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In this work, we introduce a generalization of the classical Pólya urn
scheme [40] with colors indexed by a Polish space, say, S. The urns are de-
fined as finite measures on S endowed with the Borel σ-algebra, say, S. The
generalization is an extension of a model introduced earlier by Blackwell and
MacQueen [8]. We present a novel approach of representing the observed
sequence of colors from such a scheme in terms an associated branching
Markov chain on the random recursive tree. The work presents fairly general
asymptotic results for this new generalized urn models. As special cases we
show that the results on classical urns, as well as, some of the results proved
recently for infinite color urn models in [6, 5], can easily be derived using
the general asymptotic. We also demonstrate some newer results for infinite
color urns.
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1. Introduction. In recent days various urn schemes and their many generalizations
have been a key element of study for random processes with reinforcements [29, 3, 39,
23, 10, 18, 16, 15, 33, 13, 6, 5]. Starting from the seminal work by Pólya [40], vari-
ous types of urn schemes with finitely many colors have been widely studied in literature
[25, 24, 1, 2, 39, 38, 27, 28, 29, 3, 23, 10, 11, 18, 14, 13, 34]. [39] and [34] provide ex-
tensive surveys of the known results. However, other than the classical work by Blackwell
and MacQueen [8], there has not been much development of infinite color generalization of
the Pólya urn scheme. Recently the authors studied a specific class of urn models with in-
finitely many colors where the color set is indexed by the d-dimensional integer lattice Zd,
[6, 5]. These works nicely complement the work [8] by introducing examples of infinite color
schemes with “off-diagonal” entries and showed that the asymptotic behavior is essentially
determined by an underlying random walk.

In this paper, we further generalize urn schemes with colors index by an arbitrary set S
endowed with a σ-algebra S . As we will see in the sequel, the classical models can be realized
as a sub-model when S is finite and in that case S will simply be the power set of S, which
we will denote by ℘ (S). The non-classical case discussed in [8] can also be obtained by
appropriately choosing the measurable space (S,S) as the Borel space of a Polish space S.
Further the models described in [6, 5] can be obtained by choosing S = Zd and S = ℘

(
Zd
)
.

We will only consider balanced urn schemes. For S countable (finite or infinite), it means
that if R := ((R (i, j)))i,j∈S denotes the replacement matrix, that is, R (i, j)≥ 0 is the num-
ber of balls of color j to be placed in the the urn when the color of the selected ball is i, then
for a balanced urn, all row sums of R are constant. In this case, without loss of generality, it
is somewhat customary to assume that R is a stochastic matrix [10, 11]. For more general S
we refer to the next subsection for further details.

1.1. Model. We consider the following generalization of Pólya urn scheme where the
colors are indexed by a non-empty subset S of Rd for some d≥ 1, such that, under subspace
topology S is a Polish space. A necessary and sufficient condition for S to be Polish is that
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it is a Gδ−set, that is, S is a countable intersection of open sets, [12]. We endow S with the
corresponding Borel σ-algebra and denote it by S . LetM (S) and P (S) denote respectively
the set of all finite measures and the set of all probability measures on the measurable space
(S,S). Note that the classical case when S is finite or the non-classical cases discussed in
[6, 5] are obtained by taking S as a discrete subset of Rd of appropriate cardinality.

We would like to note here that many of our results goes through for S a general state
space endowed with a σ-algebra S . The assumptions of S is a Polish space and/or a subset of
an Euclidean space are then not needed. For more details we refer the readers to our Remark
3.3 in Section 3.

LetR : S×S → [0,1] be a Markov kernel on S, that is, for every s ∈ S, as a set-function of
S , R (s, ·) is a probability measure on (S,S); and for every A ∈ S , the function s 7→R (s,A)
is S/B[0,1]-measurable. Our main objective will be to study the following three quantities:

(I) Random Configuration of the Urn: The random configuration of the urn at time n≥ 0 is
a random finite measure Un ∈M (S), with total mass as n+1, such that, if Zn represents the
randomly chosen color at the (n+ 1)-th draw then the conditional distribution of Zn given
the “past”, is given by

P
(
Zn ∈ ·

∣∣∣Un,Un−1, · · · ,U0

)
∝ Un (·) .

Formally, starting with U0 ∈ P (S), we define (Un)n≥0 ⊆M (S) recursively as follows

(1.1) Un+1 (A) = Un (A) +R (Zn,A) , A ∈ S ,

and

(1.2) P
(
Zn ∈ ·

∣∣∣Un,Un−1, · · · ,U0

)
=
Un (·)
n+ 1

.

Notice that, if S is countable then R can be presented as a stochastic matrix and then
R (Zn, ·) is the Zn-th row of the replacement matrix R. We will refer to the process (Un)n≥0
as the urn model with colors index by S, initial configuration U0 and replacement kernel R.

Observe that, one can associate with every urn model a Markov chain (Xn)n≥0 on the
state space S, with transition kernel R and initial distribution U0. Moreover, without loss
we can assume that the our underlying probability space is large enough, to have this chain
independent of the urn process (Un)n≥0. Conversely, given any Markov chain (Xn)n≥0, on
the state space S, with transition kernel R and an initial distribution U0, one can associate
a balanced urn model (Un)n≥0, which will be independent of the chain. We will call this
Markov chain (Xn)n≥0 as the Markov chain associated with the urn model (Un)n≥0 .

It is worth mentioning here that a little more general model may be obtained by taking
U0 ∈M (S) and not just in P (S). However, asymptotic results for Un, when U0 ∈M (S)
can be easily derived from the special case U0 ∈ P (S).

(II) Expected Configuration of the Urn: From equation (1.2) and taking expectation, we
get

(1.3) E [Un] (S) = E [Un (S)] = n+ 1,

for all n≥ 0. Thus E[Un]
n+1 is also a probability measure on (S,S). In fact, it is the distribution

of Zn, the (n + 1)-th selected color. This follows by taking expectation on both sides of
equation (1.2),

(1.4) P (Zn ∈A) =
E [Un (A)]

n+ 1
, A ∈ S .
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(III) Color count statistics: The Color count statistics is defined as follows:

(1.5) N n :=

n−1∑
k=0

δZk ,

where δz stands for the Dirac delta measure on (S,S), which is degenerated at z ∈ S. Natu-
rally, N n is the empirical measure of the observed color sequence (Zk)

n−1
k=0 . In the classical

setup when S is a finite set, N n can be viewed as the frequency vector of the observed se-
quence of colors upto time n − 1. This quantity has also been studied in the classical urn
model literature [1, 2, 3]. In our general setup N n is a random counting measure defined on
(S,S) with N n (S) = n. So naturally, N n

n is a random probability measure on (S,S) . It
follows from (1.1)

(1.6)
Un
n+ 1

=
U0

n+ 1
+

1

n+ 1
N nR.

Note that we use the convention that for a finite measure µ ∈M (S), the expression µR (·)

means
∫
S

µ (ds)R (s, ·) Also, observe that,

(1.7) E [N n (·)] =

n−1∑
k=0

P (Zk ∈ ·) .

Thus, 1
nE [N n (·)] is the Cesàro mean of the marginal distributions of the observed sequence

of colors till time n− 1.

1.2. Main Achievements of the Work. The main contributions of this work are two fold.
One, we generalized urn schemes for colors indexed by an arbitrary set S and configuration
of an urn is viewed as a (possibly random) measure on it. Secondly we, analyze, any such urn
through two “representations” of the observed sequence of colors to an associated branching
Markov chain on S with the backbone as the random recursive tree. These representations are
novel and useful in deriving asymptotic results for the expected and random configurations
of the urn.

There are few standard methods for analyzing finite color urn models which are mainly
based on martingale techniques [27, 10, 11, 18], stochastic approximations [33] and em-
bedding into continuous time pure birth processes [1, 28, 29, 3]. Typically the analysis
of a finite color urn is heavily dependent on the Perron-Frobenius theory [42] of matri-
ces with positive entries and Jordan Decomposition [17] of finite dimensional matrices
[1, 27, 28, 29, 3, 10, 18]. The absence of such a theory when S is infinite, makes the analy-
sis of urn with infinitely many colors quite difficult and challenging. In [8] the results were
derived using exchangeability of the observed sequence of colors. However, as observed in
[6], exchangeability fails in the presence of off-diagonal entries and in [6], the authors took a
different approach of embedding the observed sequence of colors to the underlying random
walk sequence. The major contribution of this work is to further this embedding for any gen-
eral urn scheme with colors indexed by a Polish space, and then derive asymptotic results
by bypassing the standard martingale and matrix theoretic techniques. As a byproduct, we
also derive some non-trivial asymptotic for the random recursive tree(see Section 5) and
generalized the work for random replacements (see Section 6).
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1.3. Limitations of the Work. In general, for the classical as well as for the modern work
on finite color urn models, typically the limits so derived are strong convergence (almost
sure)-type [40, 27, 10, 11, 18, 1, 28, 29, 3, 33]. As we will see in the sequel, because of the
very nature of our arguments, our limits will be slightly weaker (in probability convergence).

We conjecture here that the strong convergence should hold in general under minimal
conditions on the underlying Markov chain, which should include the finite color case. One
specific example has been discussed in [35] (see Section 1.4.3). While this work was under
review two more work have appeared [4, 30] where strong convergence has been proved
specifically for two of our examples described in the Sections 4.1.1 and 4.2.1 respectively.
Both these work use the representation proved in this work and specifically one of our main
result, the Theorem 2.4.

The other limitation of the work is that it only focuses on the balanced cases, that is, the
replacement kernel R has the property that R (s,S) is a constant. In other words, at each step
a constant number of balls are added. Our main results, namely, Theorem 2.4 and Theorem
2.8 hold only in this case.

We certainly feel that if we consider a general unbalanced replacement scheme R, but
assume that the function b (s) := R (s,S), s ∈ S is somewhat “nice" then the asymptotic
results derived in this work should go through after changing the normalization from (n+ 1)
to Un (S), which will then be random. For example, we conjecture that if b is such that,
δ ≤ b (s) ≤ K for all s ∈ S, where δ > 0 and K <∞. In other words, if the function b
remains bounded away from 0 and ∞), then the asymptotic results derived in this work
should hold after changing the normalization from (n+ 1) to Un (S) =OP (n).

1.4. Discussion. While preparing the manuscript, and after our first version was up-
loaded on the arXiv (see https://arxiv.org/pdf/1606.05317.pdf), we were
informed by Cécile Mailler and Jean-François Marckert that they are also working on simi-
lar problems. Later their work appeared in an arXiv version (see https://arxiv.org/
pdf/1610.09057.pdf) [35]. In their work, they prove more or less similar results as that
of ours based on exactly the same kind of embedding which was already available in our first
arXiv version. We here provide a brief summary of the similarities and differences of the two
works.

1.4.1. Similarities with [35].

• Our main representation argument, stated as the Grand Representation Theorem (see The-
orem 2.4) is exactly same to what is described in Section 2 of [35] as the coupling between
their Measure-Valued Pólya Process (MVPP) and Branching Markov Chain (BMC). How-
ever, the proof we provide is simpler and is more direct than what is given in [35].

