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1 Introduction and outline

There has been a resurgence of interest in 3d gauge theories in recent years, especially in
those without supersymmetry [1–11]. The activity was in part fueled by the discovery of
new ’t Hooft anomalies which involve finite symmetry groups, generalized global symme-
tries and their connection to symmetry protected topological phases (see e.g. [12–15] and
references therein). Along a similar line of enquiries, in this work we discuss 3d SU(N)
gauge theories with a single massless Majorana fermion in the adjoint representation of the
gauge group and matter fields (either bosonic or fermionic) in the fundamental representa-
tion which can generically be massive (we will henceforth call this theory QCD3(adj/f)).
Further we are interested in time-reversal-symmetry-preserving theories. The fundamental
matter has flavor symmetries, which includes the U(1)-baryon symmetry. Without the
massless Majorana adjoint fermion the theory has no ’t Hooft anomalies, which is obvious
by the fact that one can deform the theory to a trivially gapped theory by condensing
scalar fundamentals, and Higgsing the gauge group completely. The situation is different
in the presence of the Majorana-adjoint fermion, as the T -symmetry prohibits it from being
gapped out. The Higgs regime now has gapless fermions, and there is no obvious way to
gap out the theory trivially.
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In fact, as we will show, the presence of a Majorana-adjoint causes the system to
have a mixed flavor-time-reversal symmetry anomaly. This is even true for one flavor
of fundamental matter, either bosonic or fermionic, so that the flavor symmetry is only
a U(1)-baryon symmetry. In this case the mixed T–U(1) anomaly is the famous parity
anomaly1 [16–18], which we will review in section 2. The presence of gapless fermions
in the Higgs regime can be restated as matching the parity anomaly in the IR in the
simplest possible fashion, namely, with free Dirac fermions with non-zero baryon charge.
Interestingly, the anomaly is still present even when the fundamental matter is heavy.2

When we increase the number of flavors to Nf > 1, the faithful global symmetry
group which acts on gauge-invariant operators becomes U(Nf )/ZN . There is still a mixed
flavor-T anomaly, but more care must be taken to characterize it. This characterization
will be detailed in section 2.1 by defining two mod 2 indices as generalizations of Chern-
Simons level mod 1 for the classic parity anomaly. Moreover, the mixed anomaly between
T and U(1) baryon symmetry persists. This is different from SU(N)0 gauge theory with
only even Nf fundamental fermions where there is a mixed U(Nf )/ZN–T anomaly but no
mixed anomaly between T and the U(1) baryon subgroup. Such a theory is studied in the
large N limit in [20] where the non-abelian part of the flavor symmetry group could be
spontaneously broken, consistent with the anomalies. More interestingly, there can also
be ’t Hooft anomaly in the T symmetry itself, which is determined by a mod 16 index.
We will see that, in QCD3(adj/f), there are two such T symmetries which differ by charge
conjugation, and therefore two mod 16 indices can be defined, as we explain in section 2.2,
giving further constraints on the possible IR phases. The simplest way to match all these
anomalies in the IR is with free fermions charged under the global symmetry, together with
some additional neutral fermions. The neutral fermions are needed to satisfy one of the
mod 16 anomalies. One can even see them arising explicitly in the completely Higgsed
regime for the theory with scalar fundamentals. We will discuss this particular example
in some details in section 3 to illustrate this phenomenon in particular as well as anomaly
matching in general.

The rest of the paper is organized as follows. In the rest of section 3, we consider
QCD3(adj/f) with a general number of fundamental fields. There, we discuss its global
symmetry structure and analyze the anomalies in details for both the fermionic fundamental
and the scalar fundamental cases. Then, motivated by the totally Higgs phase of the scalar
theory, we also take the free fermion phase in the IR as a viable option and propose
some free fermion configurations consistent with both the parity anomaly and the mod
16 anomalies. We summarize our investigation and discuss several alternatives for the
IR phase, as well as indicating some interesting directions for further study, in section 4.
Some lengthy computations whose results are used in the main text are collected in the
appendices.

