line shows a one-to-one relation, the
dashed lines indicate the scatter defined by the MAE of each plot, and the
dotted lines are defined by the RMSE of each plot. Dark blue data points
show the median values of CNN and R12 within different bins of R12. The
x-axis error bar is defined by the median value of the estimation errors of the
data points provided in R12 within different bins of R12, while the y-axis
error bar presents the MAE of each bin.

Finally, for different column density bins (defined using the R12
catalogue), we present the recall and the MAE of log Ny, /cm~2,
redshift (zy;), and by, in Fig. 10. Based on the column density com-
parison shown in Fig. 9, we separate matched samples into four bins:
log Ny /em™2 = 12.0—12.5, 12.5—14.0, 14.0—15.5, and 15.5—17.0.
Fig. 10 demonstrates that the CNN predictions of different physical
properties are most consistent with R12 within the H 1 column density

range 12.5 < log Ny,/em™2 < 15.5cm™2 (Table 2).
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evaluation versus different Ny, bin
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Figure 10. Evaluation graphs of recall and the MAE of log Nyi/em 2, redshift (zH1), and by values, within different log Ny i/cm~2 bins. The horizontal lines
of each data point represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from low to high values of log Ny I/cm’z.
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Figure 11. Examples of potential Ly & absorbers (red curves; top panels) that are not matched with an absorber in R12 due to multiple components in R12
being fit with a single absorber by the CNN. Due to velocity differences between the two catalogues, they are flagged as FPs although the absorber is identified
in both catalogues. The centre of the FP is labelled by a red short tick mark. These examples of FPs are due to the matching criterion (see Section 5.2). The
orange curves in the bottom panels show the corresponding Ly S absorber. The grey histograms show the observational data. Black short tick marks above the
spectra indicate the centres of the Ly « systems from R12. The AV values shown in the top panels provide the velocity difference between the prediction and
the nearest absorption line from the catalogue of R12.

Note that the CNN-classified Ly « absorbers for the above results

are identified by at least one CNN model out of five models. To further
improve the CNN predictions, one can impose a selection criterion
to the number of the CNN models that identify a Ly « system. For
example, by requiring that a Ly o absorber must be identified by at
least two CNN models, the precision increases from 0.78 to 0.85, and
the overall MAE for log Nyj,/cm~2 improves slightly, and the MAE
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for by drops to 3.8 kms~!

data sets in Table 2).

, respectively (see the results of other test

6.2.1 False positive and false negative

Except for misclassification, which is dominated by contaminating
metal lines, one of the primary causes of FPs in the observational data
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Figure 12. Same as Fig. 11, but shows an example of a potential Ly «
absorber that is not listed in the R12 catalogue.

is due to the velocity threshold (~12.5 km s~!) used to match systems
between the CNN and R12 catalogues (as discussed in Section 5.2).
Fig. 11 shows three examples of this FP case. The CNN tends to
fit a broad absorption feature with one line, while it is composed
of multiple neighbouring lines in the R12 catalogue. We notice that
the broader an absorption feature is, the worse CNN predictions
are obtained, e.g. the leftmost panel in Fig. 11. Additionally, since
the classifications in R12 might have missed some Ly« systems
from manual Voigt profile fitting, some FPs by our CNN could be a
potential Ly « absorber. Examples are shown in Fig. 12. We compared
the CNN identified systems with the robust Ly « absorbers from R12
which were validated with higher order lines, e.g. Ly B, Ly y, etc.
Hence, there may be mismatch because the corresponding Ly 8 or
Ly y lines of a potential Ly « absorber are difficult to detect. For
example, in Fig. 12, we show an example with possible Ly « and
Ly B absorption consistent with a true absorption system. However,
this example may instead be due to a metal line absorption line, given
that there are several neighbouring metal line absorbers nearby.

The FNs identified with the observational data are contributed
by the same sources as the ones discussed in Section 5.3 (i.e. low
column density absorption features that are buried in the noise). As
mentioned in Section 5.3, our choice to train a model on low S/N data
is a compromise to allow a CNN technique to be applied to spectra
with both low and high S/N. For completeness, we have also trained
a model with S/N closer to the quasar spectra from R12 and we test
this model using observed spectra. This comparison is discussed in
Appendix D.
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Figure 13. Several examples of FNs. The centres of each Ly « system from
R12 are labelled by black short tick marks above the spectra, while the red
arrow indicates a match between the CNN and R12 results. From the top to
bottom panel, we showcase different reasons responsible for FNs. The grey
curve represents the data, the blue curves represent a reconstruction of the
data based on the Ly  absorbers listed in the R12 catalogue, and the red
curve is a reconstruction based on all of the predicted lines by our CNN.