• The main weak asymptotic result of our paper described in Theorem 3.8 are similar to
that of the main asymptotic result, namely, Theorem 4 of [35]. Some of the assumptions
are also equivalent, such as, our assumption (A) (see Section 3.2) is exactly same as what
has been termed as (b(n), a(n))-ergodic in [35] (see their Definition 2).

1.4.2. Major contributions of our work which are not in [35].

• In Section 3, using our representation theorem we not only derive fairly general weak
asymptotic for the random configuration of urn (Theorem 3.8) but we also derive weak
asymptotic for the color count statistics under the same general conditions (Theorem
3.10). For various statistical applications this may be of importance.

• In Section 5, we provide a non-trivial application of our representation theorem to derive
asymptotic of the sizes of the sub-trees rooted at the children of the root of a random
recursive tree. This is essentially an example of a reverse application of the representation
theorem.

https://arxiv.org/pdf/1606.05317.pdf
https://arxiv.org/pdf/1610.09057.pdf
https://arxiv.org/pdf/1610.09057.pdf
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• In Section 6, we also consider random replacement and establish corresponding represen-
tation theorems. As application we show that various non-standard limits can appear in that
context for urn schemes with random replacement. These results are of somewhat different
flavor than the usual random replacement matrix models studied in say [3]. However, our
results derived in Section 6 partially answer the open problem stated in Section 1.6.2 of
[35].

• Other than the above three, we also would like to note that our formulation works on any
general color set S endowed with a σ-algebra S . In fact, our main representation theorems,
namely, Theorem 2.4 and 2.8 works in this generality. Also as pointed out in Remark 3.3
some of the convergence results also hold in full generality. In contrast, [35] needs the
assumption that S is a Polish space.

1.4.3. One major contribution of [35] which is absent in our work.

• As mentioned above in Section 1.3, in one particular example, namely, urn associate with
random walk with i.i.d. light-tail increments, the authors derives a stronger result (see
Theorem 6 of [35]) of almost sure convergence for the configuration. Our Theorem 4.3 is
weaker and was earlier proved in [5].

1.5. Notations. Most of the notations used in this paper are consistent with the literature
on finite color urn models. However, we use few specific notations as well, which are given
below. These are similar to what we have used earlier in [6].

(i) All vectors are written as row vectors unless otherwise stated. Column vectors are denoted
by xT , where x is a row vector.

(ii) The standard Gaussian measure on Rd will be denoted by Φd with its density given by

φd (x) :=
1

(2π)d/2
exp

(
−‖x‖

2

2

)
, x ∈Rd.

For d = 1, we will simply write Φ for the standard Gaussian measure on R and φ for its
density.

(iii) The Gaussian distribution with mean µ and variance-co-variance matrix Σ in d-
dimension will be denoted by Normald (µ,Σ). For d= 1, we will simply write Normal

(
µ,σ2

)
,

for µ ∈R and σ2 > 0.
(iv) The symbol d

= will denote equality in distribution between two random vari-
ables/stochastic processes.

(v) The symbol⇒ will denote convergence in distribution of random variables.
(vi) The symbol

p−→ will denote convergence in probability.
(vii) The symbol w−→ will denote the weak convergence of probability measures in P (S).

1.6. Outline of the Paper. The rest of the paper is organized as follows: Section 2 con-
tains the two representation theorems, namely, Theorem 2.4 and Theorem 2.8, which are the
most important contributions of this work. In Section 3, we derive asymptotic results for
random and expected configurations and the color count statistics under fairly general condi-
tions. In Section 4, we provide many interesting applications mainly in the context of infinite
color urn schemes. Section 5 provides a non-trivial application of the representation theorem
for deriving certain asymptotic for the random recursive tree. In Section 6 we discuss random
replacement and establish representation there in and few non-trivial limiting distributions of
urns with random replacement. Finally, Section 7 contains few concluding remarks.
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2. Main Results and Their Proofs. In this section, we present the two main theorems
of this paper. These theorems, which we call the Grand Representation Theorem (Theorem
2.4) and the Marginal Representation Theorem (Theorem 2.8) provide certain “couplings”
of the urn model with the associated Markov chain through the observed sequence of colors.
These results are fairly general and hold for any balanced urn schemes with colors indexed
by an arbitrary set S. Before we state the results, we introduce here two important structures,
namely, Random Recursive Tree (RRT) and branching Markov chain on a RRT.

2.1. Random Recursive Tree (RRT). For n≥−1, let T n be the random recursive tree on
(n+ 2) vertices labeled by {−1; 0,1,2, . . . , n}, where the vertex labeled by−1 is considered
as the root. For sake of completeness we provide here the definition of the random recursive
tree. A random recursive tree with (n+ 2) vertices labeled by {−1; 0,1,2, . . . , n}, is a ran-
dom rooted tree, rooted at−1, and obtained by starting with a single node, labeled−1, which
acts as the root and then adding (n+ 1) vertices one by one, each time joining the new vertex
to a randomly chosen existing vertex; the random choices are uniform and independent of
each other. It was first introduced by Moon [37]. The survey [44] provides more details. We
consider {T n}n≥−1 as a growing sequence of random trees and define

(2.1) T :=
⋃
n≥−1

T n,

and call it the (infinite) random recursive tree. Formally, T can be constructed by using a
sequence, say, (Dn)n≥0, of independent discrete uniform random variables, such that, the
n-th one, namely Dn, is uniform on {−1; 0,1, · · · , n− 1}. The n-th vertex (labeled as n),
joins to a vertex labeled by the (random) index Dn. In this construction of T , we have←−n =
Dn, where ←−n is the parent of the n-th vertex (labeled as n). Note that in this construction
the random tree T n is constructed only using the variables {Dk}nk=0 and as n increases
the random trees are growing. Such construction of random recursive trees is available in
[20], and is referred to as the uniform random recursive tree in [20]. With a slight abuse of
terminology, we refer to it as the random recursive tree throughout.

For n≥ 0, let (1 + τn) be length of the unique path from the vertex n to the root −1 in the
random recursive tree T n with n+ 2 vertices, as defined above. Note τ0 = 0. The following
result is known in literature (e.g. see [19, 20]). However, for the sake of completeness, we
provide the proof.

LEMMA 2.1. In the above set up, as n→∞,

(2.2)
τn

logn
−→ 1 a.s.

and

(2.3)
τn − logn√

logn

d−→N (0,1) .

REMARK 2.2. For any vertex v ∈ T , denote by |v|T its depth from the root in T . Observe
that, the above lemma implies that if un is a vertex chosen uniformly at random from the
vertices of T n−1, then |un|Tlogn = |Dn|T

logn −→ 1 a.s. as n→∞. This observation we will need in
the proof of Theorem 3.4.

PROOF. Now, for 0 ≤ j ≤ n − 1, let Ij be the indicator that the vertex j lies on the
path from the root −1 to the vertex n. Then by construction (Ij)0≤j≤n−1 are independent
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Bernoulli variables with E [Ij ] = 1
j+1 , 0≤ j ≤ n− 1. Also,

(2.4) τn =

n−1∑
j=0

Ij .

Notice that Var (Ij) = 1
j+1

(
1− 1

j+1

)
, 0≤ j ≤ n− 1, thus

(2.5) E [τn] =

n−1∑
j=0

1

j + 1
∼ logn and Var (τn) =

n−1∑
j=0

1

j + 1

(
1− 1

j + 1

)
∼ logn,

as n→∞. So by Kronecker’s Lemma (see (8.5) on page 63 of [21]) it follows that

(2.6)
τn

logn
−→ 1 a.s.

as n→∞, proving (2.2). Further, (2.3) follows by an easy application of the Lyapunov
Central Limit Theorem (see Theorem 27.3 on page 362 of [7]).

2.2. Branching Markov Chain on the RRT. Let ∆ 6∈ S be a symbol, which is outside the
color set S. We define a stochastic process (Wn)n≥−1 taking values in Ŝ := {∆} ∪ S, such
that, W−1 = ∆, and for any n≥ 0 and A ∈ S ,

(2.7) P
(
Wn ∈A

∣∣∣Wn−1,Wn−2, . . . ,W−1;T n
)

=

U0 (A) if W←−n = ∆;

R (W←−n ,A) otherwise,

where recall←−n is the parent of the vertex labeled by n. This process, namely, {Wn}n≥0 will
be called a branching Markov chain on the RRT, starting at the root −1 and at a position
W−1 = ∆ with the Markov kernel R̂ on Ŝ, defined as,

(2.8) R̂ (w, ·) =

U0 (·) if w = ∆;

R (w, ·) otherwise.

The following results are immediate consequence of the definition.

PROPOSITION 2.3. Let {Wn}n≥0 be a branching Markov chain on the RRT T , as de-
fined above. Then for any n≥ 0, if v0 =−1;v1, · · · , vτn =←−n , v1+τn = n be the unique path
from the root −1 to the vertex n in the RRT T n on (n+ 2)-vertices, then given T n, and on
the event [τn = t], the conditional law of the chain Wv1 ,Wv2 , · · · ,Wv1+t is that of a Markov
chain on length t on S starting with the initial distribution U0 and Markov kernel R.

2.3. Grand Representation Theorem. The following theorem is a “representation” of the
entire sequence of colors (Zn)n≥0 in terms of the Branching Markov chain on random recur-
sive tree.

THEOREM 2.4. Consider an urn model with colors indexed by a set S endowed with a
σ-algebra S . Let R be the replacement kernel and U0 be the initial configuration. For n≥ 0,
let Zn be the random color of the (n+ 1)-th draw. Let (Wn)n≥−1 be the branching Markov
chain on T as defined in Section 2.2. Then

(2.9) (Zn)n≥0
d
= (Wn)n≥0 .
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PROOF. We will prove the result by establishing a coupling between the branching
Markov chain (Wn)n≥0 defined on the (infinite) random recursive tree T , and the random
drawn color sequence, namely, (Zn)n≥0.

We start by observing that from (1.1), we get for n≥ 1,

(2.10)
Un
n+ 1

=
U0

n+ 1
+

n−1∑
k=0

R (Zk, ·)
n+ 1

.

Also recall, that given the random configuration of the urn Un, the (n+ 1)-th drawn color,
namely, Zn has the (conditional) distribution given by Un

n+1 . Thus, using the equation (2.10)
we conclude that

(2.11) P
(
Zn ∈ ·

∣∣∣Zn−1,Zn−2, · · · ,Z1,Z0,U0

)
=
U0 (·)
n+ 1

+

n−1∑
k=0

R (Zk, ·)
n+ 1

.

Now let (Dn)n≥0 be the sequence of random variables as defined in Section 2.1 and we
construct the (infinite) random recursive tree T using them and also the branching random
walk (Wn)n≥−1 on it as described above. Then for any n≥ 0 and A ∈ S ,

(2.12) P
(
Wn ∈A

∣∣∣Wn−1,Wn−2, · · · ,W1,W0;U0,T n
)

= R̂ (W←−n ,A) .

