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TreeSearch: Morphological Phylogenetic
Analysis in R
by Martin R. Smith

Abstract TreeSearch is an R package for phylogenetic analysis, optimized for discrete character
data. Tree search may be conducted using equal or implied step weights with an explicit (albeit
inexact) allowance for inapplicable character entries, avoiding some of the pitfalls inherent in standard
parsimony methods. Profile parsimony and user-specified optimality criteria are supported. A
graphical interface, which requires no familiarity with R, is designed to help a user to improve the
quality of datasets through critical review of underpinning character codings; and to obtain additional
information from results by identifying and summarizing clusters of similar trees, mapping the
distribution of trees, and removing ‘rogue’ taxa that obscure underlying relationships. Taken together,
the package aims to support methodological rigour at each step of data collection, analysis, and the
exploration of phylogenetic results.

1 Introduction

Even in the phylogenomic era, morphological data make an important contribution to phylogenetic
questions. Discrete phenotypic data improve the accuracy and resolution of phylogenetic reconstruc-
tion even when outnumbered by molecular characters, and are the only way to incorporate the unique
perspective on historical events that fossil taxa provide (Wiens 2004; Wortley and Scotland 2006; Koch
and Parry 2020; Asher and Smith 2022).

One challenge with morphological analysis is the treatment of inapplicable character states: for
example, ‘tail colour’ cannot logically be ascribed either of the states ‘red’ or ‘blue’ in a taxon that
lacks a tail (W. P. Maddison 1993). This situation can profoundly mislead phylogenetic analysis, and is
not handled appropriately by any standard Markov model or parsimony method.

Solutions to this issue have recently been proposed (De Laet 2005; Brazeau, Guillerme, and Smith
2019; Tarasov 2019, 2022; Goloboff et al. 2021; Hopkins and St. John 2021). Where a single ‘principal’
character (e.g. ‘tail’) exhibits n ‘contingent’ characters (e.g. ‘tail colour’, ‘tail covering’), ‘exact’ solutions
(Tarasov 2019, 2022; Goloboff et al. 2021) require the construction of multi-state hierarchies containing
O(2n) entries, meaning that analysis is only computationally tractable for simple hierarchies with
few contingent characters. Moreover, these approaches cannot accommodate characters that are
contingent on more than one principal character: for example, characters describing appendages
on a differentiated head may be contingent on the presence of the two characters ‘appendages’ and
‘differentiated head’.

Such situations can be approached using the flexible parsimony approximation proposed by
Brazeau, Guillerme, and Smith (2019). TreeSearch scores trees using the “Morphy” C implementation
of this algorithm (Brazeau, Smith, and Guillerme 2017). Morphy implements tree search under equal
step weights. TreeSearch additionally implements implied step weighting (Goloboff 1993), a method
which consistently finds more accurate and precise trees than equal weights parsimony (Goloboff et al.
2008; Goloboff, Torres, and Arias 2018; M. R. Smith 2019a).

There has been lively discussion as to whether, with the rise of probabilistic approaches, parsimony
remains a useful tool for morphological phylogenetics (e.g. O’Reilly et al. 2016; Puttick et al. 2017; San-
som et al. 2018; Goloboff, Torres Galvis, and Arias 2018; Brown et al. 2017). Notwithstanding scenarios
that go beyond the limits of parsimony, such as the simultaneous incorporation of stratigraphic data
and other prior knowledge (e.g. Guenser et al. 2021), neither parsimony nor probabilistic methods
consistently recover ‘better’ trees when gains in accuracy are balanced against losses in precision (M.
R. Smith 2019a). Even if probabilistic methods may eventually be improved through the creation
of more sophisticated models that better reflect the nature of morphological data (Goloboff, Torres,
and Arias 2018; Tarasov 2019, 2022), parsimony analysis remains a useful tool – not only because
treatments of inapplicable character states are presently available, but also because it facilitates a
deeper understanding of the underpinning data by emphasizing the reciprocal relationship between a
tree and the synapomorphies that it implies.

