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Proper function of a wastewater treatment plant (WWTP) relies on maintaining a 
delicate balance between a multitude of competing microorganisms. Gaining a detailed 
understanding of the complex network of interactions therein is essential to maximising 
not only current operational efficiencies, but also for the effective design of new 
treatment technologies. Metagenomics offers an insight into these dynamic systems 
through the analysis of the microbial DNA sequences present. Unique taxa are deduced 
through sequence clustering to form operational taxonomic units (OTUs), with per-taxa 
abundance estimates obtained from corresponding sequence counts. The data in this 
study comprise weekly OTU counts from an activated sludge (AS) tank of a WWTP along 
with corresponding measurements of chemical and environmental (CE) covariates. Directly 
fitting a model to the OTU data is incredibly challenging because of the high dimensionality 
and sparsity of the observations. The first step is therefore to aggregate the OTUs into 
twelve microbial communities or “bins” using a seasonal phase-based clustering approach. 
The mean abundances in the twelve bins are assumed to vary over time according to a 
multivariate linear regression on the CE covariates. Deviations from the mean are then 
modelled using a vector autoregressive (VAR) model of order one, which is a linear 
approximation to the commonly used generalised Lotka-Volterra (gLV) model. Sparsity is 
assumed in the interactions between microbial communities by carrying out inference in 
a hierarchical Bayesian framework which uses a shrinkage prior for the autoregressive 
coefficient matrix of the VAR model. Different shrinkage priors are explored by analysing 
simulated data sets before selecting the regularised horseshoe prior for the biological 
application. It is found that ammonia and chemical oxygen demand have a positive 
relationship with several bins and pH has a positive relationship with one bin. These 
results are supported by findings in the biological literature. Several negative interactions 
are also identified. These novel biological findings suggest OTUs in different bins may be 
competing for resources and that these relationships are complex. Although simpler than a 
gLV model, the VAR model is still able to offer valuable insight into the microbial dynamics 
of the WWTP.
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1. Introduction

Due to recent advances in sequencing technology, there has been an increasing interest in longitudinal studies of mi-
crobial communities from a large range of environments. Unique ecological insights into response to perturbations (or 
environmental changes) and community stability can be gained from such studies (Faust et al., 2015). Furthermore, the 
complex non-linear interactions between different microbes result in many possible pseudo-stable states (Goyal et al., 2018). 
These interactions and others between different microbes and their environment contribute significantly to microbial dy-
namics (Konopka et al., 2015).

In microbial biology, DNA sequences extracted from environmental samples are grouped together into operational tax-
onomic units (OTUs) using a clustering algorithm, where typically a single OTU contains sequences that are at least 97%
similar with each other (Bunge et al., 2014; Xia et al., 2018). Crucially, a particular OTU does not necessarily exactly corre-
spond to a true biological species, but OTUs can be thought of as pragmatic proxies for classifying taxa. We have weekly 
OTU counts from the activated sludge (AS) of a UK-based wastewater treatment plant (WWTP) over five years, along with 
corresponding measurements of chemical and environmental (CE) covariates. After wastewater enters the WWTP, it under-
goes the physical process of primary sedimentation, during which large solids are settled out. The wastewater that emerges 
from the primary sedimentation tank is called settled sewage and is fed into an aerated tank. The content of the aerated 
tank is the AS, which plays a pivotal role in wastewater treatment. Primarily responsible for the consumption of dissolved 
organic material, it comprises a plethora of different aerobic and anaerobic microorganisms (Shchegolkova et al., 2016).

Microbial communities within AS are complicated biosystems with a network of interconnected trophic links. For exam-
ple, to degrade complex polymers, such as proteins, carbohydrates and lipids, many enzymes are required in a multi-stage 
process. Several species of microorganisms are needed for complete biodegradation. Gaining theoretical understanding of 
how these large biological systems work is likely to accelerate the creation of better biotechnological procedures (Curtis et 
al., 2003).

In the literature, community dynamics are often described by the generalised Lotka-Volterra (gLV) (Lotka, 1926; Volterra, 
1926) differential equations, where changes in microbial counts are modelled as a function of taxon-specific growth rates 
and pairwise interactions. For example, Mounier et al. (2008) used a gLV model to identify interactions within a cheese 
microbial community. The gLV model is used to characterise the dynamics of a K -species system, where K > 2. Changes in 
population of species i are described by

d

dt
yi(t) = bi yi(t) + yi(t)

K∑
j=1

aij y j(t), (1)

where yi(t) is the population size of species i at time t , bi is the growth rate of species i in the absence of any competition 
and A = (

aij
)

is a matrix of pairwise interactions.

Often in microbiome studies, the problem of finding the gLV parameters is simplified by using (1) to express d
dt log yi(t)

as a linear function in the y j(t), and then discretising the left hand side to view the problem of estimating the gLV pa-
rameters as one of least squares (Stein et al., 2013; Fisher and Mehta, 2014; Bucci et al., 2016). Despite widespread use of 
gLV models, Gibbons et al. (2017) investigated microbial dynamics in the human gut with a sparse vector autoregressive 
(VAR) model. This model offers the advantage over gLV models of allowing quantification of uncertainty by explicitly mod-
elling error. A key difference between the two approaches is that VAR models assume linear dynamics, whereas gLV models 
assume non-linear dynamics.

1.1. Scientific questions, contributions and organisation of the paper

Consider a VAR model of order one (VAR(1)) for a K -dimensional time series,

yt = μ + A
(

yt−1 − μ
) + εt, (2)

where yt is a K -dimensional vector of observations at time t , A is a K × K matrix of autoregressive coefficients, μ is a 
K -dimensional location parameter and εt is a vector of K normally distributed errors at time t , that is εt ∼ NK (0,�). As 
we show in Section S1 of the Supplementary Materials, a VAR(1) model can be regarded as a linear approximation to the 
non-linear numerical solution of a stochastic Lotka-Volterra system. Crucially, linearised versions of the interaction terms are 
preserved which, when non-zero, allow lagged cross-dependence between the time series and relate closely to the concept 
of Granger causality (Granger, 1969). Although the second-order non-linear interaction terms are omitted, linearisation of 
the stochastic Lotka-Volterra system affords substantial practical benefits by greatly simplifying the process of model-fitting. 
The focus of this paper is the development of a novel model for the WWTP microbial abundances that is based on a VAR(1) 
process. By modifying (2) to allow the location parameter to change over time, we are able to additionally incorporate 
information from the CE covariates. By fitting this model to the WWTP data we seek to answer two main questions: 
whether a VAR(1) model can provide useful biological insights into microbial interactions and whether there is evidence of 
a relationship between the CE covariates and microbial abundance.
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Table 1
Chemical and environmental covariates.

Covariate Unit

Ammonia, Chloride, COD, DO, Fluoride, MLSS, MLVSS, Nitrate, Nitrite, Phosphate, Sulphate mg/L
pH pH
Temperature Celsius

As explained in Section 3, we address the problem of high-dimensionality in the OTU data by using a novel seasonal 
phase-based clustering approach to form 12 “bins” of OTUs. As a result, the bins have a circular time-ordering, which 
means that a particular bin k typically has its peak abundance one month before bin k − 1 and one month after bin k + 1. 
Therefore, it is unlikely that the previous abundances for all bins influence the current abundance of any particular bin 
once abundance in the neighbouring bins is known. A sparse autoregressive matrix containing many zeros reflects this 
idea. We investigate different shrinkage priors for this parameter and compare the performance of the priors and their 
corresponding inferential procedures via a simulation study, before selecting a regularised horseshoe prior. As a by-product 
of this approach, we describe a novel extension to the work of Piironen and Vehtari (2017) on prior specification in sparse 
linear models, thereby providing a principled methodology for problems in which the response variable is vector-valued, 
rather than univariate. This involves careful specification of the hyperprior for the global shrinkage parameter using prior 
beliefs about sparsity.

The remainder of the paper is structured as follows. In Section 2, we describe the data and present findings from an 
exploratory analysis. Section 3 discusses clustering methods and describes a seasonal phase-based approach. In Section 4, 
we give a full model specification, followed by an exploration of shrinkage priors for the matrix of autoregressive coefficients 
in Section 5. In Section 6, the details of Bayesian inference for our model are given. Section 7 presents the results of applying 
our model to the WWTP data. Finally, we summarise our findings in Section 8.

2. Exploratory analysis

In this section, we describe the data and report the findings of an exploratory data analysis, which helps guide the 
adjustments that we make to the VAR(1) model in (2). We consider the datasets separately before analysing the combined 
data.

