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A B S T R A C T 

We develop a machine learning based algorithm using a convolutional neural network (CNN) to identify low H I column density 

Ly α absorption systems (log N H I /cm 

−2 < 17) in the Ly α forest, and predict their physical properties, such as their H I column 

density (log N H I /cm 

−2 ), redshift ( z H I ), and Doppler width ( b H I ). Our CNN models are trained using simulated spectra (S/N � 

10), and we test their performance on high quality spectra of quasars at redshift z ∼ 2.5 −2.9 observed with the High Resolution 

Echelle Spectrometer on the Keck I telescope. We find that ∼78 per cent of the systems identified by our algorithm are listed 

in the manual Voigt profile fitting catalogue. We demonstrate that the performance of our CNN is stable and consistent for all 
simulated and observed spectra with S/N � 10. Our model can therefore be consistently used to analyse the enormous number of 
both low and high S/N data available with current and future facilities. Our CNN provides state-of-the-art predictions within the 
range 12.5 ≤ log N H I /cm 

−2 < 15.5 with a mean absolute error of � (log N H I /cm 

−2 ) = 0.13, � ( z H I ) = 2.7 × 10 

−5 , and � ( b H I ) = 

4.1 km s −1 . The CNN prediction costs < 3 min per model per spectrum with a size of 120 000 pixels using a laptop computer. 
We demonstrate that CNNs can significantly increase the efficiency of analysing Ly α forest spectra, and thereby greatly increase 
the statistics of Ly α absorbers. 
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1 F or e xample, the commonly used VPFIT package, which is available from: 
ht tps://people.ast .cam.ac.uk/∼rfc/vpfit .html 
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 I N T RO D U C T I O N  

he forest of neutral hydrogen (H I ) L yman- α (L y α) absorption
ines imprinted on a quasar spectrum – collecti vely kno wn as the
 y α forest (L ynds 1971 ; Sargent et al. 1980 ) – provides our best
nderstanding of the intergalactic medium (IGM) and circumgalactic 
edium (CGM), on scales of tens to hundreds of kpc and to Mpc

Cristiani et al. 1995 ; Fang et al. 1996 ). The photons emitted by
 background quasar are absorbed at the redshifted Ly α transition 
rest-frame wavelength = 1215.67 Å) in addition to higher order 
ines of the H I Lyman series (Sargent et al. 1980 ). 

By number, Ly α absorption systems with low H I column density 
ominate the Ly α forest and trace the underlying density of the 
 I clouds (e.g. Schaye 2001 ). They can be used to probe the
istribution and evolution of the baryonic matter, structure formation, 
nd constrain cosmological parameters (e.g. Dav ́e et al. 2010 , also see
e vie ws: Rauch 1998 ; Theuns, Leonard & Efstathiou 1998 ; Theuns
t al. 1999 ; Tytler et al. 2004 ; Lehner et al. 2007 ; Meiksin 2009 ).
dditionally, the thermodynamic properties of these systems are 
rimarily go v erned by two processes: (1) adiabatic cooling from the
xpansion of the Universe; and (2) photoheating by the ultraviolet 
ackground (UVB) light from quasars and galaxies (Abel & Haehnelt 
999 ; Theuns et al. 2002 ; Bolton, Oh & Furlanetto 2009 ; Puchwein
t al. 2015 ). The competition between these two effects tracks 
he thermal state of the low-density IGM through a characteristic 
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emperature–density relation (e.g. Hui & Gnedin 1997 ; Haehnelt & 

teinmetz 1998 ; Schaye et al. 1999 , 2000 ; Ricotti, Gnedin & Shull
000 ; Becker, Rauch & Sargent 2007 ; Bolton et al. 2008 ; Rudie,
teidel & Pettini 2012b ). Furthermore, the Ly α forest can also be
sed to probe cosmological models and constrain the properties 
f dark matter (e.g. Viel et al. 2013 ; Baur et al. 2016 ; Garzilli,
oyarsky & Ruchayskiy 2017 ; Ir ̌si ̌c et al. 2017 ; Boera et al. 2019 ;
ogers & Peiris 2021 ). 
While the Ly α forest is easily identified in a quasar spectrum,

he identification of individual Ly α absorption systems within the 
orest is challenging. Conventionally, these absorption lines in the 
y α forest are fit with Voigt profiles 1 (e.g. Kim et al. 2002 , 2013 ,
021 ; Prochaska, Herbert-Fort & Wolfe 2005 ; Prochaska & Wolfe
009 ; Rudie et al. 2012a , hereafter R12 ); ho we ver, a manual fit to
he entire Ly α forest is very time-consuming, and requires the aid of
isual inspection, and many human hours. To a v oid human bias, there
re also studies that have developed automated Voigt profile fitting 
lgorithms 2 (Dav ́e et al. 1997 ; Carswell & Webb 2014 ; Bainbridge &
ebb 2017 ; Gaikwad et al. 2017 ). 
With future surv e ys and facilities such as the WHT Enhanced

rea Velocity Explorer (WEAVE; Pieri et al. 2016 ), and the 4-m
 We provide a few example codes here, but note that many efforts to generate 
n automated approach are unpublished. This problem is difficult, and an 
utomated solution is not currently at the same level of accuracy that a human 
an produce. 
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3 Primary Builders include: J. Xavier Prochaska, N. Tejos, and J. Burchett 
( https://github.com/pyigm/pyigm ). We also implemented a minor change to 
this code; when generating Voigt profiles, we constructed a sub-pixellated 
wavelength array to sample each native pixel by 10 sub-pixels. This accounts 
for the curvature of the profile within each pixel. 
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ulti-Object Spectroscopic Telescope (4MOST; de Jong et al. 2019 ),
housands of high resolution ( R � 20000) quasar spectra are expected
n the coming years. It will therefore not be feasible to analyse
he enormous number of quasar spectra using conventional analysis

ethods. To o v ercome big data problems, such as this, machine
earning techniques are essential. 

Machine learning techniques, in particular deep learning (LeCun,
engio & Hinton 2015 ), have been widely applied to a variety of
alaxy studies such as galaxy morphology (Cheng et al. 2020a ,
021 ; Walmsley et al. 2022 ), galaxy merger (Bottrell et al. 2019 ;
erreira et al. 2020 ), and strong gravitational lensing (Metcalf et al.
019 ; Cheng et al. 2020b ; Pearson et al. 2021 ). Applications to
nalyse spectroscopic data or time-series data include spectra and
heir star formation histories (Lo v ell et al. 2019 ), gravitational wave
nalyses (George & Huerta 2018 ), transient objects (Muthukrishna
t al. 2019 ), and spectral classification (Bailer-Jones, Irwin & von
ippel 1998 ). Recently, there has been a growing interest in applying
achine learning techniques to the Ly α forest, including: (1) a
y α forest emulator (Bird et al. 2019 ; Rogers et al. 2019 ); and
2) the identification and properties of damped Ly α systems (DLAs;
arnett et al. 2017 ; Parks et al. 2018 ; Wang et al. 2022 ). DLAs are
efined to have H I column densities that exceed N H I ≥ 10 20 . 3 cm 

−2 ,
nd are easily identified by their strong, damped absorption features
uperimposed on the Ly α forest. Unlike DLAs, the low H I column
ensity Ly α absorption systems associated with the Ly α forest
 N H I < 10 17 cm 

−2 ) have a relatively shallow depth and narrow
bsorption features. Furthermore, Ly α forest absorption features
utnumber DLA absorption lines by orders of magnitude, and occupy
 wider range of column density. These absorption lines are also often
lended and confused with metal lines, making this a challenging
nd laborious problem. As a result, an efficient and reliable machine
earning based solution to harvest the Lya forest – both line detection
nd characterization – does not e xist. Giv en the utility of these low
olumn density Ly α systems in studying the physics of the IGM, it is
ssential to develop a machine-learning-based detection algorithm to
dentify and characterize these features in preparation for the coming
Big Data’ era. 

In this paper, for the first time, we apply a convolutional neural
etwork (CNN) to efficiently identify Ly α forest systems ( N H I <

0 17 cm 

−2 ) and extract their physical properties, including the
edshift, Doppler width, and H I column density. While our primary
oal is to efficiently extract the properties of the observed Ly α
orest, our algorithm can also be used to identify Ly α absorbers
n simulated spectra. Since our approach is general, this allows a

ore direct comparison between spectra extracted from state-of-the-
rt hydrodynamic cosmological simulations and observations. The
aper is arranged as follows. Section 2 describes the generation of
ur simulated quasar spectra for training and initial testing purposes,
nd the observed quasar spectra that are used to validate our CNN
redictions. Section 3 explains the CNN models and the training
trategies, and we describe the e v aluation metric in Section 4 .
n Section 5 , we test our pre-trained model with the simulated
pectra, while in Section 6 , we apply the CNN models to predict the
arameters of the Ly α forest from observed spectra, and compare the
NN’s predictions with the results based on Voigt profile fitting and
uman inspection from R12 . Finally, our conclusions are summarized
n Section 7 . 