1The parity anomaly is usually viewed as the absence of T -symmetry in the presence of dynamical gauge
fields at the quantum level. However here we take the point of view of the parity anomaly as an ’t Hooft
anomaly.

2In this case the theory reduces to Super Yang-Mills in 3d which was argued to have a TQFT [9] along
with the massless goldstino [19].
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2 The parity anomaly

In this section we will review the parity anomaly, which can be thought of as the mixed
anomaly between a U(1) global symmetry and the time reversal symmetry T in 3d. The
anomaly is epitomized in the single Dirac fermion in 3d, given by the Lagrangian

L = ψ̄i/∂ψ , (2.1)

where ψ is a Dirac fermion in 3d, and /∂ = γµ∂µ, where γµ are the 3d gamma-matrices
which we take in Minkowski space to be

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 . (2.2)

Note that the gamma-matrices are all real. We define the time-reversal symmetry T to be3

T : ψ(x0, x1, x2)→ γ0ψ∗(−x0, x1, x2) . (2.3)

Now the mass term in the Lagrangian is given by

Lm = imψ̄ψ . (2.4)

The imaginary “i” is important to make the Minkowski-space action real. However, it is
easy to show that because of this “i” the action of an anti-unitary T -symmetry gives

T : Lm → −Lm , (2.5)

and hence the mass term breaks time-reversal symmetry.
If we now put background gauge field for the U(1) symmetry ψ → eiαψ, we need to

promote
∂µ → Dµ = ∂µ − iAµ . (2.6)

It is then well known that the Dirac determinant cannot be regulated without breaking
the T -symmetry. The partition function is given by

Z = detreg /D , (2.7)

where reg refers to the regulated determinant. Under the T symmetry the single fermion
partition function transforms as

T : Z → Ze±
i

4π

∫
X
AdA , (2.8)

where the sign in the exponent depends on the sign of the regulator mass and where X
is the 3d space-time manifold. We will always pick the lower sign, so that the action
transforms as

∆S = 1
4π

∫
X
AdA . (2.9)

3Note that in high-energy physics the time reversal symmetry is usually taken not to complex conjugate
the spinor ψ. The definition of T here corresponds in the high-energy community to CT . We find the
current definition more convenient as the basic T -symmetry, as the complex conjugation comes from the
anti-unitarity of T , and we prefer not to undo the complex conjugation by charge conjugation symmetry.
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The important point is that the non-invariance under T cannot be fixed with a local
counterterm, but it can be fixed by postulating an auxiliary bulk Σ whose boundary is
the space-time manifold X = ∂Σ equipped with an invertible quantum field theory with
the action

SSPT = 1
8π

∫
Σ
F ∧ F , (2.10)

where SPT stands for Symmetry-Protected Topolological phase — another name for the
gapped bulk theory. This is an example of anomaly inflow where an ’t Hooft anomaly is
captured by an SPT phase in one dimension higher.

The inability to preserve the T -symmetry in the presence of the U(1) gauge field is a
reflection of a mixed ’t Hooft anomaly between the T symmetry and the U(1) symmetry.
This means that it is impossible to trivially gap the theory without breaking one of these
two symmetries explicitly, for example by adding a bare Dirac mass term which breaks the
T symmetry.

We will now discuss a parity anomaly involving a symmetry group U(Nf )/ZN , as
we will need it for the discussion of the QCD3(adj/f) theories, the subject of study for
this paper.

2.1 The U(Nf )/ZN parity anomaly

First consider a Dirac fermion in a representation R of simple Lie gauge group G. Let A
be the gauge field in the fundamental representation of G coupled to such a fermion. The
claim is that the measure now transforms as

∆S = 2d(R)
4π

∫
tr
(
AdA− 2i

3 A
3
)

(2.11)

where d(R) is the Dynkin index4 of the representation R of G. We normalize the Dynkin
index such that d(f) = 1/2 where f stands for the fundamental representation of G. This
is equivalent to informally stating that the measure “induces” a Chern-Simons term with
level −d(R) which we will adopt for the rest of the paper.5

Now we want to consider a free massless fermion in a global symmetry group6

F = U(Nf )
ZN

∼=
SU(Nf )×U(1)