In Fig. 13, we showcase examples of the different cases of FNs.
The top panel presents the case of FNs having weak absorption
features that are missed by our CNN, which is trained with noisy
spectra. In the middle panel, our CNN uses one Ly « line to describe
the absorption feature, while there are multiple nearby lines listed in
R12 responsible for this feature. This specific case also contributes
a FP depending on the distance between a CNN-classified system
and its closest system from R12. Finally, we showcase a broad and
complex absorption feature containing many Ly « absorbers in the
bottom panel. Our CNN has difficulty analysing a broader feature
such as the one showcased here, since our CNN is trained with
only primary lines. When an absorption feature is broader than the
structure that our CNN can reconstruct with one Ly « line, the CNN
fails to classify.

Since the behaviour of FNs using our CNN can be determined
empirically, a correction factor can be calculated to convert the
predicted distribution of Ly o forest absorbers to the intrinsic (i.e.
input) distribution of Ly o absorbers. We will consider this approach
in a future paper.
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Figure 14. Our CNN predictions of the R12 HIRES spectra are stable when we artificially degrade the R12 data. Note that the ‘R12’ data points represent the
predictions to the high quality HIRES spectra from R12 (S/N 2 50). From left to right, we show the recall, precision, the RMSE (black dashed line) and MAE
(black solid line) of H1 column density (Alog Nui/em—2), redshift (Azy), and the Doppler width (Abyy).

6.2.2 Predicting HIRES spectra with different S/N

In this section, we test if our CNN is capable of predicting observed
Keck/HIRES spectra of different S/N. Additional noise is added
to the high quality HIRES spectra from R12 to degrade the S/N.
We test different cases from S/N = 5 to 50 (i.e. the latter case
represents the lower S/N end of the R12 spectra). This test is
to ensure that in future works, we can further apply our trained
CNN models to predict spectra in the HIRES archives such as the
Keck Observatory Database of Ionized Absorption toward Quasars
(KODIAQ) survey (O’Meara et al. 2017, 2021). Fig. 14 demonstrates
that the performance of our CNN is consistent with the predictions of
simulated spectra (see Appendix C). This again confirms that training
the CNN with noisy spectra is of great importance to stabilize the
predictions of spectra with different noise levels. Although there
is a drop in the CNN performance at S/N < 20, the changes are
still within an acceptable range for further scientific analyses. By
training and testing a CNN applied to high redshift quasar spectra, we
have opened up the possibility to efficiently and effectively harvest
the information buried in the Ly o forest. This is an important step
towards understanding and analysing the significant amount of data
that will be acquired with future facilities.

7 SUMMARY

We have developed a machine learning based detection algorithm
using CNNs to derive the physical parameters of Ly« absorbers
within the forest of high-resolution QSO absorption line spectra.
In particular, we focus on the low HI column density systems
(Nu: < 10'7 em™2) and predict their physical properties such as H1
column density (log Nui/em™2), redshift (zy;), and Doppler width
(byy)- The low column density Ly « absorbers serve as a great tracer
to the thermal history of the low-density IGM and can be used to
probe the baryonic matter distribution. However, since they can be
easily contaminated by other Lyman series and metal lines, previous
applications of machine learning to the Ly « forest have focused on
identifying DLAs (Ny; > 10?3 cm~2) which show strong, damped
absorption features.

Our CNN model is trained with 900 noisy simulated spectra
with a S/N drawn from a Gaussian distribution of mean = 10 and
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standard deviation = 2. This training strategy stabilizes the CNN
performance when predicting spectra of different S/N (Appendix C
and D) and allows us to apply our CNN models to the current
archives of spectroscopic data, as well as future surveys. The
simulated spectra that we use for training our model represent
quasars at redshift z = 3 and are convolved with an instrumental
resolution of vpwiy = 7kms~!. These values are typical of the
data in current observatory archives. Different FWHM values have
no impact on the performance of the CNN model (i.e. the Ly o
forest absorption lines are fully resolved), while at higher redshifts
there is increased blending due to neighbouring absorption features,
which negatively impacts the accuracy of the CNN predictions (see
Appendix A). The pixel size of the simulated spectra is set to
2.5kms™ L.