 QUASAR  SPECTRA  

n this section, we describe the simulated and observed quasar Ly α
orest data that are used to train and test our network. While the
NRAS 517, 755–775 (2022) 
echnique that we employ can be readily applied to quasars at any
edshift, the focus of our work is to study Ly α absorption in the
ptical wavelength range. Since the Ly α forest is blueward of the
uasar Ly α emission line, to detect Ly α forest absorption features in
he optical range (i.e. ∼3200 to 7200 Å), the emission redshift of the
uasars is in the range z = 1.6 −5. To satisfy the observed wavelength
ange, we generate simulated spectra at z = 3 for training our CNN.
he details of the spectrum generation are outlined in Section 2.1 ,
hile in Section 2.2 , we describe the pix el-lev el labelling of each
y α absorption system. The observed spectra used to validate our
odel are described in Section 2.3 . 

.1 Mock Spectra 

he number of human-analysed quasar spectra that have been fit
ith Voigt profiles is currently limited by the time effort required

o carefully analyse and fit each individual absorption line in every
uasar spectrum. The quasar spectra that have been analysed are
ubject to human choices that may not reflect the true underlying
roperties of the absorption lines. For this reason, our training data
re based on simulated quasar spectra to provide a large quantity
f spectra together with ground-truth identifications of Ly α systems
nd their properties. Our simulated spectra were generated using
ackages in the PYIGM software. 3 The generated spectra represent a
ypical quasar at redshift z = 3 and are convolved with an instru-

ental full width at half-maximum (FWHM) resolution of v FWHM 

=
 km s −1 . These choices are moti v ated by the typical properties of
igh resolution spectra of quasars in current observatory archives.
he velocity per pixel of these spectra is set to 2.5 km s −1 pixel −1 . The

mpact of the model trained with this setup on predicting spectra with
ifferent assumptions for the properties of the spectra are discussed
n Appendix A . 

A catalogue of Ly α forest absorption lines are drawn randomly
rom the column density distribution function (CDDF), f ( N H I , X ),
ollowing the default form implemented in PYIGM (the Hermite
pline model of Prochaska et al. 2014 ), where X is the absorption
istance. This provides a distribution of H I absorption systems with
 H I = 10 12 − 10 22 cm 

−2 that can be imprinted on to a simulated
uasar spectrum to generate absorption features with ‘ground-truth’
abels (see Section 2.2 ). Note that this model was constrained at
edshift z ≈ 2.5. PYIGM uses inverse transform sampling of the z = 2.4
DDF to generate a list of H I column densities; the corresponding
oppler parameters are drawn from the Hui & Rutledge ( 1999 )
istribution. The redshifts of the mock lines are generated by inverse
ransform sampling the redshift-dependent incidence of absorption
ystems, l ( z). Finally, the spectra are generated without noise;
dditional noise is added later to test the sensitivity of our model
o the adopted S/N (Section 3.1 ). In Fig. 1 , we show an example of a
imulated spectrum with different choices of the S/N. Our simulated
pectra contain only the absorption lines of the H I Lyman series, and
o not include metal lines. 
Machine learning applications commonly require training samples

ith a well-defined structure and clear corresponding labels, if
ossible. Since Ly α absorption features are relatively simple and
ave a well-defined structure that can be derived by only a few

https://github.com/pyigm/pyigm
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Figure 1. The top panel shows a simulated Ly α forest spectrum of a quasar at redshift z = 3 (no noise). The three subsequent panels show a zoom-in of the 
top panel (see blue box, top panel) with different signal-to-noise ratios (S/N = ∞ , 50, and 10 per pixel for the second, third, and fourth panels, respectively). 
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Figure 2. Example of the training labels: Ly αID, log N H I , zloc, and log b H I 
in pixel scale from top to bottom. The grey dotted line in the top panel 
represents the normalized quasar continuum level, and the blue dotted line in 
the third panel shows zloc = 0. Note that the training labels are only defined 
when Ly αID = 1. The absorption features are labelled 1, 2, and 3, ordered 
by column density. 
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hysical properties, i.e. Voigt profiles, having robust labels are 
ore crucial than complexity of data set to a v oid confusion in a

lassification task. Hence, as a first attempt, this training data set
efines a clear structure of Ly α absorbers that helps a machine to
raw a cleaner decision boundary in a high dimensional parameter 
pace. Additionally, it helps us to analyse the performance of our 
utomated algorithm and identify its limitations. As an alternative, we 
ould generate simulated spectra with cosmological hydrodynamic 
imulations to account for the clustering and complex structure that 
xists in a real quasar spectrum. Ho we ver, since the CGM structures
n these simulations are unresolved (Hummels et al. 2019 ; Rudie 
t al. 2019 ; van de Voort et al. 2019 ), it might be more sensible to
rain a machine using observed spectra in future works to account 
or the clustering of absorbers. 

.2 Ly α absorption systems 

he Ly α absorption features in a spectrum can be described with 
hree physical properties: (1) the total H I column density ( N H I ;
m 

−2 ), (2) the redshift ( z H I ) of the H I absorbers, and (3) the Doppler
idth ( b H I ; km s −1 ). The f ( N H I ) model provides a distribution of H I

bsorbers that samples the H I column densities of the Ly α forest.
ith the ‘ground-truth’ information of the three aforementioned 

roperties, we generated four labelling arrays for each pixel in the 
uasar spectrum (these labels are illustrated in Fig 2 ): 

(i) Ly αID : set to a value of 1 if a Ly α absorber exists in this pixel,
nd 0 if not; 

(ii) log N H I : H I column density (in units of cm 

−2 ) of the corre-
ponding Ly α absorber on a logarithmic scale; 

(iii) zloc : the relative location of the centre of an absorption feature
in units of pix els 4 ). A pix el centred on an absorption feature is set
o 0, and ne gativ e and positive values to pixels at the left and right,
espectiv ely. F or e xample, if the centre of a given pixel is 2.4 pixels
 Note that zloc is a floating point number, since the centre of the associated 
bsorption line is not coincident with the centre of a pixel. 

0  

h  

e
(  

p  
o the left of the centre of an absorption profile, we assign the label
f this pixel to be −2.4; 
(iv) log b H I : Doppler width of the corresponding Ly α absorber on 

 logarithmic scale (km s −1 ). 

irst, to ensure that the absorption features used to train our machine
re Ly α lines, we applied a cut to exclude the pixels with wavelengths
here the Ly β transition of the highest redshift H I absorber appears.
he initial pixel values for the four training label arrays were set to
. The labels were generated for all Ly α systems ordered from the
ighest H I column density to the lowest H I column density. For
ach Ly α system, we first check if the optical depth, τ = N H I σα

 σα is the absorption cross-section for the Ly α transition), of the
ixel is high enough to saturate the absorption line using a criterion
MNRAS 517, 755–775 (2022) 
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f exp ( − τ ) < 0.015, where the threshold is defined by 3/(S/N)
where our fiducial S/N = 200). If any pixel satisfies this criterion,
e store the Ly αID, log N H I , zloc, and log b H I of this absorber in the

abel arrays. Note that ‘zloc’ represents the location of the centre of
n absorption feature, where the centre (zloc = 0) is drawn using
he redshift of the Ly α system. If the listed Ly α system does not
aturate a pixel, it is then used to provide values to the corresponding
ixels where the flux of the absorption features is < 0.995. Note, if
ultiple absorption components contribute to the total optical depth

n a pixel, we labelled only the dominant line. This means that in
his work we do not consider the impact of a secondary or additional
ine blends in a single pixel. A more thorough investigation about the
ffect of blended lines will be carried out in future work. Fig. 2 shows
n example of the labelling procedure that we use in this work. In
he example shown in Fig. 2 , labels are first assigned to the leftmost
strongest) feature, i.e. feature 1. Ev ery pix el associated with this
bsorption line that has a flux less than 0.015 is assigned a Ly αID =
; the column density and Doppler parameter is the same for all of
he associated pixels of this feature, and the zloc label represents the
on-inte ger pix el difference from the centre of the absorption line
rofile. The next strongest absorption line, feature 2, is then labelled;
ecause the central optical depth is not saturated, we label all pixels
hat have a flux < 0.995. The rightmost feature 3, which is partially
lended, is labelled using the same approach, ho we ver, the labels are
nly applied to the pixels where the pixel optical depth contributed
y this feature is highest. 

.3 Archi v al quasar obser v ations 

o validate our machine’s prediction on real data, we use the 15
uasar spectra observed and reduced by R12 . These data were
bserved with the High Resolution Echelle Spectrometer (HIRES;
ogt et al. 1994 ) on the Keck I telescope. The redshifts of these
uasars are in the range 2.5 � z � 2.9, and the spectra have
 

∼= 

45 000 ( v FWHM 

∼= 

7 km s −1 ), high signal-to-noise ratio (S/N ∼
0–200 pix el −1 ), and co v er the wav elength range 3100–6000 Å. We
esampled these spectra to 2.5 km s −1 pixel −1 (while conserving flux)
o be consistent with the input of our CNN model (see Section 3.1
nd Appendix A ). Further details about the observations and data
eduction procedure are outlined by R12 . 5 

 DEEP  L E A R N I N G  M O D E L  

e employ multi-task learning (Caruana 1998 ; Ruder 2017 ) by
raining with and predicting four outputs (labels): Ly αID, log N H I ,
loc, and log b H I (see Section 2.2 ). The network is generalized to
pproach these four tasks at the same time. The details of the CNN
tructure for our multi-task learning are described in Section 3.2 . The
rediction of each variable complements the prediction of the other
ariables by combining their losses (details in Section 3.3 ) 6 as part
f the training process. 
We employ similar training strategies to that adopted by Parks et al.