But since←−n d
=Dn ∼Uniform{−1; 0,1, · · · , n− 1}, so we get

P
(
Wn ∈A

∣∣∣Wn−1,Wn−2, · · · ,W1,W0;U0

)
= E

[
R̂ (W←−n ,A)

∣∣∣Wn−1,Wn−2, · · · ,W1,W0;U0

]
= E

[
1[←−n=−1]U0 (A) + 1[←−n≥0]R (W←−n ,A)

∣∣∣Wn−1,Wn−2, · · · ,W1,W0;U0

]
=
U0 (A)

n+ 1
+

n−1∑
k=0

R (Wk,A)

n+ 1
.(2.13)

Finally, observing that Z0 ∼ U0 and W0 ∼ U0, and using equations (2.11) and (2.13) we
conclude that (2.9) follows by induction.

Following corollary follows immediately from the proof above.

COROLLARY 2.5. Consider an urn model with colors indexed by a set S endowed with a
σ-algebra S . Let R be the replacement kernel and U0 be the initial configuration. For n≥ 0,
let Zn be the random color of the (n+ 1)-th draw. Let (Wn)n≥−1 be the branching Markov
chain on T as defined in Section 2.2. Then

(2.14)
(
Un (·)
n+ 1

)
n≥0

d
=
(
P
(
Wn ∈ ·

∣∣∣Wn−1,Wn−2, · · · ,W1,W0;U0

))
n≥0

.

REMARK 2.6. The last result essentially states that the sequence of the random config-
urations of the urn, namely,

(
Un
n+1

)
n≥0

, can in principle be studied by observing only the

branching Markov chain variables, namely, (Wn)n≥−1. This is a powerful relation which we
will make use in the rest of the paper.
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Our next result states the relation between the color count statistics and the branching
Markov chain.

COROLLARY 2.7. Consider an urn model with colors indexed by a set S endowed with a
σ-algebra S . Let R be the replacement kernel and U0 be the initial configuration. For n≥ 0,
let Zn be the random color of the (n+ 1)-th draw. Let (Wn)n≥−1 be the branching Markov
chain on T as defined in Section 2.2. Then

(2.15) (N n)n≥1
d
=

(
n−1∑
k=0

δWk

)
n≥1

.

2.4. Marginal Representation Theorem. Our next result is a “representation” of the
marginal distribution for the randomly chosen color Zn in terms of the marginal distribu-
tion of the corresponding Markov chain sampled at random but independent times. As we
will see from the proof it is an immediate consequence of Theorem 2.4.

THEOREM 2.8. Consider an urn model with colors indexed by a set S endowed with a σ-
algebra S . Let R be the replacement kernel and U0 be the initial configuration. For n≥ 0, let
Zn be the random color of the (n+ 1)-th draw. Then there exist a Markov chain (Xn)n≥0 on
S with transition kernel R and initial distribution U0 and an increasing sequence of random
indices (τn)n≥0 with τ0 = 0, which are independent of the Markov chain (Xn)n≥0, such that,

Zn
d
=Xτn ,(2.16)

for any n ≥ 0. Moreover, the sequence of random indices (τn)n≥0 satisfies equations (2.2)
and (2.3).

REMARK 2.9. A version of this last result was obtained in Proposition 7 in [6], which
was restricted to the case when (Xn)n≥0 is a bounded increment random walk. Here however,
the result is for any general Markov chain (Xn)n≥0 .

REMARK 2.10. It is worthwhile to note here that, it is not necessary that the law of
the sequence (Zn)n≥0 is same as the law of (Xτn)n≥0, where the random variables are as
defined in Theorem 2.8. This is because (Zn)n≥0 is not necessarily Markov, but (Xτn)n≥0
is necessarily is a Markovian sequence. In fact, the law of the process (Zn)n≥0 is more
complicated as presented in Theorem 2.4.

PROOF. As before, let (1 + τn) be length of the unique path from the vertex n to the
root −1 in the random recursive tree T n with n+ 2 vertices. Thus the sequence of random
variables (τn)n≥0 satisfy the equations (2.2) and (2.3).

Now, on the same probability space where (Wn)n≥−1 and (T n)n≥−1 are defined, con-
struct a Markov chain (Xn)n≥0 on S, starting at X0 ∼ U0 with Markov kernel R which is
independent of (Wn)n≥−1 and (T n)n≥−1. So the sequence of (τn)n≥0 is independent of the
Markov chain (Xn)n≥0 by construction.

Using Proposition 2.3, for any n≥ 0, A ∈ S and t≥ 0,

(2.17) P
(
Wn ∈A

∣∣∣T n, τn = t
)

= P (Xt ∈A)1τn=t

Thus by taking expectation and summing over t, we get

Wn
d
=Xτn ,(2.18)

and thus (2.16) follows from Theorem 2.4.
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COROLLARY 2.11. Consider an urn model with colors indexed by a set S endowed with
a σ-algebra S . Let R be the replacement kernel and U0 be the initial configuration. For
n≥ 0, let Zn be the random color of the (n+ 1)-th draw. Then there exist a Markov chain
(Xn)n≥0 on S with transition kernel R and initial distribution U0 and an increasing sequence
of random indices (τn)n≥0 with τ0 = 0, which are independent of the Markov chain (Xn)n≥0,
such that,

(2.19)
E [Un (·)]
n+ 1

= P (Xτn ∈ ·) .

PROOF. Recall that from (1.4) the probability mass function of Zn is given by 1
n+1E [Un].

Thus, the equation (2.19) holds by using the Theorem 2.8.

3. Weak Asymptotic of the Urn Configuration and the Color Count Statistics. In
this section we state and prove some very general results for the asymptotic of the random
and expected configurations and the color count statistics of our general urn scheme (Un)n≥0,
defined in Section 1.1. These results will be proved using the two representations theorems
given in Section 2. We start by establishing an asymptotic result for the branching Markov
chain (Wn)n≥−1 as defined in the Section 2.3. For this and the later sections, we assume that
P (S) is endowed with the topology of weak convergence and any limit statement in P (S)
is with respect to the topology of weak convergence.

Let us first recall that (Wn)n≥−1 is defined as the branching Markov chain on the (infi-
nite) random recursive tree T := ∪n≥−1T n, starting at the root −1 and at a position ∆ 6∈ S.
Define Gn := σ (W0,W1, · · · ,Wn−1), n≥ 0. Let Qn be a version of the regular conditional
distribution of Wn given Gn. Note that Qn exists and is almost surely unique and proper, as
S is a Polish space and S is the corresponding Borel σ-algebra. In fact, almost surely,

(3.1) Qn (·) =
1

n+ 1

n−1∑
m=−1

R̂ (Wm, ·) ,

where R̂ is defined in (2.8) and W−1 = ∆, as defined in Section 2.2. Further, if qn be a
version of the regular conditional distribution of Wn given Gn and T n−1, then because of the
similar reason as above qn exists and is almost surely unique and proper. But, it is immediate
that almost surely,

(3.2) qn (·) =
1

n+ 1

n−1∑
m=−1

R̂ (Wm, ·) .

Thus,

(3.3) Qn = qn a.s.

This observation also tells us that condition on Gn the variable Wn is independent of the
random tree T n−1.

Also let, En be the (random) empirical measure of the variables (Wk)
n−1
k=0 , that is,

(3.4) En :=
1

n

n−1∑
k=0

δWk
.

Notice that

(3.5) Qn =
U0

n+ 1
+

n

n+ 1
EnR.
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Note that similar relationship holds for the sequence of random measures
(
Un
n+1

)
n≥0

and

(N n)n≥1, see equation (1.6)), which is consistent with Corollary 2.7.

It is worth noting here that by Corollary 2.5, (Qn)n≥0 corresponds to
(
Un
n+1

)
n≥0

. And,

by Corollary 2.7 (En)n≥1 corresponds to
(
N n

n

)
n≥1

.

3.1. An Assumption. Recall that (Xn)n≥0 denotes a Markov chain with state space S,
transition kernel R and starting distribution U0 and S ⊆ Rd for some d ≥ 1. We now make
the following assumption:

(A) There exists a (non-random) probability Λ on
(
Rd,BRd

)
and a vector v ∈ Rd, and two

functions a : R+→R and b : R+→R+, such that, for any initial distribution U0,

(3.6)
Xn − a (n)v

b (n)
⇒ Λ in P

(
Rd
)
.

REMARK 3.1. At first glance the assumption made above may look fairly restrictive.
However, it is satisfied by a large class of interesting examples, including the well studied
classical urn model case [27, 28], where R represents a finite state irreducible, aperiodic
Markov chain. More examples are discussed in Section 4. In fact, in some sense the assump-
tion above essentially says that the associated Markov chain is “ergodic”. This is because
we assume that after appropriate centering and scaling the chain has a limiting distribution
which is independent of the starting distribution. It is in fact, hard to get examples of Markov
chains taking values in a finite dimensional Euclidean space, which is “irreducible” (see [36]
for a formal definition), but the assumption (A) does not hold. Examples may be obtained
from Random Walks in Random Environment (RWRE). We discuss such cases in Section 6

REMARK 3.2. We emphasized here that Assumption (A) implies that for any s ∈ S,

(3.7) P

(
Xn − a (n)v

b (n)
∈ ·
∣∣∣X0 = s

)
−→ Λ (·) .

This is because Assumption (A) holds for every initial distribution and also the limiting
distribution is non-random. This fact is used in the proofs later.

REMARK 3.3. The assumption that S is a Polish space and is a subset of Rd is only nec-
essary for this assumption (A) to go through when a and b are non-trivial. If a= 0 and b= 1
then assumption (A) can hold for any general state space S endowed with a sigma algebra S
and in that case the assumption (A) should be read as:

There exists a (non-random) probability Λ on (S,S) such that, for any initial distribution U0,

Xn ⇒ Λ in P (S) .

Thus Part (a) of the Theorems 3.4, 3.7, 3.8, 3.9, and 3.10 hold without any Polish space
assumption on S and/or any embedding into an Euclidean space. The examples discussed in
Section 4.1 also works in this generality.

3.2. Asymptotic of Branching Markov Chain on Random Recursive Tree. We now prove
certain weak asymptotic for the branching Markov chain when the associate Markov chain
satisfy the assumption (A).
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THEOREM 3.4. Suppose that the assumption (A) holds. Let Qcs(r)n be the conditional

distribution of
Wn − a (1 + τn)v

b (1 + τn)
given Gn, that is, a centered and scaled version of Qn

with (possibly random) centering by a (1 + τn)v and scaling by b (1 + τn). Then under the
assumptions stated in (a), (b) & (c) below and as n→∞,

(3.8) Qcs(r)n
p−→ Λ,

where the above convergence is in P (S) under the conditions given in (a) below, otherwise

in P
(
Rd
)
. Moreover, let Qcsn be the conditional distribution of

Wn − a (logn)v

b (logn)
given Gn,

that is, a centered and scaled version of Qn with (non-random) centering by a (logn)v and
scaling by b (logn), then

(a) If a= 0 and b= 1, then

(3.9) Qcsn =Qn
p−→ Λ in P (S) .