ZN × ZNf
. (2.12)

To classify representations of such a symmetry group, consider the fundamental represen-
tation of U(Nf ) labeled by ψI where I = 1, . . . , Nf . To build an arbitrary representation of
U(Nf ) we can take direct products of fundamental representations and symmetrize or anti-
symmetrize them with respect to the fundamental indices as usual. The difference between

4The appearance of the Dynkin index can be traced to the vacuum polarization diagram with a fermion
loop inside. Such a diagram will feature the generators the trace trR(T aT b) = d(R)δab, where T a are
generators of G.

5In the case of a Majorana fermion instead of a Dirac fermion, the induced Chern-Simons level is
−d(R)/2.

6The full symmetry group of dim(R) free massless Dirac fermions is certainly larger than this. We
only focus our attention to its subgroup U(Nf )/ZN for the purpose of anomaly matching where the global
symmetry of theories in the UV is U(Nf )/ZN .
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U(Nf ) and SU(Nf ) is reflected in the fact that when Nf indices are anti-symmetrized, they
leave behind Nf units of a U(1) charge.7 So for example completely anti-symmetric Nf -box
representation has a U(1) charge Nf . In other words to fully specify the representation
of U(Nf ) we must specify a representation of SU(Nf ) and the U(1) charge. Let Rq be a
representation of U(Nf ) where R is a representation of SU(Nf ) and q specifies the U(1)
charge. Note that we must have that

q − |R| = 0 mod Nf , (2.13)

where |R| is the number of boxes of the Young diagram of R.
What we will however be interested in is the representations of the group U(Nf )/ZN .

This puts another constraint that the charge must be a multiple of N as well, i.e.

q = 0 mod N . (2.14)

Let us now couple the free fermion to the background gauge field of F . We denote
the su(Nf )-valued gauge field by Af = AafT

a, where T a are generators of su(Nf ) in the
fundamental representation, and the u(1)-valued gauge field by A. Then the Lagrangian
of the system becomes

L = iψ̄
(
/∂ − i /AafT aR − iq /A

)
ψ, (2.15)

where T aR are generators of su(Nf ) in the representation R. As in the U(1) case, the
fermion regulators induce the Chern-Simons terms which can be written as a 4d action as

Sreg. = is

4π

∫
X4

Tr (Ff ∧ Ff ) + it

4π

∫
X4
F ∧ F , (2.16)

where Ff and F are field strengths for the gauge fields Af and A,and X4 is a spin 4-
manifold whose boundary is the 3-manifold the theory lives in. In our convention, the
induced Chern-Simons levels s and t are given by

s = −d(R), t = −1
2q

2dim(R) . (2.17)

If the induced Chern-Simons term can be canceled by a counterterm, the theory has no
parity anomaly. This happens when the 4d action Sreg. is independent of the choice of X4
and can be written purely as a 3d action. If there were no discrete quotients in the global
symmetry F , Af and A would be bona fide SU(Nf ) and U(1) gauge fields. Consequently,
Sreg. would be a boundary term whenever s and t are integers, and we could use s and t
modulo 1 as indices to characterize the anomaly. However, this is no longer the case with
the global symmetry F that we are interested in. The presence of the discrete quotients
prompts us to define a new set of indices to characterize the parity anomaly.

The new indices that can determine whether there is a parity anomaly when the global
symmetry group is U(Nf )/ZN are mod 2 indices I1 and I2, given in terms of the effective

7We normalize the U(1) charge such that the fundamental representation of U(Nf ) has a unit U(1)
charge.
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Chern-Simons levels s and t by

I1 = 2Nfs− t
N2
f

mod 2,

I2 = 2t
N lcm(N,Nf ) mod 2.

