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ABSTRACT
We develop a machine learning based algorithm using a convolutional neural network
(CNN) to identify low H i column density Lyα absorption systems (logNHI/cm

−2 <
17) in the Lyα forest, and predict their physical properties, such as their H i column
density (logNHI/cm

−2), redshift (zHI), and Doppler width (bHI). Our CNN models are
trained using simulated spectra (S/N ≃ 10), and we test their performance on high
quality spectra of quasars at redshift z ∼ 2.5− 2.9 observed with the High Resolution
Echelle Spectrometer on the Keck I telescope. We find that ∼ 78% of the systems
identified by our algorithm are listed in the manual Voigt profile fitting catalogue. We
demonstrate that the performance of our CNN is stable and consistent for all simulated
and observed spectra with S/N ≳ 10. Our model can therefore be consistently used to
analyse the enormous number of both low and high S/N data available with current
and future facilities. Our CNN provides state-of-the-art predictions within the range
12.5 ≤ logNHI/cm

−2 < 15.5 with a mean absolute error of ∆(logNHI/cm
−2) = 0.13,

∆(zHI) = 2.7 × 10−5, and ∆(bHI) = 4.1 km s−1. The CNN prediction costs < 3
minutes per model per spectrum with a size of 120 000 pixels using a laptop computer.
We demonstrate that CNNs can significantly increase the efficiency of analysing Lyα
forest spectra, and thereby greatly increase the statistics of Lyα absorbers.

Key words: methods: data analysis – galaxies: high-redshift – quasars: absorption
lines – intergalactic medium

1 INTRODUCTION

The forest of neutral hydrogen (H i) Lyman-α (Lyα) ab-
sorption lines imprinted on a quasar spectrum – collectively
known as the Lyα forest (Lynds 1971; Sargent et al. 1980) –
provides our best understanding of the intergalactic medium
(IGM) and circumgalactic medium (CGM), on scales of tens
to hundreds of kpc and to Mpc (Cristiani et al. 1995; Fang
et al. 1996). The photons emitted by a background quasar
are absorbed at the redshifted Lyα transition (rest-frame
wavelength=1215.67Å) in addition to higher order lines of
the H i Lyman series (Sargent et al. 1980).

By number, Lyα absorption systems with low H i col-
umn density dominate the Lyα forest and trace the underly-
ing density of the H i clouds (e.g. Schaye 2001). They can be
used to probe the distribution and evolution of the baryonic
matter, structure formation, and constrain cosmological pa-
rameters (e.g. Theuns et al. 1998, 1999; Tytler et al. 2004;
Lehner et al. 2007; Davé et al. 2010, also see reviews: Rauch
1998; Meiksin 2009). Additionally, the thermodynamic prop-
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erties of these systems are primarily governed by two pro-
cesses: (1) adiabatic cooling from the expansion of the Uni-
verse; and (2) photoheating by the ultraviolet background
(UVB) light from quasars and galaxies (Abel & Haehnelt
1999; Theuns et al. 2002; Bolton et al. 2009; Puchwein et al.
2015). The competition between these two effects tracks the
thermal state of the low-density IGM through a character-
istic temperature-density relation (e.g. Hui & Gnedin 1997;
Haehnelt & Steinmetz 1998; Schaye et al. 1999, 2000; Ricotti
et al. 2000; Becker et al. 2007; Bolton et al. 2008; Rudie
et al. 2012b). Furthermore, the Lyα forest can also be used
to probe cosmological models and constrain the properties of
dark matter (e.g., Viel et al. 2013; Baur et al. 2016; Garzilli
et al. 2017; Iršič et al. 2017; Boera et al. 2019; Rogers &
Peiris 2021).

While the Lyα forest is easily identified in a quasar spec-
trum, the identification of individual Lyα absorption sys-
tems within the forest is challenging. Conventionally, these
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absorption lines in the Lyα forest are fit with Voigt profiles1

(e.g. Kim et al. 2002, 2013, 2021; Prochaska et al. 2005;
Prochaska & Wolfe 2009; Rudie et al. 2012a); however, a
manual fit to the entire Lyα forest is very time-consuming,
and requires the aid of visual inspection, and many human
hours. To avoid human bias, there are also studies that have
developed automated Voigt profile fitting algorithms2 (Davé
et al. 1997; Carswell &Webb 2014; Bainbridge &Webb 2017;
Gaikwad et al. 2017).

With future surveys and facilities such as the WHT
Enhanced Area Velocity Explorer (WEAVE; Pieri et al.
2016), and the 4-metre Multi-Object Spectroscopic Tele-
scope (4MOST; de Jong et al. 2019), thousands of high
resolution (R ≃ 20000) quasar spectra are expected in the
coming years. It will therefore not be feasible to analyse the
enormous number of quasar spectra using conventional anal-
ysis methods. To overcome big data problems, such as this,
machine learning techniques are essential.

Machine learning techniques, in particular deep learn-
ing (LeCun et al. 2015), have been widely applied to a va-
riety of galaxy studies such as galaxy morphology (Cheng
et al. 2020a, 2021; Walmsley et al. 2022), galaxy merger
(Bottrell et al. 2019; Ferreira et al. 2020), and strong grav-
itational lensing (Metcalf et al. 2019; Cheng et al. 2020b;
Pearson et al. 2021). Applications to analyse spectroscopic
data or time-series data include spectra and their star for-
mation histories (Lovell et al. 2019), gravitational wave anal-
yses (George & Huerta 2018), transient objects (Muthukr-
ishna et al. 2019), and spectral classification (Bailer-Jones
et al. 1998). Recently, there has been a growing interest in
applying machine learning techniques to the Lyα forest, in-
cluding: (1) a Lyα forest emulator (Bird et al. 2019; Rogers
et al. 2019); and (2) the identification and properties of
damped Lyα systems (DLAs; Garnett et al. 2017; Parks
et al. 2018; Wang et al. 2022). DLAs are defined to have
H i column densities that exceed NHI ≥ 1020.3 cm−2, and
are easily identified by their strong, damped absorption fea-
tures super-imposed on the Lyα forest. Unlike DLAs, the low
H i column density Lyα absorption systems associated with
the Lyα forest (NHI < 1017 cm−2) have a relatively shallow
depth and narrow absorption features. Furthermore, Lyα
forest absorption features outnumber DLA absorption lines
by orders of magnitude, and occupy a wider range of col-
umn density. These absorption lines are also often blended
and confused with metal lines, making this a challenging
and laborious problem. As a result, an efficient and reliable
machine learning based solution to harvest the Lya forest
– both line detection and characterisation – does not exist.
Given the utility of these low column density Lyα systems in
studying the physics of the IGM, it is essential to develop a
machine-learning-based detection algorithm to identify and
characterise these features in preparation for the coming ‘Big
Data’ era.

In this paper, for the first time, we apply a convolutional

1 For example, the commonly used vpfit package, which is avail-
able from: https://people.ast.cam.ac.uk/~rfc/vpfit.html.
2 We provide a few example codes here, but note that many ef-
forts to generate an automated approach are unpublished. This

problem is difficult, and an automated solution is not currently
at the same level of accuracy that a human can produce.

neural network (CNN) to efficiently identify Lyα forest sys-
tems (NHI < 1017 cm−2) and extract their physical proper-
ties, including the redshift, Doppler width, and H i column
density. While our primary goal is to efficiently extract the
properties of the observed Lyα forest, our algorithm can
also be used to identify Lyα absorbers in simulated spectra.
Since our approach is general, this allows a more direct com-
parison between spectra extracted from state-of-the-art hy-
drodynamic cosmological simulations and observations. The
paper is arranged as follows. Section 2 describes the genera-
tion of our simulated quasar spectra for training and initial
testing purposes, and the observed quasar spectra that are
used to validate our CNN predictions. Section 3 explains the
CNN models and the training strategies, and we describe the
evaluation metric in Section 4. In Section 5, we test our pre-
trained model with the simulated spectra, while in Section 6,
we apply the CNN models to predict the parameters of the
Lyα forest from observed spectra, and compare the CNN’s
predictions with the results based on Voigt profile fitting and
human inspection from Rudie et al. (2012a, hereafter R12).
Finally, our conclusions are summarised in Section 7.

2 QUASAR SPECTRA

In this section we describe the simulated and observed
quasar Lyα forest data that are used to train and test our
network. While the technique that we employ can be readily
applied to quasars at any redshift, the focus of our work is to
study Lyα absorption in the optical wavelength range. Since
the Lyα forest is blueward of the quasar Lyα emission line,
to detect Lyα forest absorption features in the optical range
(i.e. ∼3200Å to 7200Å), the emission redshift of the quasars
is in the range z = 1.6 − 5. To satisfy the observed wave-
length range, we generate simulated spectra at z = 3 for
training our CNN. The details of the spectrum generation
are outlined in Section 2.1, while in Section 2.2, we describe
the pixel-level labelling of each Lyα absorption system. The
observed spectra used to validate our model are described
in Section 2.3.