(b) Suppose a= 0 and b is regularly varying function, then

(3.10) Qcsn
p−→ Λ in P

(
Rd
)
.

(c) Suppose a is differentiable and lim
x→∞

a′ (x) = ã <∞. Also assume b is regularly varying

and lim
x→∞

√
x

b (x)
= b̃ <∞ then

(3.11) Qcsn
p−→ Ξ in P

(
Rd
)
,

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and
Normal

(
0, ã2b̃2

)
v.

REMARK 3.5. It is worthwhile to note here that the asymptotic limit of Qcsn for Parts
(a) and (b) follow almost immediately from the limiting distribution of Qcs(r)n and the limit
remains same, namely, Λ, which is the scaled limit in this cases for the associated Markov
chain. For Part (c) above where there is a non-trivial centering for Qcsn a possibly different
limit is obtained, which is a random but independent Gaussian shift of Λ. As seen in the proof
given below, this random Gaussian shift appears due to the non-trivial centering term which
depends on the random recursive tree and the centering and scaling functions a and b.

PROOF. We start by proving that under the assumption (A), the equation (3.8) holds. For
this we break the proof in several steps as given below.

Proof of Equation (3.8). STEP I: To show that E
[
Q
cs(r)
n (·)

]
−→ Λ (·) in P

(
Rd
)
:

We begin by defining a new measure, which we denote by q̃csn . It is the conditional distribution

of
Wn − a (1 + τn)v

b (1 + τn)
given T n. From definition it follows:

(3.12) E
[
Qcs(r)n (·)

]
= E [q̃csn (·)] .

Thus it is enough to show E [q̃csn (·)]−→ Λ (·) in P
(
Rd
)
.
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Let ρ be a metric on P (S), which metrizes the weak convergence topology on it. Denote by
Ln the distribution of Xn−a(n)

b(n) . Under assumption (A), we have

(3.13) ρ (Ln,Λ)−→ 0,

as n→∞.
Now, fix ε > 0 and find H > 0 so large that ρ (Lh,Λ)< ε, for any h >H . Find N ≥ 1, so

large that (log(n+2))H

n+2 < ε for all n≥N .
Recall that, Dn denotes the vertex at which n-th vertex joins in the random recursive tree

T n. So from definition,

q̃n (dx) = E
[
R̂ (WDn , a (1 + τn) + b (1 + τn)dx)

∣∣∣T n ] .
Thus, given T n,

(3.14) ρ (q̃csn ,Λ)
d
=

n∑
j=0

1[τn=j] ρ (Lj+1,Λ) ,

where we recall, that 1 + τn is the length of the unique path from the vertex n to the root T n.
Now let SHn be the set of vertices of the random recursive tree Tn up to depth H . Then,

P (ρ (q̃csn ,Λ)> ε)

= E

P
 n∑
j=0

1[τn=j] ρ (Lj+1,Λ)> ε
∣∣∣T n


≤P

(
Dn ∈ SHn

)
=

E
[∣∣SHn ∣∣]
n+ 2

< ε,(3.15)

where H is as chosen above and the last inequality follows from the Lemma 3.6. This com-
pletes the proof of the STEP I.

In fact, it is worth noting here that what we proved above is indeed,

(3.16) q̃csn
p−→ Λ (·) in P

(
Rd
)
.

Now let C (Λ) ⊆ Rd be the set of all points of continuity of the measure Λ. Also for two
vectors x,y ∈ Rd we will write x≤ y, if and only if, the inequalities hold component wise.
Denote by (−∞,x] =

∏d
i=1 (−∞, xi] , where x := (x1, x2, · · · , xd).

STEP II: To show that Var
(
Q
cs(r)
n (−∞,x]

)
−→ 0 ∀x ∈C (Λ):

Fix x ∈C (Λ)⊆Rd. Recall, that from definition

(3.17) Qcs(r)n (−∞,x] =
1

n+ 1

n−1∑
m=−1

R̂ (Wm, (−∞, a (1 + |m|T )v + b (1 + |m|T )x] )

where in the last equality we write |m|T as the distance of the vertex m from the root −1
in the RRT T . Also note that for −1≤m≤ n− 1, the random variable |m|T is measurable
with respect to T n−1.

Now let (un, vn) be two vertices chosen uniformly at random from the set of vertices of
T n−1. Construct two random variables W+

un and W+
vn on the same probability space, such
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that, given Gn and (un, vn), the two random variables W+
un and W+

vn are independent and
have distributions given by R̂ (Wun , ·) and R̂ (Wvn , ·) respectively. Then

Var
(
Qcs(r)n ((−∞,x] )

)
=

1

(n+ 1)2

n−1∑
m,j=−1

Cov
(
R̂ (Wm, (−∞, a (1 + |m|T )v + b (1 + |m|T )x] ) ,

R̂ (Wj , (−∞, a (1 + |j|T )v + b (1 + |j|T )x] )
)

= Cov

(
1

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x

)
,1

(
W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

))
= P

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x and

W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

)

−
(
P

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x

))2

(3.18)

Now the second term in the above equation is exactly same as
(
P
(
Wn−a(1+τn)v

b(1+τn) ≤ x
))2

.

Thus, converges to Λ2 ((−∞,x] ) by Step I. So it is enough to show that the first term also
converges to Λ2 ((−∞,x] ).

Now let ξn be the least common ancestor of the vertices un and vn in T n−1. Then

P

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x and

W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

)
= E

[
P

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x and

W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

∣∣∣∣ ξn,Wξn ,T
)]

(3.19)

Now, given [|ξn|T = k,Wk,T ], the distribution of the variable W+
un is same as the distribu-

tion of a Markov chain starting at δWk
with replacement kernel R and have taken a total of

(1 + |un|T − k)-many steps. Similar arguments follow for W+
vn and they are independent. So

from (3.19) we get

P
(
W+
un ≤ a (1 + |un|T )v + b (1 + |un|T )x and W+

vn ≤ a (1 + |vn|T )v + b (1 + |vn|T )x
)

=

∞∑
k=0

P (|ξn|T = k)

∫
S

∫
S
R̂k(∆, dt)E

[
R̂1+|un|T −k (t, (−∞, a (1 + |un|T )v + b (1 + |un|T )x])

×R̂1+|vn|T −k (t, (−∞, a (1 + |vn|T )v + b (1 + |vn|T )x])
]

(3.20)

Now, from Theorem 7 of [32] we know that the sequence (|ξn|T )n≥0 converges weakly to
Geometric (1.2) -distribution. In particular, it remains tight. Thus given ε > 0 there exists
N ≥ 0, such that, P (|ξn|T ≤N)> 1− ε for all n≥ 0

So from (3.20) we get∣∣∣∣∣P
(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x and

W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

)

−
N∑
k=0

P (|ξn|T = k)

∫
S

∫
S
R̂k(∆, dt)E

[
R̂1+|un|T −k (t, (−∞, a (1 + |un|T )v + b (1 + |un|T )x])
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×R̂1+|vn|T −k (t, (−∞, a (1 + |vn|T )v + b (1 + |vn|T )x])
] ∣∣∣∣∣≤ ε(3.21)

Further, from Lemma 2.1 it follows that for every fixed k ≥ 1, (1 + |un|T − k)−→∞ and
(1 + |vn|T − k)−→∞ almost surely. Thus, under the assumptions given in the parts (a), (b)
& (c), we can conclude that each of the terms appearing within the expectation sign inside
the summation sign of the equation (3.21) above, converges to Λ ((−∞,x] ) almost surely.
Finally, using DCT we can conclude that
(3.22)

P

(
W+
un − a (1 + |un|T )v

b (1 + |un|T )
≤ x and

W+
vn − a (1 + |vn|T )v

b (1 + |vn|T )
≤ x

)
−→ Λ2 ((−∞,x] ) .

This completes the proof of the Step II.

STEP III: To show that equation (3.8) holds:

Now using the STEPS I & II we get that

(3.23) Qcs(r)n (−∞,x]
p−→ Λ (−∞,x] ∀x ∈C (Λ) .

Thus by a Cantor-type diagonal argument it follows that given any sub-sequence {nk}∞k=1
there exists a further sub-sequence

{
nkj
}∞
j=1

, such that,

Qcs(r)n (−∞,x] −→Λ (−∞,x] ∀x ∈Qd ∩C (Λ) a.s.

But as Qd is dense in Rd, it follows that given any sub-sequence {nk}∞k=1 there exists a
further sub-sequence

{
nkj
}∞
j=1

, such that,

Qcs(r)n (−∞,x] −→Λ (−∞,x] ∀x ∈C (Λ) a.s.

This proves that equation (3.8) holds.

Proof of Part (a). It is enough to observe that under the assumptions of a = 0 and b = 1,
Qcsn (·) =Q

cs(r)
n (·) and hence the proof follows from (3.8).

Proof of Part (b). We first observe that if b is regularly varying, then by Karamata’s Charac-
terization Theorem [26] and equation (2.6) we can show that

(3.24)
b (logn)

b (1 + τn)

p−→ 1.

Now observe that

(3.25)
Wn

b (logn)
=
b (1 + τn)

b (logn)

Wn

b (1 + τn)
.

Now using (3.8), and the equations (3.24) and (3.25) and applying the Converging Together
Lemma (also known as, the Slutsky’s Theorem) (see Exercise 2.10 in Section 2.2 of [21]) we
conclude that (3.10) holds.

Proof of Part (c). We first note that under the assumptions made in (c), using the standard
Mean Value Theorem (see Theorem 5.10 on pg. 108 of [41]) we get

(3.26) a (1 + τn)− a (logn) = a′ (ηn) (1 + τn − logn)

where

(3.27) min (1 + τn, logn)≤ ηn ≤max (1 + τn, logn) .
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So from (2.2) we get that

(3.28)
ηn

logn
−→ 1 a.s.

and hence

(3.29) a′ (ηn)−→ ã a.s.

The last conclusion is because of the assumptions made in (c). Thus using equations (2.3)
and (3.29) and applying again the Converging Together Lemma, we get

(3.30)
a (1 + τn)− a (logn)√

logn
⇒
{

Normal
(
0, ã2

)
if ã 6= 0;

δ0 otherwise.

Observe that,
(3.31)
Wn − a (logn)v

b (logn)
=
b (1 + τn)

b (logn)

Wn − a (1 + τn)v

b (1 + τn)
+

√
logn

b (logn)

a (1 + τn)− a (logn)√
logn

v.

First note that by the Converging Together Lemma, we get that for the first term of the equa-
tion above

(3.32) dist
(
Wn − a (1 + τn)v

b (logn)

∣∣∣Gn) p−→ Λ in P
(
Rd
)
.

Further, for the second term, again by the Converging Together Lemma, and the equation
(3.30) we have

(3.33)
a (1 + τn)− a (logn)

b (logn)
⇒

{
Normal

(
0, ã2b̃2

)
if ãb̃ 6= 0;

δ0 otherwise.

Now, let

An :=
Wn − a (1 + τn)v

b (logn)
and Bn :=

a (1 + τn)− a (logn)

b (logn)
.