We first examine the CNN performance with simulated spectra,
and match the CNN prediction and true systems using a velocity
threshold defined by half of the minimum FWHM ~ 12.5kms™!
(estimated by by, = 15km s7h. By matching the predicted systems
with the systems listed in the true catalogue, over 99 per cent of the
CNN-classified Ly @ systems are true. However, the completeness
is low (~32 per cent), i.e. only a small fraction of the Ly o systems
are identified by our CNN. We summarize three types of FN: (1)
weak absorption features that might be neglected by our CNN due
to the limitation of the noisy training spectra; (2) a strong absorption
feature composed of multiple neighbouring lines, contributing one
FP and many FNs; (3) broad and complex absorption features that
cannot be represented by one Ly o absorber. Case (1) dominates the
FN; the completeness increases to 77 per cent when excluding this
case of FN.

We then train five individual CNN models to predict 15 HIRES
spectra and compare the CNN predictions with the results of manual
Voigt profile fitting by R12. While the manual method costs 1-2 yr
for the 15 spectra in R12, the prediction process by our CNN costs
less than 3 min per quasar spectrum with a size of ~120 000 pixels
using a MacBook Pro with a 2.3-GHz Intel Core i7 processor and
Intel Iris Plus Graphics 1536 MB.

Since an observed spectrum contains complex structures and
contamination such as metal lines, a post-processing procedure is
carried out to exclude unreliable ML-classified Ly « systems. Around
78 per cent of ML-classified Ly @ systems are matched with R12.
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There are three sources responsible for FPs: (1) a simple mismatch
due to the chosen velocity threshold (~12.5kms™'); (2) a potential
Ly o absorber that is not listed in R12 due to weak or hidden Ly 8
absorption; and (3) misclassification due to broad absorption features
formed by multiple blended metal lines. We further conclude that the
CNN models provide the most reliable predictions within the range
of 12.5 < log Np/em™2 < 15.5. Within this range, the MAE of
log Ny/em™2, zy, and by are 0.13 dex, 2.7 x 107>, and 4.1 kms™!,
respectively, demonstrating the accuracy of our CNN predictions. We
conclude that a general-purpose CNN applied to the Ly o forest may
not be as effective as one that is trained for a specific science goal,
and it is important to better understand the parameter space where
a model succeeds or under performs. We found that the FNs occur
under the same conditions for both simulated and observed spectra.

Although we train the CNN models with noisy (S/N 22 10) simu-
lated spectra, they provide consistent performance when predicting
much higher quality (S/N 2 70) observational spectra. This gives
us confidence that our model can be applied to both cosmological
simulations and observations of the Ly « forest, and help to provide
an insight into some of the missing ingredients in simulations.

Finally, we examine the CNN performance when predicting
observed Keck/HIRES spectra of different S/N, and draw the same
conclusions as the analysis of the simulated spectra. An investigation
can be further carried out to quantify the impact of different S/N on
the ‘accuracy’ of the conventional analyses to observed spectra. More
importantly, this result validates the possibility to apply a CNN model
with our approach to analyse the enormous quantity of data that will
be obtained with future facilities.
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APPENDIX A: THE IMPACT ON PREDICTING
SPECTRA WITH DIFFERENT INITIAL SETUPS

We test our pre-trained CNN model on 25 newly generated spectra
with: (1) quasars at different redshifts; (2) different instrument

MNRAS 517, 755-775 (2022)

resolution (FWHM); and (3) data that are sampled with different pixel
size (vpix). This test is to validate the feasibility of our CNN model
to predict observational spectra that were acquired with different
setups.

First, for different quasar redshifts (top row in Fig. A1), the recall
and precision remain consistent and the log Ny Jem™2 prediction does
not show significant deviation. However, the RMSE and MAE of zy;,
and by, estimations increase as a quasar emission redshift increases.
This means that the prediction accuracy decreases as a quasar redshift
increases. This result is caused by the increased blending due to
Ly« forest absorption lines at higher redshift. During the early
Universe, HI gas clouds are more abundant and their absorption
features overlap in velocity space. This overlap introduces additional
uncertainty in the predicted physical properties; this is true for both
a machine-learning based algorithm or conventional Voigt profile
fitting. Even though the RMSE and MAE of zy, and by, are within
a factor of ~1.5 of the RMSE and MAE at z ~ 3, we conclude that a
CNN tailored to a specific redshift may further improve the results,
depending on the science application.