2.1 Mock Spectra

The number of human-analysed quasar spectra that have
been fit with Voigt profiles is currently limited by the time
effort required to carefully analyse and fit each individual
absorption line in every quasar spectrum. The quasar spec-
tra that have been analysed are subject to human choices
that may not reflect the true underlying properties of the ab-
sorption lines. For this reason, our training data are based on
simulated quasar spectra to provide a large quantity of spec-
tra together with ground-truth identifications of Lyα sys-
tems and their properties. Our simulated spectra were gen-
erated using packages in the pyigm software3. The generated
spectra represent a typical quasar at redshift z = 3 and are

3 Primary Builders include: J. Xavier Prochaska, N. Tejos, and
J. Burchett (https://github.com/pyigm/pyigm). We also imple-

mented a minor change to this code; when generating Voigt pro-
files, we constructed a sub-pixellated wavelength array to sample

each native pixel by ten sub-pixels. This accounts for the curva-

ture of the profile within each pixel.
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Figure 1. The top panel shows a simulated Lyα forest spectrum of a quasar at redshift z = 3 (no noise). The three subsequent panels
show a zoom-in of the top panel (see blue box, top panel) with different signal-to-noise ratios (S/N = ∞, 50, and 10 per pixel for the

second, third and fourth panels, respectively).

convolved with an instrumental full-width at half-maximum
(FWHM) resolution of vFWHM = 7 km s−1. These choices
are motivated by the typical properties of high resolution
spectra of quasars in current observatory archives. The ve-
locity per pixel of these spectra is set to 2.5 km s−1 pixel−1.
The impact of the model trained with this setup on predict-
ing spectra with different assumptions for the properties of
the spectra are discussed in Appendix A.

A catalog of Lyα forest absorption lines are drawn
randomly from the column density distribution function
(CDDF), f(NHI,X), following the default form implemented
in pyigm (the Hermite spline model of Prochaska et al.
2014), where X is the absorption distance. This provides
a distribution of H i absorption systems with NHI = 1012 −
1022 cm−2 that can be imprinted onto a simulated quasar
spectrum to generate absorption features with ‘ground-
truth’ labels (see Section 2.2). Note that this model was con-
strained at redshift z ≈ 2.5. pyigm uses inverse transform
sampling of the z = 2.4 column density distribution function
to generate a list of H i column densities; the corresponding
Doppler parameters are drawn from the Hui & Rutledge
(1999) distribution. The redshifts of the mock lines are gen-
erated by inverse transform sampling the redshift-dependent
incidence of absorption systems, l(z). Finally, the spectra are
generated without noise; additional noise is added later to
test the sensitivity of our model to the adopted S/N (Sec-
tion 3.1). In Fig. 1, we show an example of a simulated
spectrum with different choices of the S/N. Our simulated
spectra contain only the absorption lines of the H i Lyman
series, and do not include metal lines.

Machine learning applications commonly require train-
ing samples with a well-defined structure and clear corre-
sponding labels, if possible. Since Lyα absorption features
are relatively simple and have a well-defined structure that
can be derived by only a few physical properties, i.e. Voigt

profiles, having robust labels are more crucial than com-
plexity of dataset to avoid confusion in a classification task.
Hence, as a first attempt, this training dataset defines a clear
structure of Lyα absorbers that helps a machine to draw a
cleaner decision boundary in a high dimensional parameter
space. Additionally, it helps us to analyse the performance
of our automated algorithm and identify its limitations. As
an alternative, we could generate simulated spectra with
cosmological hydrodynamic simulations to account for the
clustering and complex structure that exists in a real quasar
spectrum. However, since the CGM structures in these sim-
ulations are unresolved (Rudie et al. 2019; Hummels et al.
2019; van de Voort et al. 2019), it might be more sensible to
train a machine using observed spectra in future works to
account for the clustering of absorbers.

2.2 Lyα absorption systems

The Lyα absorption features in a spectrum can be described
with three physical properties: (1) the total H i column den-
sity (NHI; cm

−2), (2) the redshift (zHI) of the H i absorbers,
and (3) the Doppler width (bHI; km s−1). The f(NHI) model
provides a distribution of H i absorbers that samples the H i
column densities of the Lyα forest. With the ‘ground-truth’
information of the three aforementioned properties, we gen-
erated four labelling arrays for each pixel in the quasar spec-
trum (these labels are illustrated in Fig 2):

• LyαID: set to a value of 1 if a Lyα absorber exists in
this pixel, and 0 if not;

• logNHI: H i column density (in units of cm−2) of the
corresponding Lyα absorber on a logarithmic scale;

• zloc: the relative location of the centre of an absorption
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Figure 2. Example of the training labels: LyαID, logNHI, zloc, and

logbHI in pixel scale from top to bottom. The grey dotted line in
the top panel represents the normalised quasar continuum level,

and the blue dotted line in the third panel shows zloc= 0. Note

that the training labels are only defined when LyαID=1. The
absorption features are labeled 1, 2, and 3, ordered by column

density.

feature (in units of pixels4). A pixel centred on an absorption
feature is set to 0, and negative and positive values to pixels
at the left and right, respectively. For example, if the centre
of a given pixel is 2.4 pixels to the left of the centre of an
absorption profile, we assign the label of this pixel to be
−2.4;

• logbHI: Doppler width of the corresponding Lyα ab-
sorber on a logarithmic scale (km s−1).

First, to ensure that the absorption features used to train our
machine are Lyα lines, we applied a cut to exclude the pix-
els with wavelengths where the Lyβ transition of the highest
redshift H i absorber appears. The initial pixel values for the
four training label arrays were set to 0. The labels were gen-
erated for all Lyα systems ordered from the highest H i col-
umn density to the lowest H i column density. For each Lyα
system, we first check if the optical depth, τ = NHI σα (σα is
the absorption cross-section for the Lyα transition), of the
pixel is high enough to saturate the absorption line using a
criterion of exp (−τ) < 0.015, where the threshold is defined
by 3/(S/N) (where our fiducial S/N=200). If any pixel sat-
isfies this criterion, we store the LyαID, logNHI, zloc, and
logbHI of this absorber in the label arrays. Note that ‘zloc’
represents the location of the centre of an absorption feature,
where the centre (zloc= 0) is drawn using the redshift of the
Lyα system. If the listed Lyα system does not saturate a
pixel, it is then used to provide values to the corresponding
pixels where the flux of the absorption features is < 0.995.
Note, if multiple absorption components contribute to the
total optical depth in a pixel, we labelled only the dominant
line. This means that in this work we do not consider the im-

4 Note that zloc is a floating point number, since the centre of

the associated absorption line is not coincident with the centre of

a pixel.

pact of a secondary or additional line blends in a single pixel.
A more thorough investigation about the effect of blended
lines will be carried out in future work. Fig. 2 shows an ex-
ample of the labelling procedure that we use in this work. In
the example shown in Fig. 2, labels are first assigned to the
leftmost (strongest) feature, i.e. feature 1. Every pixel associ-
ated with this absorption line that has a flux less than 0.015
is assigned a LyαID= 1; the column density and Doppler
parameter is the same for all of the associated pixels of this
feature, and the zloc label represents the non-integer pixel
difference from the centre of the absorption line profile. The
next strongest absorption line, feature 2, is then labelled;
because the central optical depth is not saturated we label
all pixels that have a flux < 0.995. The rightmost feature
3, which is partially blended, is labelled using the same ap-
proach, however, the labels are only applied to the pixels
where the pixel optical depth contributed by this feature is
highest.

2.3 Archival Quasar Observations

To validate our machine’s prediction on real data, we use the
15 quasar spectra observed and reduced by R12. These data
were observed with the High Resolution Echelle Spectrome-
ter (HIRES; Vogt et al. 1994) on the Keck I telescope. The
redshifts of these quasars are in the range 2.5 ≲ z ≲ 2.9, and
the spectra have R ∼= 45 000 (vFWHM

∼= 7 km s−1), high
signal-to-noise ratio (S/N ∼ 50−200 pixel−1), and cover the
wavelength range 3100−6000Å. We resampled these spectra
to 2.5 km s−1 pixel−1 (while conserving flux) to be consis-
tent with the input of our CNN model (see Section 3.1 and
Appendix A). Further details about the observations and
data reduction procedure are outlined by R125.