2.1. Data description

We have weekly counts of 9044 different OTUs measured at N = 257 time points, starting from 1st June 2011. Each year 
a week is missing for the Christmas period, which we treat as missing at random; the manner by which this assumption is 
incorporated in our model is explained in Section 4.3. The dimensions of the data present a significant inferential challenge. 
Given that the number of OTUs is much larger than the number of time points, fitting joint models to the counts of all OTUs 
would be computationally prohibitive. Furthermore, it is unclear whether the number of time points would be sufficiently 
large to detect interactions and there is the common issue of sparsity in the OTU table, that is, the presence of many zeros. 
In our data, approximately 90% of the counts are zero. These could correspond to OTUs that enter the system randomly and 
die out quickly. However, it is more likely that the zeros can be attributed to insufficient sampling depth. These two issues 
are tackled using clustering in Section 3.

Accompanying the OTU table is a taxonomy table containing the kingdom, phylum, class, order, family and genus of every 
OTU. However, some of the taxonomic ranks for many of the OTUs are missing. For example, roughly 54% of OTUs do not 
have a genus assigned. Table S2 in the Supplementary Materials shows the proportions of missing data for each taxonomic 
rank. The Ribosomal Database Project (RDP) classifier (Wang et al., 2007) was used for classification of each OTU. An OTU 
was classified as NA if its sequence was not sufficiently similar to entries in the RDP database.

Finally, we have measurements for 13 different CE covariates, shown in Table 1. Chemical oxygen demand (COD) mea-
sures the amount of oxidisable organic matter dissolved in the sample. Dissolved oxygen (DO) is the concentration of 
dissolved oxygen. Mixed liquor suspended solids (MLSS) is the concentration of suspended solids in the tank, determined 
by filtration and drying at a relatively low temperature. The related mixed liquor volatile suspended solids (MLVSS) records 
the mass of volatile material lost (evaporated) by heating filtered solids at a higher temperature. Supplementary Table S3 
shows the proportions of missing data for each covariate. We describe how we account for the small amount of missing 
covariate data in Section 4.3.

In the sections that follow, we discuss an exploratory data analysis of the OTU table and taxonomy table. We then look 
at all the data together, with a particular focus on finding possible relationships between some of the CE covariates and the 
OTUs.

2.2. OTU data

A time series plot (Supplementary Fig. S1) of the total number of OTUs recovered shows an absence of trend. The total 
number of OTUs recovered denotes the total number of OTUs (sequences) detected in a sample, at a particular time point. 
3



N.E. Hannaford, S.E. Heaps, T.M.W. Nye et al. Computational Statistics and Data Analysis 179 (2023) 107659
Fig. 1. Heatmaps of the pairwise correlations (a) between the top 12 OTUs and the CE covariates and (b) among the chemical and environmental covariates. 
(For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Since there are 9044 different OTUs, it is not possible to analyse every single OTU, so instead we look at the 12 most 
abundant OTUs based on median abundance. Fig. S2 in the Supplementary Materials shows time series plots for these top 
12 OTUs. OTUs 8, 15 and 28 clearly demonstrate seasonality with peaks occurring roughly once a year. OTU 1 also appears 
to have annual peaks, which are more visible when plotted on the log-scale (see Supplementary Fig. S3a). Seasonality with 
annual peaks is also evident from the stacked bar plot (shown in Supplementary Fig. S4).

2.3. Taxonomy table

Table S1 in the Supplementary Materials shows the unique numbers of kingdoms, phyla, classes, orders, families and 
genera. Supplementary Fig. S5 shows the time series plot for the top 12 genera based on median abundance. Missing genera, 
which are grouped together in a single “Unknown” group, represent a large proportion of the total abundance. Rhodobacter
clearly shows seasonality with annual peaks in late February/early March. Flavobacterium, Ferruginibacter and Trichococcus
also seem to display seasonality, although for the latter the seasonality is clearer on the log-scale (shown in Supplementary 
Fig. S3b). Supplementary Fig. S6 shows that the 12 genera account for about 60% of the total abundance on average at each 
time point.

Fig. S7 in the Supplementary Materials shows the time series plot for the 12 most abundant classes based on median 
abundance. There are hints of seasonality in some of the classes, even at this fairly coarse taxonomic rank, for example, 
Flavobacteriia, Actinobacteria and Deltaproteobacteria show rough annual peaks. Clostridia, Bacilli and Gammaproteobacteria
also show seasonal behaviour. The most abundant class is Alphaproteobacteria and its time series profile is very noisy with-
out any obvious annual peaks. Alphaproteobacteria form one of the most abundant groups of bacteria on the planet and 
are extremely diverse (Williams et al., 2007), so it is unsurprising that this class is the most abundant. The diversity of 
Alphaproteobacteria is also reflected here, as there are 1238 different OTUs from the class present. A class as diverse as 
this may have species that prefer different conditions and hence have peaks in population size at different times of the 
year. The stacked bar plot for the top 12 classes (Supplementary Fig. S8) shows the dominance of Alphaproteobacteria and 
Betaproteobacteria.

2.4. Analysis of the combined data

In this section we investigate relationships between OTU abundance and the CE covariates. We identify potential rela-
tionships between the CE covariates and the 12 most abundant OTUs, genera and classes. For each OTU, we can compute 
the relative abundance at each time point as the count for that OTU divided by total number of OTUs recovered at that time 
point. Fig. 1a shows a heatmap of the correlations between the covariates and the relative abundances of the top 12 OTUs. 
Some of the most abundant OTUs appear to be correlated with temperature. There appear to be some correlations between 
some of the OTUs and chloride, nitrite, COD, DO, phosphate, MLSS and MLVSS. Fig. 1b shows a heatmap of the pairwise 
correlations between the CE covariates. It seems that these covariates are potentially correlated with temperature. However, 
4
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Fig. 2. Heatmap of the correlations between the chemical and environmental covariates and (a) the 12 most abundant genera and (b) the 12 most abundant 
classes. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

with the exception of temperature and chloride, these correlations are fairly weak, so it would be naïve to attribute all of 
the possible relationships that we see here to an indirect relationship with temperature. Microorganisms in AS are very 
diverse and interact with, feed on and utilise chemical compounds in many different ways. Nevertheless, it does seem that 
in general for these top 12 OTUs, if the correlation with temperature is weaker, then the correlations with other covariates 
tend to be weaker too.

Fig. 2a shows the heatmap of correlations between the covariates and the 12 most abundant genera. Most of the gen-
era have at least a weak correlation with temperature, with the exception of Acidovorax, Ca. Microthrix and Defluviimonas. 
Rhodobacter, Ferruginibacter and Tetrasphaera appear to have a strong correlation with temperature, which we already 
identified as showing seasonal behaviour in Section 2.3. We also see that pH has a weak correlation with Acidovorax, Ferrug-
inibacter and Flavobacterium. There are weak correlations present between: nitrite and Tetrasphaera; nitrite and Rhodobacter; 
and nitrate and Tetrasphaera. COD and chloride have weak correlations with a few of the genera.

A heatmap of the correlations between the top 12 classes and the CE covariates is shown in Fig. 2b. Most classes exhibit 
at least weak correlation with temperature. Flavobacteriia appears to have a negative correlation with pH and Acidimicrobiia
appears to have a weak negative correlation with pH too.

2.5. Summary

From this exploratory analysis, we have identified signs of seasonality and the absence of time trend. Seasonality is taken 
into consideration via our time series clustering method in Section 3.1 and through the use of harmonic regression to model 
a time varying mean in the VAR(1) model in Section 4.2. Furthermore, we have identified relationships between some of 
the CE covariates and the relative abundances of the top 12 OTUs. These relationships persist even at the coarser taxonomic 
ranks of genera and classes. Thus, CE covariates are incorporated through linear regression in the time varying mean in 
Section 4.2.

3. Clustering

The data are counts of OTUs, where some OTUs have counts in the thousands and others have (mostly) counts of 
zero throughout time. Zeros can arise for structural reasons (“hard zeros”) or due to lack of sampling depth (“soft zeros”) 
(Kaul et al., 2017). As such, we would expect an excess of zeros over Poisson variation. Indeed, 91.5% of the counts are zero. 
Therefore, a natural approach might be to use a time series model for zero-inflated multivariate count data, for example, see 
Lee et al. (2018). However, there are over 9000 OTUs, indicating our model would have to allow over 81 million pairwise 
5
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interactions. To make model-fitting more manageable we instead choose to cluster the data, following analyses by other 
authors (see Eiler et al. (2012); Stein et al. (2013); David et al. (2014); Dam et al. (2016)). Choosing a small enough number 
of clusters removes the complication of zero inflation and allows us to make the simplifying assumption that our data can 
be modelled as continuous.

An approach that reduces the dimensionality of the data, but also retains all of the OTUs, is taxonomy-based clustering. 
This involves taking the n most abundant taxa at each time point that represent a high percentage, say 90%, of the total 
abundance and grouping the remaining taxa into an “other” category. The term taxa here could refer to any taxonomic rank. 
For example, Stein et al. (2013) grouped OTUs into the top ten genera and an “other” category in their work to infer gut 
microbiota ecology in mice. This approach is unsuitable for our data because of the large proportion (54.1%) of missing 
taxonomic information at the genus level and the large number of genera (187) required to capture 90% of the abundance. 
Even when considering median abundance and coarser taxonomic ranks, we find that the finest taxonomic rank we can use 
without having an unknown as a group is class, which is possibly too coarse. As we noted in Section 2.3, Alphaproteobacteria
was the most abundant class in the AS tank (with 1238 different OTUs) but this class is known to be extremely diverse in 
general (Williams et al., 2007). Modelling the change in its abundance over time and its interactions with other classes and 
the environment is unlikely to yield biologically useful insight, given that the different OTUs within the class may prefer 
different conditions.