Whatever method is used to find phylogenetic trees, a single consensus tree may fail to convey all
the signal in a set of phylogenetic results (Wilkinson 1994, 1996, 2003). A set of optimal trees can be
better interpreted by examining consensus trees generated from clusters of similar trees (Stockham,
Wang, and Warnow 2002); by exploring tree space (Wright and Lloyd 2020; M. R. Smith 2022a) and by
automatically identifying, annotating and removing ‘wildcard’ taxa (M. R. Smith 2022b) whose ‘rogue’
behaviour may reflect underlying character conflict or ambiguity (Kearney 2002). These methods are
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Figure 1: Flow charts summarizing key functions available in TreeSearch.

not always easy to integrate into phylogenetic workflows, so are not routinely included in empirical
studies.

TreeSearch provides functions that allow researchers to engage with the three main aspects of mor-
phological phylogenetic analysis: dataset construction and validation; phylogenetic search (including
with inapplicable data); and the interrogation of optimal tree sets (Fig. 1). These functions can be ac-
cessed via the R command-line, as documented within the package and at ms609.github.io/TreeSearch,
or through a graphical user interface (GUI). The GUI includes options to export a log of executed
commands as a fully reproducible R script, and to save outputs in graphical, Nexus or Newick formats.

2 Implementation

Tree scoring

TreeSearch can score trees using equal weights, implied weighting (Goloboff 1993), or profile parsi-
mony (Faith and Trueman 2001). The function TreeLength() calculates tree score using the “Morphy”
phylogenetic library (Brazeau, Smith, and Guillerme 2017), which implements the Fitch (1971) and
Brazeau, Guillerme, and Smith (2019) algorithms. Morphy returns the equal weights parsimony score
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of a tree against a given dataset. Implied weights and profile parsimony scores are computed by first
making a separate call to Morphy for each character in turn, passed as a single-character dataset;
then passing this value to the appropriate weighting formula and summing the total score over all
characters.

Implied weighting (Goloboff 1993) is an approximate method that treats each additional step
(i.e. transition between tokens) in a character as less surprising – and thus requiring less penalty – than
the previous step. Each additional step demonstrates that a character is less reliable for phylogenetic
inference, and thus more likely to contain additional homoplasy. The score of a tree under implied
weighting is ∑ ei

ei+k , where ei denotes the number of extra steps observed in character i, and is derived
by subtracting the minimum score that the character can obtain on any tree from the score observed
on the tree in question (Goloboff 1993). The minimum length of a tree is one less than the number of
unique tokens (excluding the inapplicable token ‘-’) that must be present.

Profile parsimony (Faith and Trueman 2001) represents an alternative formulation of how surpris-
ing each additional step in a character is (Arias and Miranda-Esquivel 2004): the penalty associated
with each additional step in a character is a function of the probability that a character will fit at least
as well as is observed on a uniformly selected tree. On this view, an additional step is less surprising if
observed in a character where there are more opportunities to observe homoplasy, whether because a
character contains fewer ambiguous codings (a motivation for the ‘extended’ implied weighting of
Goloboff (2014)) or because states are distributed more evenly in a character, whose higher phyloge-
netic information content (Thorley, Wilkinson, and Charleston 1998) corresponds to a lower proportion
of trees in which no additional steps are observed.

TreeSearch calculates the profile parsimony score by computing the logarithm of the number of
trees onto which a character can be mapped using m steps, using theorem 1 of Carter et al. (1990). As
computation for higher numbers of states (W. P. Maddison and Slatkin 1991) is more computationally
complex, the present implementation is restricted to characters that contain two informative applicable
states, and uses the Fitch (1971) algorithm.