 2018 ) to ‘scan’ through a spectrum with a fixed-size window ( ws )
nd a 1-pixel step size. To do this, we used the fit generator
NRAS 517, 755–775 (2022) 

 Some spectra contain DLA absorption lines. Our CNN model is sensitive to 
y α systems with low column density, and it then ignores the DLA features. 
ence, these features do not impact the results. 
 The loss quantifies the difference between the expected output (i.e. truth) 
nd the predicted output by a machine learning model, while the loss function 
s the function used to calculate the loss. 

3

F  

a  

c  

i  

i  

t  
unction in KERAS . This method increases the machine’s performance
y analysing hundreds of pixels in a segmentation per step rather
han tens of thousands of pixels in a whole spectrum in one go.
 fit generator has the added benefit that each window is
enerated at run-time from the full spectrum, and therefore reduces
he amount of VRAM required (or, equi v alently, allo ws us to include

ore training data). The schematic diagram of the scanning process
s shown in Fig. 3 . 

.1 Data input 

n each spectral window used as input (of size ws ), there are four
raining labels, and these labels correspond to the properties of the
entre pixel in this window. Our CNN is therefore trained with and
nly predicts the corresponding values at the central pixel within this
indow from each labelling array. For example, in Fig. 3 , the labels

hat correspond to the red spectral window are listed in the red labels
ox, and the ones that correspond to the green spectral window are
n the green labels box, etc. The size of the spectral window, ws , is
 hyperparameter that is objectively selected using an optimization
lgorithm (Section 3.2 ). We scan each training spectrum from left to
ight during each epoch. Each batch contains one spectral window
rom each training spectrum. This approach ensures that all training
pectra are fully ‘scanned’ and their training losses are taken into
ccount in each epoch (see also Section 3.3 ). 

To ensure that the CNN prediction is primarily sensitive to
bsorption features that are located at the centre of the window,
e define an additional hyperparameter, cnpix . This hyperparameter

s defined by the absolute value of zloc, | zloc |≤cnpix , and determines
he pixels that are recognized as the ‘centre’ of an absorption feature.
 or e xample, in Fig. 3 , if cnpix = 1, the yellow shaded area is defined
s the ‘centre’ region, and the true values outside this range are set to
 as highlighted by the yellow labels. The CNN is trained with, and
redicts the labels associated with, the central pixel of the window.
he variable cnpix ensures that the training process only learns from
n absorption feature that o v erlaps with the pixel in the centre of a
indow. 
Additionally, we noticed that training our machine with noiseless

pectra results in a significantly worse performance when predicting
 noisy spectrum (see Appendix C ). To o v ercome this issue so that
ur machine can sensibly be applied to predict accurate labels to
eal data, we included additional noise to each spectrum. The S/N
f a given spectrum is drawn from a Gaussian distribution, with a
ean of 10 and a standard deviation of 2. Given this S/N value,
e randomly perturb ev ery pix el in the perfect normalized spectrum
y a Gaussian distribution with a standard deviation of 1/(S/N).
n previous studies, Ly α forest analyses have primarily relied on
pectra with S/N > 20. Hence, we chose a low S/N value as a
ypical value to allow our machine to produce reliable results when
nalysing observed quasar spectra that are of somewhat lower S/N.
ppendix C outlines the tests we performed to validate this approach,

nd demonstrate that this stabilizes the predictions for spectra with 
ifferent S/N. 

.2 CNN ar chitectur e 

ig. 4 shows our CNN architecture, which follows the same form
s the one used in Parks et al. ( 2018 ), including three 1-dimensional
onvolutional layers (i.e. Conv 1, Conv 2, Conv 3) and each of them
s followed by a pooling layer with a kernal size of 2. A dropout is
nserted after the third pooling layer (Pool 3), and the array is flattened
o connect with a dense layer (Dense 1). Four separate dense layers
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Figure 3. Schematic diagram of the scanning process that we use to train the data. The scanning window size is ws , and the step size is 1 pixel. All of the pixels 
in a given window are used as input to the CNN, and the corresponding output label of each window is assigned to the pixel located at the centre of the window. 
The red, green, and blue boxes demonstrate ho w the corresponding labels change when the windo w shifts by 1 pixel. Labels are only assigned if the centre 
pixel of the window is within cnpix = ±1 pixels of the centre of an absorption feature (this is represented by the yellow box). Outside of this defined area, the 
corresponding labels are set to 0. Note that the value of cnpix is a hyperparameter of the network. 
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re then connected with the ‘Dense 1’ layer and dropouts are applied
o each dense layer. The dropout rate is consistent throughout the 
etwork and is one of the hyperparameters that is selected with an
ptimization algorithm. 
The acti v ation function used before the output layer is consistently
eLu : f ( x ) = max (0, x ) (Agarap 2018 ), and the acti v ation functions

or the outputs depend on the desired output range of the target
ariables. Hence, for Ly αID, we applied the sigmoid function: 
 ( x ) = 1/(1 + e −x ), which outputs a value between 0 and 1 as a
robability. For zloc we adopted a linear function: f ( x ) = x , and for
oth log b H I 7 and log N H I we used ReLu , which outputs a value f ( x ) =
ax(0, x ). Several crucial hyperparameters in our CNN architecture 
ere objectively selected by a Bayesian optimization process (Snoek 

t al. 2012 , also see appendix B) o v er a range of possible values. The
esults are listed in Table 1 . In addition to the hyperparameters of the
NN architecture, we include two additional hyperparameters from 

ection 3.1 : (1) the window size ( ws ) and (2) the number of pixels that
re used to define the centre of an absorption feature ( cnpix ). These
wo hyperparameters are critical in determining the types of Ly α
ystems that our CNN is sensitive to 8 ; the values of these parameters
epend on the science question being addressed. We therefore use a 
ayesian optimization process to decide their values without human 

ntervention. 
Finally, the learning rate was set to 0.0001 and we applied the
dam optimizer (Kingma & Ba 2015 ). The maximal number of

teration for each training is 20 epochs, but only the model with the
inimal validation loss within the 20 epochs is saved. 
 The minimal value of b H I in this work is 15 km s −1 . Hence, the logarithmic 
alue is al w ays > 0. 
 One can use a larger size of scanning window to help impro v e the sensitivity 
n detecting systems with higher column density. Note that these systems are 
ewer. To carry out this optimization, one also needs to consider the issues of 
trongly imbalanced number of different systems. 

w  

p

L

9

1

b

.3 Loss function 

ith our multi-task learning model, four outputs were pro- 
uced for a given input: Ly αID, log N H I , zloc, log b H I . With the
it generator function, the final loss per epoch for each output

s an average value of the losses of all steps. For a binary classification
ask, the loss of ‘Ly αID’ uses a binary cross-entropy loss function 

 ID 

= − 1 

N 

N ∑ 

i= 1 

y c,i log ( p c,i ) + (1 − y c,i ) log (1 − p c,i ) , (1) 

here N is the total number of training windows per epoch, i.e. the
umber of input training spectra ( = number of data per step) times
he number of pixels in each spectrum ( = number of steps), 9 y c 
epresents the true classification label (i.e. Ly αID = y c = 1 for a
y α absorption system), and p c is the probability of being a Ly α
ystem predicted by the CNN. The loss functions of the remaining
utputs use a masked mean square error (MSE) 

 j = 

1 

N 

′ 

N ∑ 

i= 1 

y c,i ( y j,i − ˆ y j,i ) 
2 , (2) 

here N 

′ 
is the total number of training windows per epoch where

 c equals to 1, and j = { N H I , z, b H I } represents the loss functions
f log N H I , zloc, log b H I , respectively. The y j , i are the true values of
 = { N H I , z, b H I } , while the ˆ y j,i are the predicted values from the
NN. With this ‘masked’ form of the loss function for log N H I , z,
nd log b H I , losses are only contributed to the final loss per epoch
hen y c = 1. 10 The final loss function of the CNN training process
er epoch is the sum of the abo v e-mentioned losses 

 = L ID 

+ L N + L z + L b (3) 
MNRAS 517, 755–775 (2022) 

H I H I 

 Recall that the model is trained by scanning through all spectra. 
0 We note that this masked loss function ensures that our machine is not biased 
y the log N H I , z, and log b H I labels in pixels where there is no absorption. 
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Figure 4. Schematic diagram of the CNN architecture used in this work. It is composed of three 1-dimensional convolutional layers with pooling layers 
following each, one dense layer to connect each component, and four dense layers for four target outputs. The values of rele v ant hyperparameters are listed in 
Table 1 . 