Dam et al. (2016) researched dynamic models of the complex microbial metapopulation in a lake and suggested that, 
for characterising interaction dynamics, clustering by taxonomy is not an effective strategy. They proposed an alternative 
method of clustering OTUs, where they define peak profiles, which involves identifying positions in time where each OTU 
has its largest abundance(s). The OTUs are then clustered into “subcommunities” based on these profiles with remaining 
OTUs placed in an additional group. The rationale is that these subcommunities represent OTUs with similar dynamics 
perhaps because of symbiotic relationships or shared dependence on the environment. Since we have clear evidence of 
seasonality in the WWTP data, we adopt a similar approach.

3.1. Time series clustering

We implement our time series clustering approach as follows. OTU counts are available for 51 weeks every year (Christ-
mas week is excluded) for each of five consecutive years. For every OTU, we calculate the 51 weekly means, in each case 
averaging the observations for that calendar week across years 1 through 5. The 51 weekly means are then scaled to have 
standard deviation equal to one. Next, the scaled weekly means for each OTU are transformed from a set of 51 coefficients 
on a Euclidean basis to a set of 51 coefficients on a Fourier basis, with 25 harmonics of frequency k = 1, . . . , 25 cycles per 
year, and an intercept. The first harmonic dominated in amplitude in most cases which verified that many of the OTUs 
follow a simple annual cycle. This allowed a more automatic version of the peak profiles approach of Dam et al. (2016) to 
be implemented by clustering based on the phase of the first harmonic. Denote the phase of the first harmonic for OTU i
by φi . The interval [−π,π ] is divided into 12 equally sized intervals and we assign OTU i to the interval in which φi lies 
for all i. This gives 12 clusters, which we call “bins”. Let w̃ti be the count of OTU i at time point t . The set of OTUs in bin j
is S j and wt j = ∑

i∈S j
w̃ti is the count for bin j at time t . Visual inspection of the counts of each bin reveals that the bins 

peak once per year, with different bins peaking in different months.
To stabilise the variance of the wt j series over the year we log-transform the counts of the bins and set ỹt j = log(wt j). 

We then scale the log counts of each bin so that their variance is roughly one (see Section 5.2), denoting by yt j = ỹt j/s̄ for 
all t and j = 1, . . . , 12, where s̄ = (

∑12
j=1 s j)/12, s j is the standard deviation of ỹ1:N, j , yt j denotes the scaled log counts and 

N is the number of time points. Fig. 3 shows the time series plots of the scaled log counts for the 12 bins. The plots do not 
seem to demonstrate any signs of a time trend, which could indicate a mean net growth rate of zero. Each bin clearly shows 
seasonal behaviour with a peak every year, with the exception of bins 2 and 3, where the peaks are not as obvious. We 
can see that for each bin the annual peaks are different. Bin 1 seems to peak in February, bin 2 seems to peak in January, 
bin 3 seems to peak in December and so on. This labelling of the bins is a consequence of the first time point in the series 
being at the start of the June and the interpretation of the phase for each bin. For φ = 0 we have a harmonic (sine wave) 
that is 0 at time t = 0, which roughly corresponds to the last week of May. The peak of this harmonic will be at the end 
of August. Now, for example, take bin 1, which contains all OTUs with φ ∈ [−π,−5π/6). This corresponds to the harmonic 
being shifted five to six months forward in time (to the right) and means that OTUs in this bin typically peak anywhere 
between the end of January and February.

4. Model description

As discussed in Section 1.1, a vector autoregression is chosen as the model for the clustered OTU data. The novelty 
in our approach lies in the use of a hierarchical prior for the autoregressive coefficient matrix and error variance matrix. 
This is constructed to allow sparsity in the former whilst facilitating the development of a principled methodology for 
the specification of the hyperparameters in its prior. Before discussing the prior for the autoregressive coefficient matrix 
(Section 5), we describe our model in this section.

Our model has the high level structure yt = μt{CEt} +A(yt−1 −μt−1{CEt}) +εt , where {CEt} represents the incorporation 
of the CE data into the time varying mean μt and εt ∼ N(0, �) are error terms. First, we describe our choice for the 
6
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Fig. 3. Time series plots of the scaled log counts for the 12 bins. The dashed vertical lines represent the start of each year.

parametric structure of the variance matrix � for the error terms εt . Then we discuss how the time varying mean is 
constructed to allow for seasonality and the effects of the CE covariates. Finally, we conclude this section by describing how 
missing data are handled.

4.1. Error structure

When modelling with a vector autoregression, it is common to adopt a parsimonious parametric form for the error 
variance matrix �, for example, by assuming that � is diagonal, that is � = σ 2IK , where IK represents a K × K identity 
matrix. Since the clustered OTU data have a circular time-ordering, with the OTUs in neighbouring bins (or bins 12 and 
1) typically peaking in abundance in neighbouring months, a more appropriate parametric form is to assume �−1 is a 
symmetric, circulant, tridiagonal matrix of the form

�−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ−2
0 ω 0 0 · · · 0 0 0 ω

ω σ−2
0 ω 0 · · · 0 0 0 0

0 ω σ−2
0 ω · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 ω σ−2
0 ω

ω 0 0 0 · · · 0 0 ω σ−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

This is the precision structure of a circular first-order autoregressive model (Gelfand et al., 2010, Chapter 13) for which the 
interpretation of the errors, at any time t ∈ {1, . . . , N} is as follows: (i) for j < k, the errors of ytk have stronger correlations 
with the errors of yt j when min{k − j, j + K − k} is smaller; (ii) the correlation between the errors of yt j and yt, j+� is the 
same as the correlation between the errors of yt j and yt, j−� , where j + � and j − � are in arithmetic modulo K (and 0 is 
written as K rather than 0).

To ensure that �−1 is positive definite, it is convenient to reparameterise in terms of σ−2
0 = (�0 + �1) /

√
2 and ω =

(�0 − �1) /2
√

2. The precision matrix is then positive definite if and only if �i > 0 for i = 0, 1. The full derivation of this 
is given in Section S3 of the Supplementary Materials.

4.2. Time varying mean

Due to the manner in which the OTU data were clustered, it is likely that a time varying mean will be more appropriate 
than a mean which is static over time. This was also evident from the time series plots of the bins in Fig. 3. We therefore 
modify the simple VAR(1) model in (2) to give

yt = μt + A(yt−1 − μt−1) + εt, (4)
7
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for t = 2, . . . , N , where A is unstructured and εt is normally distributed with zero-mean and a precision matrix of the form 
(3). To capture the seasonal variation of each bin, we use a harmonic regression to fit a time varying mean, that is

μt = αt +
J∑

j=1

{
β j sin

(
2πt j

52

)
+ γ j cos

(
2πt j

52

)}
, (5)

where J is the number of harmonics. After fitting the model with J = 1, . . . , 4 harmonics, we select J = 2 for our final 
model because there was little evidence of β j and γ j being non-zero for j = 3, 4. This assessment was based on the 
marginal posteriors for the β jk and γ jk for j = 3, 4 and k = 1, . . . , K , each of which assigned near equal probability to either 
sign. Thus, in our final model, β1 and γ 1 correspond to the harmonic which repeats once per year and β2 and γ 2 to the 
harmonic which repeats twice per year. We then capture the information from the CE covariates by expressing the intercept 
term αt at time t as a linear combination of the CE covariates at the previous time point t − 1. This was based on expert 
biological judgement, motivated by the idea that the effect of any environmental conditions is unlikely to be instantaneous.

Let X̃ be a N × L matrix of our CE covariates. We find the covariate data are skewed and so apply a square-root trans-
formation. This transformation relates to how we handle missing data (see Section 4.3). Each column (covariate) is then 
standardised, denoting the resulting matrix as X. We let

αtk = b0k + b1kxt−1,1 + · · · + bLkxt−1,L, (6)

where xt� is the measurement of covariate � at time t and b�k is a regression coefficient for bin k and covariate �, noting 
that b0k is the intercept term for bin k. We collect the bij into a (L + 1) × K matrix B in which bij is the (i + 1, j)-element.