3 DEEP LEARNING MODEL

We employ multi-task learning (Caruana 1998; Ruder 2017)
by training with and predicting four outputs (labels):
LyαID, logNHI, zloc, and logbHI (see Section 2.2). The net-
work is generalised to approach these four tasks at the same
time. The details of the CNN structure for our multi-task
learning are described in Section 3.2. The prediction of each
variable complements the prediction of the other variables
by combining their losses (details in Section 3.3)6 as part of
the training process.

We employ similar training strategies to that adopted
by Parks et al. (2018) to ‘scan’ through a spectrum with
a fixed-size window (ws) and a 1 pixel step size. To do
this, we used the fit_generator function in keras. This
method increases the machine’s performance by analysing
hundreds of pixels in a segmentation per step rather than
tens of thousands of pixels in a whole spectrum in one go.
A fit_generator has the added benefit that each window

5 Some spectra contain DLA absorption lines. Our CNN model
is sensitive to Lyα systems with low column density, and it then

ignores the DLA features. Hence, these features do not impact

the results.
6 The loss quantifies the difference between the expected output
(i.e. truth) and the predicted output by a machine learning model,

while the loss function is the function used to calculate the loss.
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Figure 3. Schematic diagram of the scanning process that we use to train the data. The scanning window size is ws, and the step size is
1 pixel. All of the pixels in a given window are used as input to the CNN, and the corresponding output label of each window is assigned

to the pixel located at the centre of the window. The red, green, and blue boxes demonstrate how the corresponding labels change when

the window shifts by 1 pixel. Labels are only assigned if the centre pixel of the window is within cnpix = ±1 pixels of the centre of an
absorption feature (this is represented by the yellow box). Outside of this defined area, the corresponding labels are set to 0. Note that

the value of cnpix is a hyperparameter of the network.

is generated at run-time from the full spectrum, and there-
fore reduces the amount of VRAM required (or, equivalently,
allows us to include more training data). The schematic di-
agram of the scanning process is shown in Fig. 3.

3.1 Data Input

In each spectral window used as input (of size ws), there
are four training labels, and these labels correspond to the
properties of the centre pixel in this window. Our CNN is
therefore trained with and only predicts the corresponding
values at the central pixel within this window from each
labelling array. For example, in Fig. 3, the labels that cor-
respond to the red spectral window are listed in the red
labels box, and the ones that correspond to the green spec-
tral window are in the green labels box, etc. The size of the
spectral window, ws, is a hyperparameter that is objectively
selected using an optimisation algorithm (Section 3.2). We
scan each training spectrum from left to right during each
epoch. Each batch contains one spectral window from each
training spectrum. This approach ensures that all training
spectra are fully ‘scanned’ and their training losses are taken
into account in each epoch (see also Section 3.3).

To ensure that the CNN prediction is primarily sensi-
tive to absorption features that are located at the centre of
the window, we define an additional hyperparameter, cnpix.
This hyperparameter is defined by the absolute value of zloc,
|zloc|≤ cnpix, and determines the pixels that are recognised
as the ‘centre’ of an absorption feature. For example, in
Fig. 3, if cnpix = 1, the yellow shaded area is defined as
the ‘centre’ region, and the true values outside this range
are set to 0 as highlighted by the yellow labels. The CNN
is trained with, and predicts the labels associated with, the

central pixel of the window. The variable cnpix ensures that
the training process only learns from an absorption feature
that overlaps with the pixel in the centre of a window.

Additionally, we noticed that training our machine with
noiseless spectra results in a significantly worse performance
when predicting a noisy spectrum (see Appendix C). To
overcome this issue so that our machine can sensibly be ap-
plied to predict accurate labels to real data, we included
additional noise to each spectrum. The S/N of a given spec-
trum is drawn from a Gaussian distribution, with a mean
of 10 and a standard deviation of 2. Given this S/N value,
we randomly perturb every pixel in the perfect normalised
spectrum by a Gaussian distribution with a standard devi-
ation of 1/(S/N). In previous studies, Lyα forest analyses
have primarily relied on spectra with S/N > 20. Hence, we
chose a low S/N value as a typical value to allow our machine
to produce reliable results when analysing observed quasar
spectra that are of somewhat lower S/N. Appendix C out-
lines the tests we performed to validate this approach, and
demonstrate that this stabilises the predictions for spectra
with different S/N.

3.2 CNN Architecture

Fig. 4 shows our CNN architecture, which follows the same
form as the one used in Parks et al. (2018), including three 1-
dimensional convolutional layers (i.e. Conv 1, Conv 2, Conv
3) and each of them is followed by a pooling layer with a
kernal size of 2. A dropout is inserted after the third pool-
ing layer (Pool 3), and the array is flattened to connect with
a dense layer (Dense 1). Four separate dense layers are then
connected with the ‘Dense 1’ layer and dropouts are applied
to each dense layer. The dropout rate is consistent through-
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Figure 4. Schematic diagram of the CNN architecture used in this work. It is composed of three 1-dimensional convolutional layers with

pooling layers following each, one dense layer to connect each component, and four dense layers for four target outputs. The values of
relevant hyperparameters are listed in Table 1.

out the network and is one of the hyperparameters that is
selected with an optimisation algorithm.

The activation function used before the output layer is
consistently ReLu: f (x) = max (0, x) (Agarap 2018), and
the activation functions for the outputs depend on the de-
sired output range of the target variables. Hence, for LyαID,
we applied the sigmoid function: f (x) = 1/(1+e−x), which
outputs a value between 0 and 1 as a probability. For zloc
we adopted a linear function: f (x) = x, and for both
logbHI

7 and logNHI we used ReLu, which outputs a value
f (x) = max(0, x). Several crucial hyperparameters in our
CNN architecture were objectively selected by a Bayesian
optimisation process (Snoek et al. 2012, also see appendix B)
over a range of possible values. The results are listed in Ta-
ble 1. In addition to the hyperparameters of the CNN ar-
chitecture, we include two additional hyperparameters from

7 The minimal value of bHI in this work is 15 km s−1. Hence, the

logarithmic value is always > 0.

Section 3.1: (1) the window size (ws) and (2) the number
of pixels that are used to define the centre of an absorption
feature (cnpix). These two hyperparameters are critical in
determining the types of Lyα systems that our CNN is sen-
sitive to8; the values of these parameters depend on the sci-
ence question being addressed. We therefore use a Bayesian
optimisation process to decide their values without human
intervention.

Finally, the learning rate was set to 0.0001 and we ap-
plied the Adam optimiser (Kingma & Ba 2015). The maximal
number of iteration for each training is 20 epochs, but only
the model with the minimal validation loss within the 20
epochs is saved.

8 One can use a larger size of scanning window to help improve

the sensitivity in detecting systems with higher column density.
Note that these systems are fewer. To carry out this optimisa-

tion, one also needs to consider the issues of strongly imbalanced
number of different systems.
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Hyperparameters Optimised value

Data Input window size (ws) 179

central pixels (cnpix) 1

CNN L2 0.0

Architecture dropout 0.1
conv filter 1 512

conv filter 2 512

conv filter 3 512
conv kernel 1 6

conv kernel 2 7

conv kernel 3 4
dense 1 64

dense 2 ID 32
dense 2 N 64

dense 2 z 256

dense 2 b 128

Table 1. Hyperparameters used in our CNN architecture. These

values are selected using a Bayesian optimisation algorithm

(Snoek et al. 2012).

3.3 Loss Function

With our multi-task learning model, four outputs were pro-
duced for a given input: LyαID, logNHI, zloc, logbHI. With
the fit_generator function, the final loss per epoch for each
output is an average value of the losses of all steps. For a
binary classification task, the loss of ‘LyαID’ uses a binary
cross-entropy loss function:

LID = − 1

N

N∑
i=1

yc,i log (pc,i) + (1− yc,i) log (1− pc,i) , (1)

where N is the total number of training windows per epoch,
i.e. the number of input training spectra (= number of data
per step) times the number of pixels in each spectrum (=
number of steps)9, yc represents the true classification label
(i.e. LyαID= yc = 1 for a Lyα absorption system), and pc is
the probability of being a Lyα system predicted by the CNN.
The loss functions of the remaining outputs use a masked
mean square error (MSE):

Lj =
1

N ′

N∑
i=1

yc,i (yj,i − ŷj,i)
2 , (2)

where N
′
is the total number of training windows per epoch

where yc equals to 1, and j = {NHI, z, bHI} represents the
loss functions of logNHI, zloc, logbHI, respectively. The yj,i
are the true values of j = {NHI, z, bHI}, while the ŷj,i are the
predicted values from the CNN. With this ‘masked’ form of
the loss function for logNHI, z, and log bHI, losses are only
contributed to the final loss per epoch when yc = 1.10 The
final loss function of the CNN training process per epoch is
the sum of the above-mentioned losses:

L = LID + LNHI + Lz + LbHI (3)

9 Recall that the model is trained by scanning through all spec-
tra.
10 We note that this masked loss function ensures that our ma-

chine is not biased by the logNHI, z, and log bHI labels in pixels

where there is no absorption.