Table 1. Hyperparameters used in our CNN architecture. These values are 
selected using a Bayesian optimization algorithm (Snoek, Larochelle & 

Adams 2012 ). 

Hyperparameters Optimized value 

Data input window size ( ws ) 179 
central pixels ( cnpix ) 1 

CNN L2 0.0 
Architecture dropout 0.1 

conv filter 1 512 
conv filter 2 512 
conv filter 3 512 
conv kernel 1 6 
conv kernel 2 7 
conv kernel 3 4 
dense 1 64 
dense 2 ID 32 
dense 2 N 64 
dense 2 z 256 
dense 2 b 128 
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ote that the scale of each loss needs to be comparable in order to
revent a biased weighting due to a single label that contributes most
f the loss. For example, in our preliminary test, we found that a large
ncertainty in predicting linear b H I values (range of 15 −75 km s −1 )
ontributes a significant loss which therefore decreases the CNN’s
apability of precisely predicting the other labels. Hence, we opted
o predict the logarithmic b H I values in this work. 

 EVALUATI ON  METRI CS  

efore showing the results of our CNN models, we first introduce
he metrics that were used to e v aluate the CNN performance. For
he classification of Ly α absorbers, we use recall and precision, as
efined below, to evaluate the CNN performance. 

ecall = 

TP 

TP + FN 

; precision = 

TP 

TP + FP 

, (4) 

here ‘TP’ is a true positive (i.e. a correct classification), ‘FP’ is a
alse positive (i.e. a mis-classified system), and ‘FN’ is false ne gativ e
orresponding to true systems that are missed by our CNN. Recall is a
easure of completeness: the fraction of true absorbers identified by

he CNN. Precision is a measure of the fraction of identified systems
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hat are real. We have designed the CNN to have high precision at the
xpense of recall, so that we are confident that a CNN-classified Ly α
ystem is a real Ly α system. This choice may need to be different,
epending on the scientific question being addressed. 
On the other hand, when estimating the physical properties of a 

y α absorber such as redshift, H I column density, and Doppler 
idth, we consider two metrics: (1) the root mean square error

RMSE) and (2) mean absolute error (MAE), to assess the ‘accuracy’ 
f the CNN predictions. The RMSE is defined as 

MSE = 

√ ∑ N Ly α
k= 1 ( y k − ˆ y k ) 

2 

N Ly α
, (5) 

here N Ly α is the number of matched Ly α systems, and y k and
ˆ  k represent the ‘true’ and ‘predicted’ values of each Ly α system, 
espectively. The RMSE is strongly impacted by the outliers due 
o the square of the residual. Hence, we also introduce MAE
equation 6 ) which is more resilient to outliers than the RMSE. 

AE = 

∑ N Lyα

k= 1 | y k − ˆ y k | 
N Lyα

, (6) 

here the definition of each variable is the same as equation ( 5 ). The
AE is more useful, since we do not expect the CNN to be absolutely

orrect. F or e xample, in man y cases our CNN predicts that a single
y α absorber is required to reco v er an absorption feature, while there
re in fact many neighbouring lines that contribute to this absorption 
eature (see discussion in Section 5.3 ). For this example, we will
ave poor estimates of the physical properties when comparing with 
he ‘true’ values, and this yields strong outliers. Thus, the MAE is
 more robust indicator of the CNN performance than the RMSE in
he context of this study. In later sections, we will list both quantities,
ut the discussion will be based on the MAE. 

 PREDICTION  TO  SIMULATED  SPECTRA  

ith the aforementioned setups in Section 3 , we trained a CNN
odel with 900 simulated spectra 11 with an S/N randomly drawn 

rom a Gaussian distribution with a mean of 10 and a standard
eviation of 2. An independent set of 25 simulated spectra (a noiseless 
et and a S/N = 10 set) were used to examine our pre-trained CNN
odel. 

.1 CNN-classified Ly α forest systems 

ith a CNN prediction for each pixel in all spectra, we used the
ollowing two criteria to identify Ly α systems: (1) Ly αID > 0.3,
nd (2) | zloc |≤cnpix , where cnpix = 1. The former criterion judges if
 pixel contains a Ly α system by the binary classification probability. 
he initial probability threshold > 0.3 used for Ly αID is considered

o have the maximum number of identified systems without decreas- 
ng the precision by selecting pixels with low predicted probabilities. 
he second criterion is applied in order to identify the centre of an
bsorber. 

To compare the CNN-classified Ly α systems with the ground- 
ruth labels, we match the input and predicted catalogue of systems;
ur matching criteria require that the velocity difference between the 
nput and prediction is smaller than half of the minimum FWHM that
1 This number of training set is sufficient since each spectrum includes 
 v er 20 000 se gmentation windows for the training process. Using additional 
pectra did not impro v e our result. 

d  

i  

t  

S  

p  
an be detected by a machine. This FWHM threshold is estimated
y the minimum b H I value our CNN predictor can detect, i.e. b min =
5 km s −1 , using the relation: FWHM = 2 

√ 

log (2) b. Hence, the
hreshold applied is 

√ 

log (2) b min ∼ 12 . 5 km s −1 . 
The comparisons between the true and predicted systems with 

y αID > 0.3 using noiseless spectra and S/N = 10 spectra are
hown in Fig. 5 . This figure provides an indication of the upper and
ower ranges of CNN predictions for mock spectra of different noise
e vels. With lo w S/N, the total number of matched systems decreases
hen using the same probability threshold. Ho we v er, the o v erall
NN performance remains consistent, with only a minor increase of 

he MAE. We summarize the e v aluation metrics of dif ferent data sets
n Table 2 . 

When applying a higher probability threshold to Ly αID for spectra
f the same noise, fewer systems with a high accuracy are matched.
 or e xample, in Table 2 , when applying Ly αID > 0.7 to predict
oiseless spectra, the recall drops while our CNN predictions show 

n impro v ement. 
For either noiseless or S/N = 10 simulated spectra, the overall

recision of our CNN is o v er 0.98. In the following sections, we
nvestigate the causes of the FP and FN classifications. 

.2 False positi v e 

 false positive (FP) is an absorption system identified by our
NN classifier that cannot be matched to a Ly α system in the

imulated true label catalogue. When predicting the labels of a 
imulated spectrum that only contains Ly α absorbers, our CNN 

eaches a precision of o v er 0.98 for spectra with S/N = 10 (o v er
.99 for noiseless spectra). The FP in this case is e xclusiv ely a
imple mismatch due to the velocity threshold ( ∼12.5 km s −1 ) used
n matching systems between true and predicted catalogues. An 
xample is shown in Fig. 6 . The velocity difference between our
NN-classified system and the closest neighbour is 17.5 km s −1 

n this example. FPs occur when an absorption feature comprises 
ultiple nearby lines, while our CNN tends to use one line to describe

he absorption feature. This results in a shift of the defined centre and
he mismatch of the true and predicted Ly α systems. Through visual
nspection, we noticed that the parameters of the FPs predicted by
he CNN classifier fit the absorption feature as well as the true labels,
specially given that our classifier is trained on data of S/N � 10. This
ype of failure can also happen when using conventional methods 
uch as Voigt profile fitting (e.g. human bias, or indistinguishable 
bsorption profiles). This reflects a potential underestimation of the 
umber of Ly α systems that are indifferentiable due to confusion or
nsufficient S/N, or because they are due to sub-structures of H I gas
ithin a larger H I gas cloud. This may be impro v ed by including
igher order Lyman series lines as part of the CNN training process
n future work. 

.3 False negati v e 

 alse ne gativ es (FN) occur when a system is listed in the true
abel catalogue, but it is not identified by our CNN. Examples are
hown in Fig. 7 . Since we train our CNN with noisy spectra, some
etailed structures are buried in the noise, resulting in either a non-
etection or low predicted probability (Ly αID) to these pixels. This
s a compromise between the accuracy and the feasibility of a CNN
echnique to spectra with low S/N. One can train a CNN with a higher
/N to increase the accuracy of a CNN detection and therefore reduce
otential FN that are impacted by noise. In our test, when training
MNRAS 517, 755–775 (2022) 
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Figure 5. Comparisons between the true and predicted values of log N H I /cm 

−2 and b H I with Ly αID > 0.3 using noiseless spectra (top) and spectra with S/N = 

10 (bottom). The black solid line shows f ( x ) = x , the dashed lines indicate the scatter range defined by the MAE of each plot, and the dotted lines are the range 
defined by the RMSE of each plot. Dark blue data points show the median values within different bins of the true values. The y -axis error bar presents the MAE 

of each bin. 
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ur CNN with noiseless spectra, 12 the machine reaches a high recall
 ∼0.88) and a high precision ( ∼0.90) when testing on a noiseless
pectrum. Ho we ver, the ability to predict physical properties such
s b H I and N H I drops significantly for a CNN that is trained on
oiseless data, but applied to noisy spectra (for further details, see
NRAS 517, 755–775 (2022) 

2 Note that this result used a CNN architecture with hyperparameters that 
ere specifically tuned to noiseless data. 

t  

t  

p  

L

ppendix C ). This severely limits the utility of a CNN model, since
ost spectroscopic data are of low S/N. 
We summarize four main cases that contribute to FNs: 

(i) Weak absorption features that are not significantly detected in
he noisy data (S/N ∼ 10) used for the training process. Our CNN
hen has difficulty distinguishing these features from the noise, and
rovides either a non-detection or a low predicted probability, i.e.
y αID < 0.3, even for data with much higher S/N. 
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Table 2. Evaluation metrics (precision, recall, MAE) of CNN-classified systems on different test data sets. All of the results 
tabulated here are based on the same model, which is trained on noisy spectra (where the S/N is drawn from a Gaussian 
distribution with a mean = 10 and a standard deviation = 2). 