In the middle row of Fig. Al, we generated spectra with
different instrument FWHM resolution over a narrow range 5 <
FWHM/(kms™") < 9, which samples the relevant resolutions of cur-
rent high dispersion spectrographs like Keck/HIRES and ESO/UVES
(European Southern Observatory Ultraviolet and Visual Echelle
Spectrograph; Dekker et al. 2000). Overall, different FWHMs in this
range show no impact to both the detection and physical property
estimates. This is because the widths of the Ly « forest absorption
lines (FWHM > 15kms™!) are usually fully resolved at the in-
strument resolution of typical spectrographs, such as Keck/HIRES
and VLT/UVES (FWHM~ 7kms~"). Finally, in the bottom row
of Fig. Al, we show that the choice of pixel size introduces a
serious impact to the results, in particular the Doppler width, by;.
However, this issue can be circumvented by resampling. If an input
spectrum is not sampled with vpix = 2.5kms™!, we resample
the input data to ensure that our CNN model produces reliable
results. This resampling process does not impact the trained network,
nor the results, since the Ly« forest absorption lines are fully
resolved.
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Figure A1. The overall performance of our CNN on noiseless spectra with different observing setups. We illustrate the sensitivity to quasar redshift (top row),
instrumental FWHM resolution (middle row), and pixel size (bottom row). Note that the CNN model is trained using simulated noisy quasar spectra at redshift
z = 3 and are observed using an instrumental FWHM resolution of vpwpm = 7 km s~ ! and sampled with vpix = 2.5km s~ pixel’1 (Section 2.1). From left-
to right-hand, the panels show the recall, precision, RMSE (black dashed line), and MAE (black solid line) of HI column density (Alog Ny Jem™2), redshift
(Azny), and the Doppler width (Abyy).
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APPENDIX B: BAYESIAN OPTIMIZATION

The predictions by a network strongly depend on its hyperparameters
such as the number of neurons, dropout rate, the kernel sizes,
etc. A failed prediction of a network might be simply due to an
unoptimized architecture used for training. Hence, it is of great
importance to select a set of hyperparameters that provide the
most optimal combination for a specific goal. This selection is
often done by a brute-force method — grid searches — such that all
possible combinations of each hyperparameter are evaluated. This
method is therefore extremely time-consuming, and the tested sets
of hyperparameters are limited due to computational allowance.

Unlike grid searches, Bayesian optimization (Snoek et al. 2012)
provides a ‘smart guess’ to approach an optimal combination of
hyperparameters: xi, xp, ..., X,, where n represents the number of
hyperparameters. This process is much faster than the grid searches
to find a set of hyperparameters that performs well. The concept is to
model the network’s function f{x;, x,, ..., x,,) to a surrogate analytical
function. In this work, we use a Gaussian process (Rasmussen &
Williams 2006) which forms the prior distribution as multivariate
normal distributions. As providing data, the posterior probability
distribution f given f(x;, x2, ..., X,) is computed, and approaches to
the prior using a chosen acquisition function which we use the default
function — Expected Improvement (Jones, Schonlau & Welch 1998).
A detailed tutorial is described in Frazier (2018).

Our optimization process uses GPYOPT (GPyOpt 2016)"5 by
running 60 iterations to search for the optimal set. A final set of
hyperparameters for the model trained with noisy quasar spectra
(where the S/N is drawn from a Gaussian distribution of a mean =
10 and a standard deviation = 2) is listed in Table 1.

Bhttp://sheffieldml.github.io/GPyOpt/
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APPENDIX C: THE IMPACT OF DIFFERENT
S/N ON MOCK SPECTRA

We tested the impact of training a CNN model using spectra of
different noise levels. In Fig. C1, we show the results of training a
CNN model with noiseless spectra (top; hyperparameters used in the
CNN architecture are shown in Table C1) and noisy spectra (bottom;
Table 1) with S/N drawn from a Gaussian distribution with a mean
of 10 and a standard deviation of 2 (Section 3.1). This figure clearly
shows that a model trained with noiseless spectra cannot be used to
predict new spectra with even a modest amount of noise. Although
this model can reach a higher overall recall for noiseless data, the
precision and the parameter determinations of log Nudem™2, zu;,
and by are poorly known when noise is added to the testing spectra.

Compared to this, a CNN model trained with spectra involving
a distribution of S/N shows stable performance when predicting
spectra with different noise levels. A drop in performance occurs
to spectra with S/N < 20. Testing on spectra with S/N = 10, there is
a drop in recall which does not decrease the precision. This indicates
that many true Ly o absorbers might be hidden in the noise, and our
CNN has difficulty to identify them. However, ~98 per cent of the
CNN-classified Ly « systems are classified correctly compared with
the list of true systems.