Note that the scale of each loss needs to be comparable in
order to prevent a biased weighting due to a single label that
contributes most of the loss. For example, in our preliminary
test, we found that a large uncertainty in predicting linear
bHI values (range of 15−75 km s−1) contributes a significant
loss which therefore decreases the CNN’s capability of pre-
cising predicting the other labels. Hence, we opted to predict
the logarithmic bHI values in this work.

4 EVALUATION METRICS

Before showing the results of our CNN models, we first in-
troduce the metrics that were used to evaluate the CNN
performance. For the classification of Lyα absorbers, we use
recall and precision, as defined below, to evaluate the CNN
performance.

recall =
TP

TP + FN
; precision =

TP

TP + FP
, (4)

where ‘TP’ is a true positive (i.e. a correct classification),
‘FP’ is a false positive (i.e. a mis-classified system), and
‘FN’ is false negative corresponding to true systems that
are missed by our CNN. Recall is a measure of complete-
ness: the fraction of true absorbers identified by the CNN.
Precision is a measure of the fraction of identified systems
that are real. We have designed the CNN to have high preci-
sion at the expense of recall, so that we are confident that a
CNN-classified Lyα system is a real Lyα system. This choice
may need to be different, depending on the scientific ques-
tion being addressed.

On the other hand, when estimating the physical prop-
erties of a Lyα absorber such as redshift, H i column den-
sity, and Doppler width, we consider two metrics: (1) the
root mean square error (RMSE) and (2) mean absolute er-
ror (MAE), to assess the ‘accuracy’ of the CNN predictions.
The RMSE is defined as:

RMSE =

√∑NLyα

k=1 (yk − ŷk)
2

NLyα
, (5)

where NLyα is the number of matched Lyα systems, and yk
and ŷk represent the ‘true’ and ‘predicted’ values of each
Lyα system, respectively. The RMSE is strongly impacted
by the outliers due to the square of the residual. Hence, we
also introduce MAE (Equation 6) which is more resilient to
outliers than the RMSE.

MAE =

∑NLyα

k=1 |yk − ŷk|
NLyα

, (6)

where the definition of each variable is the same as Equa-
tion 5. The MAE is more useful, since we do not expect
the CNN to be absolutely correct. For example, in many
cases our CNN predicts that a single Lyα absorber is re-
quired to recover an absorption feature, while there are in
fact many neighbouring lines that contribute to this absorp-
tion feature (see discussion in Section 5.3). For this example,
we will have poor estimates of the physical properties when
comparing with the ‘true’ values, and this yields strong out-
liers. Thus, the MAE is a more robust indicator of the CNN
performance than the RMSE in the context of this study. In
later sections, we will list both quantities, but the discussion
will be based on the MAE.
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noiseless

S/N=10

Figure 5. Comparisons between the true and predicted values of logNHI/cm
−2 and bHI with LyαID > 0.3 using noiseless spectra (top)

and spectra with S/N = 10 (bottom). The black solid line shows f (x) = x, the dashed lines indicate the scatter range defined by the
MAE of each plot, and the dotted lines are the range defined by the RMSE of each plot. Dark blue datapoints show the median values

within different bins of the true values. The y-axis error bar presents the MAE of each bin.

5 PREDICTION TO SIMULATED SPECTRA

With the aforementioned setups in Section 3, we trained a
CNN model with 900 simulated spectra11 with a S/N ran-

11 This number of training set is sufficient since each spectrum

includes over 20 000 segmentation windows for the training pro-

cess. Using additional spectra did not improve our result.

domly drawn from a Gaussian distribution with a mean of
10 and a standard deviation of 2. An independent set of 25
simulated spectra (a noiseless set and a S/N = 10 set) were
used to examine our pre-trained CNN model.
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Identifying Lyα systems with a CNN 9

Test Sets Precision Recall ∆logNHI/cm
−2 ∆zHI ∆bHI (km s−1)

noiseless mock spectra (LyαID > 0.7) 0.992 0.127 0.08 1.7×10−5 1.4

noiseless mock spectra (LyαID > 0.3) 0.994 0.322 0.10 2.4×10−5 2.3

S/N = 10 mock spectra (LyαID > 0.3) 0.987 0.273 0.12 3.0×10−5 2.8

R12 spectra (LyαID > 0.3):

All predictions 0.782 0.260 0.14 2.7×10−5 4.2

12.5 ≤ logNHI/cm
−2 < 15.5 0.792 0.258 0.13 2.7×10−5 4.1

Table 2. Evaluation metrics (precision, recall, MAE) of CNN-classified systems on different test datasets. All of the results tabulated here

are based on the same model, which is trained on noisy spectra (where the S/N is drawn from a Gaussian distribution with a mean = 10
and a standard deviation = 2).

5.1 CNN-classified Lyα forest systems

With a CNN prediction for each pixel in all spectra, we
used the following two criteria to identify Lyα systems: (1)
LyαID > 0.3, and (2) |zloc|≤ cnpix, where cnpix = 1. The
former criterion judges if a pixel contains a Lyα system by
the binary classification probability. The initial probability
threshold > 0.3 used for LyαID is considered to have the
maximum number of identified systems without decreasing
the precision by selecting pixels with low predicted proba-
bilities. The second criterion is applied in order to identify
the centre of an absorber.

To compare the CNN-classified Lyα systems with the
ground-truth labels, we match the input and predicted cat-
alogue of systems; our matching criteria require that the ve-
locity difference between the input and prediction is smaller
than half of the minimum FWHM that can be detected
by a machine. This FWHM threshold is estimated by the
minimum bHI value our CNN predictor can detect, i.e.,
bmin = 15 km s−1, using the relation: FWHM = 2

√
log(2) b.

Hence, the threshold applied is
√

log(2) bmin ∼ 12.5 km s−1.
The comparisons between the true and predicted sys-

tems with LyαID > 0.3 using noiseless spectra and S/N
= 10 spectra are shown in Fig. 5. This figure provides an in-
dication of the upper and lower ranges of CNN predictions
for mock spectra of different noise levels. With low S/N, the
total number of matched systems decreases when using the
same probability threshold. However, the overall CNN per-
formance remains consistent, with only a minor increase of
the MAE. We summarise the evaluation metrics of different
datasets in Table 2.

When applying a higher probability threshold to LyαID
for spectra of the same noise, fewer systems with a high accu-
racy are matched. For example, in Table 2, when applying
LyαID > 0.7 to predict noiseless spectra, the recall drops
while our CNN predictions show an improvement.

For either noiseless or S/N = 10 simulated spectra, the
overall precision of our CNN is over 0.98. In the following
sections, we investigate the causes of the FP and FN classi-
fications.

5.2 False Positive

A false positive (FP) is an absorption system identified by
our CNN classifier that cannot be matched to a Lyα sys-
tem in the simulated true label catalogue. When predict-
ing the labels of a simulated spectrum that only contains

-500 -300 -100 0 +100 +300 +500
velocity relative to FP (km s−1)

0.0

0.2

0.4

0.6

0.8

1.0

FP in predicting mock spectra

Figure 6. An example of a false positive (red curve). The gray
curve shows the contribution of all absorption lines. Short tick

marks above the spectra indicate the centre of a Lyα system

(black for catalogue lines, red for false positive). The velocity
between the red prediction and the closest neighbour system

from the true catalogue of primary absorption lines is ∆V =
17.5 km s−1.