For t ∈ Rd define φ
(r)
An

(t) := E
[
exp

(
iAnt

T
) ∣∣∣Gn] and for t ∈ R define φBn (t) :=

E [exp (itBn)]. Note these are the conditional characteristic function of An given Gn and the
(unconditional or marginal) characteristic function of Bn. Finally, for t ∈ Rd, let φn (t) :=

E
[
exp

(
iWn−a(logn)v

b(logn) tT
)]

, be the characteristic function of Wn−a(logn)v
b(logn) . Then

φn (t) = E
[
E
[
exp

(
iAnt

T
) ∣∣∣Gn,T n−1

]]
= E

[
φ

(r)
An

(t)

n−1∑
m=−1

exp

(
i
a (1 + |m|T )− a (logn)

b (logn)
vtT

)]
.(3.34)

The last equality follows because of the observation (3.3). Now by equation (3.32) we get

(3.35) φ
(r)
An

(t)
p−→
∫
Rd
eixtT Λ (dx) .

But since all quantities are bounded (in fact, bounded by 1), so we conclude that

E

[∣∣∣∣φ(r)
An

(t)−
∫
Rd
eixtT Λ (dx)

∣∣∣∣]−→ 0.
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Further,

φBn
(
vtT

)
= E

[
exp

(
iBnvt

T
)]

= E
[
E
[
exp

(
iBnvt

T
) ∣∣∣T n−1

]]
= E

[
n−1∑
m=−1

exp

(
i
a (1 + |m|T )− a (logn)

b (logn)
vtT

)]

−→ e−ã
2b̃2

(vtT )2

2 ,(3.36)

where the convergence follows from the equation (3.33). Finally, using equations (3.34),
(3.35) and (3.36) we conclude that

φn (t)−→ e−ã
2b̃2

(vtT )2

2 ·
∫
Rd
eixtT Λ (dx) ∀ t ∈Rd.

This proves the conclusion of Part (c).

LEMMA 3.6. Let SHn be the set of vertices of the random recursive tree Tn up to depth
1≤H ≤ (n+ 1). Then

(3.37) E
[∣∣SHn ∣∣]=O

(
(log (n+ 2))H

)
,

where
∣∣SHn ∣∣ denotes the cardinality of the set SHn .

PROOF. We prove this by induction on H. First let us fix H = 1, which is the base case
of induction. Observe that any vertex is at depth 1, if and only if, it attaches itself to the root
and this happens with probability 1

n+1 for the n-th vertex.
This implies that ∣∣S1

n+1

∣∣={∣∣S1
n

∣∣+ 1, w.p. 1
n+2 ,∣∣S1

n

∣∣ , w.p. (1− 1
n+2).

(3.38)

Therefore, it follows that

(3.39) E
[∣∣S1

n+1

∣∣ ∣∣∣T n]= (
∣∣S1
n

∣∣+ 1)
1

n+ 2
+
∣∣S1
n

∣∣ (1− 1

n+ 2
) =
∣∣S1
n

∣∣+ 1

n+ 2
.

The rest of the proof for H = 1 is immediate since

E
[∣∣S1

n+1

∣∣]=

n+1∑
j=0

1

j + 1
=O (log(n+ 2)) .

Let us assume that the result holds for H − 1. Observe that as in (3.38), given T n, we have∣∣SHn+1

∣∣={∣∣SHn ∣∣+ 1, w.p. |S
H−1
n |
n+2 ,∣∣SHn ∣∣ , w.p. (1− |S

H−1
n |
n+2 ).

(3.40)

This implies by arguments similar to (3.39), we obtain for general H

(3.41) E
[∣∣SHn+1

∣∣ ∣∣∣T n]=
∣∣SHn ∣∣+ ∣∣SH−1

n

∣∣
n+ 2

.

Hence,

E
[∣∣SHn+1

∣∣]=

n+1∑
j=H−1

∣∣∣SH−1
j

∣∣∣
j + 1

=O
(
(log(n+ 2))H

)
.
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3.3. Asymptotic of Empirical Law of the Branching Markov Chain. The following theo-
rem can be proved using the same techniques as in the proof of the Theorem 3.4. In fact, the
arguments are almost same but for sake of completeness, we provide the details.

THEOREM 3.7. Suppose that the assumption (A) holds. Let Ecs(r)n be a centered and
scaled version of En with (possibly random) centering by a (τn)v and scaling by b (τn).
Then under the assumptions stated in the parts (a), (b) & (c) of the Theorem 3.4 and as
n→∞,

(3.42) Ecs(r)n
p−→ Λ,

where the above convergence is in P (S) under the conditions given in (a) below, otherwise
in P

(
Rd
)
. Moreover, let Ecsn be the centered and scaled version of En with (non-random)

centering by a (logn)v and scaling by b (logn), then

(a) If a= 0 and b= 1, then

(3.43) Ecsn = En
p−→ Λ in P (S) .

(b) If the conditions of part (b) of the Theorem 3.4 hold, then

(3.44) Ecsn
p−→ Λ in P

(
Rd
)
.

(c) If the conditions of part (c) of the Theorem 3.4 hold, then

(3.45) Ecsn
p−→ Ξ in P

(
Rd
)
,

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and
Normal

(
0, ã2b̃2

)
v.

PROOF. Let

(3.46) Ên :=
1

n+ 1

n−1∑
k=−1

δWk
=

1

n+ 1
δ∆ +

n

n+ 1
En,

which is the empirical measure of the variables (Wk)
n−1
k=−1. From (3.5) it then follows that

(3.47) Qn = ÊnR̂.

Informally, we can think of Qn as “one more step taken" by a R̂-chain when its current law
is Ên. Note that for any A ∈ BRd ,

(3.48)
∣∣∣Ên (A)− En (A)

∣∣∣≤ 1

n+ 1
.

Thus almost surely,

(3.49) ‖ Ên − En ‖TV−→ 0.

So it is enough to prove the asymptotic results in equations (3.42), (3.43), (3.44) and (3.45)
for Ên instead of En.

Now, we recall that from the equation (3.47), our basic intuition that, Qn is “one more
step taken" by a R̂-chain when its current law is Ên. In other words, Ên is “one less step
taken". This intuition works for making the proofs of the various parts of Theorem 3.4 work
as well for proving the asymptotic of Ên.
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We will start by proving that under the assumption (A), the equation (3.42) holds.

Proof of Equation (3.42). STEP I: To show that E
[
Êcs(r)n (·)

]
−→ Λ (·) in P

(
Rd
)
:

Recall, ρ is a metric on P (S), which metrizes the weak convergence topology on it. Also
recall, Ln denotes the distribution of Xn−a(n)

b(n) . For ε > 0, let H and N (which may depend
on ε > 0) be chosen as in the proof of Theorem 3.4.

Recall that, Dn is the vertex in the random recursive tree T n−1 at which the n-th ver-
tex joins. So from definition, Ên = E

[
δWDn

∣∣∣Gn ]. Now let Ẽn := E
[
δWDn

∣∣∣T n ]. Thus,

E
[
Êcs(r)n (·)

]
= E

[
Ẽcsn (·)

]
, where E

[
Ẽcsn (·)

]
is a centered and scaled version of Ẽn with

centering by a (τn)v and scaling by b (τn). So it is enough to show that E
[
Ẽcs(r)n (·)

]
−→

Λ (·) in P
(
Rd
)
.

Now, notice that from definition |Dn|T = τn, thus, given T n,

(3.50) ρ
(
Ẽcs(r)n ,Λ

)
d
=

n∑
j=0

1[τn=j] ρ (Lj ,Λ) .

So with the same quantity SHn as defined in the proof of Theorem 3.4 and using Lemma 3.6,
we get

(3.51) P
(
ρ
(
Ẽcs(r)n ,Λ

)
> ε
)
≤P

(
Dn ∈ SHn

)
=

E
[∣∣SHn ∣∣]
n+ 2

< ε,

In other words,

(3.52) Ẽcs(r)n (·) p−→ Λ (·) ⇒ E
[
Ẽcs(r)n (·)

]
−→ Λ (·) .

This completes the proof of the STEP I.

Let C (Λ)⊆Rd be as defined in the proof of Theorem 3.4

STEP II: To show that Var
(
Êcs(r)n (−∞,x]

)
−→ 0 ∀x ∈C (Λ):

Fix x ∈C (Λ)⊆Rd. Recall, that from definition

Êcs(r)n (−∞,x] =
1

n+ 1

n−1∑
k=−1

1 ((Wk ∈ (−∞, a (1 + |k|T )v + b (1 + |k|T )x] )

Now, as in the proof of Theorem 3.4, let (un, vn) be two vertices chosen uniformly at random
from the set of vertices of T n−1. Then

Var
(
Êcs(r)n ((−∞,x] )

)
=

1

(n+ 1)2

n−1∑
m,j=−1

Cov (1 (Wm ∈ (−∞, a (|m|T )v + b (|m|T )x] ) ,

1 (Wj ∈ (−∞, a (|j|T )v + b (|j|T )x] ))

= Cov

(
1

(
Wun − a (|un|T )v

b (|un|T )
≤ x

)
,1

(
Wvn − a (|vn|T )v

b (|vn|T )
≤ x

))
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= P

(
Wun − a (|un|T )v

b (|un|T )
≤ x and

Wvn − a (|vn|T )v

b (|vn|T )
≤ x

)
−
(
P

(
Wun − a (|un|T )v

b (|un|T )
≤ x

))2

(3.53)

Now the second term in the above equation is exactly same as

1

n+ 1

n−1∑
k=−1

(
P

(
Wk − a (|k|T )v

b (|k|T )
≤ x

))2

.

But, by Theorem 2.8 and assumption (A), we get Wk−a(|k|T )v
b(|k|T ) ⇒ Λ. Thus, the second

term in (3.53) converges to Λ2 ((−∞,x] ). So it is enough to show that the first term also
converges to Λ2 ((−∞,x] ).

Now as in the proof of Theorem 3.4, let ξn be the least common ancestor of the vertices
un and vn in T n−1. Then

P

(
Wun − a (|un|T )v

b (|un|T )
≤ x and

Wvn − a (|vn|T )v

b (|vn|T )
≤ x

)
= E

[
P

(
Wun − a (|un|T )v

b (|un|T )
≤ x and

Wvn − a (|vn|T )v

b (|vn|T )
≤ x

∣∣∣∣ ξn,Wξn ,T
)]

(3.54)

Now, similar to the argument presented in the proof of Theorem 3.4, given [|ξn|T = k,Wk,T ],
the distribution of the variable Wun is same as the distribution of a Markov chain starting at
δWk

with replacement kernel R̂ and have taken a total of (|un|T − k)-many steps. Similar
arguments follow for Wvn and they are independent. So from (3.54) we get

P (Wun ≤ a (|un|T )v + b (|un|T )x and Wvn ≤ a (|vn|T )v + b (|vn|T )x)

=

∞∑
k=0

P (|ξn|T = k)

∫
S

∫
S
R̂k(∆, dt)E

[
R̂|un|T −k (t, (−∞, a (|un|T )v + b (|un|T )x])

×R̂|vn|T −k (t, (−∞, a (|vn|T )v + b (|vn|T )x])
]

(3.55)

Now, following same argument as in Theorem 3.4 leading to equation (3.21), we conclude
that ε > 0 there exists N ≥−1, such that,∣∣∣∣∣P

(
Wun − a (|un|T )v

b (|un|T )
≤ x and

Wvn − a (|vn|T )v

b (|vn|T )
≤ x

)

−
N∑
k=0

P (|ξn|T = k)

∫
S

∫
S
R̂k(∆, dt)E

[
R̂|un|T −k (t, (−∞, a (|un|T )v + b (|un|T )x])

×R̂|vn|T −k (t, (−∞, a (|vn|T )v + b (|vn|T )x])
] ∣∣∣∣∣≤ ε(3.56)

Now an argument similar to that in the proof of Theorem 3.4 leading to equation 3.22 will
show

(3.57) P

(
Wun − a (|un|T )v

b (|un|T )
≤ x and

Wvn − a (|vn|T )v

b (|vn|T )
≤ x

)
−→ Λ2 ((−∞,x] ) .