Tree search

The TreeSearch GUI uses the routine MaximizeParsimony() to search for optimal trees using tree
bisection and reconnection (TBR) searches and the parsimony ratchet (Nixon 1999). This goes beyond
the heuristic tree search implementation in the R package phangorn (Schliep 2011) by using compiled
C++ code to rearrange trees, dramatically accelerating computation, and thus increasing the scale of
dataset that can be analysed in reasonable time; and in supporting TBR rearrangements, which explore
larger neighbourhoods of tree space: TBR evaluates more trees than nearest-neighbour interchanges
or subtree pruning and regrafting, leading to additional computational expense that is offset by a
decreased likelihood that search will become trapped in a local optimum (Goeffon, Richer, and Jin-Kao
Hao 2008; Whelan and Money 2010).

By default, search begins from a greedy addition tree generated by function AdditionTree(),
which queues taxa in a random order, then attaches each taxon in turn to the growing tree at the most
parsimonious location. Search may also be started from neighbour-joining trees, or the results of a
previous search.

Search commences by conducting TBR rearrangements – a hill-climbing approach that locates a
locally optimal tree from which no tree accessible by a single TBR rearrangement has a better score.
A TBR iteration breaks a randomly selected edge in the focal tree, and reconnects each possible pair
of edges in the resultant sub-trees to produce a list of candidate trees. Entries that are inconsistent
with user-specified topological constraints are removed; remaining trees are inserted into a queue
and scored in a random sequence. If the score of a candidate tree is at least as good as the best yet
encountered (within the bounds of an optional tolerance parameter ϵ, which allows the retention of
almost-optimal trees in order to improve accuracy – see e.g. M. R. Smith (2019a)), this tree is used
as the starting point for a new TBR iteration. Otherwise, the next tree in the list is considered. TBR
search continues until the best score is found a specified number of times; a specified number of TBR
break points have been evaluated without any improvement to tree score; or a set amount of time has
passed.

When TBR search is complete, iterations of the parsimony ratchet (Nixon 1999) are conducted in
order to search areas of tree space that are separated from the best tree yet found by ‘valleys’ that
cannot be traversed by TBR rearrangements without passing through trees whose optimality score is
below the threshold for acceptance. Each ratchet iteration begins by resampling the original matrix. A
round of TBR search is conducted using this resampled matrix, and the tree thus produced is used as
a starting point for a new round of TBR search using the original data. After a specified number of
ratchet iterations, an optional final round of TBR search allows a denser sampling of optimal trees
from the final region of tree space.
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A simple example search can be conducted using a morphological dataset included in the package,
taken from Vinther, Van Roy, and Briggs (2008):

library("TreeSearch")
vinther <- inapplicable.phyData[["Vinther2008"]]
trees <- MaximizeParsimony(vinther, concavity = 10, tolerance = 0.05)

The MaximizeParsimony() command performs tree search under implied weights with a concavity
value of 10 (concavity = Inf would select equal weights), retaining any tree whose score is within
0.05 of the best score.

The resulting trees can be summarised according to their scores (optionally, against a different
dataset or under a different weighting strategy, as specified by concavity) and the iteration in which
they were first hit:

TreeLength(trees, dataset = vinther, concavity = 10) |>
signif() |> # truncate non-significant digits
table() # tabulate by score

#>
#> 1.52814 1.54329 1.5641
#> 3 45 4

attr(trees, "firstHit")

#> seed start ratch1 ratch2 ratch3 ratch4 ratch5 ratch6 ratch7 final
#> 0 29 4 0 10 7 2 0 0 0

More flexible, if less computationally efficient, tree searches can be conducted at the command
line using the TreeSearch(), Ratchet() and Bootstrap() commands, which support custom tree
optimality criteria (e.g. Hopkins and St. John 2021).