The precision then drops to ~0.94 when analysing spectra of
S/N =5, and there are significant changes to the RMSE and MAE
for the estimates of the physical properties. We did not expect our
CNN model to perform well when analysing spectra with S/N =
5, since this noise level is beyond the range included in our training
spectra. However, the changes to the predictions are minor compared
to the top panels of Fig. C1 using the model trained with noiseless
spectra. Additionally, they are still within an acceptable range for
scientific analyses. Hence, with caution, this CNN model can be
used to analyse spectra with S/N > 5.
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Figure C1. CNN analysis of spectra with different S/N using two CNN models trained with noiseless spectra (top row) and a Gaussian distribution of S/N with
amean = 10 and a standard deviation = 2 (bottom row), respectively. From left- to right-hand panels, we present the recall, precision, the RMSE (black dashed

line) and MAE (black solid line) of HI column density (Alog Ny/em™2), redshift (Azy;), and the Doppler width (Aby;). Note that all metrics in the bottom

row show a high level of stability for S/N > 20, demonstrating the more general success of training a CNN model with somewhat low S/N data.

Table C1. Hyperparameters used in a CNN architecture trained with
noiseless spectra. These values are selected using a Bayesian optimization

APPENDIX D: THE IMPACT OF DIFFERENT

S/N ON R12 SPECTRA

Extending the discussion in Section C, we have trained a CNN

model with spectra of a higher S/N than the one used in the main

algorithm.
Hyperparameters Optimized value
Data Input window size (ws) 259
cnpix 5
CNN L2 0.0
Architecture dropout 0.0
conv filter_1 128
conv_filter_2 128
conv _filter_3 128
conv_kernel_1 8
conv_kernel 2 7
conv_kernel 3 8
dense_1 128
dense_2_ID 256
dense 2_N 512
dense 2.z 256
dense 2_b 128

work, and tested this model with the observed spectra from R12. The
S/N of the training data is drawn from a Gaussian distribution of

S/N with a mean = 90 and a standard deviation = 30; these values
are chosen to be close to the S/N of the R12 data. The optimized
hyperparameters of this CNN architecture are listed in Table D1.
Comparing Fig. D1 with Fig. 14, the recall increases slightly but the
performance drops when S/N < 50. However, Fig. D2 shows that
by training a model with high S/N spectra, it helps to improve the
predictions of systems within the range of lower (log Ng/cm~2 <
12.5) and higher (log Nui/em=2 > 15.5) column density.

MNRAS 517, 755-775 (2022)

2202 JaqWIBAON |.Z Uo Jasn weyn( 1o Austeaiun Aq $€22029/SS 271/ LS/81o1ie/Seluw/wod dno olwapeoe//:sdyy Wwolj papeojumod


art/stac2631_fC1.eps

774  T.-Y. Cheng, R. J. Cooke and G. Rudie

Recall Precision AlogNy; /cm™2 Az (x1073) Aby; (km s71)
1.01 1.0 12.01 %,
0.9 0.9 0.351 6.0 11.04
0.8 0.8 0.31 10.01
'Y 5.0 9.01 AN
0.7 0.71 : L galh SNEESES
0.25 ‘\\.’_,o-__.,—“ 8.0
0.61 0.61 N 4.0 70l
0.5 0.5 ‘~ i
3.0 6.0
0.4 0.4 0.15 5.0
0.3 0.3 2.0 4.0
0’ o 0.14 3.01
: ' | --e-- RMSE | 1.0 2.01
0.05
0.1 0.1 —e— MAE 1.0
0.0

- 00— 00— 00— —————————————— 00— —————————
5 10 20 50 75R12 5 10 20 50 75R12 5 10 20 50 75R12 5 10 20 50 75R12 5 10 20 50 75R12
S/N

Figure D1. CNN analysis of R12 spectra using a Gaussian distribution of S/N with a mean = 90 and a standard deviation = 30 (closer to the distribution of
R12 spectra). From left- to right-hand panel, we present the recall, precision, the RMSE (black dashed line), and MAE (black solid line) of HI column density
(Alog Nui/em—2), redshift (Azy), and the Doppler width (Abyy).
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Figure D2. Evaluation graphs of recall and the MAE of log Ny Jem™2, redshift (zy;), and by values, within different log Ny /em~2 bins. The horizontal lines

of each data point represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from low to high values of log NHI/cm*Z. The solid line shows the
results using models trained by lower S/N (mean = 10) while the dashed line shows the ones using models trained by higher S/N (mean = 90).
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Table D1. Hyperparameters used in a CNN architecture trained using spectra
with a higher S/N. These values are selected using a Bayesian optimization

algorithm.
Hyperparameters Optimized value
Data Input window size (ws) 285
cnpix 1
CNN L2 0.0
Architecture dropout 0.6
conv _filter_1 256
conv_filter_2 256
conv _filter_3 512
conv_kernel_1 10
conv_kernel 2 7
conv_kernel 3 6
dense_1 64
dense_2_ID 512
dense 2_N 512
dense 2.z 256
dense 2_b 128

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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