Lyα absorbers, our CNN reaches a precision of over 0.98 for
spectra with S/N = 10 (over 0.99 for noiseless spectra). The
FP in this case is exclusively a simple mismatch due to the
velocity threshold (∼ 12.5 km s−1) used in matching sys-
tems between true and predicted catalogues. An example is
shown in Fig. 6. The velocity difference between our CNN-
classified system and the closest neighbour is 17.5 km s−1 in
this example. FPs occur when an absorption feature com-
prises multiple nearby lines, while our CNN tends to use
one line to describe the absorption feature. This results in a
shift of the defined centre and the mismatch of the true and
predicted Lyα systems. Through visual inspection, we no-
ticed that the parameters of the FPs predicted by the CNN
classifier fit the absorption feature as well as the true labels,
especially given that our classifier is trained on data of S/N
≃ 10. This type of failure can also happen when using con-
ventional methods such as Voigt profile fitting (e.g. human
bias, or indistinguishable absorption profiles). This reflects
a potential underestimation of the number of Lyα systems
that are indifferentiable due to confusion or insufficient S/N,
or because they are due to sub-structures of H i gas within
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4608 4612 4616 4620
wavelength (Å)

0.0

0.2

0.4

0.6

0.8

1.0

FN in predicting mock spectra (S/N=10)
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FN in predicting mock spectra (S/N=10)

Figure 7. Several examples of false negative. The centres of each
true Lyα system are labelled by black short tick marks above

the spectra, while the red arrow indicates a match between the

true and predicted systems. Hence, a black tick mark without a
matching red arrow represents a false negative. The top panel

shows a noiseless spectrum and the bottom panel is a spectrum

with S/N = 10. The gray histogram represents the data and the
red curve is a reconstruction based on all of the predicted lines

by our CNN.

a larger H i gas cloud. This may be improved by including
higher order Lyman series lines as part of the CNN training
process in future work.

5.3 False Negative

False negatives (FN) occur when a system is listed in the
true label catalogue, but it is not identified by our CNN.
Examples are shown in Fig. 7. Since we train our CNN with
noisy spectra, some detailed structures are buried in the
noise, resulting in either a non-detection or low predicted
probability (LyαID) to these pixels. This is a compromise
between the accuracy and the feasibility of a CNN technique
to spectra with low S/N. One can train a CNN with a higher
S/N to increase the accuracy of a CNN detection and there-
fore reduce potential FN that are impacted by noise. In our

test, when training our CNN with noiseless spectra12, the
machine reaches a high recall (∼ 0.88) and a high precision
(∼ 0.90) when testing on a noiseless spectrum. However,
the ability to predict physical properties such as bHI and
NHI drops significantly for a CNN that is trained on noise-
less data, but applied to noisy spectra (for further details,
see Appendix C). This severely limits the utility of a CNN
model, since most spectroscopic data are of low S/N.

We summarise four main cases that contribute to false
negatives:

(i) Weak absorption features that are not significantly de-
tected in the noisy data (S/N ∼ 10) used for the training
process. Our CNN then has difficulty distinguishing these
features from the noise, and provides either a non-detection
or a low predicted probability, i.e. LyαID < 0.3, even for
data with much higher S/N.

(ii) A strong absorption feature composed of multiple
neighbouring lines (e.g. see Fig. 6). This type of FN oc-
curs when our CNN uses one line to fit an absorption fea-
ture while this feature is in fact composed of several Lyα
systems (Section 5.2). This mismatch therefore contributes
several false negatives, and one false positive.

(iii) A strong, broad absorption feature with a size that is
larger than the scanning window, i.e. ∆V > 447.5 km s−1.
Due to the fixed size of our scanning window, our CNN is re-
stricted to features that are well-defined within the window
size.

(iv) Complex absorption features contributed by many
nearby lines. Similar to case (ii) above, our CNN only fits
a dominant feature from this complex structure and misses
other overlapped absorption features formed by nearby, usu-
ally weaker, Lyα systems.

We find that the dominant FN contribution comes from
weak absorption features that are within 3σ of the con-
tinuum; our 25 test spectra indicate this type of FN con-
tributes ∼ 86% of the total number of FNs. These weak ab-
sorption features have an average value of logNHI/cm

−2 =
12.40 ± 0.25 and b = 28.9 ± 9.8 km s−1. If we exclude this
kind of FN, the recall improves from ∼ 0.32 to ∼ 0.77 for
noiseless spectra.

In Fig. 8 we present the change of recall and the MAE
values of logNHI, zHI, and bHI grouped by column density
using noiseless spectra (solid line) and S/N = 10 spectra
(dashed line). This demonstrates that our CNN model has
better recall to Lyα systems with a column density range
of 13 ≤ logNHI/cm

−2 < 16. By visual inspection, we found
that the false negatives for systems with column density in
this range are only the cases (ii)−(iv) listed above. Com-
pared to other bins, low H i column density systems (i.e.
logNHI/cm

−2 < 13) contribute weak absorption features
which can be hidden in the noise, and result in much lower
recall value (≲ 0.1), i.e. a higher fraction of FNs.

6 APPLICATION TO OBSERVATIONAL DATA

Following the setup described in Section 3, we train five in-
dividual CNN models, and each model is trained with a set

12 Note that this result used a CNN architecture with hyperpa-

rameters that were specifically tuned to noiseless data.
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Figure 8. Evaluation graphs of recall and the MAE of logNHI/cm
−2, redshift (zHI), and bHI values, within different logNHI/cm

−2 bins.

The horizontal lines of each data point represent the range of each bin.

of 900 noiseless spectra that we perturb with Gaussian noise
(Section 2.1). We then use these CNN models to predict the
Lyα forest parameters of the 15 HIRES quasar spectra from
R12 (Section 2.3) and build a catalogue of Lyα absorption
systems with minimum LyαID> 0.3 for each quasar spec-
trum. The final determinations of the physical properties
(i.e. logNHI, zHI, and log bHI) are a weighted-average of the
predictions for a given absorption line, using LyαID as the
weights. The mean value of LyαID is used as the final prob-
ability of a CNN prediction. In order to evaluate the perfor-
mance of our CNN models, we compare the CNN-classified
Lyα absorbers with the catalogue built by R12. These au-
thors identified Lyα systems and estimated the H i column
density, redshift, and Doppler width by Voigt profile fitting.
To avoid the proximity effect, Lyα systems are excluded if
they are within 3000 km s−1 of the quasar. Additionally,
each Lyα system identified by R12 was validated by confirm-
ing the existence of at least one other higher order Lyman
series transition; when higher order Lyman series lines were
available, they were jointly fit. Our network only uses the
Lyα absorption line.

6.1 Predicting 15 HIRES observed spectra

Although our CNN reaches high precision (Equation 4) when
predicting fake spectra that only contain Lyα absorbers, ob-
served quasar spectra are much more complex and challeng-
ing due to the existence of other Lyman series absorption
lines and metal lines. Hence, we carry out a post-processing
procedure to exclude CNN-classified absorption line systems
that: (1) have a redshift greater than the quasar Lyα emis-
sion redshift; (2) are within a region including higher order
Lyman series lines such as Lyβ lines; or (3) do not exhibit a
Lyβ absorption line.

In detail, we first remove the systems with a CNN-
estimated redshift larger than or equal to the quasar red-
shift. To avoid regions including other higher order Lyman

series lines, we focus on the region where only Lyα ab-
sorbers of the Lyman series exist. This is carried out by
removing systems located at the wavelengths blueward from
the potential highest-redshift Lyβ absorber estimated by the
quasar emission redshift. Additionally, as in R12, we remove
systems that are within 3000 km s−1 of the quasar to avoid
the proximity effect. Finally, we examine the correspond-
ing Lyβ absorption lines for each CNN-classified Lyα sys-
tem using the CNN-predicted redshift, column density, and
Doppler width. A CNN-classified Lyα system is removed if
the following criteria are satisfied: (1) the estimated Lyβ
flux is much lower than the observed flux, i.e. the difference
of fluxes (CNN Lyβ flux − observed flux) is negative and
its absolute value > 1σ, where σ is the median value of the
noise spectrum near the centre of the absorption line, de-
fined by the FWHM (i.e. pixels within ∼ ±12.5 km s−1, see
Section 5.1); and (2) the Lyβ absorption line is not satu-
rated, i.e. Lyβ observed flux > 3σ (following the definition
of saturation in Section 2.2).

Additionally, we add two additional flags to our CNN
catalouge — Lyβ inspec flag and sml Lyβ flag. The former
decides if the wavelength of a corresponding Lyβ absorber of
a CNN-classified system is within the observed wavelength
range; thus, 1 if yes and 0 if no. The latter flag assesses if
the estimated flux of a corresponding Lyβ absorber can be
hidden within the noise level, i.e. Lyβ flux > (1 − σ). If
the Lyβ absorption feature can be hidden within 1σ, this
flag sml Lyβ flag is set to 1, and the opposite case has
sml Lyβ flag = 0.

6.2 Comparison with R12 catalogue

To assess the confidence of the CNN results by the R12 cata-
logue, we focus on the spectral region that only contains Lyα
absorption lines (Section 6.1). We match the CNN-classified
Lyα absorbers with the R12 catalogue using the same crite-
ria for simulated spectra described in Section 5.1, i.e. the ve-
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Figure 9. Comparisons between the CNN and R12 values of

logNHI/cm
−2 (top) and bHI (bottom). The black solid line shows

a one-to-one relation, the dashed lines indicate the scatter defined
by the MAE of each plot, and the dotted lines are defined by the

RMSE of each plot. Dark blue datapoints show the median values
of CNN and R12 within different bins of R12. The x-axis error

bar is defined by the median value of the estimation errors of the

datapoints provided in R12 within different bins of R12, while the
y-axis error bar presents the MAE of each bin.

locity difference between the identified systems of our CNN
and R12 is smaller than half of the minimum FWHM that
can be detected by our machine: ∼ 12.5 km s−1.