This completes the proof of the Step II.
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STEP III: To show that equation (3.42) holds:

Now using the STEPS I & II we get that

(3.58) Êcs(r)n (−∞,x]
p−→ Λ (−∞,x] ∀x ∈C (Λ) .

The rest follows from a diagonal argument as described in the Step III of the proof of the
Theorem (3.4)

Rest of the proof, that is the proofs of parts (a), (b) & (c) can be written almost verbatim
by looking into the proofs of the parts (a), (b) & (c) of Theorem 3.4.

3.4. Asymptotic of the Random Configuration of the Urn. Let Fn be the σ-algebra
σ (Z0,Z1, · · · ,Zn−1;U0), n≥ 0. Let Pn be a version of the regular conditional distribution
of Zn given Fn. Note that by construction Pn = Un

n+1 almost surely. The following result is
an immediate corollary of the Theorem 2.4 and Theorem 3.4.

THEOREM 3.8. Suppose that the assumption (A) holds. Let P csn is the conditional distri-
bution of Zn−a(logn)v

b(logn) given Fn, that is, a scaled and centered version of Pn with centering
by a (logn)v and scaling by b (logn), then

(a) If a= 0 and b= 1, then

(3.59) P csn = Pn
p−→ Λ in P (S) .

(b) If the conditions of part (b) of the Theorem 3.4 hold, then

(3.60) P csn
p−→ Λ in P

(
Rd
)
.

(c) If the conditions of the part (c) of the Theorem 3.4 hold, then

(3.61) P csn
p−→ Ξ in P

(
Rd
)
,

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and
Normal

(
0, ã2b̃2

)
v.

3.5. Asymptotic of the Expected Configuration of the Urn. Recall that E [Pn] = E[Un]
n+1

is the marginal distribution of Zn. The following result is an immediate corollary of the
Theorem 3.8.

THEOREM 3.9. Suppose that the assumption (A) holds, then

(a) If a= 0 and b= 1, then

(3.62) Zn⇒ Λ.

(b) If the conditions of part (b) of the Theorem 3.4 hold, then

(3.63)
Zn

b (logn)
⇒ Λ,

(c) If the conditions of part (c) of the Theorem 3.4 hold, then

(3.64)
Zn − a (logn)v

b (logn)
⇒ Ξ,

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and
Normal

(
0, ã2b̃2

)
v.



A NEW APPROACH TO PÓLYA URN SCHEMES 23

PROOF. The result follows from the Theorem 3.8 by taking expectation and noting the
fact that centering and scaling are non-random in all cases.

3.6. Asymptotic of the Color Count Statistics. The following result follows immediately
using Corollary 2.7 and Theorem 3.7.

THEOREM 3.10. Suppose that the assumption (A) holds. Let N cs
n be a scaled and cen-

tered version of N n with centering by a (logn)v and scaling by b (logn), then

(a) If a= 0 and b= 1, then

(3.65)
N cs
n

n
=
N n

n

p−→ Λ in P (S) .

(b) If the conditions of part (b) of the Theorem 3.4 hold, then

(3.66)
N cs
n

n

p−→ Λ in P
(
Rd
)
.

(c) If the conditions of the part (c) of the Theorem 3.4 hold, then

(3.67)
N cs
n

n

p−→ Ξ in P
(
Rd
)
,

where Ξ is Λ if ã = 0 or b̃ = 0, otherwise, it is given by the convolution of Λ and
Normal

(
0, ã2b̃2

)
v.

4. Applications in Various Urn Models. In this section we discuss several applications
of the representation theorems (Theorem 2.4 and Theorem 2.8) for deriving results on var-
ious urn schemes. Essentially all the results stated here are proved using the two general
asymptotic results, namely, Theorem 3.8 and Theorem 3.9, given in the previous section.

4.1. S is Countable.

4.1.1. R is Ergodic. Suppose the indexing set of colors S is either finite or countably
infinite and we endow S with the sigma-algebra S , which is the power set ℘ (S). In this case,
we can view the Markov transition kernel R as a matrix and it is then called the replacement
matrix. For S finite, it is the classical case. If we assume that R is ergodic, that is, assumption
(A) holds with a= 0 and b= 1, then from Theorems 3.8 (a) and 3.10 (a) we get the following
result.

THEOREM 4.1. Suppose S is countable, S = ℘ (S), R is ergodic with stationary distri-
bution π on S. Then as n→∞,

(4.1)
Un
n+ 1

p−→ π in P (S) .

In particular,

(4.2)
E [Un]

n+ 1

w−→ π,

as n→∞. Further,

(4.3)
N n

n

p−→ π in P (S) .
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If S is finite then using either matrix algebra techniques or multi-type branching process
techniques, it is known [27, 28] that stronger result holds. In fact, under even weaker as-
sumption of only irreducibility of the chain, the convergence in probability in (4.1) can be
replaced by almost sure convergence. We believe that in general for S countable, under er-
godicity assumption almost sure convergence should hold. Here we note that as soon as S
is infinite, the classical techniques such as matrix algebra methods using Perron-Frobenius
theory of matrices with positive entries [42] and Jordan Decomposition of finite dimensional
matrices [17], or martingale approach using embedding to multi-type branching processes,
which have been extensively used in classical urn model literature [1, 27, 28, 29, 3, 10, 18];
fails to derive any result. We are hopeful that our novel and fairly probabilistic approach,
namely, the Grand and Marginal representation Theorems should yield the classical result.
Unfortunately, we have been unable to derive it so far.

4.1.2. R is Block Diagonal. Similar to the previous section, suppose the indexing set of
colors S is either finite or countably infinite and we endow S with the sigma-algebra S ,
which is the power set ℘ (S). As in the previous case, we view the Markov transition kernel
R as a matrix. Suppose the indexing set of colors can be partitioned as S = ∪

i∈I
Ci, where

I is a countable set, and Ci is countable for all i ∈ I . We endow I with its power set as a
σ-algebra on it and each Ci is also endowed with its power set as the σ-algebra on it.

Now let, φ : S → I be the “projection” map, which maps s 7→ i, where i is the unique
element of I , such that, s ∈Ci.

Now, suppose for every i ∈ I and s ∈ Ci, the kernel R (s, ·) is a probability measure
supported only on Ci, that is,

(4.4) R (s,Ci) =

{
1 if s ∈Ci
0 otherwise.

As each Ci is countable, R on Ci can be realized as a (possibly infinite) matrix Rii indexed
by the colors in Ci.

Note that if S is finite then R is essentially a reducible matrix with diagonal blocks, which
can be presented as

R=


R11 0 0 · · · 0
0 R22 0 · · · 0
0 0 R33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Rkk

 ,

We further assume that for all i ∈ I , the kernel/replacement matrix, Rii restricted to its
“block” Ci, is ergodic with stationary distribution, πi.

THEOREM 4.2. Consider an urn model with colors indexed by a set S and replacement
kernel R as in (4.4). Then for every initial configuration U0, as n→∞,

(4.5)
Un
n+ 1

p−→Π in P (S) ,

where Π is a random probability measure on (S,S) given by

(4.6) Π (A) =
∑
i∈I

πi (A∩Ci) νi, A ∈ S ,
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and ν has Ferguson Distribution on the countable set I with parameter U0 ◦ φ−1, and νi =
ν ({i}), for i ∈ I . Further,

(4.7)
N n

n

p−→Π in P (S) ,

PROOF. Let us denote by ci :=
∑

v∈Ci U0,v, and Tn,i :=
∑

v∈Ci Un,v for each i ≥ 1. It

is easy to check that for each i ≥ 1, the sequence
(
Tn,i
n+1

)
n≥0

is non-negative a.s. conver-

gent martingale, see [27] for details. Consider each Ci to be a super color for i ≥ 1. Then
Tn := (Tn,i)i≥1 corresponds to the configuration of a classical Pólya urn model, with initial
configuration T0 = (ci)i≥1 . It is worthwhile to note here that Tn

n+1 is a probability measure
on I . Therefore, from [8], as n→∞

Tn
n+ 1

−→ ν a.s.,

where ν is a random measure on I having Ferguson Distribution with parameter U0 ◦ φ−1.
In particular, almost surely, for any i ∈ I ,

(4.8)
Tn,i
n+ 1

−→ νi.

For any super color Ci, i≥ 1, define the sequence of random times

Nn(i) := max{k ≤ n : Zk ∈Ci}=

n−1∑
k=0

1{Zk∈Ci}.

That is, Nn(i) is the last time till n, a color has been chosen from the set Ci.
Then it is obvious that Tn,i = TNn(i),i = ci +Nn(i). From (4.8) we know that Nn(i)−→

∞ a.s. as n→∞.
Denote by Un,Ci the subvector of Un corresponding to the color Ci. From [27], we know

that
(
UNn(i),Ci

)
is an urn model with initial configuration U0,Ci and replacement matrix Rii.

Therefore, from Theorem 4.1, we know that
UNn(i)

TNn(i),i

p−→ πi, as n→∞.

This implies that

(4.9)
Un,Ci
n+ 1

=
UNn(i),Ci

n+ 1
=
UNn(i),Ci

TNn(i),i

TNn(i),i

n+ 1
=
UNn,i,Ci
TNn(i),i

Tn,i
n+ 1

p−→ νi πi

where ν as in (4.8). This completes the proof. Finally, same argument proves (4.7).

4.2. Urn Models Associated with Random Walks on Rd. It this section we consider urn
models associated with random walks on countable lattices of Rd. These models were first
introduced in [6], where only bounded increment walks on Zd were considered.

4.2.1. Urn Models Associated with Random Walks on Zd. Here we take S = Zd for some
d≥ 1, and S will be taken as the power set of Zd. The kernel R can be viewed as an infinite
dimensional matrix index by the set of colors Zd, given by

(4.10) R (u, v) = p (v− u) , u, v ∈ Zd,
where p is the distribution on Zd of the independent increments of the walk.