Test sets Precision Recall � log N H I /cm 

−2 �z H I � b H I (km s −1 ) 

Noiseless mock spectra (Ly αID > 0.7) 0.992 0.127 0.08 1.7 × 10 −5 1.4 
Noiseless mock spectra (Ly αID > 0.3) 0.994 0.322 0.10 2.4 × 10 −5 2.3 

S/N = 10 mock spectra (Ly αID > 0.3) 0.987 0.273 0.12 3.0 × 10 −5 2.8 

R12 spectra (Ly αID > 0.3): 
All predictions 0.782 0.260 0.14 2.7 × 10 −5 4.2 
12.5 ≤ log N H I /cm 

−2 < 15.5 0.792 0.258 0.13 2.7 × 10 −5 4.1 

Figure 6. An example of a FP (red curve). The grey curve shows the 
contribution of all absorption lines. Short tick marks abo v e the spectra indicate 
the centre of a Ly α system (black for catalogue lines, red for FP). The velocity 
between the red prediction and the closest neighbour system from the true 
catalogue of primary absorption lines is � V = 17.5 km s −1 . 
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Figure 7. Several examples of FN. The centres of each true Ly α system 

are labelled by black short tick marks abo v e the spectra, while the red arrow 

indicates a match between the true and predicted systems. Hence, a black tick 
mark without a matching red arrow represents a FN. The top panel shows a 
noiseless spectrum and the bottom panel is a spectrum with S/N = 10. The 
grey histogram represents the data and the red curve is a reconstruction based 
on all of the predicted lines by our CNN. 
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(ii) A strong absorption feature composed of multiple neighbour- 
ng lines (e.g. see Fig. 6 ). This type of FN occurs when our CNN
ses one line to fit an absorption feature while this feature is in
act composed of several Ly α systems (Section 5.2 ). This mismatch 
herefore contributes several FNs, and one FP. 

(iii) A strong, broad absorption feature with a size that is larger 
han the scanning window, i.e. � V > 447.5 km s −1 . Due to the fixed
ize of our scanning window, our CNN is restricted to features that
re well-defined within the window size. 

(iv) Complex absorption features contributed by many nearby 
ines. Similar to case (ii) abo v e, our CNN only fits a dominant feature
rom this complex structure and misses other overlapped absorption 
eatures formed by nearby, usually weaker, Ly α systems. 

e find that the dominant FN contribution comes from weak 
bsorption features that are within 3 σ of the continuum; our 25 
est spectra indicate this type of FN contributes ∼86 per cent of the 
otal number of FNs. These weak absorption features have an average 
alue of log N H I /cm 

−2 = 12.40 ± 0.25 and b = 28.9 ± 9.8 km s −1 .
f we exclude this kind of FN, the recall impro v es from ∼0.32 to
0.77 for noiseless spectra. 
In Fig. 8 , we present the change of recall and the MAE values of

og N H I , z H I , and b H I grouped by column density using noiseless
pectra (solid line) and S/N = 10 spectra (dashed line). This
emonstrates that our CNN model has better recall to Ly α systems
ith a column density range of 13 ≤ log N H I /cm 

−2 < 16. By visual
nspection, we found that the FNs for systems with column density
n this range are only the cases (ii) −(iv) listed abo v e. Compared to
ther bins, low H I column density systems (i.e. log N H I /cm 

−2 < 13)
ontribute weak absorption features which can be hidden in the noise,
nd result in much lower recall value ( � 0.1), i.e. a higher fraction of
Ns. 
MNRAS 517, 755–775 (2022) 
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M

Figure 8. Evaluation graphs of recall and the MAE of log N H I /cm 

−2 , redshift ( z H I ), and b H I values, within different log N H I /cm 

−2 bins. The horizontal lines 
of each data point represent the range of each bin. 
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 APPLICATION  TO  OBSERVATIONA L  DATA  

ollowing the setup described in Section 3 , we train five individual
NN models, and each model is trained with a set of 900 noiseless

pectra that we perturb with Gaussian noise (Section 2.1 ). We then
se these CNN models to predict the Ly α forest parameters of the 15
IRES quasar spectra from R12 (Section 2.3 ) and build a catalogue of
y α absorption systems with minimum Ly αID > 0.3 for each quasar
pectrum. The final determinations of the physical properties (i.e.
og N H I , z H I , and log b H I ) are a weighted-average of the predictions
or a given absorption line, using Ly αID as the weights. The mean
alue of Ly αID is used as the final probability of a CNN prediction.
n order to e v aluate the performance of our CNN models, we compare
he CNN-classified Ly α absorbers with the catalogue built by R12 .
hese authors identified Ly α systems and estimated the H I column
ensity, redshift, and Doppler width by Voigt profile fitting. To a v oid
he proximity effect, Ly α systems are excluded if they are within
000 km s −1 of the quasar. Additionally, each Ly α system identified
y R12 was validated by confirming the existence of at least one other
igher order Lyman series transition; when higher order Lyman series
ines were available, they were jointly fit. Our network only uses the
y α absorption line. 

.1 Predicting 15 HIRES obser v ed spectra 

lthough our CNN reaches high precision (equation 4 ) when
redicting f ak e spectra that only contain Ly α absorbers, observed
uasar spectra are much more complex and challenging due to the
xistence of other Lyman series absorption lines and metal lines.
ence, we carry out a post-processing procedure to exclude CNN-

lassified absorption line systems that: (1) have a redshift greater than
he quasar Ly α emission redshift; (2) are within a region including
igher order Lyman series lines such as Ly β lines; or (3) do not
xhibit a Ly β absorption line. 

In detail, we first remo v e the systems with a CNN-estimated
edshift larger than or equal to the quasar redshift. To a v oid regions
ncluding other higher order Lyman series lines, we focus on the
egion where only Ly α absorbers of the Lyman series exist. This is
arried out by removing systems located at the wavelengths blueward
NRAS 517, 755–775 (2022) 
rom the potential highest-redshift Ly β absorber estimated by the
uasar emission redshift. Additionally, as in R12 , we remo v e systems
hat are within 3000 km s −1 of the quasar to a v oid the proximity
ffect. Finally, we examine the corresponding Ly β absorption lines
or each CNN-classified Ly α system using the CNN-predicted
edshift, column density, and Doppler width. A CNN-classified Ly α
ystem is remo v ed if the following criteria are satisfied: (1) the
stimated Ly β flux is much lower than the observed flux, i.e. the
ifference of fluxes (CNN Ly β flux − observed flux) is ne gativ e
nd its absolute value > 1 σ , where σ is the median value of the
oise spectrum near the centre of the absorption line, defined by the
WHM (i.e. pixels within ∼±12.5 km s −1 , see Section 5.1 ); and (2)

he Ly β absorption line is not saturated, i.e. Ly β observed flux >
 σ (following the definition of saturation in Section 2.2 ). 
Additionally, we add two additional flags to our CNN catalouge
Ly β inspec flag and sml Ly β flag . The former decides if the

avelength of a corresponding Ly β absorber of a CNN-classified
ystem is within the observed wavelength range; thus, 1 if yes and 0
f no. The latter flag assesses if the estimated flux of a corresponding
y β absorber can be hidden within the noise level, i.e. Ly β flux > (1
σ ). If the Ly β absorption feature can be hidden within 1 σ , this flag

ml Ly β flag is set to 1, and the opposite case has sml Ly β flag = 0.