To select which covariates to include, we fit the model without any CE covariates so that αtk = b0k for t = 2, . . . , N and 
k = 1, . . . , K . Then we compute the Pearson correlation coefficient between the CE covariates at lag-one and the posterior 
means of the model residuals in each bin. CE covariates whose correlation with the residuals in one or more bin is signif-
icantly different from zero at the 5% level are selected for our model. This is a convenient yet simple method for variable 
selection. Though a more rigorous approach might instead make use of a shrinkage prior, our focus in this paper is spar-
sity in the matrix of autoregressive coefficients, as we discuss in Section 5. We find that L = 5 covariates are correlated 
with the residuals: nitrate, chemical oxygen demand (COD), ammonia, pH and phosphate. This selection of five covariates 
is supported by our exploratory data analysis. In Section 2.4, we found that several of the top 12 OTUs appeared to have a 
(contemporary) correlation with COD, ammonia and phosphate. We also found that one of the top 12 genera seemed to be 
correlated with nitrate and two of the top 12 classes had weak negative (contemporary) correlations with pH.

4.3. Missing data model

As discussed in Section 2.1, there are some missing OTU counts which lead to missing values in the scaled log counts 
of our bins yt j , and these are treated as missing at random. In other words, we assume that the missingness is not related 
to the value of the count, allowing the missing data mechanism to be regarded as ignorable. As we are taking a Bayesian 
approach to inference, we simply treat these missing values as unobserved variables and marginalise the posterior over their 
values.

Some of the time series of CE covariates also contain missing observations. As with the missing yt j , we treat these 
missing values as unobserved variables and average over our uncertainty in their values. This requires specification of a 
model for the (transformed) covariates X. We define xt = (xt1, . . . , xtL)

T and allow the covariates to evolve according to a 
simple first-order autoregression

xt = �X xt−1 + ε̃t, ε̃t ∼ NL (0,�X ) , (7)

for t = 2, . . . , N , where �X is assumed to be diagonal, �X = diag(φX,1, . . . , φX,L).
In practice, we do not marginalise over the missing data analytically. Instead, their values are stochastically imputed, 

along with all other unknown parameters, in the Markov chain Monte Carlo algorithm that is used for computational 
inference; see Section 6.2.

5. Sparsity in the autoregressive coefficient matrix

In Section 4 we described the overall structure of our model. Now we consider the prior for the autoregressive coefficient 
matrix, which we allow to be sparse. We begin this section with a justification for allowing sparsity, before discussing 
different sparsity-inducing priors.

Time series of microbial data typically comprise high dimensional counts collected at a relatively small number of time 
points. Learning all pairwise interactions from such data can be prohibitively difficult and so models generally assume that 
most pairs of taxa do not interact (Ovaskainen et al., 2017). However, this is typically not motivated by biological reasoning. 
Instead, it is a pragmatic response to the challenges posed by the dimensionality of the data, which typically comprises 
measurements on a very large number of species (or groups of species) over a relatively small number of time points. 
8
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Learning about all the pairwise interactions in such a dynamic system is often prohibitively difficult. In the present case, the 
clustered OTU data comprise N = 257 observations on K = 12 bins and yet there are K 2 = 144 unknown coefficients in the 
autoregressive coefficient matrix A in (4). As such, an unstructured prior for the elements of A would yield very imprecise 
inferences. Further, for this particular application, given the circular time-ordering of the bins in the clustered OTU data, 
it is plausible that the previous abundances for all bins do not influence the current abundance of any particular bin once 
the abundances of neighbouring bins are known, though speculation was not tested in the paper. A sparse autoregressive 
matrix would reflect this notion, while providing a pragmatic solution to the challenge of dimensionality discussed above, 
by allowing the more influential coefficients to be learnt with a greater degree of precision. We also benefit from useful 
biological interpretation of the sparse matrix structure. Since the parameters in the autoregressive coefficient matrix can 
be interpreted as regression coefficients in a linear model, this is essentially a problem of variable selection which can be 
addressed by assigning a sparsity-inducing prior to the elements in the autoregressive coefficient matrix; see, for example, 
Gefang (2016) or Ahelegbey et al. (2016). A commonly adopted prior is a zero-mean scale-mixture of normals, in which 
the mixing distribution can either be discrete, as in spike-and-slab priors (Mitchell and Beauchamp, 1988; George and 
McCulloch, 1993), or continuous, as in the (regularised) horseshoe (Carvalho et al., 2009, 2010; Piironen and Vehtari, 2017). 
A simulation experiment, described in Section S4 of the Supplementary Materials, suggests that the horseshoe prior can 
yield very similar inferences to the spike-and-slab prior, but with greatly improved mixing during posterior sampling, and 
so we adopt a prior of this form for the parameters of the autoregressive coefficient matrix.

The horseshoe prior belongs to a class of global-local shrinkage priors in which the effect of a global hyperparameter 
is to encourage shrinkage of all coefficients towards zero. Local shrinkage hyperparameters, in one-to-one correspondence 
with the coefficients, then give the prior a heavy tail so as to retain support for large values of individual coefficients. It 
is widely known that the posterior can be very sensitive to the prior chosen for the global shrinkage parameter. Motivated 
by this observation, Piironen and Vehtari (2017) describe a principled methodology for the specification of this prior in the 
context of (generalised) linear regression. However, their attention was limited to univariate response variables. In order to 
apply similar ideas to the important choice of prior for the global shrinkage parameter in the vector autoregressive model, 
the remainder of this section describes an extension of the methodology to the class of linear regression models with a 
multivariate response, of which a vector autoregression can be regarded as a special case.

To define a hyperprior for the global shrinkage parameter, we first derive a general shrinkage factor matrix K j in Sec-
tion 5.1, which indicates how much a matrix of regression coefficients is shrunk towards its least squares estimator. This is 
achieved by considering the posterior distribution for the regression coefficients in a multivariate linear regression model 
conditional on the error variance matrix. From the shrinkage factor matrix, we define the effective number of non-zero 
coefficients meff (in Section 5.2), which is based on the assumption that shrinkage factor matrices tend to be diagonal bi-
nary matrices (Section S5.3 in the Supplementary Materials). By considering the prior expectation of meff, we then show 
how prior information on the number of non-zero coefficients can be incorporated into a hierarchical prior for the global 
shrinkage parameter that depends on the error variance matrix. Finally, in Section 5.3, we describe our final choice of prior 
for the autoregressive coefficient matrix.

5.1. The shrinkage factor matrix

Denote by yi = (yi1, . . . , yi Q )T a Q -variate response vector and by xi a P -variate vector of covariates for experimental 
unit i. Under the multivariate linear regression model

yi = AT xi + ε i, ε i ∼ NQ (0,�), i = 1, . . . , N, (8)

where A = (a jk) is a P × Q matrix of regression coefficients and ε i = (εi1, . . . , εi Q )T is a vector of errors. We recover the 
order 1 vector autoregressive model when i indexes time, xi = yi−1 and Q = P = K . In matrix form, (8) can be written as

Y = XA + E (9)

where Y and X are N × Q and N × P data matrices with i-th rows yT
i and xT

i , and E is a N × Q matrix of errors with i-th 
row εT

i .
Stacking the rows of Y and A into N Q - and P Q -vectors, respectively, let y∗ = vec(YT ) = (y11, . . . , y1Q , y21, . . . , yN Q )T

and a∗ = vec(AT ) = (a11, . . . , a1Q , a21, . . . , aP Q )T . Now assume we give the regression coefficients a∗ a horseshoe prior

a jk|λ jk, τ ∼ N(0, τ 2λ2
jk),

λ jk ∼ C+(0,1),
(10)

for j = 1, . . . , P , k = 1, . . . , Q , in which the λ jk are the local shrinkage parameters, τ is the global shrinkage parameter and 
C+(a, b) denotes a half Cauchy distribution with location a and scale b.

In Section S5.1 of the Supplementary Materials, we show that the conditional posterior for the regression coefficients a∗
given the shrinkage parameters, �∗ = diag(λ11, . . . , λ1Q , λ21, . . . , λP Q )T and τ , along with the error variance �, is given by

a∗|�∗, τ ,�, y∗ ∼ NP Q (m∗,V∗) (11)
9
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where

m∗ = τ 2�∗
[
τ 2�∗ +

{(
XT X

)−1 ⊗ �

}]−1

â∗
, V∗ =

{
τ−2�∗−1 +

(
XT X ⊗ �−1

)}−1

in which

â∗ = vec(ÂT ) =
{(

XT X
)−1

XT ⊗ IQ

}
y∗

and Â is the least squares estimator of A.
Suppose that the explanatory variables are uncorrelated with zero mean and variance Var(X j) = s2

j so that XT X �
Ndiag(s2

1, . . . , s
2
P ). Although in practice, it will rarely be the case that all covariates are uncorrelated, this pragmatic 

simplification is adopted here to facilitate theoretical development of an intuitive measure of sparsity. Setting XT X �
Ndiag(s2

1, . . . , s
2
P ) in the expression for the posterior mean m∗ of a∗ shows that

τ 2�∗
[
τ 2�∗ +

{(
XT X

)−1 ⊗ �

}]−1

= blockdiag

⎧⎨
⎩τ 2�1

(
τ 2�1 + 1

Ns2
1

�

)−1

, . . . , τ 2�P

(
τ 2�P + 1

Ns2
P

�

)−1
⎫⎬
⎭

= blockdiag
(
IQ −K1, . . . , IQ −KP

)
where � j = diag(λ2

j1, . . . , λ
2
j Q ) is the j-th diagonal block of �∗ and

K j =
(

IQ + Ns2
jτ

2� j�
−1

)−1
, j = 1, . . . , P .

