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Abstract

Coseismic landslides represent the first stage of a broader cascading sequence of

geohazards associated with high-magnitude continental earthquakes, with the subse-

quent remobilization of coseismic landslide debris posing a long-term post-seismic

legacy in mountain regions. Here, we quantify the controls on the hazard posed by

landslide remobilization and debris runout, and compare the overlap between areas

at risk of runout and the pattern of post-seismic landslides and debris flows that

actually occurred. Focusing on the 2015 Mw 7.8 Gorkha earthquake in Nepal, we

show that the extent of the area that could be affected by debris runout remained

elevated above coseismic levels 4.5 years after the event. While 150 km2 (0.6% of

the study area) was directly impacted by landslides in the earthquake, an additional

614 km2 (2.5%) was left at risk from debris runout, increasing to 777 km2 (3.2%) after

the 2019 monsoon. We evaluate how this area evolved by comparing modelled pre-

dictions of runout from coseismic landslides to multi-temporal post-seismic landslide

inventories, and find that 14% (85 km2) of the total modelled potential runout area

experienced landslide activity within 4.5 years after the earthquake. This value

increases to 32% when modelled runout probability is thresholded, equivalent to

10 km2 of realized runout from a remaining modelled area of 32 km2. Although the

proportion of the modelled runout area from coseismic landslides that remains a haz-

ard has decreased through time, the overall runout susceptibility for the study area

remains high. This indicates that runout potential is changing both spatially and tem-

porally as a result of changes to the landslide distribution after the earthquake. These

findings are particularly important for understanding evolving patterns of cascading

hazards following large earthquakes, which is crucial for guiding decision-making

associated with post-seismic recovery and reconstruction.
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1 | INTRODUCTION

Earthquakes in mountainous regions can generate significant numbers

of coseismic and post-seismic landslides, releasing large volumes of

loose sediment and triggering a complex chain of cascading hazards

that include debris flows, sediment aggradation, and flooding

(e.g., Dahlquist & West, 2019; Fan et al., 2019; Pearce &

Watson, 1986; Robinson & Davies, 2013). These landslides can
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remain active for several years as debris is remobilized by subsequent

rainfall, resulting in the expansion and extension of the original land-

slide extent (Fan, Domènech, et al., 2018; Kincey et al., 2021). The

hazards posed by this remobilization process represent a significant,

but generally unquantified, proportion of total landslide hazard experi-

enced in post-earthquake landscapes.

Because the spatial distribution, extent, and stability of individual

active landslides change significantly through time, through both the

remobilization of existing landslides and the formation of new post-

seismic landslides (Fan, Domènech, et al., 2018; Kincey et al., 2021;

Marc et al., 2019), the future hazard posed by the runout of debris

must also change accordingly. Critically, thresholds for landslide trig-

gering may also reduce, rendering previously safe areas hazardous

(e.g., Dadson et al., 2004), and the most prevalent mass wasting mech-

anisms may shift to become more dominated by debris flows

(Zhang & Zhang, 2017). Importantly, much of the coseismic landslide

debris may also lie upstream of the channel network (Li et al., 2016)

and so can run out over areas that have not previously experienced

landslides or debris flows. Thus, the evolving landslide hazard after a

large earthquake consists of at least four distinct components:

(1) remobilization of coseismic debris, (2) continued failure of cos-

eismic landslides, (3) new post-seismic landslides on previously-

unfailed hillslopes, and (4) remobilization of post-seismic debris.

Understanding the changing significance of each of these different

components of the hazard chain should therefore be a fundamental

aspect of any comprehensive assessment of post-seismic risk.

Previous studies assessing the post-seismic evolution of landslide

hazard have focused on the analysis of multi-temporal landslide inven-

tories to assess changes to existing failure extents, the occurrence of

new post-seismic landslides, or both (e.g., Fan et al., 2019; Fan,

Domènech, et al., 2018; Fan, Zhang, et al., 2018). For example, after

the 2015 Mw 7.8 Gorkha earthquake in Nepal, such an analysis has

demonstrated that 3.5 years after the earthquake, landslides remained

more numerous and covered a larger total area than they did on the

day of the earthquake (Kincey et al., 2021). Importantly, the changing

post-seismic landslide distribution comprised both persistently-active

coseismic landslides but also new post-seismic landslides that had

developed since the earthquake; thus, the sources of landslide debris

with the potential to runout must change over time. Similarly, in the

years following the 2008 Mw 7.9 Wenchuan earthquake in China, the

primary hillslope failure mechanism shifted from landslides to debris

flows, with Huang and Li (2014) documenting a landslide/debris flow

ratio of 5:1 for the pre-seismic period and 1:1 for the initial 5-year

post-seismic period. This increase in debris flow prevalence reflected

the abundance of loose coseismic debris and the associated reduction

in the hydrological triggering threshold required for mobilization (Fan,

Zhang, et al., 2018; Ma et al., 2017). The post-seismic increase in

debris flow occurrence reduced through time, potentially as a result of

progressive exhaustion of supply (Qu, 2019; Yunus et al., 2020), grain

coarsening due to the loss of fine sediment (Domènech et al., 2019),

or revegetation of failure scars (Shen et al., 2020; Yang et al., 2018).

Debris-flow runout distances have also generally decreased

through time, perhaps due to a reduction in sediment mobility

and downslope progression of debris flow initiation positions

(Fan, Zhang, et al., 2018; Zhang & Zhang, 2017).

However, the time period over which increased debris mobiliza-

tion persists after an earthquake appears to vary considerably

between both settings and studies. In their study of post-seismic

debris flows in the 2 years following the Gorkha earthquake,

Dahlquist and West (2019) suggested that there was only a

short-lived transient increase in debris flow rates, with the available

coseismic sediment supply being largely exhausted during the first

monsoon and a reduction in the number of new debris flows back to

pre-seismic levels within a year. This rapid return to pre-seismic con-

ditions was argued in part to be due to the low proportion (�2%) of

coseismic landslides that actually transitioned into post-seismic debris

flows (Dahlquist & West, 2019; Roback et al., 2018). In contrast, more

recent and longer-term studies of post-seismic hillslope evolution fol-

lowing the Gorkha earthquake have indicated that landslide and

debris flow hazards are still high relative to pre-seismic conditions.

For example, in their field-based study of landslide development dur-

ing the period 2015–2018, Tian et al. (2020) documented repeated

activity and continued hazard across the majority of the investigated

sites, with a notable shift in the dominant failure mechanism towards

debris flows. Similarly, the 2020 monsoon is known to have triggered

extensive debris flows across large areas of central Nepal that were

badly affected by the Gorkha earthquake (Rosser et al., 2021),

suggesting a persistent runout hazard legacy associated with the

earthquake. This persistence has been noted after the Wenchuan

earthquake as well, and has been ascribed to an abundance of cos-

eismic sediment even years after the earthquake (Huang & Li, 2014;

Zhang & Zhang, 2017), changing source area form and location

(Li et al., 2018; Zhang et al., 2016) and spatio-temporal variability in

triggering factors such as high rainfall events (Ma et al., 2017;

Yunus et al., 2020).

A limitation of most current approaches to assessing changing

landslide and debris-flow hazard after a large earthquake is that they

have focused on mapping where landslides have already occurred,

resulting in limited capacity to predict how the hazard will evolve. An

alternative approach is to forecast the potential evolution of the haz-

ard footprint using a runout model, and then to compare modelled

outputs with multi-temporal inventories to assess and refine the run-

out model based on where the modelled hazard has been ‘realized’.
Because we cannot reliably identify which landslides are likely to be

remobilized at the full event scale, a precautionary approach is to

assume that further runout of any landslide source remains possible.

Typical approaches are to model potential runout pathways based on

manually-mapped landslides as potential source areas (Aaron

et al., 2019), or to use a predicted source area distribution based on

predefined variables (Kappes et al., 2011; Pastorello et al., 2017) or a

threshold-based landslide susceptibility model (Melo & Zêzere, 2017;

Paudel et al., 2020). Such assessments usually provide a snapshot of

the hazard, and it is hard to test or update the hazard due to a lack of

multi-epoch landslide inventories that describe how the landslide

footprint evolves. Whilst one-off regional-scale debris flow hazard

assessments are commonplace (e.g., Blais-Stevens & Behnia, 2016),

the degree to which runout occurs during the initial mass movement

versus during reactivation remains poorly understood, and so is diffi-

cult to account for in hazard assessments.