.2 Comparison with R12 catalogue 

o assess the confidence of the CNN results by the R12 catalogue, we
ocus on the spectral region that only contains Ly α absorption lines
Section 6.1 ). We match the CNN-classified Ly α absorbers with the
12 catalogue using the same criteria for simulated spectra described

n Section 5.1 , i.e. the velocity difference between the identified
ystems of our CNN and R12 is smaller than half of the minimum
WHM that can be detected by our machine: ∼12.5 km s −1 . 
Since the R12 catalogue is based on a consistent fit of all available

yman series lines (i.e. Ly α and at least one other Lyman series
ransition), a mismatch between R12 and our CNN could happen if:
1) the corresponding Ly β absorber of a CNN-classified system is out
f the wavelength range of the spectrum, or (2) weak Ly β absorption
ines that are buried within the noise level of a broad absorption
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Figure 9. Comparisons between the CNN and R12 values of log N H I /cm 

−2 

(top) and b H I (bottom). The black solid line shows a one-to-one relation, the 
dashed lines indicate the scatter defined by the MAE of each plot, and the 
dotted lines are defined by the RMSE of each plot. Dark blue data points 
show the median values of CNN and R12 within different bins of R12 . The 
x -axis error bar is defined by the median value of the estimation errors of the 
data points provided in R12 within different bins of R12 , while the y -axis 
error bar presents the MAE of each bin. 
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eature. By applying two additional flags 13 : (1) Ly β inspec flag =
 and (2) sml Ly β flag = 0, ∼78 per cent of the ML-classified
y α systems are matched with R12 , i.e. precision = 0.78. 14 The
omparison of column density (log N H I /cm 

−2 ) and Doppler width 
 b H I ) between our CNN and R12 are shown in Fig. 9 (also check
able 2 ). Dark blue data points are the median values of each bin
f R12 . The bin interval is 0.5 for log N H I /cm 

−2 and 5 km s −1 for
 H I . There is a statistical uncertainty associated with each quantity 
n the R12 catalogue based on Voigt profile fitting; the x -axis error
ar uses the median value of the deviations to represent the typical
rror of each quantity in R12 within different bins. On the other
and, the y -axis error bar presents the MAE of the data points in
ach bin. 

Compared to the simulated spectra results in Fig. 5 , the CNN
erformance decreases when predicting real spectra. This is due to 
he more complex blending of features that are seen in observational 
ata. As discussed in Section 5.3 , our CNN tends to use only one
ine to reco v er a broad absorption feature while it is generally
omposed of multiple neighbouring lines. In this case, even though 
here is a matched Ly α system between the two catalogues, the CNN
redictions of log N H I and b H I will not be consistent with the values
isted in the R12 catalogue. 

Nevertheless, our CNN models do a good job in predicting H I

olumn density log N H I /cm 

−2 with MAE = 0.139. In particular, the
ange between 12.5 ≤ log N H I /cm 

−2 < 15.5 shows a tight one-to-one
elation with MAE = 0.135 (also see Table 2 ). Outside this column
ensity range, the number of CNN-classified Ly α systems are much 
ewer (42 out of 1 930 CNN-classified Ly α systems) which results
n a larger scatter within this range. This indicates that our CNN has
ifficulty in correctly classifying these absorption lines and leads to 
 relatively poor estimate of the H I column density for Ly α systems
ith log N H I /cm 

−2 < 12.5 or log N H I /cm 

−2 > 15.5. Note that the R12
ata are of considerably higher S/N compared to the simulated data 
hat were used to train our CNN model. As described in Section 5.3 ,
eak low H I column density systems are often buried in noise near

he continuum level for data of S/N � 10. To impro v e the prediction
f lower H I column density systems, one may train a model with
igher S/N input spectra, and apply this model to observational data 
f comparably high S/N (see Appendix D ). 
The catalogue comparison of b H I (bottom panel of Fig. 9 ) shows

 similar trend to the results of simulated spectra in Fig. 5 with a
arger scatter. Within the range of b H I < 20 km s −1 , our CNN tends to
 v erestimate the b H I value, because the CNN models use a single Ly α
ine to reco v er a feature that is composed of multiple lines. On the
ther hand, for larger b H I values, our CNN has difficulty in predicting
ystems with broader absorption features due to the restriction of 
he scanning window size [see point (iii) of the FN summary in
ection 5.3 ]. The window size is a hyperparameter tuned to optimize

he predictions for the majority of Ly α absorbers (Section 3.2 ). There
re ∼93 per cent of Ly α absorbers with b H I < 35 km s −1 from R12
 ∼97 per cent of them with b H I < 40 km s −1 ), and the predictions
or the systems with a larger b H I value are worse (this also occurred
or the simulated spectra). 
3 Without applying the two flags, one can just compare the systems that are 
ithin the same redshift ranges as the ones that were fit in R12 . The precision, 

ecall, and MAE of � log N H I /cm 

−2 , �z H I , and � b H I are 0.778, 0.284, 0.14 
ex, 2.7 × 10 −5 , and 4.3 km s −1 , respectively. 
4 It may be possible to include Ly β lines in the training process. This may 
mpro v e the precision of the predictions of the Ly α lines. We leave this as an 
 x ercise for future work. 
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Finally, for different column density bins (defined using the R12 
atalogue), we present the recall and the MAE of log N H I /cm 

−2 ,
edshift ( z H I ), and b H I in Fig. 10 . Based on the column density com-
arison shown in Fig. 9 , we separate matched samples into four bins:
og N H I /cm 

−2 = 12.0 −12.5, 12.5 −14.0, 14.0 −15.5, and 15.5 −17.0.
ig. 10 demonstrates that the CNN predictions of different physical 
roperties are most consistent with R12 within the H I column density
ange 12.5 ≤ log N H I /cm 

−2 < 15.5 cm 

−2 (Table 2 ). 
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Figure 10. Evaluation graphs of recall and the MAE of log N H I /cm 

−2 , redshift ( z H I ), and b H I values, within different log N H I /cm 

−2 bins. The horizontal lines 
of each data point represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from low to high values of log N H I /cm 

−2 . 
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Figure 11. Examples of potential Ly α absorbers (red curves; top panels) that are not matched with an absorber in R12 due to multiple components in R12 
being fit with a single absorber by the CNN. Due to velocity differences between the two catalogues, they are flagged as FPs although the absorber is identified 
in both catalogues. The centre of the FP is labelled by a red short tick mark. These examples of FPs are due to the matching criterion (see Section 5.2 ). The 
orange curves in the bottom panels show the corresponding L y β absorber . The grey histograms show the observational data. Black short tick marks abo v e the 
spectra indicate the centres of the Ly α systems from R12 . The � V values shown in the top panels provide the velocity difference between the prediction and 
the nearest absorption line from the catalogue of R12 . 
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Note that the CNN-classified Ly α absorbers for the abo v e results
re identified by at least one CNN model out of five models. To further
mpro v e the CNN predictions, one can impose a selection criterion
o the number of the CNN models that identify a Ly α system. For
xample, by requiring that a Ly α absorber must be identified by at
east two CNN models, the precision increases from 0.78 to 0.85, and
he o v erall MAE for log N H I /cm 

−2 impro v es slightly, and the MAE
NRAS 517, 755–775 (2022) 
or b H I drops to 3.8 km s −1 , respectively (see the results of other test
ata sets in Table 2 ). 

.2.1 False positive and false negative 

xcept for misclassification, which is dominated by contaminating
etal lines, one of the primary causes of FPs in the observational data
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Figure 12. Same as Fig. 11 , but shows an example of a potential Ly α
absorber that is not listed in the R12 catalogue. 
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Figure 13. Several examples of FNs. The centres of each Ly α system from 

R12 are labelled by black short tick marks abo v e the spectra, while the red 
arrow indicates a match between the CNN and R12 results. From the top to 
bottom panel, we showcase different reasons responsible for FNs. The grey 
curve represents the data, the blue curves represent a reconstruction of the 
data based on the Ly α absorbers listed in the R12 catalogue, and the red 
curve is a reconstruction based on all of the predicted lines by our CNN. 
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s due to the velocity threshold ( ∼12.5 km s −1 ) used to match systems
etween the CNN and R12 catalogues (as discussed in Section 5.2 ).
ig. 11 shows three examples of this FP case. The CNN tends to
t a broad absorption feature with one line, while it is composed
f multiple neighbouring lines in the R12 catalogue. We notice that 
he broader an absorption feature is, the worse CNN predictions 
re obtained, e.g. the leftmost panel in Fig. 11 . Additionally, since
he classifications in R12 might have missed some Ly α systems 
rom manual Voigt profile fitting, some FPs by our CNN could be a
otential L y α absorber . Examples are shown in Fig. 12 . We compared
he CNN identified systems with the robust Ly α absorbers from R12
hich were validated with higher order lines, e.g. Ly β, Ly γ , etc.
ence, there may be mismatch because the corresponding Ly β or 
y γ lines of a potential Ly α absorber are difficult to detect. For
xample, in Fig. 12 , we show an example with possible Ly α and
y β absorption consistent with a true absorption system. Ho we ver, 

his example may instead be due to a metal line absorption line, given
hat there are several neighbouring metal line absorbers nearby. 