Hence we have

m∗ = blockdiag
(
IQ −K1, . . . , IQ −KP

)
â∗ = vec(MT )

where M = (m jk) = E(A|�∗, τ , �, Y). If we define a j = (a j1, . . . , a j Q )T , â j = (â j1, . . . , ̂a j Q )T and m j = (m j1, . . . , m j Q )T for 
j = 1, . . . , P as the (transposed) columns of A, Â and M, respectively, then it is clear that

m j = (
IQ −K j

)
â j, j = 1, . . . , P

and so we can imagine constructing the posterior mean MT of AT column-wise; column j, corresponding to the coefficients 
of covariate j in the linear predictors of Y1 through Y Q , is a linear transformation of column j of the (transposed) least 
squares estimator ÂT .

Since � j and � are real and positive definite, the eigenvalues, η1, . . . , ηQ , of Ns2
jτ

2� j�
−1 must be real and positive. 

The eigenvalues of K−1
j = Iq + Ns2

jτ
2� j�

−1 are therefore 1 + η j > 1 for j = 1, . . . , Q , and hence the eigenvalues of K j , 
1/(1 + η j), must lie between 0 and 1, making it a convergent matrix. We can therefore regard K j , as the shrinkage factor 
matrix for coefficients a j of covariate j. The size of the eigenvalues of K j determine the extent to which the coefficients a j
are shrunk towards zero. Since the eigenvalues η j are directly proportional to τ 2, as τ → 0, all eigenvalues of K j approach 
1 and we have K j → IQ and hence complete shrinkage. When τ → ∞ all eigenvalues of K j approach 0 and we have 
K j → 0Q , where 0Q denotes a matrix of zeros, and hence no shrinkage.

For an unstructured error variance matrix �, a closed form solution for the eigenvalues of the shrinkage factor matrix 
K j is not available. However, it can be instructive to consider simpler parametric forms. For the vector autoregressive model 
in Section 4, we assume that �−1 is a symmetric, circulant, tridiagonal matrix, taking the form (3). In this case, letting 
d2

j = Ns2
jτ

2σ−2
0 ω and λ̃ jk = d jλ jk for k = 1, . . . , K we have

K−1
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ω−1λ̃2
j1 σ 2

0 λ̃2
j1 0 0 · · · 0 0 0 σ 2

0 λ̃2
j1

σ 2
0 λ̃2

j2 1 + ω−1λ̃2
j2 σ 2

0 λ̃2
j2 0 · · · 0 0 0 0

0 σ 2
0 λ̃2

j3 1 + ω−1λ̃2
j3 σ 2

0 λ̃2
j3 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 σ 2
0 λ̃2

j,K−1 1 + ω−1λ̃2
j,K−1 σ 2

0 λ̃2
j,K−1

σ 2
0 λ̃2

jK 0 0 0 · · · 0 0 σ 2
0 λ̃2

jK 1 + ω−1λ̃2
jK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Although a closed-form solution for its eigenvalues and inverse are not available, in the special case when ω = 0, so that 
� = σ−2IQ , the shrinkage factor matrix reduces to
0

10
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K j = diag

(
1

1 + Ns2
jτ

2λ2
j1σ

−2
0

, . . . ,
1

1 + Ns2
jτ

2λ2
j Q σ−2

0

)
, j = 1, . . . , P (12)

so that each component of the posterior mean can be expressed as a product of a single shrinkage factor and the corre-
sponding element of the least squares estimator

m jk =
(

1 − 1

1 + Ns2
jτ

2λ2
jkσ

−2
0

)
â jk, j = 1, . . . , P , k = 1, . . . , Q .

Clearly the eigenvalues of K j are simply its diagonal entries with a value near 0 or 1 indicating no shrinkage or com-
plete shrinkage of the corresponding least squares estimate. The results for some other parametric forms are described in 
Section S5.2 of the Supplementary Materials.

5.2. Effective number of non-zero coefficients

In the case of a univariate response, there is a single shrinkage factor κ j for each regression coefficient a j . In the joint 
prior induced by the half-Cauchy densities for the local shrinkage parameters, each κ j is conditionally independent of κk

(k 
= j) given the global shrinkage parameter τ and the error variance σ 2. The conditional priors for the κ j can be derived 
in closed form and have u-shaped densities over the unit interval meaning that, a priori, most κ j are either zero or one and 
so

meff =
P∑

j=1

(1 − κ j)

can be interpreted as the effective number of non-zero coefficients.
In the multivariate case, when the error variance � is diagonal, Section 5.1 showed that the shrinkage factor matrices 

K j are also diagonal. It follows by direct analogy with the univariate result that the priors for the diagonal elements of K j

will be independent a priori with u-shaped densities. Therefore the same logic applies and we can interpret

meff =
P∑

j=1

tr
(
IQ −K j

)
(13)

as the effective number of non-zero coefficients. In the case of an unstructured error variance matrix �, conditional on �
and τ , the mapping from Q -dimensional (λ j1, . . . , λ j Q ) to Q 2-dimensional K j is dimension-increasing, and so K j must 
lie on a Q -dimensional manifold of RQ 2

. As such, the independent, unit-median half-Cauchy distributions for the diagonal 
elements of � j induce a joint distribution for K j for which a density function does not exist. We can, nevertheless, explore 
the marginal and pairwise joint densities of the elements K j,k� by simulation. For a range of values for the correlations in 
�, a simulation experiment described in Section S5.3 the Supplementary Materials reveals that the prior distribution for the 
elements of K j assigns high probability to diagonal binary matrices. It does not, therefore, seem unreasonable to continue 
to interpret meff, as defined in (13), as the effective number of non-zero coefficients.

The prior expectation of the effective number of non-zero coefficients meff , conditional on τ and � is not generally 
available in closed form owing to the absence of a closed form expression for K j . However, in the special case when 
� = σ 2IQ , it follows immediately from the results in the univariate case that

E�|τ ,�(meff) =
√

Nτσ−1

1 + √
Nτσ−1

P Q ,

where we have assumed that the explanatory variables have been standardised to have variance equal to 1, that is, s2
j =

1 for j = 1, . . . , P . Suppose e0 is our prior expectation for the number of non-zero coefficients in A. Then we can set 
E�|τ ,�(meff) = e0, τ = τ0 and solve for τ0 to obtain

τ0 = e0

P Q − e0

σ√
N

(14)

which demonstrates that τ should scale with σ/
√

N if the prior expectation of the effective number of non-zero coefficients 
meff is to remain constant. We can then choose as our prior for τ

τ |σ ∼ C+(0, τ 2
0 ) (15)

which has conditional median equal to τ0 given σ .
11
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Of course, for general problems it may not be the case that we wish to restrict � = σ 2IQ ; indeed this is not our choice 
for the vector autoregression in Section 4. In such cases, we can make our prior specification consistent with a central value 
in the prior for � by introducing a hyperparameter σ such that, say, E(�|σ) = σ 2IQ or E(�−1|σ) = 1/σ 2IQ . We can then 
construct our prior for (τ , �, σ) or (τ , �−1, σ) hierarchically so that

π(τ ,�,σ ) = π(τ |σ)π(�|σ)π(σ )

or

π(τ ,�−1,σ ) = π(τ |σ)π(�−1|σ)π(σ ) (16)

with the conditional distribution for τ |σ specified in (15).
For the symmetric, circulant, tridiagonal precision matrix �−1 in (3) used in the vector autoregressive model, param-

eterised in terms of �0 = √
2(σ−2

0 + 2ω)/2 > 0 and �1 = √
2(σ−2

0 − 2ω)/2 > 0, we use a prior of the form (16) and 
require

E(σ−2
0 |σ) = E(�0|σ) + E(�1|σ)√

2
= 1

σ 2
and E(ω|σ) = E(�0|σ) − E(�1|σ)

2
√

2
= 0

and hence

E(�0|σ) = E(�1|σ) =
√

2

2σ 2
.

Specifically, for i = 0, 1, independently, we take

�i |σ ∼ Ga

(
1

c2
�

,

√
2σ 2

c2
�

)
(17)

and then

σ ∼ LN(mσ , s2
σ ). (18)

In the application in Section 7, we choose c� = 1 to maximise the conditional prior variance for �i given σ whilst keeping 
the density at zero finite. We then take mσ = 0 and sσ = √

10 giving σ a distribution with median equal to one, consistent 
with our beliefs about the magnitude of the error variance. When � is unstructured, suitable choices for its prior are 
outlined in Section S6 of the Supplementary Materials.