To address these issues, we use multi-epoch landslide inventories

from the 2015 Gorkha earthquake (Kincey et al., 2021) to assess the

changing extent of potential runout from coseismic and post-seismic

landslides in the 4.5 years following the earthquake. We use Flow-R, a

spatially distributed empirical model for regional-scale estimation of
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debris runout (Horton et al., 2013), to model the spatial footprint of

potential runout across the area that was most affected by the

earthquake, using mapped landslides as source areas. We repeat this

simulation based upon 13 separate epochs of landslide mapping at

approximately 6-month intervals (2014–2019) and compare modelled

runout to subsequent mapped landslides. This approach allows us to

explore how changes in the spatial distribution and character of land-

slides influence the evolution of post-earthquake landslide runout and

the degree to which landslides achieve or ‘realize’ the modelled runout,

and to identify the controls on that realization of runout potential. We

use this information to derive a synoptic overview of the evolution of

post-earthquake landslide runout and to describe the regional-scale

characteristics of landslide runout pathways, which together provide

inputs into a more holistic understanding of the long-term hazard chain

associated with earthquake-triggered landslides.

2 | METHODS

2.1 | Landslide inventory mapping

Landslides were manually mapped from medium-resolution satellite

imagery (Landsat 8, with a spatial resolution of 30 m pan-sharpened

to 15 m for 2014–2015; Sentinel-2, with a spatial resolution of 10 m

for 2016–2019) across a 24,402 km2 area of central Nepal that was

most severely impacted by the 2015 Gorkha earthquake (Figure 1a). A

total of 13 individual landslide epochs covered the period from 2014

to 2019, including pre- and post-monsoon inventories for each year

and an additional coseismic inventory for 2015. Landslide footprints

incorporated both source areas and deposits due to the resolution of

the satellite imagery. Assigning levels of post-failure reactivation and

remobilization using remotely-sensed imagery is not straightforward

(e.g., Fan, Domènech, et al., 2018) and so we mapped all landslides vis-

ible in each epoch independently, irrespective of whether they were

already present within a preceding inventory. This approach is neces-

sary since mapping only new or substantially-altered landslides in each

epoch would have removed persistent landslides which could poten-

tially act as source zones for later runout from the analyses. Our

approach therefore makes the assumption that bare, unvegetated gro-

und equates to the presence of exposed rock or sediment that could

be mobilized in a future event, which is justified based on field obser-

vations (Tian et al., 2020) and a precautionary approach to modelling

cascading hazards across such a large spatial area (Kincey et al., 2021).

A detailed description of our mapping approach and its implications

for time series analysis of modelled runout is provided in

Supporting Information Methods S1, while full details of the multi-

temporal landslide inventory construction and analysis are provided

by Kincey et al. (2021).

2.2 | Runout modelling

To assess the potential runout from existing landslides, we used the

flow path assessment of gravitational hazards at a regional scale

(Flow-R) model version 2.0 (Horton et al., 2013). Flow-R is a spatially

distributed empirical model designed to model runout paths across

large spatial extents with minimum input data requirements. Runout

paths from defined source areas – here manually mapped landslides –

are propagated on the basis of a spreading algorithm that controls the

route and extent of the flow, and friction laws that determine the run-

out distance. The flow volume and mass are not directly considered,

as these cannot be accurately quantified across large regions. Instead,

the model is well-suited to regional susceptibility assessments where

the full range of possible runout pathways from a large set of distrib-

uted sources must be considered. Flow-R has been utilized in a range

of different applications, including debris flow hazard assessments in

Switzerland (Horton et al., 2008), France (Kappes et al., 2012), Italy

(Blahut et al., 2010) and Norway (Fischer et al., 2012), as well as

F I GU R E 1 (a) Location of study area showing the coseismic landslide distribution (Epoch 4) in red. (b) Extract from the runout model
(Rout_Mod) results showing maximum runout susceptibility (p(Rout)) from coseismic sources (Ls_Map; shown in red) (AW3D 5 m DEM ©JAXA,

RESTEC and NTTDATA). [Color figure can be viewed at wileyonlinelibrary.com]
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modelling other gravitational hazards such as rockfall (Losasso

et al., 2016; Michoud et al., 2012), snow avalanches (Horton

et al., 2009; Jaboyedoff et al., 2012) and rock avalanches (Oppikofer

et al., 2016).

Runout modelling used the 13 manually-mapped landslide inven-

tories to sequentially define the potential source areas (Section 2.1)

and a 10 m digital elevation model (DEM), resampled from a 5 m reso-

lution Advanced Land Observing Satellite World 3D (AW3D) dataset,

as the most appropriate compromise between accuracy of modelled

flow paths, reduction of topographic noise, and processing time

(Claessens et al., 2005; Fischer et al., 2012; Horton et al., 2013) (see

Methods S2 for full details of the Flow-R model inputs and parame-

ters). In this configuration, the model is testing the potential for run-

out from the full landslide footprint, including continued runout from

the landslide source and the potential for remobilization of the

deposit.

For our analyses, spreading of the runout path was based on a

modified version of Holmgren’s multiple flow direction algorithm

(Holmgren, 1994) that includes an additional height factor (dh = 1 m)

designed to increase the elevation of the central processing cell and

so account for any height errors in the DEM (see Horton et al., 2013).

Flow inertia was simulated by weighting the flow direction based on

the change in direction with respect to the previous cell using the

Gamma implementation of Horton et al. (2013). Runout distances

were quantified using a simplified friction-limited model based on the

maximum possible runout distance, controlled by a user-defined mini-

mum travel angle, also termed the angle of reach or fahrböschung

angle. Based on published field observations of debris flows, we

selected a minimum travel angle of 11� and a maximum flow velocity

of 15 m s�1, which is required in order to restrict the flow energy to

realistic limits and therefore avoid improbable runout distances (see

full discussion in Horton et al., 2013).

Tuning of model input parameters to fit individual landslides

was not appropriate given the regional scale of the study area

(> 24,000 km2) and the number and variability of source areas used in

the modelling (> 195,000 landslides). Our parameterization of the

model was therefore based on input values that have been developed

for modelling runout in similar mountainous terrain by previous

studies, and through initial testing of the model to generate plausible

runout pathways (see Methods S4). Sensitivity analysis of the differ-

ent parameters for a subset area located in Sindhupalchok district,

central Nepal (Supporting Information Figure S3), showed that the

Holmgren exponent value (x) is the most sensitive parameter in terms

of influencing the overall modelled runout extent and susceptibility

distributions. The travel angle and velocity threshold values determine

the degree to which flow is permitted to continue downslope, but the

results were relatively insensitive to the choice of the height factor

(dh). The sensitivity analysis shows that our parameter choices repre-

sent a plausible but precautionary approach to the modelling of run-

out, which is appropriate given the potential implications of the work

in terms of risk to life and livelihood (Methods S4). Sensitivity testing

showed that variations in modelled runout extent vary by at most

43% depending on specific parameter choices, but most parameter

sets (70%) are within 10% of the runout area modelled by this study

(Supporting Information Table S3).

For every 10 m � 10 m cell, the model assigned a susceptibility

value p(Rout) with a value from 0 (no chance of being within a runout

path) to !1 (very likely to be within a runout path). Landslide areas

had a value of 1. The model accounted for cells located within multi-

ple modelled runout pathways, from which a set of summary statistics

were generated, including: maximum runout susceptibility from all

upslope sources combined (Figure 1b); the sum of all runout suscepti-

bilities, which assesses total runout susceptibility irrespective of

source; and runout count, which accumulates the number of distinct

sources that could impact a cell irrespective of susceptibility. We refer

to the locus of cells where p(Rout) > 0 as Rout_Mod. The sequential

model runs based on the 13 multi-temporal landslide inventories

allowed an assessment of how Rout_Mod changed over the 4.5 years

since the 2015 earthquake.

2.3 | Time series analysis

Quantitative assessment of model performance using standard error

statistics is somewhat complicated because Flow-R is a forward

model, and runout from existing landslide source locations is time-

and trigger-dependent. Thus, the occurrence or non-occurrence of

actual runout for any given cell at a single point in time does not sim-

ply indicate model success or failure. In other words, the lack of real-

ized runout does not show that the model failed in its prediction,

because the actual occurrence of runout may still happen in the future

if there is a sufficient trigger event. This study is therefore focused on

an assessment of how the runout distribution and realization change

through time after an earthquake, using a precautionary but plausible

modelling approach.