Since the R12 catalogue is based on a consistent fit of
all available Lyman series lines (i.e. Lyα and at least one
other Lyman series transition), a mismatch between R12

and our CNN could happen if: (1) the corresponding Lyβ
absorber of a CNN-classified system is out of the wavelength
range of the spectrum, or (2) weak Lyβ absorption lines that
are buried within the noise level of a broad absorption fea-
ture. By applying two additional flags13: (1) Lyβ inspec flag
= 1 and (2) sml Lyβ flag = 0, ∼ 78 per cent of the ML-
classified Lyα systems are matched with R12, i.e. precision
= 0.78.14 The comparison of column density (logNHI/cm

−2)
and Doppler width (bHI) between our CNN and R12 are
shown in Fig. 9 (also check Table 2). Dark blue datapoints
are the median values of each bin of R12. The bin interval
is 0.5 for logNHI/cm

−2 and 5 km s−1 for bHI. There is a
statistical uncertainty associated with each quantity in the
R12 catalogue based on Voigt profile fitting; the x-axis error
bar uses the median value of the deviations to represent the
typical error of each quantity in R12 within different bins.
On the other hand, the y-axis error bar presents the MAE
of the datapoints in each bin.

Compared to the simulated spectra results in Fig. 5,
the CNN performance decreases when predicting real spec-
tra. This is due to the more complex blending of features
that are seen in observational data. As discussed in Sec-
tion 5.3, our CNN tends to use only one line to recover a
broad absorption feature while it is generally composed of
multiple neighbouring lines. In this case, even though there
is a matched Lyα system between the two catalogues, the
CNN predictions of logNHI and bHI will not be consistent
with the values listed in the R12 catalogue.

Nevertheless, our CNN models do a good job in predict-
ing H i column density logNHI/cm

−2 with MAE= 0.139. In
particular, the range between 12.5 ≤ logNHI/cm

−2 < 15.5
shows a tight one-to-one relation with MAE= 0.135 (also see
Table 2). Outside this column density range, the number of
CNN-classified Lyα systems are much fewer (42 out of 1 930
CNN-classified Lyα systems) which results in a larger scatter
within this range. This indicates that our CNN has difficulty
in correctly classifying these absorption lines and leads to a
relatively poor estimate of the H i column density for Lyα
systems with logNHI/cm

−2 < 12.5 or logNHI/cm
−2 > 15.5.

Note that the R12 data are of considerably higher S/N com-
pared to the simulated data that were used to train our CNN
model. As described in Section 5.3, weak low H i column
density systems are often buried in noise near the contin-
uum level for data of S/N ≃ 10. To improve the prediction
of lower H i column density systems, one may train a model
with higher S/N input spectra, and apply this model to ob-
servational data of comparably high S/N (see Appendix D).

The catalogue comparison of bHI (bottom panel of
Fig. 9) shows a similar trend to the results of simulated
spectra in Fig. 5 with a larger scatter. Within the range of
bHI < 20 km s−1, our CNN tends to overestimate the bHI

value, because the CNN models use a single Lyα line to re-
cover a feature that is composed of multiple lines. On the

13 Without applying the two flags, one can just compare

the systems that are within the same redshift ranges as the
ones that were fit in R12. The precision, recall, and MAE of

∆ logNHI/cm
−2, ∆zHI, and ∆bHI are 0.778, 0.284, 0.14 dex,

2.7×10−5, and 4.3 km s−1, respectively.
14 It may be possible to include Lyβ lines in the training process.
This may improve the precision of the predictions of the Lyα lines.

We leave this as an exercise for future work.
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Figure 10. Evaluation graphs of recall and the MAE of logNHI/cm
−2, redshift (zHI), and bHI values, within different logNHI/cm

−2 bins.

The horizontal lines of each datapoint represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from low to high values of

logNHI/cm
−2.

other hand, for larger bHI values, our CNN has difficulty to
predict systems with broader absorption features due to the
restriction of the scanning window size (see point (iii) of the
false negative summary in Section 5.3). The window size is
a hyperparameter tuned to optimise the predictions for the
majority of Lyα absorbers (Section 3.2). There are ∼ 93%
of Lyα absorbers with bHI < 35 km s−1 from R12 (∼ 97%
of them with bHI < 40 km s−1), and the predictions for the
systems with a larger bHI value are worse (this also occurred
for the simulated spectra).

Finally, for different column density bins (defined using
the R12 catalogue), we present the recall and the MAE of
logNHI/cm

−2, redshift (zHI), and bHI in Fig. 10. Based on
the column density comparison shown in Fig. 9, we separate
matched samples into four bins: logNHI/cm

−2 = 12.0−12.5,
12.5−14.0, 14.0−15.5, and 15.5−17.0. Fig. 10 demonstrates
that the CNN predictions of different physical properties
are most consistent with R12 within the H i column density
range 12.5 ≤ logNHI/cm

−2 < 15.5 cm−2 (Table 2).
Note that the CNN-classified Lyα absorbers for the

above results are identified by at least one CNN model out
of five models. To further improve the CNN predictions, one
can impose a selection criterion to the number of the CNN
models that identify a Lyα system. For example, by requir-
ing that a Lyα absorber must be identified by at least two
CNN models, the precision increases from 0.78 to 0.85, and
the overall MAE for logNHI/cm

−2 improves slightly, and
the MAE for bHI drops to 3.8 km s−1, respectively (see the
results of other test datasets in Table 2).

6.2.1 False positive and false negative

Except for misclassification, which is dominated by con-
taminating metal lines, one of the primary causes of false
positives in the observational data is due to the velocity
threshold (∼ 12.5 km s−1) used to match systems between

the CNN and R12 catalogues (as discussed in Section 5.2).
Fig. 11 shows three examples of this FP case. The CNN
tends to fit a broad absorption feature with one line, while
it is composed of multiple neighbouring lines in the R12 cat-
alogue. We notice that the broader an absorption feature is,
the worse CNN predictions are obtained, e.g., the leftmost
panel in Fig. 11. Additionally, since the classifications in R12
might have missed some Lyα systems from manual Voigt
profile fitting, some FPs by our CNN could be a potential
Lyα absorber. Examples are shown in Fig. 12. We compared
the CNN identified systems with the robust Lyα absorbers
from R12 which were validated with higher order lines, e.g.,
Lyβ, Lyγ, etc. Hence, there may be mismatch because the
corresponding Lyβ or Lyγ lines of a potential Lyα absorber
is difficult to detect. For example, in Fig. 12, we show an
example with possible Lyα and Lyβ absorption consistent
with a true absorption system. However, this example may
instead be due to a metal line absorption line, given that
there are several neighbouring metal line absorbers nearby.

The false negatives identified with the observational
data are contributed by the same sources as the ones dis-
cussed in Section 5.3 (i.e. low column density absorption
features that are buried in the noise). As mentioned in Sec-
tion 5.3, our choice to train a model on low S/N data is a
compromise to allow a CNN technique to be applied to spec-
tra with both low and high S/N. For completeness, we have
also trained a model with S/N closer to the quasar spectra
from R12 and we test this model using observed spectra.
This comparison is discussed in Appendix D.

In Fig. 13 we showcase examples of the different cases
of FNs. The top panel presents the case of FNs having weak
absorption features that are missed by our CNN, which is
trained with noisy spectra. In the middle panel, our CNN
uses one Lyα line to describe the absorption feature, while
there are multiple nearby lines listed in R12 responsible for
this feature. This specific case also contributes a false posi-
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Figure 11. Examples of potential Lyα absorbers (red curves; top panels) that are not matched with an absorber in R12 due to multiple

components in R12 being fit with a single absorber by the CNN. Due to velocity differences between the two catalogs, they are flagged
as false positives although the absorber is identified in both catalogs. The centre of the FP is labelled by a red short tick mark. These

examples of FPs are due to the matching criterion (see Section 5.2). The orange curves in the bottom panels show the corresponding

Lyβ absorber. The gray histograms show the observational data. Black short tick marks above the spectra indicate the centres of the
Lyα systems from R12. The ∆V values shown in the top panels provide the velocity difference between the prediction and the nearest

absorption line from the catalogue of R12.

tive depending on the distance between a CNN-classified sys-
tem and its closest system from R12. Finally, we showcase
a broad and complex absorption feature containing many
Lyα absorbers in the bottom panel. Our CNN has difficulty
analysing a broader feature such as the one showcased here,
since our CNN is trained with only primary lines. When an
absorption feature is broader than the structure that our
CNN can reconstruct with one Lyα line, the CNN fails to
classify.