5.3. Regularised horseshoe prior

The (original) horseshoe prior in (10) can pose some problems for the inferential scheme if one or more coefficient a jk

is only weakly identified by the likelihood. In such cases, the prior imparts little influence and the posterior remains long-
tailed and difficult to sample. In order to address this problem, without compromising the interpretation of the effective 
number of non-zero coefficients, Piironen and Vehtari (2017) propose a modification to the horseshoe, called the regularised 
horseshoe, which would involve replacing (10) with

a jk|λ jk, τ , c ∼ N
(

0, τ 2λ̃2
jk

)
, λ̃2

jk = c2λ2
jk

c2 + τ 2λ2
jk

, λ jk ∼ C+ (0,1) , τ ∼ C+ (
0, τ 2

0

)
, (19)

for j = 1, . . . , P , k = 1, . . . , Q . This can be regarded as a continuous analogue of a spike-and-slab prior, where the slab 
with infinite variance is replaced with a slab with finite variance c2. The parameter c > 0 can be fixed or given a prior to 
reflect beliefs about the maximum possible size of the regression coefficients. We use precisely a prior of this form for the 
parameters in the autoregressive coefficient matrix A in our VAR(1) model. Though we take e0 = E�|τ ,�(meff) = 12 to reflect 
our beliefs that only the K = 12 diagonal elements of A are likely to be non-zero, we found the posterior to be largely 
insensitive to plausible changes to this value; see Section S7 of the Supplementary Materials. We then choose

c2 ∼ IG(2,8) (20)

to reflect the idea that, after scaling the data so that each bin has standard deviation roughly equal to 1, we would not expect 
any regression coefficient to exceed around 5 in absolute value. Note that IG(g, h) denotes an inverse gamma distribution 
with shape g and scale h.
12
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6. Bayesian inference

In this section we begin by completing our description of the prior distribution for the model parameters. We then 
describe our approach to sampling from the posterior distribution using Hamiltonian Monte Carlo, implemented through 
Stan.

6.1. Prior distribution

There are several parameters in the hierarchical VAR(1) model. First, there is the matrix of autoregressive coefficients A
with its global shrinkage parameter τ ∈ R+ , the matrix of local shrinkage parameters �∗ and the regularising parameter 
c2. Additionally, there are the parameters for the precision matrix �−1 of the errors, denoted by � = {�0, �1} ∈ R2+
and the parameter σ in their hierarchical prior. There are the harmonic regression coefficients for μt , denoted by 
θ = {β1, β2, γ 1, γ 2}. We also have the coefficients of the CE covariates X and the intercepts in B, with unknown means 
μB = (μB0 , . . . , μBL ) and variances σ B = (σ 2

B0
, . . . , σ 2

BL
) for the L + 1 rows of B. Finally, we have the parameters in 

�X = diag(φX,1, . . . , φX,5) and �X in the missing data model.
We adopt a prior distribution in which these various parameter blocks are independent, with hierarchical structure 

within blocks:

π
(

A, τ ,�∗, c2,� ,σ , θ ,B,μB ,σ B ,�X ,�X

)
= π

(
A|�∗, τ , c2

)
π (τ |σ)π(σ )π(�∗)π(c2)π (� |σ)

× π (θ)π
(
B|μB ,σ B

)
π

(
μB

)
π (σ B) (21)

× π (�X )π (�X ) .

Our main focus in this paper has been the joint distribution encoded through the right-hand-side of the first line of (21). 
The distributions π

(
A|�∗, τ , c2

)
, π (τ |σ) and π(�∗) are given in (19); π(c2) in (20); π (� |σ) = π(�0|σ)π(�1|σ) and 

π(σ ) in (17) and (18), respectively.
For the parameters in the harmonic regression component of the time-varying mean, we take β j ∼ NK (0, Vβ) and γ j ∼

NK (0, Vγ ) independently for j = 1, 2, with Vβ = Vγ = 100IK . For the coefficients of the CE covariates, we adopt hierarchical 
priors for the b�k , such that, for each � = 0, . . . , L independently, we have b�k|μB�

, σ 2
B�

∼ N 
(
μB�

, σ 2
B�

)
independently for 

k = 1, . . . , K , μB�
∼ N 

(
aα,b2

α

)
and σ 2

B�
∼ IG (cα,dα). To give E(b�k) = 0, Corr

(
b� j,b�k

) = 0.95 and Var
(
b� j

) = 100, we select 
aα = 0, bα = √

95, cα = 2.25 and dα = 6.25. This allows borrowing of strength across bins between the coefficients of each 
CE covariate.

Finally, for the parameters in the missing data model, we adopt the prior φX,� ∼ Beta
(
aφ,bφ

)
independently for � =

1, . . . , 5 and �X ∼ W−1 (SX , v X ), with aφ = bφ = 2, SX = I5 and v X = 9. Note that W−1 (�,ν) denotes an inverse Wishart 
distribution with scale matrix � and ν degrees of freedom.

6.2. Posterior distribution and computation

Combining the prior (21) with the first-order Markovian likelihood (4) and the missing data model (7) using Bayes 
theorem yields the posterior distribution as

π
(

A, τ ,�∗, c2,� ,σ , θ ,B,μB ,σ B ,�X ,�X |Y,X
)

∝ π
(

A, τ ,�∗, c2,� ,σ , θ ,B,μB ,σ B ,�X ,�X

)
× π (Y|A, θ ,B,� ,X)π (X|�X ,�X ) ,

where the likelihood can be written as

π (Y|A, θ ,B,� ,X) =
N∏

t=2

π
(

yt |yt−1,A, θ ,B,� , xt−1
)

with yt |yt−1, A, θ , B, � , xt−1 ∼ NK
(
μt + A

(
yt−1 − μt−1

)
,�

)
. Here we have implicitly conditioned on the observed value of 

y1 so that the contribution of the marginal model π
(

y1|A, θ,B,� , x0
)

can be ignored. This is reasonable as we have a large 
enough sample size that little information will be lost in doing so. The missing data model π(X|�X , �X ) is constructed in 
an analogous fashion.

This posterior distribution is analytically intractable, so we resort to sampling from it using Markov chain Monte Carlo 
methods. More specifically, we use Hamiltonian Monte Carlo (HMC) (Neal, 2011; Girolami and Calderhead, 2011) which 
is a gradient-based, auxiliary variable method which is well-suited for inference in hierarchical models (Betancourt and 
Girolami, 2015). The HMC algorithm was implemented using rstan (Stan Development Team, 2020), the R interface to the 
Stan software (Carpenter et al., 2017). Stan requires users to write a program in the probabilistic Stan modelling language, 
the role of which is to provide instructions for computing the logarithm of the kernel of the posterior density function. The 
13
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Fig. 4. Posterior means (◦) and 95% credible intervals (—) for COD, ammonia and pH.

Stan software then automatically tunes and runs a Markov chain simulation to sample from the resulting posterior. The Stan 
program used in our application can be found in Section S8 of the Supplementary Materials.

We ran the algorithm for 10K iterations, with a warm-up period of 3000 iterations. In the interests of saving memory, 
the output is thinned to leave us with 1000 samples from the posterior. The usual graphical and numerical diagnostic checks 
gave no evidence of any lack of convergence and mixing was good. We present the results in the next section based on 
these posterior samples.

7. Application to WWTP data

Now we discuss our findings after fitting the model to the data. We look at the posterior means and 95% credible 
intervals (CIs) of the model parameters. If zero is contained in a CI, we use this as a discriminator to suggest that the 
parameter’s value may be (close to) zero. However, we emphasise that this does not necessarily mean that there is not 
considerable support for a positive or negative coefficient.

7.1. Time varying mean

We begin with the time varying mean μt of the model, which is described by two seasonal harmonics and time-
varying CE covariates. Recall that μt = αt + ∑2

j=1 β j sin (2π jt/52) + ∑2
j=1 γ j cos (2π jt/52), where αt has k-th element 

αtk = b0k + b1kxt−1,1 + · · · + bLkxt−1,L and X t are the transformed measurements of our chosen CE covariates at time t . 
We first examine the posterior means and CIs of the regression coefficients B for the CE covariates and provide possible 
biological explanations for the results. Then we look at the results for the harmonic regression coefficients β j and γ j for 
j = 1, 2.

7.1.1. Chemical and environmental covariates
There are five covariates in the model: nitrate, COD, ammonia, pH and phosphate. For all 12 bins, the CIs for nitrate 

and phosphate shown in Supplementary Fig. S27 all include zero, suggesting that neither of these covariates has a linear 
relationship with the time varying mean of any of the bins, although for phosphate we note that the CIs for bins 2 and 3 
only just overlap zero. Despite all of the CIs overlapping zero, there is a clear pattern for phosphate, with “winter blooming” 
bins showing a positive relationship and “summer blooming” bins showing a negative relationship, though this might be 
attributable to the nature of the autocorrelation between bins.