We first assessed the net change in Rout_Mod across the study

area using aggregate statistics, per-cell values, and frequency distribu-

tions of p(Rout) for each epoch in turn. All cells mapped as landslides

are referred to as Ls_Map, with any cell classified as Ls_Map relating to

a model source location for that epoch and so excluded from the asso-

ciated list of Rout_Mod runout cells. We refer to cells in Rout_Mod that

experienced landsliding in later epochs, which we term ‘realization’ of
the modelled runout, as Rout_Real. For each epoch, each 10 m � 10 m

cell in Rout_Mod was categorized based on whether it became part of

a landslide during that epoch (i.e., the cell was contained within

Ls_Map and so it became part of Rout_Real), remained within the mod-

elled runout extent (the cell remained in Rout_Mod but outside of

Ls_Map), or no longer fell within the modelled runout extent (i.e., p

(Rout) = 0), which typically occurred when the associated upslope

landslide became revegetated and was no longer visible as bare gro-

und. This process was repeated for each epoch, allowing the stepwise

evolution of Rout_Mod and the match between this and Ls_Map to be

assessed (see Methods S3 for additional description of the runout var-

iables described above).

Since our analysis considered realized runout to include any cells

within a modelled runout area that experienced landsliding in later

epochs, this realization could plausibly occur as a result of both

changes to pre-existing landslides and the occurrence of entirely new

landslides. This approach is justified from the perspective of informing

a comprehensive post-seismic hazard analysis, but it is still important

to also consider what proportion of realization comes from existing

landslides versus entirely new landslides. To calculate this, we used a

series of spatial selection queries to identify which landslides had a

direct physical intersection with earlier landslides and considered

540 KINCEY ET AL.

 10969837, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5501 by T

est, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



these to be pre-existing landslides. Any landslides that had no inter-

section with landslides from earlier epochs were classified as entirely

new landslides (see Methods S10 for full methodological details).

Note that the percentage of Rout_Mod that is realized by the end

of each epoch – that is, the ratio of Rout_Real to Rout_Mod – is equiv-

alent to the model precision. We would expect this quantity to change

over time, as runout proceeds and as areas within Rout_Mod that are

downslope of existing landslides become inundated with debris. Simi-

larly, we would expect the model recall – the ratio of Rout_Real to the

sum of Rout_Real and any new landslides that occur outside of the

modelled runout area – to also change over time, as new landslides

occur outside of Rout_Mod. We thus assessed model performance

using sequential precision-recall curves, which are preferable to other

performance measures when Rout_Mod is a small fraction of the over-

all area (e.g., Saito & Rehmsmeier, 2015). We used Flow-R to calculate

Rout_Mod using the coseismic landslide footprints (Epoch 4) as the

runout source areas, and evaluated model precision and recall up to

that point in time after each subsequent epoch. For this portion of the

analysis, we treated realization as a cumulative process; that is, we

considered that a cell in Rout_Mod was realized if it appeared as a

landslide in a subsequent epoch, even if the cell was not mapped as a

landslide in later epochs. This avoids complications caused by vegeta-

tion growth or obstruction of the ground surface in some but not all

epochs (see Kincey et al., 2021).

To assess broader spatial variability in Rout_Mod, Ls_Map, and

Rout_Real, we generated a set of geomorphological slope units across

the study area, based on the methodology developed by Alvioli et al.

(2016). This approach uses a DEM to partition a landscape into indi-

vidual terrain units that are defined by hydrological and geomorpho-

logical boundaries (Alvioli et al., 2020), and has been shown to be

appropriate for susceptibility assessments across large spatial areas

(Domènech et al., 2020; Jacobs et al., 2020; Tanyas et al., 2019). The

size distribution of output slope units is primarily determined by

parameters controlling the flow accumulation thresholds and the cir-

cular variance in terrain aspect that is permitted within a single slope

unit, which together define the acceptable degree of aspect homoge-

neity between adjacent units. Slope units were generated within

Grass GIS version 7.8.4 using the minimum parameter settings from

the range of values recommended by Alvioli et al. (2016) which delimit

slope units to a scale that matches observed approximate hillslope

length scales across the study area (see Methods S5 for full details of

slope unit parameters). Each resulting slope unit (n = 13,456) was

attributed with a range of landslide and runout statistics for each map-

ping epoch, including: the number of landslides, the total area of

landsliding, the total modelled runout area, and statistics summarizing

the maximum and summed runout susceptibilities (minimum, maxi-

mum, range, mean, sum, standard deviation). All of the topographic

and environmental variables were also aggregated to each slope unit

as tabular attributes using the same set of summary statistics as were

used for the runout susceptibility values.

2.4 | Identifying locations favourable for landslide
runout

Analysis of potential controls on runout evolution and hazard realiza-

tion focused on eight topographic variables that have previously been

shown to influence the occurrence of coseismic and post-seismic hill-

slope landslides: elevation, slope, aspect, normalized distance to

stream channel, profile and plan curvature, upslope contributing area,

and Melton ratio (defined here as per-slope unit relief divided by the

square root of slope unit area) (e.g., Kincey et al., 2021; Parker

et al., 2015; Robinson et al., 2017). Three event-specific variables

from the Gorkha earthquake were also included: slope aspect relative

to the epicentre, the Euclidean distance to the epicentral location, and

the distance to the nearest mapped coseismic landslide. All

control variables were analysed at 10 m resolution using the

same AW3D DEM (see Methods S6 for full details of the potential

control variables).

The significance of each variable was assessed in two ways: by

(1) comparing per-slope unit aggregated summary statistics of each

variable (see Section 2.3) to corresponding modelled runout areas and

realization percentages, and (2) cell-by-cell differencing of kernel den-

sity estimations for all control variables at 10 m resolution. Since the

Melton ratio was calculated for each slope unit, analysis of this metric

was conducted at this scale only. For the cell-based analysis, separate

kernel density estimates were generated for modelled coseismic run-

out cells that became landslides in any subsequent epoch

(i.e., Rout_Real), and for cells which did not (i.e., cells which remained

in Rout_Mod or later became p(Rout) = 0), and these were then

differenced from kernel density estimates based on all cells within the

modelled coseismic runout extent (Rout_Mod). Negative density differ-

ence values indicate that the sub-population at that value of the con-

trol variable occurs less frequently than would be expected from the

overall modelled runout extent, and positive values meaning the sub-

population at that value occurs more frequently. A full description of

the kernel density differencing methodology is provided in Kincey

et al. (2021).

3 | RESULTS

3.1 | Characteristics of post-earthquake runout
evolution

Evolution of landslide area (Ls_Map) in the pre-seismic, coseismic, and

post-seismic phases was described by Kincey et al. (2021), so we pro-

vide only a brief summary here. The total landslide area for the three

pre-earthquake epochs was consistently low, ranging between 60 and

64 km2, equivalent to 0.2–0.3% of the overall study area (Figure 2;

Methods S7). This increased substantially after the 2015 Gorkha

earthquake, reaching 150 km2 (0.6% of the study area) for the cos-

eismic inventory and 174 km2 (0.7%) for the post-monsoon 2015

inventory. Landslide area generally decreased through post-monsoon

2017 (Epoch 9), when it reached a minimum value of 131 km2 (0.5%).

In contrast, the period from pre-monsoon 2018 to post-monsoon

2019 showed an increasing trend, with landslide areas totalling

155 km2 (0.6%) in the final inventory of the time series (Epoch 13).

This represents the highest total since early 2016 and was 5 km2

(�3%) greater than the equivalent coseismic landslide area.

Overall modelled runout extents (Rout_Mod) broadly follow the

same pattern as the mapped landslide areas (Figure 2). Pre-seismic

Rout_Mod extents ranged between 245 and 258 km2 (1.0–1.1% of the

study area), increasing to 614 km2 (2.5%) with the 2015 earthquake
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and reaching a maximum of 803 km2 (3.3%) for the post-monsoon

2015 inventory. Rout_Mod extents then decreased to post-monsoon

2017, when a minimum runout area of 680 km2 (2.8%) was recorded.

The area of Rout_Mod then increased to 777 km2 (3.2%) in post-

monsoon 2019, �26% greater than the total modelled coseismic run-

out extent.

Per-epoch Rout_Mod extents show a clear correlation with the

equivalent per-epoch landslide areas (Figure 3), indicating that the size

of the potential runout area can be broadly anticipated based on the

area of visible landsliding. The relationship between runout area and

landslide area differs, however, depending on whether the coseismic

data are included (Figure 3a,b). This difference is also apparent when

the ratio of Rout_Mod area to Ls_Map area is considered (Figure 3c).