Finite Variance Walks: Suppose p has finite second moment, leading to a random walk with
finite variance. Following theorem is a generalization of the results derived in [6].
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THEOREM 4.3. Consider an infinite color urn model with colors indexed by S = Zd, and
kernel R as given above. Suppose the starting configuration is U0. Then there exist µ ∈ Rd
and a positive definite matrix Σd×d, such that, if we define,

P csn (A) :=
Un
n+ 1

(√
lognAΣ1/2 + µ logn

)
, A ∈ BRd ,

where

xAΣ1/2 := {xyΣ1/2 : y ∈A},

then, as n→∞,

(4.11) P csn
p−→Φd in P

(
Rd
)
.

In particular,

(4.12)
Zn − µ logn√

logn
⇒ Normald(0,Σ),

as n→∞. Also let,

N cs
n (A) :=N n

(√
lognAΣ1/2 + µ logn

)
, A ∈ BRd ,

then

(4.13)
N cs
n

n

p−→Φd in P
(
Rd
)
.

PROOF. Let Xn be the position of the random walk starting with X0 ∼ U0 and indepen-
dent increments with distribution given by p. From the classical Central Limit Theorem [21],
we get that

(4.14)
Xn − nµ√

n
⇒Normald

(
0,Σ − µµT

)
,

where µ is the mean of the increment distribution and Σ is the second moment. Thus as-
sumption (A) holds, with v = µ, a (n) = n, b (n) =

√
n and Λ = Normald

(
0,Σ − µµT

)
.

We observe that the assumptions in Part (c) of Theorem 3.4 holds with ã= 1 and b̃= 1.
This completes the proof of (4.11), by observing that Ξ = Normald(0,Σ).

Finally, (4.12) follows from Theorem 3.9(c) and 4.13 follows from Theorem 3.10.

Infinite Variance Walks: In this section, we discuss some examples of infinite variance
cases, which cannot be derived by the techniques developed in [6]. Let p be a symmetric
distribution on Z, which is in the domain of attraction of a symmetric α-stable distribution
Λ, where 0< α < 2. For sake of completeness we provide here the definition of symmetric
α-stable distributions.

DEFINITION 4.4. A distribution Λ is said to have a symmetric α-stable distribution and
usually denoted by SαS, with 0<α< 2, if for any t ∈R,

(4.15) E
[
eitV

]
= exp (−σα|t|α) ,

for some σ > 0, where V ∼ Λ.
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Necessary and sufficient conditions, when p will be in the domain of attraction of such
a Λ can be found from [22] (see Chapter XVII.5). In particular, when p is symmetric, it is
enough to assume that there exists 0<α< 2 and a slowly varying function L (·), such that,

(4.16) P (|Y |> n) =
L (n)

nα
, n ∈N,

where Y ∼ p (see Theorem 2(c) of Chapter XVII.5 of [22]). In other words, if (Xn)n≥0 are
the positions of a random walk on Z starting at X0 and with i.i.d. increments distributed
according to the distribution p as given above, then

(4.17)
Xn

b (n)
⇒Λ,

where b (n) := n
1

α h (n) for some slowly varying function h. Note that h can be explicitly
computed from L (see equation (5.23) of Chapter XVII.5 of [22]). Following theorem is now
an immediate consequence of Theorem 3.8(b), Theorem 3.9(b) and Theorem 3.10(b)

THEOREM 4.5. Consider an infinite color urn model with colors indexed by S = Z, and
kernel R defined by (4.10), where p is as defined above. Suppose the starting configuration
is U0. Then there exists a slowly varying function h and a SαS-distribution Λ, where α is

as in (4.16), such that, if we define, P csn as the conditional distribution of
Zn

(logn)
1

α h (logn)
given Fn, then, as n→∞,

(4.18) P csn
p−→ Λ in P

(
Rd
)
.

In particular,

(4.19)
Zn

(logn)
1

α h (logn)
⇒ Λ,

as n→∞. Further, let

N cs
n (A) :=N n

(
(logn)

1

α h (logn)A
)
, A ∈ BRd ,

where N n is the corresponding color count statistics, then

(4.20)
N cs
n

n

p−→ Λ in P
(
Rd
)
.

4.2.2. Urn Models Associated with Periodic Random Walk on Rd. Let H = (V,E) be
the hexagonal lattice in R2 [see Figure 1]. The vertex set can easily be partitioned into two
non-empty subsets, V = V1 ∪ V2, where V1 and V2 are disjoint, and the random walk on H
is then a periodic chain. If the replacement kernel be denoted by R, then corresponding urn
scheme with colors indexed by H, is not covered by the earlier stated Theorem 4.3. For
studying such cases, we consider the following slightly more general type of random walk
on Rd.

Let {Yj(i),1 ≤ i ≤ k, j ≥ 1} be a collection of independent random d-dimensional
vectors, such that, for each fixed i ∈ {1,2, . . . k}, (Yj(i))j≥1 are i.i.d. We further assume
that for each fixed 1 ≤ i ≤ k, there exists a finite non-empty set Bi ⊂ Rd, such that,
P (Y1(i) ∈Bi) = 1, and Bi ∩Bj = ∅, for any 1≤ i, j ≤ k. That is, for each i ∈ {1,2, . . . , k},
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we assume that the law of Y1(i) is bounded. For 1≤ i≤ k, we shall write

(4.21)

µ(i) := E [Y1(i)] ,

µ := 1
k

k∑
i=1

µ(i),

Σ(i) := E
[
Y T

1 (i)Y1(i)
]
.

We further assume that Σ(i) is positive definite, for each 1≤ i≤ k. Let us denote by Σ1/2(i)

the unique positive definite square root of Σ(i). Note that, then Σ = 1
k

∑k
i=1Σ(i) is also

positive definite. We denote by Σ1/2
, the unique positive definite square root of Σ.

For n=mk+ r, where m ∈N∪ {0}, and 0≤ r < k, let

Xn =Xmk + Ym+1(1) + Ym+1(2) + . . .+ Ym+1(r+ 1),

be the k-periodic random walk with increments {Yj(i),1≤ i≤ k, j ≥ 1}.
In the remainder of this subsection, we will consider an urn model (Un)n≥0, with colors

indexed by S = Rd, starting at some distribution U0 on Rd and with a replacement kernel R
associated with a periodic random walk with periodic increments as given above.

THEOREM 4.6. Consider an infinite color urn model with colors indexed by S = Rd,
and kernel R as given above. Suppose the starting configuration is U0. If we define,

P csn (A) :=
Un
n+ 1

(√
lognAΣ

1/2
+ µ logn

)
, A ∈ BRd ,

where

xAΣ1/2 := {xyΣ1/2 : y ∈A},

then, as n→∞,

(4.22) P csn
p−→Φd in P

(
Rd
)
.

In particular,

(4.23)
Zn − µ logn√

logn
⇒ Normald(0,Σ),

FIG 1. Hexagonal Lattice
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as n→∞. Also let,

N cs
n (A) :=

Un
n+ 1

(√
lognAΣ

1/2
+ µ logn

)
, A ∈ BRd ,

then

(4.24)
N cs
n

n

p−→Φd in P
(
Rd
)
.

PROOF. We first note that by Theorem 3.8(c), Theorem 3.9(c) and Theorem 3.10, it is
enough to show that

(4.25)
Xn − nµ√

n
⇒Normald

(
0,D

)
,

where D = 1
k

∑k
i=1 Var (Y1 (i)). This follows from standard application of i.i.d. Central

Limit Theorem [21].

As an application of the Theorem 4.6, we now consider our starting example of the random
walk on hexagonal lattice. Let H = (V,E) be the hexagonal lattice in R2 [see Figure 1]. The
vertex set V = V1 ∪ V2, where V1 and V2 are disjoint. V1 and V2 are defined as follows:

V1,1 :=
{

1, ω,ω2
}
, where ω is a complex cube root of unity,

and

V2,1 :=
{
v+ 1, v+ ω,v+ ω2 : v ∈ V1,1

}
.

For any n≥ 2,

V1,n :=
{
v− 1, v− ω,v− ω2 : v ∈ V2,n−1

}
,

and

V2,n =
{
v+ 1, v+ ω,v+ ω2 : v ∈ V1,n

}
.

Finally, V1 = ∪j≥1V1,j and V2 = ∪j≥1V2,j . For any pair of vertices v,w ∈ V , we draw an
edge between them, if and only if, either of the following two cases occur:

(i) v ∈ V1 and w ∈ V2 and w = v+ u for some u ∈ {1, ω,ω2}, or
(ii) v ∈ V2 and w ∈ V1 and w = v+ u for some u ∈ {−1,−ω,−ω2}.

To define the random walk on H, let us consider {Yj(i) : i= 1,2, j ≥ 1} to be a sequence
of independent random vectors such that (Yj(i))j≥1 are i.i.d for every fixed i = 1,2. Let
Y1(1)∼Unif

{
1, ω,ω2

}
, and Y1(2)∼Unif

{
−1,−ω,−ω2

}
. One can now define a random

walk on H, with the increments {Yj(i) : i= 1,2, j ≥ 1}. Needless to say, this random walk
has period 2.

COROLLARY 4.7. Consider an infinite color urn model with colors indexed by S = H,
and kernel R as given above. Suppose the starting configuration is U0. If we define,

P csn (A) :=
Un
n+ 1

(
2
√

lognA
)
, A ∈ BRd ,

then, as n→∞,

(4.26) P csn
p−→Φ2 in P

(
R2
)
.

In particular,

(4.27)
2Zn√
logn

⇒Φ2,

as n→∞
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PROOF. First of all we note that, it is enough to show that Σ = 1
2I2.

Now, since 1 + ω + ω2 = 0, so for the random walk on the hexagonal lattice, µ(1) =
µ(2) = 0. Therefore µ= 0. Let

Σ(1) :=

(
σ1,1 σ1,2

σ2,1 σ2,2

)
Writing Y1(1) :=

(
Y

(1)
1 (1), Y

(2)
1 (1)

)
, observe that

σ1,1 = E

[(
Y

(1)
1 (1)

)2
]

and σ2,2 = E

[(
Y

(2)
1 (1)

)2
]
.

Also,

σ1,2 = σ2,1 = E
[
Y

(1)
1 (1)Y

(2)
1 (1)

]
.

Writing ω = Re (ω) + iIm (ω), it is easy to see that

σ1,1 =
1

3

(
1 + (Re (ω))2 +

(
Re
(
ω2
))2)

.

Since Re (ω) = Re
(
ω2
)
, therefore,

σ1,1 =
1

3

(
1 + 2 (Re (ω))2

)
.

Since ω = 1
2 + i

√
3

2 , therefore, this implies σ1,1 = 1
2 . Similarly, since Im (ω) =−Im

(
ω2
)
,

σ2,2 =
1

3

(
(Im (ω))2 +

(
Im
(
ω2
))2)

=
2

3
(Im (ω))2 =

1

2
.

Since, Re (ω) = Re
(
ω2
)
, and Im (ω) =−Im

(
ω2
)
,

σ1,2 = σ2,1 =
1

3

(
Re (ω) Im (ω) + Re

(
ω2
)
Im
(
ω2
))

= 0.