From Fig. 4, bins 4 to 10 have positive regression coefficients with COD, with bin 7 having the largest regression coeffi-
cient with a posterior mean of 0.2136 (4 d.p.). Ammonia has a positive regression coefficient with four bins (4 to 7) and, as 
we saw with COD, bin 7 has the largest regression coefficient with a posterior mean of 0.1412 (4 d.p.). Finally, bin 12 seems 
to have a positive relationship with pH, with its regression coefficient having a posterior mean of 0.1167 (4 d.p.).

Removal of ammonia and other pollutants is essential in the treatment of wastewater and ammonia is removed through 
nitrification by bacteria. In the nitrogen cycle, nitrification is a two-step process of ammonia oxidation then nitrite oxidation. 
Bacteria from the genus Nitrosomonas can oxidise ammonia to nitrite (Wetzel, 2001), although there are other ammonia 
oxidising microorganisms (AOM) too. Nitrobacter bacteria from the same phylum as Nitrosomonas oxidise nitrite to nitrate 
but are difficult to detect in-situ. Wagner et al. (1996) suggested that this could be because they have a minor role in 
WWTPs and although Alawi et al. (2009) agreed that their role is small, they also noted that lack of detection does not 
necessarily mean lack of presence. In the AS, no Nitrobacter counts are recorded. This could suggest that in our WWTP 
other nitrite oxidising bacteria (NOB), for example, Nitrospira and Ca. Nitrotoga, are responsible for nitrite removal or that 
the Nitrobacter bacteria simply have not been detected, as seen in the literature.

Until recently, Nitrospira were considered solely NOB (Mehrani et al., 2020). Daims et al. (2015) and van Kessel et al. 
(2015) independently discovered a single microorganism from the genus Nitrospira that can carry out complete nitrification 
through the comammox (complete oxidation of ammonia to nitrate) process. Additionally, it has been found that there is a 
reciprocal feeding interaction between nitrifiers. Some species of Nitrospira are able to convert urea to ammonia and carbon 
dioxide, which means they can supply AOM with ammonia and in return receive nitrite produced by ammonia oxidation 
(Koch et al., 2015). An OTU from the genus Nitrospira is one of the most abundant OTUs within bin 4 and this OTU could be 
capable of comammox which could provide a reasonable explanation as to why there is a positive coefficient for ammonia 
14



N.E. Hannaford, S.E. Heaps, T.M.W. Nye et al. Computational Statistics and Data Analysis 179 (2023) 107659
and bin 4. Furthermore, most microorganisms need ammonia to grow via nitrogen assimilation, so that might explain why 
we see a positive relationship between bins 4 to 7 and ammonia.

To understand why some of the other bins may have a relationship with COD, we look at the most abundant OTUs 
within some of the bins. Supplementary Table S5 shows the genera of the top six OTUs in each bin. An OTU from the genus 
Terrimonas is the most abundant in bin 4, with a median within-bin relative abundance of around 22.8%. Bacteria from this 
genus assimilate organic compounds such as sugars and proteins (McIlroy et al., 2015). This provides a possible explanation 
as to why bin 4 has a positive relationship with COD.

Of the 1274 OTUs in bin 5, the most abundant OTU based on median within-bin relative abundance (∼ 9.1%) is from 
the genus Zoogloea. Bacteria from this genus are highly active oxidisers of organic compounds (Dugan, 1981). Recalling that 
covariates are incorporated into the model via lag-one regression, the transformed COD measurement from the previous 
time point is used to model the intercept of the time varying mean at the current time point. If COD is high then this 
would suggest that there is a larger amount of organic compounds available for the Zoogloea bacteria to oxidise for energy 
and grow, thus explaining the positive coefficient between the bin containing Zoogloea and COD. However, this could result 
in the amount of organic compounds (and COD) decreasing which in turn could eventually slow the growth rate of the 
Zoogloea bacteria. More organic compounds can migrate into the system as more wastewater enters the WWTP which could 
then cause the COD to rise again. This describes a predator-prey-like dynamic and demonstrates that the relationships 
between the covariates and bins (of OTUs) are unlikely to be simple.

An OTU from the genus Leptothrix is the most abundant OTU in bin 7 based on median within-bin relative abundance 
(∼ 10.4%). Species from this genus typically oxidise iron and manganese (McIlroy et al., 2015). The second most abundant 
OTU is from the genus Dechloromonas with a median within-bin relative abundance of around 10%. In Section 2.4, we saw 
that some of the top genera were correlated with COD (Fig. 2a), where Dechloromonas had a fairly weak positive correlation 
and Leptothrix did not appear in the top 12 genera in the AS tank. Some species of Dechloromonas are polyphosphate-
accumulating organisms (PAOs) and some species have a role in denitrification (McIlroy et al., 2015). PAOs are bacteria that 
aid the removal of organic compounds containing phosphorus from wastewater. Denitrification is the reduction of nitrate 
to the eventual product of nitrogen gas, following a series of intermediate gaseous nitrogen oxide products. Nitrate and 
phosphorus both contribute to the COD of wastewater. Applying logic similar to that discussed for the Zoogloea bacteria in 
bin 5, a positive and likely non-linear relationship between COD and bin 7 seems sensible.

Finally, we focus on bin 12, which is the only bin that has a non-zero (positive) coefficient with pH. OTUs 15, 33 and 65, 
from the genus Rhodobacter, represent about 23.9% of bin 12 on average. Most Rhodobacter strains grow at an optimal pH 
range of 6.5 - 7.5 (Imhoff, 2015). The pH ranges from 5.02 to 7.5 with a median of 6.53, thus providing a possible explanation 
as to why bin 12 has a positive relationship with pH. Fig. 2a in Section 2.4 does not seem to indicate a correlation between 
Rhodobacter and pH. However, OTU 15 possibly has a weak positive correlation with pH (Fig. 1a). It is also important to 
remember that the heatmaps show correlations, not lag-one correlations. Calculating both the correlation (0.1155) and lag-
one correlation (0.1679) between pH and Rhodobacter, we see that the lag-one correlation is stronger, thus corroborating 
our results. Furthermore, this relationship remains after allowing for other covariates and interactions, which highlights the 
benefit of the model; this relationship may otherwise go unnoticed.

7.1.2. Harmonic regression coefficients
Now we look at the harmonic regression coefficients of the model. Supplementary Figs. S28 and S29 show the posterior 

means and 95% CIs for the harmonic regression coefficients β j and γ j for j = 1, 2. The change in the values of the β jk and 
γ jk across bins, k = 1, . . . , 12, for the first harmonic ( j = 1) can be explained by our chosen clustering method, which is 
based on the idea that the OTUs display seasonal variation and peak in different months. Recalling from Section 3.1, OTUs 
in bin 1 peak in February, OTUs in bin 2 peak in January, OTUs in bin 3 peak in December and so on. Based on the CIs, 
it would seem that only bins 2, 3 and 4 seem to have non-zero coefficients for the second harmonic, suggesting that their 
scaled log counts do not follow a pattern as simple as a sinusoid. Recall that in the time series plots of the bins in Fig. 3
(Section 3.1), we saw that the annual peaks were not as obvious in bins 2 and 3, suggesting a sinusoid may not be such a 
good descriptor. Perhaps, this is why we have non-zero coefficients for the second harmonics for these two bins. Reviewing 
the time series plots again, we can also see that in bin 4, there seem to be two peaks within 2013, with a smaller peak in 
the middle of the year and a larger peak around October. This might explain why we have a non-zero coefficient for the 
second harmonic in bin 4. Supplementary Fig. S30 shows posterior means of the time varying means μt and the 95% CIs 
plotted over the scaled log counts for each bin. The seasonal patterns of each bin seem to have been captured fairly well.

7.2. Matrix of autoregressive coefficients

A vector autoregression is stationary if and only if the roots of the characteristic equation lie outside the unit circle; for 
models of order one, this means stationarity occurs if and only if the spectral radius of the single autoregressive coefficient 
matrix A is less than one. Interestingly, all the posterior samples of A in our analysis of the WWTP data lie within this 
stationary region. This suggests that the groups of microbes represented by our twelve bins are in a stable state after allow-
ing for seasonality and the effects of the CE covariates. This is consistent with recent findings on the microbial community 
structure in the AS of WWTPs (Shchegolkova et al., 2016).
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Fig. 5. Heatmap of the posterior means of the autoregressive coefficients. (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 6. Posterior means (◦) and 95% credible intervals (—) of the autoregressive coefficients.