The total Rout_Mod area for the coseismic inventory is approximately

four times larger than the coseismic Ls_Map area, which is broadly

consistent with the average ratio for the three pre-seismic epochs. In

contrast, for post-seismic epochs this ratio increases, with Rout_Mod

areas being on average five times larger than their equivalent Ls_Map

areas. The magnitude of differences between per-epoch Rout_Mod

area and Ls_Map area converge through time to a near-constant ratio

when considered sequentially (red line on Figure 3a).

Modelled p(Rout) values – that is, the likelihood that a cell sits

within a modelled runout path – show the same trend as the landslide

and runout areas when analysed as both mean per-cell maxima and

the total sum of all runout susceptibilities (Figure 2). Both p(Rout) met-

rics increased substantially with the earthquake and peaked in post-

monsoon 2015 (Epoch 5), before decreasing through post-monsoon

2017 (Epoch 9) and then increasing again to the end of the study

period. The distribution of p(Rout) also shifted from pre- to post-

earthquake epochs (Figure 4). Pre-earthquake values of p(Rout) were

generally higher than coseismic values, reflecting the small number of

pre-earthquake landslides which tended to occur in areas close to the

channel network and thus prone to remobilization and runout (Kincey

et al., 2021). After the earthquake and subsequent monsoon, there

F I G UR E 2 Time series of total landslide area
(Ls_Map), runout area (Rout_Mod), and runout
susceptibilities (p(Rout)) for the overall study area.
Vertical blue bars show the timing of the
monsoon; dashed vertical black lines indicate the
dates of the 25 April Mw 7.8 Gorkha earthquake
and the 12 May Mw 7.3 aftershock. Modified
from Kincey et al. (2021) and Rosser et al. (2021).
[Color figure can be viewed at wileyonlinelibrary.
com]

F I G UR E 3 (a) Correlation between per-epoch
landslide (Ls_Map) area and modelled runout
(Rout_Mod) area. Separate trend lines fitted for
(1) Epochs 4–13, dashed, and (2) Epochs 5–13,
dotted, with regression lines both forced through
the origin. The red line connects the epochs
sequentially by date to indicate changes through
time. Panel (b) shows the same data but including
the three pre-earthquake Epochs 1–3. (c) Ratio of
modelled runout (Rout_Mod) area to landslide
(Ls_Map) area through time. Higher values
indicate greater runout extent relative to the
landslide sources. Vertical black dashed line
indicates the time of the earthquake (Epoch 4).
[Color figure can be viewed at wileyonlinelibrary.
com]
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was a notable increase in low to intermediate values of p(Rout)

(Figure 4), which when combined with the larger extent of Rout_Mod

indicates that a broader range of locations in the landscape became

susceptible to runout.

3.2 | Post-seismic changes in modelled coseismic
runout realization

Although runout susceptibility evolved as a result of changes to the

number, distribution, and form of landslides in subsequent post-

seismic epochs, it is still valuable to assess the degree to which the

potential runout area modelled from just a coseismic landslide inven-

tory was fulfilled in the years following the earthquake. This provides

insights into timescales over which a runout assessment carried out in

the immediate aftermath of an earthquake might remain relevant, as

well as the degree to which the realization of the modelled runout

area varies under different model susceptibility thresholds.

We focus initially on the modelled runout area Rout_Mod from

the coseismic landslides (Epoch 4). When all modelled runout suscep-

tibility values are included, 14% (85 km2) of Rout_Mod cells from cos-

eismic landslides became Rout_Real at some point in the 4.5 years

after the 2015 earthquake (Figure 5a). In other words, 86% of the

modelled hazard remained ‘unrealized’ by the end of the study. This is

a highly conservative test of the runout model, as cells with very low

susceptibilities are included. We therefore apply a moving threshold

to progressively examine the evolution of cells with higher values of p

(Rout). As this threshold increases, whilst the area of Rout_Mod natu-

rally decreases, Rout_Real initially increases (black line on Figure 5a),

indicating increased model precision. This is greatest for a p(Rout)

threshold of ≥ 0.6, at which 32% (10 km2) of all modelled coseismic

runout cells (32 km2) became a landslide at some point during our

study period. The percentage of Rout_Mod cells that were realized

decreases marginally for higher thresholds, but this also leads to a pro-

nounced decrease in the predicted runout area (Figure 5a); for

F I GU R E 4 Kernel density estimates of the distributions of
(a) maximum per-cell runout susceptibility (p(Rout) max) and (b) the

per-cell sum of all runout susceptibilities (p(Rout) sum), expressed as
the difference between each distribution and the coseismic
distribution in Epoch 4 (black line). Positive values represent a greater
number of cells with corresponding value of p(Rout), negative value
represent a smaller number of cells relative to Epoch 4. [Color figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 5 (a) Area of modelled coseismic runout (Rout_Mod;
blue) and area of modelled coseismic runout that was realized by
landslide occurrence within any post-EQ epoch (Rout_Real; red), as a
function of modelled susceptibility p(Rout) threshold. The black line
shows the model precision, defined as the realized runout area
(Rout_Real) as a fraction of the total coseismic runout area (Rout_Mod),
again as a function of susceptibility (p(Rout) threshold. The maximum
model precision occurs at a p(Rout) threshold of 0.6. Black dot on the
y-axis indicates that 14% of all coseismic Rout_Mod was realized by

the end of the study. (b) Precision-recall curves for each of the post-
seismic epochs, based on modelling of runout from coseismic (Epoch
4) landslides and comparison with subsequent mapped landslide
inventories (Epochs 5–13). Each curve is calculated based on the
cumulative extent of post-seismic landsliding that occurred up until
that epoch. Black dots along the curve represent the susceptibility
thresholds, increasing in 0.05 intervals from zero. Horizontal dashed
lines towards the base of the y-axis show the no skill values for a
random classifier from each epoch; note that the precision depends
upon the number of positive values, and so varies between epochs.
[Color figure can be viewed at wileyonlinelibrary.com]
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example, only 2.5 km2 of runout is modelled if we assume a threshold

of p(Rout) = 0.95.

Inspection of precision-recall curves evaluated after each epoch

shows that model precision generally increases over time, as expected

(Figure 5b), but at a decreasing rate as more of the coseismic

Rout_Mod was progressively realized. Precision is maximized at p(Rout)

values of 0.5–0.6. For all epochs, the model is considerably more

skilled than a random classifier (Figure 5b). Note, however, that maxi-

mum model recall values decrease somewhat in later epochs, likely

due to the occurrence of new landslides that do not fall within the

coseismic Rout_Mod.

Analysis of the intersections between landslides from different

epochs shows that 90% of the total post-seismic realization of the

coseismic runout area came from landslides that were physically con-

nected to the original coseismic landslide footprints, with only 10%

originating from entirely new landslides (Methods S10). When evolv-

ing downslope connections between landslides are considered, this

value increases to 92% of the realized area being related to pre-

existing landslides and only 8% coming from entirely new landslides.

In both cases, the proportion of realized runout that is attributable to

pre-existing coseismic landslides decreases through time. For direct

intersections with coseismic landslides, the values decrease from 91%

in post-monsoon 2015 (Epoch 5) to 85% in post-monsoon 2019

(Epoch 13), with the equivalent figures for the evolving downslope

connections being 94% and 89% (Figure S14). For all post-seismic

epochs combined, we find that 62% of the area impacted by new

post-seismic landslides that are directly connected to coseismic land-

slide polygons is within the modelled runout extent, compared with

38% that is outside of the modelled extent Methods S10). When

analysed through time, we find that the proportion of newly impacted

ground that is within the modelled runout extent increases from 61%

in post-monsoon 2015 (Epoch 5) to 65% in 2016 (Epochs 6 and 7),

before decreasing to 60% by post-monsoon 2019 (Epoch 13)

(Figure S15).