Visualization

The distribution of optimal trees, however obtained, can be visualized through interactive mappings
of tree space (Hillis, Heath, and St. John 2005; M. R. Smith 2022a). The TreeSearch GUI supports the
use of information theoretic distances (M. R. Smith 2020a); the quartet distance (Estabrook, McMorris,
and Meacham 1985); or the Robinson–Foulds distance (Robinson and Foulds 1981) to construct tree
spaces, which are mapped into 2–12 dimensions using principal coordinates analysis (Gower 1966).
The degree to which a mapping faithfully depicts original tree-to-tree distances is measured using the
product of the trustworthiness and continuity metrics (Venna and Kaski 2001; Kaski et al. 2003; M. R.
Smith 2022a), a composite score denoting the degree to which points that are nearby when mapped
are truly close neighbours (trustworthiness), and the degree to which nearby points remain nearby
when mapped (continuity). Plotting the minimum spanning tree – the shortest path that connects
all trees (Gower and Ross 1969) – can highlight stress in a mapping (grey lines in Fig. 2): the spatial
relationships of trees are distorted in regions where the minimum spanning tree takes a circuitous
route to connect trees that are mapped close to one another (see fig. 1a–b in M. R. Smith 2022a).

To relate the geometry of tree space to the underlying trees, each point in tree space may be
annotated according to the optimality score of its corresponding tree under a selected step weighting
scheme; by the relationships between chosen taxa that are inferred by that tree; and by the search
iteration in which the tree was first found by tree search (Fig. 2).

Annotating trees by the iteration in which they were first found allows a user to evaluate whether
a continuation of tree search is likely to yield more optimal trees. For example, if the retained trees
were only recently found, the search may not yet have located a global optimum. Alternatively, if
certain regions of tree space are visited only by a single ratchet iteration, it is possible that further
isolated ‘islands’ (Bastert et al. 2002) remain to be found; continuing tree search until subsequent
ratchet iterations no longer locate new clusters of trees will reduce the chance that optimal regions of
tree space remain unvisited.

As the identification of clusters from mappings of tree space can be misleading (M. R. Smith
2022a), TreeSearch identifies clusters of trees from tree-to-tree distances using K-means++ clustering,
partitioning around medoids and hierarchical clustering with minimax linkage (Hartigan and Wong
1979; Arthur and Vassilvitskii 2007; Murtagh 1983; Bien and Tibshirani 2011; Maechler et al. 2019).
Clusterings are evaluated using the silhouette coefficient, a measure of the extent of overlap between
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Figure 2: Three-dimensional map visualizing progress in a tree search in the TreeSearch GUI. Optimal
trees belong to three statistically distinct clusters with good support (silhouette coefficient > 0.5), char-
acterized by different relationships between certain taxa (plotting symbols). Although multiple ratchet
iterations have visited each cluster, limited overlap between ratchet iterations suggests that a continua-
tion of tree search may sample novel optimal trees. High trustworthiness and continuity values and a
simple minimum spanning tree (grey) indicate that the mapping does not exhibit severe distortion.
This figure depicts the tree space GUI display after loading the Wills et al. (2012) dataset; clearing
previous trees from memory (sample n trees = 0); and starting a new search (Search�Configure) with
equal step weighting and 101.5 max hits. 93 trees were sampled, coloured by “When first found”, with
plotting symbols depicting “Relationships” between the specified taxa.
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clusters (Kaufman and Rousseeuw 1990). The clustering with the highest silhouette coefficient is
depicted if the silhouette coefficient exceeds a user-specified threshold; the interpretation of the chosen
threshold according to Kaufman and Rousseeuw (1990) is displayed to the user. Plotting a separate
consensus tree for each cluster often reveals phylogenetic information that is concealed by polytomies
in the single ‘plenary’ consensus of all optimal trees (Stockham, Wang, and Warnow 2002).