(2.18)

To see this, we write the gauge field A as

A = Af
Nf

+ Ac
N
, (2.19)

where Af and Ac are properly quantized U(1) gauge fields (with fields strengths Ff and
Fc, respectively) due to the ZNf and ZN quotient.8 Moreover, due to the quotient ZNf
between U(1) and SU(Nf ), the combination

Âf = Af + 1
Nf
Af INf , (2.20)

whose field strength will be denoted by F̂f , is a properly quantized U(Nf ) gauge field. The
induced Chern-Simons action then becomes

Sreg. = it

4πN2

∫
X4
Fc ∧ Fc + it

2πNNf

∫
X4
Fc ∧ Ff + it

4πN2
f

∫
X4
Ff ∧ Ff

+ is

4π

∫
X4

Tr (Ff ∧ Ff )

= it

4πN2

∫
X4
Fc ∧ Fc + it

2πNNf

∫
X4
Fc ∧ Ff + it

4πN2
f

∫
X4
Ff ∧ Ff

+ is

4π

∫
X4

Tr
(
F̂f ∧ F̂f

)
− is

4πNf

∫
Ff ∧ Ff ,

(2.21)

where we use the fact that Ff is traceless to go from the first line to the second line. Now,
since Af , Ac are properly quantized U(1) gauge fields and Âf a properly quantized U(Nf )
gauge field, the integrals

1
4π

∫
X
TrF̂f ∧ F̂f ,

1
4π

∫
X
Fc ∧ Fc,

1
4π

∫
X
Ff ∧ Ff ,

1
2π

∫
X
Fc ∧ Ff , (2.22)

all evaluate to integral multiples of 2π on a closed spin 4-manifold X. Thus, Sreg. becomes
a boundary term when

s ∈ Z, Nfs− t ∈ N2
fZ, t ∈ N2Z, t ∈ NNfZ. (2.23)

The last two conditions means t/N is an integral multiple of N and Nf . These conditions
can then be combined to read t ∈ N lcm(N,Nf )Z. Thus, there is no parity anomaly when
the induced Chern-Simons levels s and t satisfy

s = 0 mod 1, Nfs− t = 0 mod N2
f , and t = 0 mod N lcm(N,Nf ). (2.24)

8The decomposition into Af and Ac is not unique.
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However, since s is always an integer whenever the last two conditions are satisfied, the
condition s ≡ 0 mod 1 is not necessary. Therefore, there is no parity anomaly if and only
if Nfs− t is an integral multiple of N2

f and t an integral multiple of N lcm(N,Nf ). These
conditions are equivalent to the vanishing of the indices I1 and I2 defined above.

The indices I1 and I2 of some simple representations Rq in the cases we are interested
in are summarized in tables 1 and 2. Detailed computations for these indices are delegated
to appendix C.

2.2 The mod 16 anomaly

Since we are interested in T -preserving 3d theories, another anomaly will help us constrain
the IR dynamics. The anomaly stems from the fact that Majorana fermions can seemingly
be gapped only in pairs while preserving T symmetry. This is because a Majorana mass
term breaks T -symmetry explicitly. Consider a Majorana fermion ξ. Under T symmetry
we can define ξ to transform in two ways

T : ξ(x0, x1, x2)→ ±γ0ξ(−x0, x1, x2) . (2.25)

The kinetic term ξ̄i/∂ξ, where ξ̄ = ξTγ0 is easily seen to be invariant under the anti-unitary
T symmetry defined above. The Majorana mass term imξ̄ξ however is not invariant under
this symmetry, because of the presence of i, which is required to make the Minkowski
action real.

The only way to gap a free Majorana fermion is to do it in pairs, say by having ξ+
transform with sign + under T and ξ− with the sign −. Then the mass term imξ̄+ξ− is
invariant under the T -symmetry. So, naively we may be tempted to say that the difference
n+ − n− of the number of Majorana fermions n± transforming with the sign ± seems
to be conserved under the RG flow, indicating that there may be a T anomaly at play.
However, the arguments given above are for free fermions and so apply for weak coupling.
A nonperturbative analysis [21–25] (see also [26]) shows that n+ − n− is conserved under
the RG flow only up to mod 16. In other words, we can define an index νT

νT = n+ − n− mod 16 . (2.26)

Note that the above result is only true when the T -symmetry squares to (−1)F where F
is the fermion number, which is true for the T -symmetry defined above. One can trace
the origin of the number 16 from the anomaly inflow picture, where the corresponding
SPT phase for this mod 16 anomaly is the 4d topological superconductor whose phases are
classified by the 4th Pin+ bordism group ΩPin+

4
∼= Z16.9

Now a Dirac fermion can be thought of consisting of two Majorana fermions. We
already defined a T -symmetry in (2.3). The two underlying Majorana fermions transform
with the same sign under this T symmetry and hence the contribution to the νT index is
±2 mod 16.