3.3 | Runout hazard realization in a changing post-
seismic landscape

We next examine the realization of Rout_Mod from all coseismic and

post-seismic epochs. Disaggregating the realized hazard data by

epoch allows us to establish the time between when a cell is first

predicted as being within a runout area (Rout_Mod) and when it is first

intersected by a mapped landslide (Rout_Real), here termed the ‘reali-
zation wait time’ (Figure 6; Methods S8 and S9). For the runout area

Rout_Mod modelled from the coseismic landslide population (Epoch

4), 4.8% of Rout_Mod cells are realized after just one epoch (post-

monsoon 2015, c. 0.5 year wait time), and a further 2.6% after two

epochs (pre-monsoon 2016, c. 1 year) (Figure 6a; see Figure S12 for

an equivalent plot in terms of the area of Rout_Real over time). The

proportion of Rout_Mod cells that become Rout_Real in each subse-

quent epoch then continues to decrease through time, although with

notable pre- and post-monsoon fluctuations during 2016 and 2017 in

particular. Only 0.3% of the coseismic Rout_Mod cells are realized as

landslides after nine epochs (�4.5 years). The spatial pattern of reali-

zation indicates that hazard realization occurs through various mecha-

nisms, including runout via downslope channelized movement of

sediment from a pre-existing landslide, in addition to the occurrence

F I GUR E 6 (a) Distribution of runout
realization wait times for all coseismic and post-
seismic epochs. Realization wait times are defined
here as the time between when a cell is first
included within a modelled runout area for a
given epoch (Rout_Mod), and when it first
intersected a mapped landslide polygon
(Rout_Real). Note that longer wait times can only
be determined for the earlier epochs due to the
brevity of our inventory data. (b) Map showing an
example of per-cell realization wait times
associated with the modelled coseismic runout
for an area of Dolakha district. The spatial extent
of this map is shown on Figure 1 for reference.
[Color figure can be viewed at wileyonlinelibrary.
com]
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of new landslides within the modelled coseismic runout extent

(Figure 6b). Realization of Rout_Mod from landslide source areas in

subsequent epochs follows a similar trend (Figure 6a).

Although the proportion of the Rout_Mod area that remains

unrealized decreases through time (Figure 6; Methods S8), total

Rout_Mod remains high for all post-seismic epochs (Figure 2). This

implies that the modelled runout area is shifting spatially, reflecting

changes to landslide footprints and the addition of new landslides in

later epochs, meaning that the analysis of hazard realization needs to

also track changes occurring in individual post-seismic epochs.

F I GU R E 7 (a) Extent of modelled runout in
each of the mapping epochs that was realized by
landslide occurrence within any subsequent

epoch (Rout_Real), differentiated by susceptibility
(p(Rout)) threshold. Note: The realization area
data on the y-axis are stacked. (b) Model precision
by epoch, defined as the realized runout area
(Rout_Real) as a fraction of the total coseismic
runout area (Rout_Mod), again differentiated by
susceptibility (p(Rout)) threshold. For all epochs,
the model achieves maximum precision at a p
(Rout) threshold of 0.55–0.65; these points are
connected for reference to show their evolution
in time for both pre- and post-monsoon
inventories. Coloured dots on the y-axis indicate
the proportion of all Rout_Mod that was realized
by the end of the study for each mapping epoch.
[Color figure can be viewed at wileyonlinelibrary.
com]

F I GU R E 8 Spatial distribution of key runout metrics aggregated by individual slope unit. (a) Total coseismic landslide (Ls_Map) area; (b) total
modelled coseismic runout (Rout_Mod) area; (c) summed susceptibilities (p(Rout)) of coseismic runout; (d) ratio of coseismic runout area to
landslide area (Rout_Mod:Ls_Map). Dashed black lines represent the major physiographic boundaries within the study area. [Color figure can be
viewed at wileyonlinelibrary.com]
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Not surprisingly, the proportion of the total Rout_Mod that even-

tually becomes Rout_Real decreases in successive epochs, from > 10%

(�80 km2) for post-monsoon 2015 to 3% (�20 km2) for pre-monsoon

2019 (Figure 7b). Whilst thresholding Rout_Mod at higher p(Rout)

values yields a smaller runout area in each epoch, the overall pattern

of declining realization through time remains (Figure 7a). As with reali-

zation of runout from the coseismic landslides (Figure 5), model preci-

sion for all epochs is greatest for locations with p (Rout) values ≥ 0.6

(Figure 7b). Maximum Rout_Real percentages generally decreased

through time, from 32% for the coseismic epoch to just 9% for pre-

monsoon 2019, at least in part reflecting the decrease in the number

of subsequent inventories that can be included in the analysis of each

modelled epoch. For example, after the pre-monsoon 2019 model

(Epoch 12), Rout_Mod cells could only be realized in Epoch 13, com-

pared to a total of eight subsequent inventories (�4.5 years) after the

coseismic model (Epoch 4). However, this decrease in realization

percentages is not monotonic, with a notable switching between pre-

and post-monsoon positions in both 2016 and 2017 (Epochs 6–9)

(Figures 6 and 7b), likely reflecting seasonal variability in

landslide visibility as also detected in our multi-temporal inventory

(Kincey et al., 2021).

3.4 | Regional-scale spatial distribution of
modelled runout

Summarized by slope unit, coseismic landslide area is concentrated in

a broad northwest-southeast zone (Kincey et al., 2021; Roback

et al., 2018), aligned in particular with the physiographic divide

between the Middle Hills, Middle Mountains and the High Himalaya

(Figure 8a). The spatial distributions of coseismic Rout_Mod area

(Figure 8b) and summed p(Rout) values (Figure 8c) broadly coincide

with that zone (Figure 8a). The majority of slope units across the

northern extent of the study area have a high ratio of Rout_Mod area

to Ls_Map area (Figure 8d). However, the central high-relief region,

around Rasuwa, Nuwakot and Sindhupalchok districts in particular

(see Figure 1a for district names), has large areas of coseismic landslid-

ing (Figure 8a) and notably lower ratios (Figure 8d). Ratio values are

also markedly lower across slope units to the south of the study area,

indicating that modelled runout from landslides in these locations was

proportionally less extensive (Figure 8d).

The distribution of realized coseismic hazard, defined here as the

percentage of coseismic Rout_Mod cells within a single slope unit that

became Rout_Real in any post-seismic epoch, shows considerable

spatial heterogeneity (Figure 9a). Clusters of contiguous slope units

(typically < 5 connected units) with high Rout_Real percentages are

present, but these are frequently adjacent to slope units with very

low values, and there is little apparent spatial structure at the scale of

our study area. The exception to this is a broad swathe of high values

extending across Rasuwa, Nuwakot and Sindhupalchok. This again

broadly mirrors the zone of highest densities of coseismic landsliding

(Figure 8a), the highest summed p(Rout) values (Figure 8c), and some

of the lowest Rout_Mod area to Ls_Map area ratios (Figure 8d). Maxi-

mum p(Rout) values per slope unit are only weakly correlated with the

Rout_Real coseismic percentages (Figure 9b), showing that runout

realization is not limited to slope units with high runout

susceptibilities.

3.5 | Controls on changing post-earthquake runout
characteristics

No clear correlations are apparent at slope unit level between the

topographic variables (Section 2.4) and the percentage values of real-

ized coseismic hazard (Rout_Real), suggesting that any potential causal

relationships are likely to be manifest below slope unit scale. In con-

trast, at 10 m resolution, the kernel density estimate differencing of

these variables shows marked variation between Rout_Mod cells for

which the hazard was realized within 4.5 years after the earthquake,

and cells for which it was not (Figure 10). Modelled runout cells where

the hazard became realized preferentially occurred at elevations

above approximately 2750 m, and in particular between 3500 and

5000 m (Figure 10a), whereas at lower elevations (< 2750 m)

Rout_Mod was markedly less likely to be realized. Similarly, realized

runout preferentially occurred at slope angles > 35�, with a modal

peak at 45�, but much less frequently for lower slope angles

F I G U R E 9 (a) Realized coseismic runout (Rout_Real) plotted by
individual slope unit. Values indicate the percentage of cells in each
slope unit that were modelled as part of the coseismic runout area
(Rout_Mod), and were then occupied by a landslide in any post-seismic
epoch (Ls_Map). (b) Scatterplot of per-slope unit realized coseismic
runout (Rout_Real) (%) against the mean of all maximum runout
susceptibility (p(Rout)) values within each corresponding slope unit.
Note: Data are only plotted for slope units that include runout cells.
[Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 10b). When analysed across a normalized hillslope profile,

Rout_Mod cells were more likely to become Rout_Real in the middle-

upper portion of the slope (normalized distance from hillslope toe of

0.4–0.9) than in hillslope toe locations (Figure 10c).

Modelled runout cells were preferentially realized during the

study period on hillslopes which are strongly curved in both profile

(Figure 10d) and plan (Figure 10e), as compared to planar hillslopes.

For profile curvature, this occurred where slopes are upwardly con-

vex with values < �0.03 m�1 and upwardly concave with values >

0.03 m�1, while for plan curvature realized cells were preferentially

on concave slopes where flow is convergent (< �0.025 m�1) and

convex slopes where flow is divergent (> 0.03 m�1). Upslope contrib-

uting area shows a complex relationship to realization, which was

most likely to occur at values between 500 and 100,000 m2

(Figure 10f).