Since the behaviour of false negatives using our CNN
can be determined empirically, a correction factor can be
calculated to convert the predicted distribution of Lyα forest
absorbers to the intrinsic (i.e. input) distribution of Lyα
absorbers. We will consider this approach in a future paper.

6.2.2 Predicting HIRES spectra with different S/N

In this section, we test if our CNN is capable of predicting
observed Keck/HIRES spectra of different S/N. Additional
noise is added to the high quality HIRES spectra from R12
to degrade the S/N. We test different cases from S/N = 5 to
S/N = 50 (i.e. the latter case represents the lower S/N end of
the R12 spectra). This test is to ensure that in future works
we can further apply our trained CNN models to predict
spectra in the HIRES archives such as the Keck Observatory

Database of Ionized Absorption toward Quasars (KODIAQ)
survey (O’Meara et al. 2017, 2021). Fig. 14 demonstrates
that the performance of our CNN is consistent with the pre-
dictions of simulated spectra (see Appendix C). This again
confirms that training the CNN with noisy spectra is of great
importance to stabilise the predictions of spectra with dif-
ferent noise levels. Although there is a drop in the CNN
performance at S/N < 20, the changes are still within an
acceptable range for further scientific analyses. By training
and testing a CNN applied to high redshift quasar spectra,
we have opened up the possibility to efficiently and effec-
tively harvest the information buried in the Lyα forest. This
is an important step towards understanding and analysing
the significant amount of data that will be acquired with
future facilities.

7 SUMMARY

We have developed a machine learning based detection algo-
rithm using convolutional neural networks (CNN) to derive
the physical parameters of Lyα absorbers within the forest
of high-resolution QSO absorption line spectra. In particu-
lar, we focus on the low H i column density systems (NHI

< 1017 cm−2) and predict their physical properties such
as H i column density (logNHI/cm

−2), redshift (zHI), and
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Figure 12. Same as Fig. 11, but shows an example of a potential

Lyα absorber that is not listed in the R12 catalogue.

Doppler width (bHI). The low column density Lyα absorbers
serve as a great tracer to the thermal history of the low-
density IGM and can be used to probe the baryonic matter
distribution. However, since they can be easily contaminated
by other Lyman series and metal lines, previous applica-
tions of machine learning to the Lyα forest have focused on
identifying DLAs (NHI ≥ 1020.3 cm−2) which show strong,
damped absorption features.

Our CNN model is trained with 900 noisy simulated
spectra with a S/N drawn from a Gaussian distribution of
mean = 10 and standard deviation = 2. This training strat-
egy stabilises the CNN performance when predicting spec-
tra of different S/N (Appendix C and D) and allows us to
apply our CNN models to the current archives of spectro-
scopic data, as well as future surveys. The simulated spec-
tra that we use for training our model represent quasars at
redshift z = 3 and are convolved with an instrumental reso-
lution of vFWHM = 7 km s−1. These values are typical of the
data in current observatory archives. Different FWHM val-
ues have no impact on the performance of the CNN model
(i.e. the Lyα forest absorption lines are fully resolved), while
at higher redshifts there is increased blending due to neigh-
bouring absorption features, which negatively impacts the
accuracy of the CNN predictions (see Appendix A). The
pixel size of the simulated spectra is set to 2.5 km s−1.

We first examine the CNN performance with simulated
spectra, and match the CNN prediction and true systems
using a velocity threshold defined by half of the minimum
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Figure 13. Several examples of false negatives. The centres of each

Lyα system from R12 are labelled by black short tick marks above
the spectra, while the red arrow indicates a match between the

CNN and R12 results. From the top to bottom panel, we showcase

different reasons responsible for false negatives. The gray curve
represents the data, the blue curves represent a reconstruction of

the data based on the Lyα absorbers listed in the R12 catalogue,

and the red curve is a reconstruction based on all of the predicted
lines by our CNN.

FWHM ∼ 12.5 km s−1 (estimated by bHI = 15 km s−1). By
matching the predicted systems with the systems listed in
the true catalogue, over 99% of the CNN-classified Lyα sys-
tems are true. However, the completeness is low (∼ 32%), i.e.
only a small fraction of the Lyα systems are identified by our
CNN. We summarise three types of false negative: (1) weak
absorption features that might be neglected by our CNN due
to the limitation of the noisy training spectra; (2) a strong
absorption feature composed of multiple neighbouring lines,
contributing one false positive and many false negatives; (3)
broad and complex absorption features that cannot be rep-
resented by one Lyα absorber. Case (1) dominates the FN;
the completeness increases to 77% when excluding this case
of FN.

We then train five individual CNN models to predict
15 HIRES spectra and compare the CNN predictions with
the results of manual Voigt profile fitting by R12. While the
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Figure 14. Our CNN predictions of the R12 HIRES spectra are stable when we artificially degrade the R12 data. Note that the ‘R12’

data points represent the predictions to the high quality HIRES spectra from R12 (S/N ≳ 50). From left to right, we show the recall,

precision, the RMSE (black dashed line) and MAE (black solid line) of H i column density (∆ logNHI/cm
−2), redshift (∆zHI), and the

Doppler width (∆bHI).

manual method costs 1-2 years for the 15 spectra in R12, the
prediction process by our CNN costs less than three minutes
per quasar spectrum with a size of ∼ 120 000 pixels using a
MacBook Pro with a 2.3 GHz Intel Core i7 processor and
Intel Iris Plus Graphics 1536 MB.

Since an observed spectrum contains complex structures
and contamination such as metal lines, a post-processing
procedure is carried out to exclude unreliable ML-classified
Lyα systems. Around 78 percent of ML-classified Lyα sys-
tems are matched with R12. There are three sources respon-
sible for false positives: (1) a simple mismatch due to the cho-
sen velocity threshold (∼ 12.5 km s−1); (2) a potential Lyα
absorber that is not listed in R12 due to weak or hidden Lyβ
absorption; and (3) misclassification due to broad absorption
features formed by multiple blended metal lines. We further
conclude that the CNNmodels provide the most reliable pre-
dictions within the range of 12.5 ≤ logNHI/cm

−2 < 15.5.
Within this range, the MAE of logNHI/cm

−2, zHI, and
bHI are 0.13 dex, 2.7 × 10−5, and 4.1 km s−1, respectively,
demonstrating the accuracy of our CNN predictions. We
conclude that a general-purpose CNN applied to the Lyα
forest may not be as effective as one that is trained for a
specific science goal, and it is important to better under-
stand the parameter space where a model succeeds or under
performs. We found that the false negatives occur under the
same conditions for both simulated and observed spectra.

Although we train the CNN models with noisy (S/N
≃ 10) simulated spectra, they provide consistent perfor-
mance when predicting much higher quality (S/N ≳ 70) ob-
servational spectra. This gives us confidence that our model
can be applied to both cosmological simulations and obser-
vations of the Lyα forest, and help to provide an insight into
some of the missing ingredients in simulations.

Finally, we examine the CNN performance when pre-
dicting observed Keck/HIRES spectra of different S/N, and
draw the same conclusions as the analysis of the simulated
spectra. An investigation can be further carried out to quan-

tify the impact of different S/N on the ‘accuracy’ of the con-
ventional analyses to observed spectra. More importantly,
this result validates the possibility to apply a CNN model
with our approach to analyse the enormous quantity of data
that will be obtained with future facilities.
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Figure A1. The overall performance of our CNN on noiseless spectra with different observing setups. We illustrate the sensitivity to quasar

redshift (top row), instrumental FWHM resolution (middle row), and pixel size (bottom row). Note that the CNN model is trained using

simulated noisy quasar spectra at redshift z = 3 and are observed using an instrumental FWHM resolution of vFWHM = 7 km s−1 and
sampled with vpix= 2.5 km s−1 pixel−1 (Section 2.1). From left to right, the panels show the recall, precision, RMSE (black dashed

line) and MAE (black solid line) of H i column density (∆ logNHI/cm
−2), redshift (∆zHI), and the Doppler width (∆bHI).
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instrument resolution (FWHM); and (3) data that are sam-
pled with different pixel size (vpix). This test is to validate
the feasibility of our CNN model to predict observational
spectra that were acquired with different setups.