9The appearance of the Pin+ structure is due to the fact that after Wick rotation, T 2 = (−1)F becomes a
reflection symmetry R with R2 = 1. This can then be used to define the Pin+ structure on a non-orientable
manifold (cf. appendix A.2 of [27]).
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We can also define another time-reversal symmetry10 T ′ by conjugating with a charge
conjugation transformation

T ′ : ψ(x0, x1, x2)→ ±γ0ψ(−x0, x1, x2) , (2.27)

and define the corresponding νT ′ index. The above symmetry again squares to (−1)F ,
and we can hence define but this time the two underlying Majorana fermions contribute
oppositely and the contribution to the corresponding νT ′ index is 0 mod 16.

3 The SU(N)0 QCD3(adj/f)

We will be concerned with T -preserving, SU(N) gauge theories in 3d which always have
a single Majorana fermion in the adjoint representation. If no other matter is present the
theory is given by the bare action

S = − 1
2g2

∫
tr fµνfµν +

∫
d3xλ̄i /Dλ+ N

2
1

4π

∫
tr
(
ada− 2i

3 a
3
)
, (3.1)

where a is the SU(N) gauge field,11 f is its curvature, λ is the Majorana in the adjoint
representation (viewed as an su(N)-valued field), and Dµ = ∂µ − i[aµ, ·] is the covariant
derivative in the adjoint representation. Note that we added a Chern-Simons term to cancel
the T non-invariance of the Majorana fermion measure, which transforms as

∆Sλ = d(adj)
4π

∫
tr
(
ada− 2i

3 a
3
)
, (3.2)

where d(adj) = N is the Dynkin index of the adjoint representation. If there are no
other fermions, the bare Chern-Simons term in (3.1) only makes sense if N is even. The
theory (3.1) is a T -preserving Super Yang-Mills in 3d, which was argued by Witten to
break spontaneously the supersymmetry leaving a goldstino fermion behind [19]. Further
the theory has a 1-form ZN symmetry, which is ’t Hooft anomalous, and needs to be
saturated. In [9, 28], it was proposed that in addition to a goldstino, the theory should
have a decoupled TQFT U(N/2)N/2,N .

Now consider adding Nf scalars φI , I = 1, 2, . . . , Nf in the fundamental representation
of SU(N), which furnish a U(Nf )/ZN global flavor group. We want to consider a phase
where the flavor symmetry does not break at all in the Higgs phase. Before considering
the case with arbitrary number of flavors, let us take one Higgs flavor and the gauge group
SU(2). In that case condensing the Higgs, we can set the Higgs condensate

〈φ〉 =
(
v

0

)
10We remind the reader that in the high-energy community what we call T is usually called CT and what

we call T ′ is usually called T .
11We will denote dynamical gauge fields with lowercase letters, and the background gauge fields with

capital letters.
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by an SU(2) gauge transformation, where v is real. Note that the U(1) flavor symmetry
is not spontaneously broken because it rotates the condensate φ by a phase, which can be
removed by an SU(2) gauge transformation.

This phase breaks the gauge symmetry completely and leaves only the 3 massless
adjoint Majorana fermions behind. However, these three fermions are not gauge invariant
operators and do not correspond to physical states. To construct physical states one needs
to consider operators

ξ = φ†aλ
a
bφ
b (3.3)

ψ = φaφbλab , (3.4)

where we made the color indices a, b explicit and used the fact that we can raise and lower
the SU(2) indices of λ with an ε symbol. Note that ξ is a gauge invariant real fermion
operator, while ψ is a complex fermion, which carries a U(1) flavor charge. We therefore
found that this phase consists of one Dirac fermion with a global U(1) charge, which as we
saw in section 2 has a mixed U(1)–T anomaly. Hence, the UV theory must have a parity
anomaly as well. We will see how this works in section 3.2. Let us also comment on the real
fermion ξ, which with a Dirac fermion makes a triplet of real fermions, furnishing an SO(3)
triplet. In fact the flavor symmetry of the scalar theory has an SO(3) global symmetry,
of which U(1)-baryon symmetry is a subgroup, as we discuss12 in the appendix A (see
also [29]).