Rout_Mod cells that experienced landslides over the study period

also preferentially occurred on slopes with aspects between approxi-

mately 90� and 240�, representing hillslopes facing orientations

between east, south and west-southwest, with a modal peak around

south-southeast (Figure 10g). Rout_Real cells on more northerly-facing

slopes were noticeably less common. When aspect is adjusted to

reflect hillslope direction relative to the Gorkha earthquake epicentre,

the distribution shows that realized runout was preferential on slopes

facing obliquely away (90�–175�), despite these hillslopes being rela-

tively infrequent in the study area (Figure 10h), and in contrast,

Rout_Mod cells on slopes facing the epicentre generally did not

become Rout_Real. Realized runout also preferentially occurred close

to coseismic LS_map cells, especially for distances < 50 m (Figure 10i).

Beyond this distance, Rout_Mod cells were much less likely to experi-

ence landslides in subsequent epochs, suggesting that realization of

the modelled runout extent was mainly achieved via iterative exten-

sion of coseismic landslides, rather than via the occurrence of entirely

new landslides in downslope locations.

4 | DISCUSSION

Post-earthquake landsliding can represent a significant secondary haz-

ard in the months and years after mountain region earthquakes. A

considerable portion of this hazard arises from the remobilization of

previously failed material, and so understanding the evolution of the

associated runout holds the potential to locate, and therefore miti-

gate, this component of post-earthquake hazard. Our results provide

the first regional-scale assessment of how this runout hazard changes

in the years following a large continental earthquake, including the

extent to which the overall potential runout area is realized and what

local factors control the degree to which this occurs.

4.1 | Evolution of landslide runout following a
large earthquake

Our results demonstrate that the overall area modelled to be at risk of

runout from mapped landslides increased considerably after the 2015

F I GU R E 1 0 Kernel density distributions of all modelled coseismic runout cells (Rout_Mod) for selected topographic, seismic and distance-
based variables. Differences in kernel density values relative to the overall distribution are shown for those cells where the coseismic runout
hazard was later realized (Rout_Real; red) and for those where it was not (Rout_Mod ≠ Ls_Map; blue). Shaded areas show distributions of each
variable for all coseismic runout cells (Rout_Mod) within the study area for reference. [Color figure can be viewed at wileyonlinelibrary.com]
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Gorkha earthquake. The area at risk of potential runout peaked after

the 2015 monsoon, but importantly remained above coseismic levels

through the end of the 2019 monsoon (Figure 2). This pattern of run-

out susceptibility fits with our understanding of the changing pattern

of landslides following this earthquake, which suggests that the over-

all landslide footprint remained large through at least 2019 relative to

coseismic levels (Kincey et al., 2021; Rosser et al., 2021). Our results

are in contrast with those of Dahlquist and West (2019), who docu-

mented a rapid decline in debris-flow activity after the Gorkha earth-

quake and suggested that the transient increase in debris flow rates

did not persist beyond 2016.

There are several possible reasons for the apparent differences in

these two studies. One important consideration is that our modelling

is based on all visible landslides in each epoch (Kincey et al., 2021), as

opposed to mapping only newly-occurring landslides (Dahlquist &

West, 2019). Since we have no data on sediment availability or vol-

ume, our approach makes the conservative assumption that any exis-

ting landslide could potentially be a source of future runout. The peak

in runout susceptibility after the 2015 monsoon therefore reflects the

transition from more landslides being triggered than revegetated, to

more landslides revegetating than being triggered, rather than an

actual peak in landslide rate. It is certain that some of the landslides

that persisted as bare ground in post-seismic inventories will in fact

have been already exhausted of readily mobile sediment and so will

no longer pose an immediate hazard in terms of secondary runout.

This means that our time series represents a precautionary scenario

that will likely overestimate hazard persistence relative to studies that

only document new or substantially-altered source areas. However,

we know that the majority of coseismic landslide deposits remain in

place on hillslopes for years after a large earthquake, with estimates

for Wenchuan ranging between 80 to 90% of the initially mobilized

material still being in situ after 6–7 years (Dai et al., 2021; Fan,

Domènech, et al., 2018; Huang & Li, 2014; Märki et al., 2021;

Zhang & Zhang, 2017). Even though the proportion of this material

that is readily erodible will decrease through time (Domènech

et al., 2019; Qu, 2019; Yunus et al., 2020), longer-term studies have

demonstrated that elevated rates of debris flows can persist for

decades (Li et al., 2018; Ni et al., 2019).

Similarly, enhanced rates of new post-seismic landsliding will per-

sist in the years after a large earthquake, meaning that the source

areas available for remobilization will also evolve (Dadson et al., 2004;

Li et al., 2018; Zhang et al., 2016), and that new locations will become

susceptible to runout (Zhang & Zhang, 2017). Defining the period over

which both new post-seismic landslides and post-seismic runout play

out needs to balance the likely period over which the earthquake leg-

acy remains relevant for the failure of new landslides and the time for

the landscape to experience forcing from a full spectrum of conditions

that drive remobilization. Analysis of landsliding during the 2020 mon-

soon, which was recognized as intense in the area of the 2015 earth-

quake, suggests that the legacy of the Gorkha earthquake has

persisted at least that long (Rosser et al., 2021).

Importantly, our results also demonstrate that the overall poten-

tial runout extent can be estimated as a multiple of the mapped land-

slide area (Figure 3), thereby helping to constrain the potential

magnitude of the runout phase of the overall cascading hazard. Mod-

elled runout areas are on average four times larger than equivalent

landslide areas for the pre- and coseismic periods, but five times

larger for post-seismic inventories (Figures 2 and 3). This change in

runout-to-source area ratio (Rout_Mod:Ls_Map) could reflect differ-

ences in the hillslope location and topographic characteristics of

post-seismic landslides, which are often at higher elevations (Fan,

Domènech, et al., 2018; Kincey et al., 2021) and on steeper slopes (Li

et al., 2018; Yunus et al., 2020) than pre-seismic landslides, and so

have greater potential for longer runout pathways. The similarity

between the coseismic and pre-seismic runout-to-source ratios is

likely the result of a combination of factors, including that coseismic

landslides are typically larger, rounder in plan and, at least after the

Gorkha earthquake, were less channelized than pre- or post-seismic

landslides (Kincey et al., 2021). As post-seismic landsliding progres-

sively shifts towards a dominance of rainfall triggering, the ratio

between Rout_Mod area and Ls_Map area should also decrease, a

trend which may be occurring from post-monsoon 2016 (Epoch 7)

onwards (Figure 3).

4.2 | Realization timescales associated with
modelled runout susceptibility

Our results show that 14% of all modelled coseismic runout cells,

equivalent to 85 km2, experienced a landslide at some point within

the 4.5 years following the earthquake (Figure 5a), and this proportion

increases to 32% when the model output is thresholded by a suscepti-

bility threshold that maximizes the model precision. We find that 90%

of the total runout realization extent originates from changes to pre-

existing coseismic landslides, and only 10% from entirely new land-

slides within the modelled runout footprint (Figure S14). This total

realization area is equivalent to 57% of the total area affected by cos-

eismic landsliding as a result of the 2015 Gorkha earthquake. Analysis

of the rate at which coseismic Rout_Mod cells become Rout_Real

shows a marked decrease through time, with 4.8% of the modelled

runout area experiencing a landslide within 6 months of the earth-

quake, but just 0.3% of cells taking the full 4.5 years (Figure 6). This

indicates that the majority of actual runout from coseismic landslides

occurred in the immediate post-seismic period, with limited ongoing

expansion of this extent continuing through time. These results mirror

the short-lived mobilization of debris flows from coseismic landslides

observed by Dahlquist and West (2019) by post-monsoon 2015. We

would expect that the rate at which new runout occurred from cos-

eismic landslides will continue to decrease through time, perhaps as

sediment supply decreases (Qu, 2019), fine material is preferentially

removed (Domènech et al., 2019), and stabilizing vegetation becomes

re-established (Shen et al., 2020; Yang et al., 2018). This is reflected in

the decreasing proportion of realized runout that relates to pre-

existing landslides versus entirely new landslides for each of the post-

seismic epochs (Figure S14).