The FNs identified with the observational data are contributed 
y the same sources as the ones discussed in Section 5.3 (i.e. low
olumn density absorption features that are buried in the noise). As
entioned in Section 5.3 , our choice to train a model on low S/N data

s a compromise to allow a CNN technique to be applied to spectra
ith both low and high S/N. For completeness, we have also trained
 model with S/N closer to the quasar spectra from R12 and we test
his model using observed spectra. This comparison is discussed in 
ppendix D . 
In Fig. 13 , we showcase examples of the different cases of FNs.
he top panel presents the case of FNs having weak absorption

eatures that are missed by our CNN, which is trained with noisy
pectra. In the middle panel, our CNN uses one Ly α line to describe
he absorption feature, while there are multiple nearby lines listed in
12 responsible for this feature. This specific case also contributes 
 FP depending on the distance between a CNN-classified system 

nd its closest system from R12 . Finally, we showcase a broad and
omplex absorption feature containing many Ly α absorbers in the 
ottom panel. Our CNN has difficulty analysing a broader feature 
uch as the one showcased here, since our CNN is trained with
nly primary lines. When an absorption feature is broader than the
tructure that our CNN can reconstruct with one Ly α line, the CNN
ails to classify. 

Since the behaviour of FNs using our CNN can be determined
mpirically, a correction factor can be calculated to convert the 
redicted distribution of Ly α forest absorbers to the intrinsic (i.e. 
nput) distribution of Ly α absorbers. We will consider this approach 
n a future paper. 
MNRAS 517, 755–775 (2022) 
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Figure 14. Our CNN predictions of the R12 HIRES spectra are stable when we artificially degrade the R12 data. Note that the ‘ R12 ’ data points represent the 
predictions to the high quality HIRES spectra from R12 (S/N � 50). From left to right, we show the recall, precision, the RMSE (black dashed line) and MAE 

(black solid line) of H I column density ( � log N H I /cm 

−2 ), redshift ( �z H I ), and the Doppler width ( � b H I ). 
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.2.2 Predicting HIRES spectra with different S/N 

n this section, we test if our CNN is capable of predicting observed
eck/HIRES spectra of different S/N. Additional noise is added

o the high quality HIRES spectra from R12 to degrade the S/N.
e test different cases from S/N = 5 to 50 (i.e. the latter case

epresents the lower S/N end of the R12 spectra). This test is
o ensure that in future works, we can further apply our trained
NN models to predict spectra in the HIRES archives such as the
 eck Observ atory Database of Ionized Absorption to ward Quasars

KODIAQ) surv e y (O’Meara et al. 2017 , 2021 ). Fig. 14 demonstrates
hat the performance of our CNN is consistent with the predictions of
imulated spectra (see Appendix C ). This again confirms that training
he CNN with noisy spectra is of great importance to stabilize the
redictions of spectra with different noise levels. Although there
s a drop in the CNN performance at S/N < 20, the changes are
till within an acceptable range for further scientific analyses. By
raining and testing a CNN applied to high redshift quasar spectra, we
ave opened up the possibility to efficiently and effectively harvest
he information buried in the Ly α forest. This is an important step
owards understanding and analysing the significant amount of data
hat will be acquired with future facilities. 

 SUMMARY  

e have developed a machine learning based detection algorithm
sing CNNs to derive the physical parameters of Ly α absorbers
ithin the forest of high-resolution QSO absorption line spectra.

n particular, we focus on the low H I column density systems
 N H I < 10 17 cm 

−2 ) and predict their physical properties such as H I

olumn density (log N H I /cm 

−2 ), redshift ( z H I ), and Doppler width
 b H I ). The low column density Ly α absorbers serve as a great tracer
o the thermal history of the low-density IGM and can be used to
robe the baryonic matter distribution. Ho we v er, since the y can be
asily contaminated by other Lyman series and metal lines, previous
pplications of machine learning to the Ly α forest have focused on
dentifying DLAs ( N H I ≥ 10 20 . 3 cm 

−2 ) which show strong, damped
bsorption features. 

Our CNN model is trained with 900 noisy simulated spectra
NRAS 517, 755–775 (2022) 

ith a S/N drawn from a Gaussian distribution of mean = 10 and 7  
tandard deviation = 2. This training strategy stabilizes the CNN
erformance when predicting spectra of different S/N (Appendix C
nd D ) and allows us to apply our CNN models to the current
rchives of spectroscopic data, as well as future surv e ys. The
imulated spectra that we use for training our model represent
uasars at redshift z = 3 and are convolved with an instrumental
esolution of v FWHM 

= 7 km s −1 . These values are typical of the
ata in current observatory archives. Different FWHM values have
o impact on the performance of the CNN model (i.e. the Ly α
orest absorption lines are fully resolved), while at higher redshifts
here is increased blending due to neighbouring absorption features,
hich ne gativ ely impacts the accuracy of the CNN predictions (see
ppendix A ). The pixel size of the simulated spectra is set to
.5 km s −1 . 
We first examine the CNN performance with simulated spectra,

nd match the CNN prediction and true systems using a velocity
hreshold defined by half of the minimum FWHM ∼ 12.5 km s −1 

estimated by b H I = 15 km s −1 ). By matching the predicted systems
ith the systems listed in the true catalogue, o v er 99 per cent of the
NN-classified Ly α systems are true. Ho we ver, the completeness

s low ( ∼32 per cent ), i.e. only a small fraction of the Ly α systems
re identified by our CNN. We summarize three types of FN: (1)
eak absorption features that might be neglected by our CNN due

o the limitation of the noisy training spectra; (2) a strong absorption
eature composed of multiple neighbouring lines, contributing one
P and many FNs; (3) broad and complex absorption features that
annot be represented by one L y α absorber . Case (1) dominates the
N; the completeness increases to 77 per cent when excluding this
ase of FN. 

We then train five individual CNN models to predict 15 HIRES
pectra and compare the CNN predictions with the results of manual
oigt profile fitting by R12 . While the manual method costs 1–2 yr

or the 15 spectra in R12 , the prediction process by our CNN costs
ess than 3 min per quasar spectrum with a size of ∼120 000 pixels
sing a MacBook Pro with a 2.3-GHz Intel Core i7 processor and
ntel Iris Plus Graphics 1536 MB. 

Since an observed spectrum contains complex structures and
ontamination such as metal lines, a post-processing procedure is
arried out to exclude unreliable ML-classified Ly α systems. Around
8 per cent of ML-classified Ly α systems are matched with R12 .
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here are three sources responsible for FPs: (1) a simple mismatch 
ue to the chosen velocity threshold ( ∼12.5 km s −1 ); (2) a potential
y α absorber that is not listed in R12 due to weak or hidden Ly β
bsorption; and (3) misclassification due to broad absorption features 
ormed by multiple blended metal lines. We further conclude that the 
NN models provide the most reliable predictions within the range 
f 12.5 ≤ log N H I /cm 

−2 < 15.5. Within this range, the MAE of
og N H I /cm 

−2 , z H I , and b H I are 0.13 dex, 2.7 × 10 −5 , and 4.1 km s −1 ,
espectively, demonstrating the accuracy of our CNN predictions. We 
onclude that a general-purpose CNN applied to the Ly α forest may 
ot be as ef fecti ve as one that is trained for a specific science goal,
nd it is important to better understand the parameter space where 
 model succeeds or under performs. We found that the FNs occur
nder the same conditions for both simulated and observed spectra. 
Although we train the CNN models with noisy (S/N � 10) simu-

ated spectra, they provide consistent performance when predicting 
uch higher quality (S/N � 70) observational spectra. This gives 

s confidence that our model can be applied to both cosmological 
imulations and observations of the Ly α forest, and help to provide 
n insight into some of the missing ingredients in simulations. 

Finally, we examine the CNN performance when predicting 
bserved Keck/HIRES spectra of different S/N, and draw the same 
onclusions as the analysis of the simulated spectra. An investigation 
an be further carried out to quantify the impact of different S/N on
he ‘accuracy’ of the conventional analyses to observed spectra. More 
mportantly, this result validates the possibility to apply a CNN model 
ith our approach to analyse the enormous quantity of data that will
e obtained with future facilities. 
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PPENDIX  A :  T H E  I M PAC T  O N  PREDICTING  

PECTRA  WITH  DIFFERENT  INITIAL  SETUPS  

e test our pre-trained CNN model on 25 newly generated spectra
ith: (1) quasars at different redshifts; (2) different instrument
NRAS 517, 755–775 (2022) 
esolution (FWHM); and (3) data that are sampled with different pixel
ize (vpix). This test is to validate the feasibility of our CNN model
o predict observational spectra that were acquired with different
etups. 