The matrix of autoregressive coefficients is also informative about the relationships between bins. The posterior means of 
the autoregressive coefficients are shown in a heatmap in Fig. 5 and they are also shown in Fig. 6 with their corresponding 
95% CIs. From the heatmap, we can see that the matrix of autoregressive coefficients based on posterior means is fairly 
sparse. With the exception of bin 12, all the bins have a positive autoregressive coefficient with themselves. In other words, 
the scaled log count of the previous time point seems to have a positive relationship with the scaled log count at the current 
time point, which seems sensible. Bins 1, 4, 5, 9 and 11 have particularly large “within-bin” autoregressive coefficients with 
posterior means larger than 0.5. It is surprising that the a12,12 is a near-zero coefficient, with a posterior mean of 0.019 (3 
d.p.). It could be that yt,12 is better explained by yt−1,1 than yt−1,12. Bin 1 peaks in February and bin 12 peaks in March 
and the posterior mean of a12,1 is positive (0.276), so this does not seem unreasonable. The notably larger diagonal values 
in A suggest that a possible improvement to the regularised horseshoe in application to vector autoregressions might allow 
the diagonal and off-diagonal elements to have their own global shrinkage parameters.

In addition to the within-bin autoregressive coefficients akk , we see from the CIs in Fig. 6 that there is evidence for a few 
non-zero “between-bin” posterior autoregressive coefficients a jk, j 
= k. The posterior means for these coefficients whose CIs 
do not overlap zero are listed in Table 2. Apart from a12,1, the non-zero between-bin coefficients are smaller than all the 
non-zero within-bin coefficients.
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Table 2
Posterior means (3 d.p.) of the non-zero between-bin coefficients.

Coefficient Posterior Mean Coefficient Posterior Mean

a2,4 -0.204 a4,12 -0.229
a2,5 0.176 a5,6 -0.257
a3,11 -0.119 a6,5 -0.200
a4,2 -0.14 a11,10 -0.202
a4,7 -0.166 a12,1 0.276

The non-zero between-bin coefficients constitute novel biological findings. To aid interpretation we look at the most 
abundant OTUs in each bin again. As mentioned above, the most abundant OTU in bin 5 is from the genus Zoogloea. The 
second most abundant OTU is from the genus Acidovorax. In bin 6, the second most abundant OTU is from the genus 
Dechloromonas, which as mentioned above is capable of nitrite reduction, as well as sulphate reduction. This is also true 
for Zoogloea and Acidovorax bacteria (McIlroy et al., 2015). Perhaps these bacteria amongst others that are not in the most 
abundant OTUs are competing for resources such as nitrite and sulphate, resulting in the negative autoregressive coefficients.

As stated above, an OTU from the strictly aerobic genus Terrimonas is the most abundant in bin 4. The second most 
abundant OTU is from the genus Ca. Microthrix, which is also described as aerobic in McIlroy et al. (2015). The top two 
OTUs in bin 2 are from the family Rhodobacteraceae with unknown genera. There are at least 288 known species from 99 
genera (Pujalte et al., 2014) in the family Rhodobacteraceae, any of which the top two OTUs could be from. However, the 
third most abundant OTU, representing on average 14.5% of bin 2, is from the genus Haematobacter from the same family, 
which are aerobic bacteria. We cannot determine the genera of the top two OTUs but they may be aerobic, especially 
as most Rhodobacteraceae are aerobic (Pujalte et al., 2014). Perhaps there are negative interactions between bins 2 and 4 
because aerobic microorganisms in both bins are competing for oxygen.

7.3. Precision matrix for errors

Recall that the errors in our model εt follow a NK (0, �) distribution and we have a symmetric, tridiagonal, circulant 
precision matrix for the errors, shown in (3). The posterior means for ω0 and ω1 are 6.7354 and -3.2183 (to 4 d.p.) re-
spectively, with standard deviations 0.1926 and 0.0987 (to 4 d.p.). The covariance matrix for the errors � is a symmetric, 
circulant matrix. The correlation matrix associated with � is therefore defined by the lag-k correlations ρk for k = 1, . . . , 6. 
Supplementary Fig. S31 shows the posterior means and 95% CIs for ρ1, . . . , ρ6. All of the CIs lie above zero which provides 
evidence of between-bin correlation in the errors.

8. Discussion

The main objectives of this paper were to assess whether a model based on a VAR(1) process could provide useful 
biological insights into the microbial interactions in the AS of a WWTP and whether there was any evidence of chemical and 
environmental effects. Microorganisms in AS are responsible for biologically treating wastewater. Gaining an understanding 
of the complex network of microbial interactions is important to ensure a WWTP can continue functioning or, better still, 
be improved (Cydzik-Kwiatkowska and Zielińska, 2016). As is commonly found in metagenomics studies, our data suffer 
from high-dimensionality and sparsity. Owing to the evidence of seasonality in the data, we chose a seasonal phase-based 
clustering approach to address both issues.

Often, in time series metagenomics, gLV differential equations are used to model non-linear dynamics of the microbial 
communities of interest. However, we chose a more parsimonious option, which allows explicit modelling of the error, 
and developed a Bayesian hierarchical VAR(1) model for our clustered data. This is a simple first-order approximation to a 
gLV model. The circular time-ordering of the bins suggested a sparse autoregressive coefficient matrix would be sensible. 
We used a regularised horseshoe prior to allow for this. The posterior can be very sensitive to the choice of prior for the 
global shrinkage parameter in the horseshoe prior. We therefore extended the work of Piironen and Vehtari (2017), who 
considered its choice in the context of linear regression for a univariate response, to the multivariate setting. This gives a 
principled methodology for constructing the prior based on prior beliefs about the degree of sparsity. We gave the errors 
of our model a symmetric, circulant, tridiagonal precision matrix to complement the chosen clustering method. To capture 
the seasonal variation in each bin, we used a harmonic regression to fit a time varying mean, in which the CE data were 
incorporated.

The approach and modelling described in this paper is not without limitations. First, clustering the OTUs into bins prior 
to modelling complicated the interpretations of microbial interactions and the chemical and environmental effects because 
the bins do not necessarily represent OTUs with identical behaviours. Future work will therefore investigate clustering the 
data into a much larger number of bins, each containing a smaller number of OTUs, which will then be modelled as a time-
series of multinomial counts. These ideas have already been applied in the simpler setting where OTU count vectors are 
treated as independent and identically distributed. For example, Zhang and Lin (2019) uses a logistic normal multinomial 
model with a sparse correlation structure to model counts of 87 genera from gut microbiome data collected from 98 
subjects. Second, notwithstanding the clustering issue, the VAR(1) model used in this analysis is only a simplification of the 
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biologically-motivated stochastic Lotka-Volterra model. Indeed, as explained in Section 1.1, linearisation results in omission 
of the second-order non-linear interactions. As such, future work will explore methods for fitting stochastic Lotka-Volterra 
models (Xu et al., 2020) and compare inferences to those obtained under the VAR(1) model.

Despite these drawbacks, we were able to achieve both of the objectives of the study. After fitting the model to our 
WWTP data, we identified possible relationships amongst bins and between bins and CE covariates by inspecting the poste-
rior distributions obtained for the parameters in the model. For example, we found that some bins seem to have a positive 
relationship with COD and ammonia. After looking at the most abundant genera in each bin and biological literature, we 
also found evidence to suggest that microorganisms may be competing for resources. Altogether, the analysis provides an 
interesting insight into the dynamics of the microbial communities present in the AS of the WWTP.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training 
in Cloud Computing for Big Data (grant number EP/L015358/1). This work was also supported by the EPSRC (grant number 
EP/N510129/1) via the Alan Turing Institute project “Streaming data modelling for real-time monitoring and forecasting”.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2022 .107659.

References

Ahelegbey, D.F., Billio, M., Casarin, R., 2016. Bayesian graphical models for structural vector autoregressive processes. J. Appl. Econom. 31, 357–386.
Alawi, M., Off, S., Kaya, M., Spieck, E., 2009. Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge. Environ. 

Microbiol. Rep. 1, 184–190.
Betancourt, M., Girolami, M., 2015. Hamiltonian Monte Carlo for hierarchical models. In: Upadhyay, S.K., Singh, U., Dey, D.K., Loganathan, A. (Eds.), Current 

Trends in Bayesian Methodology with Applications, first ed. CRC Press, Boca Raton, FL, pp. 79–101. Chapter 4.
Bucci, V., Tzen, B., Li, N., Simmons, M., Tanoue, T., Bogart, E., et al., 2016. MDSINE: microbial dynamical systems inference engine for microbiome time-series 

analyses. Genome Biol. 17, 121.
Bunge, J., Willis, A., Walsh, F., 2014. Estimating the number of species in microbial diversity studies. Annu. Rev. Stat. Appl. 1, 427–445.
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.A., Guo, J., Li, P., Riddell, A., 2017. Stan: a probabilistic program-

ming language. J. Stat. Softw. 76, 1–32.
Carvalho, C.M., Polson, N.G., Scott, J.G., 2009. Handling sparsity via the horseshoe. J. Mach. Learn. Res. 5, 73–80.
Carvalho, C.M., Polson, N.G., Scott, J.G., 2010. The horseshoe estimator for sparse signals. Biometrika 97, 465–480.
Curtis, T.P., Head, I.M., Graham, D.W., 2003. Peer reviewed: theoretical ecology for engineering biology. Environ. Sci. Technol. 37, 64–70.
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