The unrealized per-epoch percentage of coseismic Rout_Mod cells

decreased consistently after the earthquake, from 81% in post-

monsoon 2015 to just 50% by post-monsoon 2019 (Table S7), while

the per-epoch percentage of coseismic Rout_Mod cells that ceased

being hazardous increased from 15% in post-monsoon 2015 to 45%

by post-monsoon 2019. This reduction in the total runout footprint

reflects a decrease in the overall hazard from coseismic landslides

through time. Since our results do not consider sediment supply or

transport volumes, this decrease is solely the result of changes to
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Ls_Map areas over time. It is important to note, however, that this pat-

tern of change is based solely on the coseismic landslide inventory

and does not include the potentially significant influence of new post-

seismic landsliding (Kincey et al., 2021). This explains the apparent

paradox that, although the Rout_Mod associated with coseismic land-

slides is decreasing through time (Figure 6; Table S7), the overall

Rout_Mod area remains high (Figure 2). New landslides provide an

additional supply of sediment that can subsequently be remobilized

into debris flows (Zhang & Zhang, 2017). Analysis of runout realization

for landslides in the post-monsoon 2015 inventory shows that 12%

(95 km2) of the modelled runout area experienced a landslide by the

end of the time series, with this proportion remaining above 10%

through 2016 and 9% for 2017, before decreasing rapidly after this

date (Figure 7). Over the same time period, 0.3% of the study area

experienced landslides, of which 39% lay inside and 61% lay outside

the modelled runout area, although these values include the occur-

rence of new unconnected landslides as well as runout from existing

landslides. Although the decreasing proportion of realization through

time in part stems from the reduced number of post-epoch invento-

ries included in the analysis of later model runs in the time series, the

trend is not simply sequential. Interestingly, although there is some

inter-epoch variability, realization rates for any given wait time

decrease as the time series progresses (Figure 6), again suggesting

that runout from post-seismic landslides occurs less frequently as

more time elapses after the earthquake. Thus, the evolution of post-

seismic runout hazard must be viewed as a palimpsest of overlapping

susceptibilities from the inventory in each epoch, each decaying over

time but superimposed on each other.

One important outstanding question is the degree to which the

post-seismic runout realization timescale described earlier was deter-

mined by the timing of the earthquake itself. The Gorkha earthquake

occurred in late April 2015, approximately 6 weeks before the start of

the monsoon season and after a 6-month period of dry weather. This

meant that the earthquake occurred in relatively dry hillslope condi-

tions but immediately before the onset of the monsoon. It has been

previously suggested that the antecedent moisture conditions at the

time of an earthquake may influence the extent of coseismic landslid-

ing (Marc et al., 2018). This has also been argued as one reason why

some moderate earthquakes are able to generate more extensive cos-

eismic landsliding, as in the case of the 2018 Mw 6.6 Hokkaido earth-

quake, which occurred 1 day after Typhoon Jebi (Cui et al., 2021;

Wang et al., 2019). Given this, the degree to which landslides run out

in the post-seismic period is influenced by their behaviour and runout

at the time of the earthquake; wet coseismic landslides may immedi-

ately run out a considerable distance, or may develop as slower

deeper-seated landslides; dry, blocky coseismic landslide deposits may

remain perched in the landscape, or may avalanche, running out over

long distances. In the case of the Gorkha earthquake, both landslide

and runout areas peaked with the post-monsoon 2015 inventory

(Figure 2), indicating that the intervening monsoon significantly

increased the landslide runout across the earthquake-affected area.

The pattern of Rout_Real wait times (Figure 6) in the following years

shows a progressive reduction in the realization of modelled runout,

overlaid with a high degree of epoch-by-epoch variation. Clarifying

links between the seasonal timing of earthquakes and the pattern of

coseismic and post-seismic landsliding and its runout should be a pri-

ority focus for future research.

4.3 | Controls on runout realization

When analysed at slope unit level, the spatial distribution of runout

broadly reflects the distribution of coseismic landslides. Larger mod-

elled runout extents are observed across much of the higher-relief

areas to the north of the study area, although there is a notable region

of low runout to source area ratios and high summed p(Rout) values

coincident with the highest landslide densities, where the remaining

hillslope area available to accommodate runout was limited (Figure 8).

Despite pronounced spatial heterogeneity in the distribution of real-

ized coseismic runout (Figure 9a), the percentage of realized hazard is

again higher in those districts most badly affected by the earthquake.

This indicates that slope units that experienced the highest densities

of landsliding were also those in which post-seismic runout was most

likely to occur, a finding that correlates with spatial variability in post-

seismic activity after the Wenchuan earthquake (Ma et al., 2017; Ni

et al., 2019). Whilst this may appear somewhat unsurprising, evidence

of this tendency is important for focusing efforts within post-

earthquake geohazard assessments. No correlation is present

between those cells that transition from Rout_Mod to Rout_Real and

mean maximum runout p(Rout) values (Figures 9b), and the lack of any

clear correlations with topographic variables demonstrates that con-

trols on runout are likely operating at the sub-slope unit scale. At a

finer resolution (10 m cells), our results indicate a number of underly-

ing physical controls that define where in the landscape is most sus-

ceptible to post-failure runout (Figure 10). This finding provides a

significant step in the ability to anticipate locations that are more

likely to experience post-seismic runout, and therefore where cascad-

ing hazard and associated risk is concentrated (Li et al., 2018; Tian

et al., 2020; Zhang & Zhang, 2017).

Whilst the limited number of equivalent studies on the

remobilization of coseismic and post-seismic landslides restricts a

wider comparison of the controls on runout, our findings do correlate

well with broader-scale assessments focusing on rates of new post-

seismic landsliding and the reactivation of coseismic landslides

(e.g., Fan, Domènech, et al., 2018). For example, we find that runout

associated with coseismic landslides is most likely to be realized at

elevations > 2750 m (Figure 10a). This is to be expected given that

our results are showing progressive (downslope) runout from existing

landslides, which themselves typically cluster at ridge-top locations

(Meunier et al., 2008). Nevertheless, it is known that new post-seismic

landsliding also tends to occur at higher average elevations than pre-

ceding coseismic landsliding (Fan, Domènech, et al., 2018; Khan

et al., 2013; Kincey et al., 2021; Yunus et al., 2020), and so the distri-

butions will also partially reflect the inclusion of entirely new land-

slides at higher elevations. Our finding that hazard realization

preferentially occurs on steep slope angles of > 35� (Figure 10b) is

also reflected by studies focusing on both post-seismic debris flows

(Dahlquist & West, 2019) and post-seismic landsliding (Li et al., 2018;

Yunus et al., 2020).

Locations in the middle-upper portion of the hillslope profile were

also found to be more likely to be realized than those lower down the

profile, or at the ridge top (Figure 10c). This at least in part reflects

the spatial distribution of coseismic landslides, which tend to cluster

towards ridge tops due to topographic amplification of seismic shak-

ing (Meunier et al., 2008), and the downslope runout from these areas

to mid-slope positions during post-seismic epochs. Mid-slope
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positions are also likely to generate higher pore pressures and thicker

overland flows, which are known debris flow triggers, as compared to

ridge tops. This differs from patterns of new post-seismic landsliding

after the Gorkha earthquake, which occurs more broadly across the

entire hillslope profile but with a concentration towards lower hill-

slope positions (Kincey et al., 2021), where high pore fluid pressure is

also present and undercutting of hillslopes may be more prevalent

(Densmore & Hovius, 2000). In addition, we find that realization is

more likely to occur on slopes with a pronounced degree of plan or

profile curvature, notably for either convex and concave slopes

(Figures 10d,e), and that realization is most likely for cells with an

upslope contributing area of between 40 and 15,000 m2 m�1

(Figure 10f). Whilst inferring an underlying mechanism for concentrat-

ing landslides in these areas from these data alone is challenging, the

landslide distribution may reflect a combination of flow accumulation

within concavities, and a reduction in slope stability around convexi-

ties, which both reduce the local factor of safety. According to our

observations, remobilization and runout concentrate where there are

most likely to be notable changes to flow characteristics (i.e., local

concavities or convexities). Low contributing areas correspond to

ridge top positions with limited landslide material available for

remobilization, while very high contributing areas correspond to valley

floors or lower portions of the channel network where slope may be a

limiting factor in remobilization.

Aspect-dependent asymmetry in the distribution of landslide

activity has been previously documented for both coseismic (Meunier

et al., 2008) and post-seismic (Fan, Domènech, et al., 2018; Kincey

et al., 2021) landslide inventories, and here we show that this signal is

also manifest in runout. Rout_Real is preferentially concentrated on

hillslopes oriented between east, south and west-southwest

(Figure 10g), and on slopes facing away from the direction of the Gor-

kha epicentre (Figure 10h). These distributions may reflect a superim-

position of directional asymmetry in the hillslope damage legacy

generated by seismic shaking (Brain et al., 2017; Robinson

et al., 2017), which influences where newly-failed ground may occur,

and the dominant direction of prevailing monsoonal rains from the

south-southeast in this part of the Himalaya, which combined may act

to amplify the apparent directional preference for runout seen here

(Fan, Domènech, et al., 2018). We also demonstrate that Rout_Mod

cells proximal to pre-existing coseismic landslides, notably those

within 50 m, are considerably more likely to be realized than those

further away (Figure 10i). This finding indicates that runout is domi-

nated by changes occurring over relatively short distances close to

existing landslides, rather than more extensive runout over long dis-

tances, although the risk of more extensive runout should not be

ignored. This pattern of activity concentrated near to existing land-

slides mirrors ideas around path dependency observed in other multi-

temporal landslide inventories (Samia et al., 2017).