Firstly, for different quasar redshifts (top row in
Fig. A1), the recall and precision remain consistent and the
logNHI/cm

−2 prediction does not show significant devia-
tion. However, the RMSE and MAE of zHI and bHI estima-
tions increase as a quasar emission redshift increases. This
means that the prediction accuracy decreases as a quasar
redshift increases. This result is caused by the increased
blending due to Lyα forest absorption lines at higher red-
shift. During the early Universe, H i gas clouds are more
abundant and their absorption features overlap in velocity
space. This overlap introduces additional uncertainty in the
predicted physical properties; this is true for both a machine-
learning based algorithm or conventional Voigt profile fit-
ting. Even though the RMSE and MAE of zHI and bHI are
within a factor of ∼ 1.5 of the RMSE and MAE at z ≃ 3,
we conclude that a CNN tailored to a specific redshift may
further improve the results, depending on the science appli-
cation.

In the middle row of Fig. A1, we generated spectra
with different instrument FWHM resolution over a narrow
range 5 < FWHM/(km/s) < 9, which samples the rele-
vant resolutions of current high dispersion spectrographs like
Keck/HIRES and ESO/UVES (European Southern Obser-
vatory Ultraviolet and Visual Echelle Spectrograph; Dekker
et al. 2000). Overall, different FWHMs in this range show
no impact to both the detection and physical property esti-
mates. This is because the widths of the Lyα forest absorp-
tion lines (FWHM≳ 15 km s−1) are usually fully resolved
at the instrument resolution of typical spectrographs, such
as Keck/HIRES and VLT/UVES (FWHM≃ 7 km s−1). Fi-
nally, in the bottom row of Fig. A1, we show that the choice
of pixel size introduces a serious impact to the results, in
particular the Doppler width, bHI. However, this issue can
be circumvented by resampling. If an input spectrum is not
sampled with vpix= 2.5 km s−1, we resample the input data
to ensure that our CNNmodel produces reliable results. This
resampling process does not impact the trained network, nor
the results, since the Lyα forest absorption lines are fully re-
solved.

APPENDIX B: BAYESIAN OPTIMISATION

The predictions by a network strongly depend on its hyper-
parameters such as the number of neurons, dropout rate, the
kernel sizes, etc. A failed prediction of a network might be
simply due to an unoptimised architecture used for training.
Hence, it is of great importance to select a set of hyperpa-
rameters that provide the most optimal combination for a
specific goal. This selection is often done by a brute-force
method – grid searches – such that all possible combinations
of each hyperparameter are evaluated. This method is there-
fore extremely time-consuming, and the tested sets of hyper-
parameters are limited due to computational allowance.

Unlike grid searches, Bayesian optimisation (Snoek
et al. 2012) provides a ‘smart guess’ to approach an opti-
mal combination of hyperparameters: x1, x2, ..., xn, where n
represents the number of hyperparameters. This process is

Hyperparameters Optimised value

Data Input window size (ws) 259

cnpix 5

CNN L2 0.0

Architecture dropout 0.0
conv filter 1 128

conv filter 2 128

conv filter 3 128
conv kernel 1 8

conv kernel 2 7

conv kernel 3 8
dense 1 128

dense 2 ID 256
dense 2 N 512

dense 2 z 256

dense 2 b 128

Table C1. Hyperparameters used in a CNN architecture trained

with noiseless spectra. These values are selected using a Bayesian

optimisation algorithm.

much faster than the grid searches to find a set of hyper-
parameters that performs well. The concept is to model the
network’s function f (x1, x2, ..., xn) to a surrogate analyti-
cal function. In this work, we use a Gaussian process (Ras-
mussen & Williams 2006) which forms the prior distribution
as multivariate normal distributions. As providing data, the
posterior probability distribution f given f (x1, x2, ..., xn) is
computed, and approaches to the prior using a chosen ac-
quisition function which we use the default function − Ex-
pected Improvement (Jones et al. 1998). A detailed tutorial
is described in Frazier (2018).

Our optimisation process uses GPyOpt (GPyOpt
2016)15 by running 60 iterations to search for the optimal
set. A final set of hyperparameters for the model trained
with noisy quasar spectra (where the S/N is drawn from a
Gaussian distribution of a mean = 10 and a standard devi-
ation = 2) is listed in Table 1.

APPENDIX C: THE IMPACT OF DIFFERENT S/N ON
MOCK SPECTRA

We tested the impact of training a CNN model using spec-
tra of different noise levels. In Fig. C1, we show the results
of training a CNN model with noiseless spectra (top; hy-
perparameters used in the CNN architecture are shown in
Table C1) and noisy spectra (bottom; Table 1) with S/N
drawn from a Gaussian distribution with a mean of 10 and
a standard deviation of 2 (Section 3.1). This figure clearly
shows that a model trained with noiseless spectra cannot be
used to predict new spectra with even a modest amount of
noise. Although this model can reach a higher overall recall
for noiseless data, the precision and the parameter deter-
minations of logNHI/cm

−2, zHI, and bHI are poorly known
when noise is added to the testing spectra.

Compared to this, a CNN model trained with spectra
involving a distribution of S/N shows stable performance
when predicting spectra with different noise levels. A drop

15 http://sheffieldml.github.io/GPyOpt/
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Figure C1. CNN analysis of spectra with different S/N using two CNN models trained with noiseless spectra (top row) and a Gaussian
distribution of S/N with a mean = 10 and a standard deviation = 2 (bottom row), respectively. From left to right, we present the recall,

precision, the RMSE (black dashed line) and MAE (black solid line) of H i column density (∆ logNHI/cm
−2), redshift (∆zHI), and the

Doppler width (∆bHI). Note that all metrics in the bottom row show a high level of stability for S/N > 20, demonstrating the more

general success of training a CNN model with somewhat low S/N data.

in performance occurs to spectra with S/N < 20. Testing on
spectra with S/N = 10, there is a drop in recall which does
not decrease the precision. This indicates that many true
Lyα absorbers might be hidden in the noise, and our CNN
has difficulty to identify them. However, ∼ 98% of the CNN-
classified Lyα systems are classified correctly compared with
the list of true systems.

The precision then drops to∼ 0.94 when analysing spec-
tra of S/N = 5, and there are significant changes to the
RMSE and MAE for the estimates of the physical proper-
ties. We did not expect our CNN model to perform well
when analysing spectra with S/N = 5, since this noise level
is beyond the range included in our training spectra. How-
ever, the changes to the predictions are minor compared to
the top panels of Fig. C1 using the model trained with noise-
less spectra. Additionally, they are still within an acceptable
range for scientific analyses. Hence, with caution, this CNN
model can be used to analyse spectra with S/N > 5.

APPENDIX D: THE IMPACT OF DIFFERENT S/N ON
R12 SPECTRA

Extending the discussion in Section C, we have trained a
CNN model with spectra of a higher S/N than the one used
in the main work, and tested this model with the observed
spectra from R12. The S/N of the training data is drawn
from a Gaussian distribution of S/N with a mean = 90 and a
standard deviation = 30; these values are chosen to be close
to the S/N of the R12 data. The optimised hyperparameters
of this CNN architecture are listed in Table D1. Comparing
Fig. D1 with Fig. 14, the recall increases slightly but the
performance drops when S/N < 50. However, Fig. D2 shows
that by training a model with high S/N spectra, it helps to
improve the predictions of systems within the range of lower
(logNHI/cm

−2 < 12.5) and higher (logNHI/cm
−2 ≥ 15.5)

column density.
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Figure D1. CNN analysis of R12 spectra using a Gaussian distribution of S/N with a mean = 90 and a standard deviation = 30 (closer

to the distribution of R12 spectra). From left to right, we present the recall, precision, the RMSE (black dashed line) and MAE (black

solid line) of H i column density (∆ logNHI/cm
−2), redshift (∆zHI), and the Doppler width (∆bHI).
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Figure D2. Evaluation graphs of recall and the MAE of logNHI/cm
−2, redshift (zHI), and bHI values, within different logNHI/cm

−2 bins.

The horizontal lines of each datapoint represent the range of each bin; the intervals are 0.5, 1.5, 1.5, and 1.5, from low to high values
of logNHI/cm

−2. The solid line shows the results using models trained by lower S/N (mean= 10) while the dashed line shows the ones

using models trained by higher S/N (mean= 90).
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Hyperparameters Optimised value

Data Input window size (ws) 285

cnpix 1

CNN L2 0.0

Architecture dropout 0.6
conv filter 1 256

conv filter 2 256

conv filter 3 512
conv kernel 1 10

conv kernel 2 7

conv kernel 3 6
dense 1 64

dense 2 ID 512
dense 2 N 512

dense 2 z 256

dense 2 b 128

Table D1. Hyperparameters used in a CNN architecture trained

using spectra with a higher S/N. These values are selected using

a Bayesian optimisation algorithm.
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