Plenary consensus trees can also lack resolution because of wildcard or ‘rogue’ taxa, in which
conflict or ambiguity in their character codings leads to an unsettled phylogenetic position (Wilkinson
1994, 2003; Kearney 2002). TreeSearch detects rogue taxa using a heuristic approach (M. R. Smith
2022b) that seeks to maximize the phylogenetic information content (sensu Thorley, Wilkinson, and
Charleston 1998) of a consensus tree created after removing rogue taxa from input trees. The position of
an excluded taxon is portrayed by shading each edge or node of the consensus according to the number
of times the specified taxon occurs at that position on an underlying tree [Fig. 3; after Klopfstein and
Spasojevic (2019)], equivalent to the ‘branch attachment frequency’ of Phyutility (S. A. Smith and
Dunn 2008).

Identifying taxa with an unstable position, and splits with low support, can help an investigator
to critically re-examine character codings; to this end, each edge of the resulting consensus can be
annotated with the frequency of the split amongst the tree set, or with a concordance factor (Minh,
Hahn, and Lanfear 2020) denoting the strength of support from the underlying dataset.

Dataset review

Ultimately, the quality of a dataset plays a central role in determining the reliability of phylogenetic
results, with changes to a relatively small number of character codings potentially exhibiting an
outsized impact on reconstructed topologies (Goloboff and Sereno 2021). Nevertheless, dataset quality
does not always receive commensurate attention (Simões et al. 2017). One step towards improving the
rigour of morphological datasets is to annotate each cell in a dataset with an explicit justification for
each taxon’s coding (Sereno 2009), which can be accomplished in Nexus-formatted data files (D. R.
Maddison, Swofford, and Maddison 1997) using software such as MorphoBank (O’Leary and Kaufman
2011).

TreeSearch presents such annotations alongside a reconstruction of each character’s states on a
specified tree, with inapplicable states mapped according to the algorithm of Brazeau, Guillerme,
and Smith (2019). Neomorphic (presence/absence) and transformational characters (Sereno 2007) are
distinguished by reserving the token 0 to solely denote the absence of a neomorphic character, with
tokens 1 . . . n used to denote the n states of a transformational character (Brazeau, Guillerme, and
Smith 2019). In order to identify character codings that contribute to taxon instability, each leaf is
coloured according to its mean contribution to tree length for the visualized character (Pol and Escapa
2009).

This visualization of reconstructed character transitions can help to identify cases where the formu-
lation of characters has unintended consequences (Wilkinson 1995; Brazeau 2011); where inapplicable
states have been inconsistently applied (Brazeau, Guillerme, and Smith 2019); where taphonomic
absence is wrongly coded as biological absence (Donoghue and Purnell 2009); where previous datasets
are uncritically recycled (Jenner 2001); or where taxa are coded with more confidence than a critical
evaluation of available evidence can truly support. Insofar as the optimal tree and the underlying
characters are reciprocally illuminating (Mooi and Gill 2016), successive cycles of phylogenetic analysis
and character re-formulation can improve the integrity of morphological datasets, and thus increase
their capacity to yield meaningful phylogenetic results (Hennig 1966).

3 Availability

TreeSearch can be installed through the Comprehensive R Archive Network (CRAN) using
install.packages("TreeSearch"); the graphical user interface is launched with the command
TreeSearch::EasyTrees(). The package has been tested on Windows 10, Mac OS X 10 and Ubuntu
20, and requires only packages available from the CRAN repository. Source code is available at
https://github.com/ms609/TreeSearch/, and is permanently archived at Zenodo (https://dx.doi.
org/10.5281/zenodo.1042590). Online documentation is available at https://ms609.github.io/
TreeSearch/.
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Figure 3: Reduced consensus of 48 cladograms generated by analysis of data from Wills et al. (2012)
under different parsimony methods by Brazeau, Guillerme, and Smith (2019), as displayed in the
TreeSearch graphical user interface. Removal of taxa reveals strong support for relationships that
would otherwise be masked by rogues such as Palaeoscolex, whose position in optimal trees is marked
by the highlighted edges. The GUI state can be reproduced by selecting the options displayed in the
figure.
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