First, for different quasar redshifts (top row in Fig. A1 ), the recall
nd precision remain consistent and the log N H I /cm 

−2 prediction does
ot show significant deviation. However, the RMSE and MAE of z H I 
nd b H I estimations increase as a quasar emission redshift increases.
his means that the prediction accuracy decreases as a quasar redshift

ncreases. This result is caused by the increased blending due to
y α forest absorption lines at higher redshift. During the early
niverse, H I gas clouds are more abundant and their absorption

eatures o v erlap in v elocity space. This o v erlap introduces additional
ncertainty in the predicted physical properties; this is true for both
 machine-learning based algorithm or conventional Voigt profile
tting. Even though the RMSE and MAE of z H I and b H I are within
 factor of ∼1.5 of the RMSE and MAE at z � 3, we conclude that a
NN tailored to a specific redshift may further impro v e the results,
epending on the science application. 
In the middle row of Fig. A1 , we generated spectra with

ifferent instrument FWHM resolution o v er a narrow range 5 <
WHM/(km s –1 ) < 9, which samples the rele v ant resolutions of cur-
ent high dispersion spectrographs like Keck/HIRES and ESO/UVES
European Southern Observatory Ultraviolet and Visual Echelle
pectrograph; Dekker et al. 2000 ). Overall, different FWHMs in this
ange show no impact to both the detection and physical property
stimates. This is because the widths of the Ly α forest absorption
ines (FWHM � 15 km s −1 ) are usually fully resolved at the in-
trument resolution of typical spectrographs, such as Keck/HIRES
nd VLT/UVES (FWHM � 7 km s −1 ). Finally, in the bottom row
f Fig. A1 , we show that the choice of pixel size introduces a
erious impact to the results, in particular the Doppler width, b H I .
o we ver, this issue can be circumvented by resampling. If an input

pectrum is not sampled with vpix = 2.5 km s −1 , we resample
he input data to ensure that our CNN model produces reliable
esults. This resampling process does not impact the trained network,
or the results, since the Ly α forest absorption lines are fully
esolved. 
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Figure A1. The o v erall performance of our CNN on noiseless spectra with different observing setups. We illustrate the sensitivity to quasar redshift (top row), 
instrumental FWHM resolution (middle row), and pixel size (bottom row). Note that the CNN model is trained using simulated noisy quasar spectra at redshift 
z = 3 and are observed using an instrumental FWHM resolution of v FWHM 

= 7 km s −1 and sampled with vpix = 2.5 km s −1 pixel −1 (Section 2.1 ). From left- 
to right-hand, the panels show the recall, precision, RMSE (black dashed line), and MAE (black solid line) of H I column density ( � log N H I /cm 

−2 ), redshift 
( �z H I ), and the Doppler width ( � b H I ). 
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PPENDIX  B:  BAYESIAN  OPTIMIZATION  

he predictions by a network strongly depend on its hyperparameters
uch as the number of neurons, dropout rate, the kernel sizes,
tc. A failed prediction of a network might be simply due to an
noptimized architecture used for training. Hence, it is of great
mportance to select a set of hyperparameters that provide the

ost optimal combination for a specific goal. This selection is
ften done by a brute-force method – grid searches – such that all
ossible combinations of each hyperparameter are e v aluated. This
ethod is therefore extremely time-consuming, and the tested sets

f hyperparameters are limited due to computational allowance. 
Unlike grid searches, Bayesian optimization (Snoek et al. 2012 )

rovides a ‘smart guess’ to approach an optimal combination of
yperparameters: x 1 , x 2 , ..., x n , where n represents the number of
yperparameters. This process is much faster than the grid searches
o find a set of hyperparameters that performs well. The concept is to
odel the network’s function f ( x 1 , x 2 , ..., x n ) to a surrogate analytical

unction. In this work, we use a Gaussian process (Rasmussen &
illiams 2006 ) which forms the prior distribution as multi v ariate

ormal distributions. As providing data, the posterior probability
istribution f given f ( x 1 , x 2 , ..., x n ) is computed, and approaches to
he prior using a chosen acquisition function which we use the default
unction − Expected Impro v ement (Jones, Schonlau & Welch 1998 ).
 detailed tutorial is described in Frazier ( 2018 ). 
Our optimization process uses GPYOPT (GPyOpt 2016 ) 15 by

unning 60 iterations to search for the optimal set. A final set of
yperparameters for the model trained with noisy quasar spectra
where the S/N is drawn from a Gaussian distribution of a mean =
0 and a standard deviation = 2) is listed in Table 1 . 
NRAS 517, 755–775 (2022) 
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PPENDI X  C :  T H E  I M PAC T  O F  DI FFERENT  

/N  O N  M O C K  SPECTRA  

e tested the impact of training a CNN model using spectra of
if ferent noise le vels. In Fig. C1 , we sho w the results of training a
NN model with noiseless spectra (top; hyperparameters used in the
NN architecture are shown in Table C1 ) and noisy spectra (bottom;
able 1 ) with S/N drawn from a Gaussian distribution with a mean
f 10 and a standard deviation of 2 (Section 3.1 ). This figure clearly
hows that a model trained with noiseless spectra cannot be used to
redict new spectra with even a modest amount of noise. Although
his model can reach a higher o v erall recall for noiseless data, the
recision and the parameter determinations of log N H I /cm 

−2 , z H I ,
nd b H I are poorly known when noise is added to the testing spectra.

Compared to this, a CNN model trained with spectra involving
 distribution of S/N shows stable performance when predicting
pectra with different noise levels. A drop in performance occurs
o spectra with S/N < 20. Testing on spectra with S/N = 10, there is
 drop in recall which does not decrease the precision. This indicates
hat many true Ly α absorbers might be hidden in the noise, and our
NN has difficulty to identify them. However, ∼98 per cent of the
NN-classified Ly α systems are classified correctly compared with

he list of true systems. 
The precision then drops to ∼0.94 when analysing spectra of

/N = 5, and there are significant changes to the RMSE and MAE
or the estimates of the physical properties. We did not expect our
NN model to perform well when analysing spectra with S/N =
, since this noise level is beyond the range included in our training
pectra. Ho we ver, the changes to the predictions are minor compared
o the top panels of Fig. C1 using the model trained with noiseless
pectra. Additionally, they are still within an acceptable range for
cientific analyses. Hence, with caution, this CNN model can be
sed to analyse spectra with S/N > 5. 

http://sheffieldml.github.io/GPyOpt/
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Figure C1. CNN analysis of spectra with different S/N using two CNN models trained with noiseless spectra (top row) and a Gaussian distribution of S/N with 
a mean = 10 and a standard deviation = 2 (bottom row), respectively. From left- to right-hand panels, we present the recall, precision, the RMSE (black dashed 
line) and MAE (black solid line) of H I column density ( � log N H I /cm 

−2 ), redshift ( �z H I ), and the Doppler width ( � b H I ). Note that all metrics in the bottom 

ro w sho w a high le vel of stability for S/N > 20, demonstrating the more general success of training a CNN model with some what lo w S/N data. 
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able C1. Hyperparameters used in a CNN architecture trained with 
oiseless spectra. These values are selected using a Bayesian optimization 
lgorithm. 

Hyperparameters Optimized value 

ata Input window size ( ws ) 259 
cnpix 5 

NN L2 0.0 
rchitecture dropout 0.0 

conv filter 1 128 
conv filter 2 128 
conv filter 3 128 
conv kernel 1 8 
conv kernel 2 7 
conv kernel 3 8 
dense 1 128 
dense 2 ID 256 
dense 2 N 512 
dense 2 z 256 
dense 2 b 128 
PPENDI X  D :  T H E  I M PAC T  O F  DI FFERENT  

/N  O N  R 1 2  SPECTRA  

Extending the discussion in Section C , we have trained a CNN
odel with spectra of a higher S/N than the one used in the main
ork, and tested this model with the observed spectra from R12 . The
/N of the training data is drawn from a Gaussian distribution of
/N with a mean = 90 and a standard deviation = 30; these values
re chosen to be close to the S/N of the R12 data. The optimized
yperparameters of this CNN architecture are listed in Table D1 .
omparing Fig. D1 with Fig. 14 , the recall increases slightly but the
erformance drops when S/N < 50. Ho we ver, Fig. D2 shows that
y training a model with high S/N spectra, it helps to impro v e the
redictions of systems within the range of lower (log N H I /cm 

−2 <
2.5) and higher (log N H I /cm 

−2 ≥ 15.5) column density. 
MNRAS 517, 755–775 (2022) 
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Figure D1. CNN analysis of R12 spectra using a Gaussian distribution of S/N with a mean = 90 and a standard deviation = 30 (closer to the distribution of 
R12 spectra). From left- to right-hand panel, we present the recall, precision, the RMSE (black dashed line), and MAE (black solid line) of H I column density 
( � log N H I /cm 

−2 ), redshift ( �z H I ), and the Doppler width ( � b H I ). 

Figure D2. Evaluation graphs of recall and the MAE of log N H I /cm 

−2 , redshift ( z H I ), and b H I v alues, within dif ferent log N H I /cm 

−2 bins. The horizontal lines 
of each data point represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from lo w to high v alues of log N H I /cm 

−2 . The solid line sho ws the 
results using models trained by lower S/N (mean = 10) while the dashed line shows the ones using models trained by higher S/N (mean = 90). 
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Table D1. Hyperparameters used in a CNN architecture trained using spectra 
with a higher S/N. These values are selected using a Bayesian optimization 
algorithm. 

Hyperparameters Optimized value 

Data Input window size ( ws ) 285 
cnpix 1 

CNN L2 0.0 
Architecture dropout 0.6 

conv filter 1 256 
conv filter 2 256 
conv filter 3 512 
conv kernel 1 10 
conv kernel 2 7 
conv kernel 3 6 
dense 1 64 
dense 2 ID 512 
dense 2 N 512 
dense 2 z 256 
dense 2 b 128 
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