4.4 | Integrating runout evolution into long-term
hazard and risk management

Landslide-triggering earthquakes in mountain regions can leave a con-

cerning legacy of unstable slopes and extensive landslide debris,

which compounds the risks faced by populations whose priority is

reconstruction (Oven et al., 2021; Rieger, 2021). Any effort to

understand these complex hazards, and their evolution in time, is

therefore of value. Whilst our capacity for regional-scale evaluation of

individual hillslope susceptibility to new landslides after an earthquake

is currently extremely limited, a potentially knowable risk is that posed

by runout from coseismic landslide deposits in the landscape. Such

remobilization commonly and tragically can lead to significant losses

in the aftermath of large earthquakes, as has been seen in central

Nepal since 2015 (Rosser et al., 2021).

In this research we argue that considerable gains can be made by

isolating and characterizing the risks posed by the potential for runout

from coseismic and post-seismic landslides, as this may represent a

substantial portion of total landslide risk faced in the aftermath of a

large earthquake. The need to model and map these risks is also clear:

the long hillslopes, confined valley topography and complex drainage

networks that are common in central Nepal often mean that upslope

landslide hazards may not always be recognized, particularly where

populations may have variable degrees of awareness of the hazards in

the landscape around them. The behaviour of post-earthquake land-

slides is also likely to sit at odds with the lived experience of residents,

because earthquakes result in larger, more numerous, and more active

landslides than may have been present prior to an earthquake (Oven

et al., 2021; Rieger, 2021).

We demonstrate here that a considerable area of land (85 km2)

within the earthquake-affected area could have been recognized after

the earthquake was at risk from runout, based upon a precautionary

parameterization of Flow-R. We also show that the potential hazard

associated with post-seismic runout may have a spatial extent up to

five times that of the coseismic landslide footprint alone, and so must

be a significant factor in post-earthquake land-use planning. Whilst

only 14% of this full modelled coseismic runout extent was realized

within the first 4.5 years, this represents a valuable demarcation of

areas at risk that could be generated immediately after coseismic land-

slides have been either modelled (Robinson et al., 2017) or mapped

(Williams et al., 2018). Importantly, our model was run at 10 m resolu-

tion over the full earthquake affected area, which is a resolution rele-

vant to individual land holdings and buildings, allowing those

potentially at risk to be identified.

We also show that choices involving small distances (< 50 m) can

make a significant difference to exposure to runout of landslide

debris, and so this fine-scale information is critical for the selection of

safer places for reconstruction. The tendency for landslide debris to

channelize during runout poses a particular set of risks for valley bot-

tom settlements, which commonly occupy the deposits of previous

debris flows as these areas are often the only habitable land; identify-

ing which of these areas are at greater risk where choices for develop-

ment and reconstruction are highly limited is therefore essential. An

important further finding of our work is that the runout hazard follow-

ing a large earthquake changes significantly and in a complex manner

through time as the contributing landslide sources also evolve. Identi-

fying both where and critically when it is safe to rebuild is equally

complex.

We took a precautionary approach to the modelling of potential

runout in this study, assuming that any landslide visible as bare gro-

und in any mapping epoch represented a possible source of future

runout material. This approach was justified given the absence of any

meaningful data relating to sediment volumes or supply across the

earthquake-affected area, but it does mean that some source
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locations that were already depleted of sediment will have been

included within the analyses. Similarly, our approach to parameteriz-

ing and validating the model had to reflect the complexity and vari-

ability present within a landslide dataset that included > 190,000

source locations distributed across an area of > 24,000 km2. A useful

avenue for future research would therefore be to assess in more

detail how the ideal parameterization of Flow-R changes through

both space and time as the population of coseismic and post-seismic

landslides evolve, including consideration of appropriate model sus-

ceptibility thresholds for different hazard and risk scenarios. In partic-

ular, analysing overall realization and model performance once the

rate of runout and landsliding has returned to pre-seismic levels

would allow model parameters to be better refined and a less precau-

tionary hazard assessment produced. Repeating such analyses for

other multi-temporal post-seismic landslide datasets would also pro-

vide important information on the degree to which standard model

calibration can be applied within different topographic and seismic

contexts.

Another important avenue for future research is linking the evolu-

tion of runout potential to the changes that occur in debris flow

source material, mechanisms and initiation locations highlighted by

other studies (e.g., Fan, Zhang, et al., 2018; Zhang et al., 2014; Zhang &

Zhang, 2017). Crucially, future work should also consider the impacts

of periodic high-intensity rainfall events on determining the trajectory

and timing of runout evolution, with the large-scale modelling

approach presented here providing the opportunity to assess whether

localized triggering factors can explain the spatial variability in pat-

terns of reactivation and runout documented elsewhere (Tang et al.,

2016; Yunus et al., 2020). Including rainfall data of sufficient spatial

and temporal resolution as part of the analysis of multi-temporal

source inventories and modelling of runout pathways would generate

invaluable information on how runout from coseismic landslides is

likely to evolve under particular environmental conditions. Integrating

such information into the planning framework associated with post-

disaster response therefore has the potential to substantially improve

our ability to forecast evolving cascading hazards and manage the

associated risks.

5 | CONCLUSIONS

Using a spatially-distributed empirical sediment runout model, we

considered how the spatial extent and relative likelihood of potential

runout from existing landslides changed in the 4.5 years following the

2015 Gorkha earthquake in Nepal. Our results indicate that runout

from coseismic landslides represents a considerable component of the

overall mountain hazard chain, with actual runout representing an

area equivalent to 57% of the total area impacted by coseismic

landsliding, and the modelled potential runout area being on average

4–5 times the equivalent coseismic landslide area. Although the mod-

elled runout area from the coseismic landslide population decreased

through time, the overall runout potential remained high, indicating

that the runout hazard is changing as a result of the evolution of the

post-seismic landslide distribution itself. This finding clearly demon-

strates the importance of developing systematic multi-temporal land-

slide inventories and associated runout susceptibility assessments in

the years after a large earthquake.

Predicting the precise timing of runout from existing landslides

remains problematic in the absence of high-resolution and accurate

precipitation forecast data, an in-depth understanding of antecedent

and local hillslope conditions, and extensive early warning systems.

However, our results demonstrate the possibility to anticipate the

spatial extent of future runout across an entire earthquake-affected

area and to provide indicative timescales over which the runout is

likely to occur. A comparison of modelled runout extents with subse-

quent mapped landslides shows that 14% of all modelled coseismic

runout cells became landslides – which we term ‘realization’ of the
hazard – at some point during the 4.5 years after the earthquake,

equivalent to 85 km2 of newly-affected ground. Limiting the modelled

runout extent to higher susceptibility areas increases the model preci-

sion to 32% (10 km2), meaning that the spatial location of a consider-

able area of potential future runout risk can be identified immediately

after an earthquake using our precautionary approach to the model-

ling of secondary hazards.

Our analysis shows that the majority of runout realization occurs

within the first 12 months after the earthquake, but that runout

activity still persists after 4.5 years, reflecting both a lag in the subse-

quent mobilization of existing landslide debris and the occurrence of

new landslides within modelled runout zones. Over the time period

of our analysis, there are no clear correlations between the degree of

hazard realization and a range of potential factors controlling land-

slide behaviour at the level of individual geomorphological slope

units. However, these same control factors do clearly influence the

likelihood of runout realization at the local (c. 10 m) scale, providing

important information to help guide post-seismic risk-sensitive land-

use planning.

Our findings enhance understanding of the extent and timing of

cascading hazards following high magnitude earthquakes in mountain

regions. Such regional-scale modelling of runout susceptibility from

existing landslides has the potential to refine prediction of where, and

over what timescales, future runout may occur, thereby greatly

improving our ability to inform how we manage long-term post-

seismic cascading hazard and risk. Embedding this knowledge within

frameworks of disaster planning and decision-making has the poten-

tial to significantly improve the effectiveness of post-event recovery

and reconstruction.
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