This proves that Σ(1) = 1
2I2. Similar calculations show that Σ(2) = 1

2I2. This implies that
Σ = 1

2Σ(1) + 1
2Σ(2) = 1

2I2. This completes the proof.

5. Application in Random Recursive Tree. As we have seen the Grand Representa-
tion Theorem (2.4) links the observed sequence of colors from an urn model with colors
index by S, starting configuration U0, a probability on (S,S), and replacement kernel R to
the corresponding Branching Markov chain on the random recursive tree as defined in the
equations (2.1) and (2.7). In the previous section we saw several applications of the type
that asymptotic properties of the urn model is derived by knowing the asymptotic properties
of the associated Branching Markov chain on the random recursive tree. It is also possible
that for certain choices of S, U0 andR the asymptotic properties of the urn is well known and
that then in turn one can get some non-trivial result about the associated Branching Markov
chain on the random recursive tree. In particular, when R is trivial as a Markov kernel, that
is, R (s, ·) = δs (·) for all s ∈ S, then the urn scheme is the classical scheme of Pólya when
S if finite [40], or the Blackwell and MacQueen Urn when S is a general Polish Space [8].
Following theorem about the sizes of the sub-trees rooted at the children of the root of a ran-
dom recursive tree is an immediate consequence of the Grand Representation Theorem (2.4)
and known facts about Pólya urn [40] and Blackwell and MacQueen Urn [8].
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THEOREM 5.1. Let T n be the random recursive tree on (n+ 2) vertices labeled by
{−1; 0,1,2, . . . , n}, where the vertex labeled by −1 is considered as the root. Let Nn be
the degree of the root vertex −1 and S1, S2, . . . , SNn be the sizes of the sub-trees rooted at
the children of the root. For any distribution F on a Polish space (S,S), if {Xi}i≥1 are
i.i.d. variables taking values in S with distribution F and are independent of the random tree
process {T n}n≥1. Then

(5.1)
1

n+ 1

Nn∑
i=1

Si δXi

w−→WF a.s.

where WF is a random probability on (S,S) with Dirichlet (F ) distribution. In particular,
for any 0 < p < 1, suppose X1,X2, . . . be an i.i.d. sequence of Bernoulli (p) random vari-
ables, which are independent of the random tree process {T n}n≥1. Then

(5.2)
1

n+ 1

Nn∑
i=1

XiSi −→Wp a.s.

where Wp ∼ Beta (p,1− p).

6. Urn Models with Random Replacement Scheme. Given a measurable set (S,S), let
P be a probability on the set of all Markov transition kernels R : S×S → [0,1]. A stochastic
process (Un)n≥0 ⊆M (S) will be called an urn model with random replacement scheme, if
U0 is a probability measure on S, and

(6.1) P
(
Zn ∈ ds

∣∣∣Un,Un−1, · · · ,U0, R
)

=
Un (ds)

n+ 1
, P− a.s.,

and

(6.2) Un+1 (A) = Un (A) +R (Zn,A) , A ∈ S P− a.s.

Here we will consider Zn as the color of the (n+ 1)-th selected ball. In other words, given
a random replacement scheme, say R, the process (Un)n≥0 has the conditional law of an urn
model with colors indexed by S, replacement scheme R and initial distribution U0.

Given R, the law of (Un)n≥0, denoted by P
(
·
∣∣R) will be referred to as the quenched law.

It is obvious that under the quenched law (Un)n≥0 is a Markov chain. The annealed law of
the process is given by E

[
P
(
·
∣∣R)], where the expectation is computed under the probability

P, determining the randomness in R. Note that, under the annealed law (Un)n≥0 need not be
Markovian. We further note that under the annealed law the equations (1.3) and (1.4) hold.

It follows from Section 1.1 that along with (Un)n≥0 we can construct stochastic process
(Xn)n≥0 on S, such that, given the random replacement scheme R, under the quenched law,
P
(
·
∣∣R), the sequence (Xn)n≥0 is a Markov chain with transition kernel R and initial dis-

tribution U0 and is independent of the urn process (Un)n≥0. Note that this process (Xn)n≥0
need not remain Markov, nor can be independent of the urn process (Un)n≥0, under the an-
nealed law. This stochastic process (Xn)n≥0 will be called the associated stochastic process.

6.1. Representation Theorems. Following result is an immediate consequence of the
Theorem 2.4 for an urn model with random replacement scheme.

THEOREM 6.1. Consider a random replacement scheme urn model (Un)n≥0 with colors
indexed by a set S endowed with a σ-algebra S . Let R be a random replacement kernel with
distribution P and U0 be the initial configuration. For n≥ 0, let Zn be the random color of
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the (n+ 1)-th draw. Let (Wn)n≥−1 be such that, given R, it is a branching Markov chain on
T as defined in (2.7). Then under both the quenched and annealed laws

(6.3) (Zn)n≥0
d
= (Wn)n≥0 .

The next result is a version of the Theorem 2.8 for the urn models with random replacement
scheme.

THEOREM 6.2. Consider a random replacement scheme urn model (Un)n≥0 with colors
indexed by a set S endowed with a σ-algebra S . Let R be a random replacement kernel with
distribution P and U0 be the initial configuration. For n≥ 0, let Zn be the random color of
the (n+ 1)-th draw. Let (Xn)n≥0 be the associated stochastic process taking values on S,
as defined above. Then there exists an increasing sequence of random indices (τn)n≥0 with
τ0 = 0, which are independent of (Xn)n≥0 under the quenched law; and are also independent
of R, such that, for any n≥ 0,

(6.4) P
(
Zn ∈A

∣∣∣R)= P
(
Xτn ∈A

∣∣∣R) , ∀ A ∈ S P− a.s..

In particular, under the annealed law, for any n≥ 0,

(6.5) Zn
d
=Xτn .

Moreover, the sequence of random indices (τn)n≥0 satisfies equations (2.2) and (2.3).

PROOF. The equation (6.4) follows from the Theorem 2.8 and the equation (6.5) follows
by taking expectation.

6.2. Applications. In this section we give two examples to demonstrate that urn models
on infinitely many colors and with random replacement scheme can have standard or non-
standard limits depending on the behavior of the associated stochastic process. Both the ex-
amples are related to random walks in random environment (RWRE) on the one dimensional
integer lattice Z and the colors will be indexed by Z.

Consider R = ((R (i, j)))i,j∈Z, where we assume that there exists 0 < δ < 1, such that,
for each i ∈ Z, δ < R (i, i− 1) ,R (i, i+ 1), and R (i, i− 1) + R (i, i+ 1) = 1 a.s. and
(R (i, i+ 1))i∈Z are i.i.d. Note that in this case, the associated stochastic process (Xn)n≥0
is a nearest neighbor RWRE on Z with i.i.d. environments, which is well studied in litera-
ture [45]. Recall that P and E denote respectively the distribution of R and expectation with
respect to P . We define

ρ0 :=
R (0,−1)

R (0,1)
.

and when E [ρ0]< 1, we define

v :=
1− E [ρ0]

1 + E [ρ0]
.

6.2.1. Urn Associated with a Transient RWRE on Z.

THEOREM 6.3. Consider an infinite color random replacement scheme urn model with
colors indexed by S = Z, and random kernel R is given above. We assume that

(6.6) E [logρ0]< 0,
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and there exists k > 2, such that

(6.7) E
[
ρk0

]
= 1, and E

[
ρk0 log+ ρ0

]
<∞.

Let the starting configuration be U0. If Zn denotes the color of the (n+ 1)-th selected ball,
then there exists a non-random σ2 > 0, such that, as n→∞,

(6.8)
Zn − v logn

v3/2σ
√

logn
⇒Φ.

PROOF. Let (Xn)n≥0 be associated stochastic process, which is a RWRE on Z with R
as the random transition kernel. From [31] we know that there exists σ1 > 0, such that as
n→∞,

(6.9) P

(
Xn − nv
v3/2σ1

√
n
≤ x
)
−→Φ (x) , for all x ∈R.

Now observe that,

(6.10)
Xτn − v logn

v3/2σ1
√

logn
=
Xτn − vτn
v3/2σ1

√
τn

√
τn

logn
+

1√
vσ1

τn − logn√
logn

.

By Theorem 6.2 we know that equation (6.5) holds where (Xn)n≥0 and (τn)n≥0 are inde-
pendent. Therefore, from (2.2), and (6.9), it follows that as n→∞,

(6.11) P

(
Xτn − vτn
v3/2σ1

√
logn

≤ x
)
−→Φ (x) , for all x ∈R.

Define σ2 :=
(

1 + 1
vσ2

1

)
. Then (6.8) follows from (2.3) and (6.11).

REMARK 6.4. As the above proof indicates, the conclusion in (6.8) also holds if we
assume (6.6) and a slightly restrictive condition that E

[
ρk0
]
< 1, for some k > 2. The key

idea is to show (6.9) should hold, which is essential for the computations as done in (6.10).
Theorem 5 on page 10 of [9] shows that (6.9) holds.

6.2.2. Urn Associated with a Recurrent RWRE on Z.

THEOREM 6.5. Consider an infinite color random replacement scheme urn model with
colors indexed by S = Z, and random kernel R is as given above. We assume that

(6.12) E [logρ0] = 0,

and

(6.13) P (ρ0 = 1)< 1.

Let

0< σ2 := E
[
(logρ)2

0

]
<∞.

Let the starting configuration be U0. If Zn denotes the color of the (n+ 1)-th selected ball,
then as n→∞,

(6.14)
σ2Zn

(log logn)2 ⇒G,

where G is a continuous distribution on R with probability density function g, given by

(6.15) g (x) =
2

π

∞∑
k=0

(−1)k

2k+ 1
exp

(
−(2k+ 1)2 π2

8
|x|

)
, x ∈R.
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PROOF. It is known from [43] that as n→∞,

(6.16) P

(
σ2Xn

(logn)2 ≤ x
)
−→

∫ x

−∞
g (t) dt, for all x ∈R,

Observe that,

(6.17)
σ2Xτn

(log logn)2 =
σ2Xτn

(log τn)2

(
log τn

log logn

)2

.

By Theorem 6.2 we know that equation (6.5) holds where (Xn)n≥0 and (τn)n≥0 are inde-
pendent. Therefore, as n→∞,

(6.18) P

(
σ2Xτn

(log τn)2 ≤ x
)
−→G (x) , for all x ∈R.

Also, from equation (2.2) it follows that as n→∞,

(6.19)
log τn

log logn
−→ 1, P− a.s.

Finally, (6.14) follows from (6.5), (6.18) and (6.19).

7. Conclusion. We have presented in this paper a new method for studying finite or
infinite color balanced urn schemes through their representation in the associated Markov
chain. It turns out that for any general balanced urn scheme, the sequence of observed colors
is a realization of a branching Markov chain with a modified kernel on the random recursive
tree. We have shown using such representation that under fairly general conditions one can
derive asymptotic of various urn schemes, which otherwise may be very difficult to find. As
illustrated by several examples, essentially the asymptotic may be derived if the underlying
Markov chain has a proper scaling limit. We believe that this novel approach will provide a
better understanding of these new type of urn schemes.
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