Now let us consider the general Higgs phase in which flavor symmetry is unbroken.
This is only possible if Nf < N . One way to see this is to think of the Higgs field φ as an
Nf ×N matrix, which transforms under the color Uc ∈ SU(N) and the flavor Uf ∈ U(Nf )
as so φ → UfφU

T
c . We can always choose Uf and Uc such that φ is diagonal.13 Let us

first consider N = Nf such that φ is a square matrix, which can be taken to be diagonal.
Further, in order to preserve as much flavor symmetries, we want to be able to do a
simultaneous gauge and flavor rotation such that it leaves φ invariant. To allow this, let
us assume that the potential for φ is such so as to be proportional to the identity matrix.
Then we have

φ = veiϕI . (3.5)

Note however that the phase φ is rotated by a U(Nf ) transformation, and cannot be
removed by a color rotation. Hence, this phase spontaneously breaks the U(1) ⊂ U(Nf )
baryon symmetry. The order parameter is given by

φI1a1 . . . φINanεa1a2...aN εI1I2...IN . (3.6)

Now consider Nf < N . In that case the φ-matrix is rectangular with more columns than
rows. We want to nestle an identity matrix into it to preserve as much flavor symmetries

12This symmetry is called the custodial symmetry in the standard model electroweak sector. A quick
way to see this is to turn of the SU(2) gauge fields. Then the global symmetry of scalars is SO(4) ∼=
(SU(2)×SU(2))/Z2. Now gauging one of the SU(2) with the dynamical gauge fields leaves SU(2)/Z2 ∼= SO(3)
global symmetry group.

13Note that because Uc is special unitary, not unitary, the diagonal entries will not be real, but will have
a common phase.
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as possible, i.e.
φ = veiϕ

(
INf 0Nf×(N−Nf )

)
. (3.7)

Now it is easy to see that for any flavor rotation Uf ∈ U(Nf ) we can choose a matrix
Uc ∈ SU(N) as

Uc =
(
U∗f 0
0 eiαI

)
(3.8)

where α is chosen such that detUc = 1. Then it is easy to see that UfφUTc = φ, and
the Higgs condensate is invariant, implying that flavor symmetries are not broken. This is
sometimes referred to as color-flavor locking.

Now it becomes obvious that if Nf ≥ N we always have to have that some part of the
flavor symmetry is spontaneously broken in the Higgs phase, because the gauge symmetries
are insufficient to eat all the would-be Goldstone bosons. The marginal case Nf = N − 1
where flavor symmetry need not be spontaneously broken is special because it also Higgses
the whole SU(N) gauge group and is completely semiclassical. In fact, we already saw one
case of this when Nf = 1 and N = 2, and saw that the IR theory has a single free Dirac
fermion. In the general case the gauge group is completely broken and there are N2 − 1
free Majorana fermions in the IR coming from the Majorana-adjoint λ. Again these are
not gauge invariant states. We construct the gauge invariant fermion operators

ξI
J = φ†Iλφ

J − 1
N − 1δI

Jφ†Kλφ
K , (3.9)

ξ = φ†Kλφ
K (3.10)

ψI = εI1I2...IN−1φ
I1a1φI2a2 . . . φIN−1aN−1εa1a2...aN−1aλ

a
bφ
I,b (3.11)

Now ξI
J is a multiplet of the adjoint representation of the flavor group (dimension N2

f −1 =
N2−2N), ξ is just a real Majorana singlet under flavor, and ψI (real dimension 2N −2) is
in the fundamental of U(Nf )/ZN ∼= U(Nf ) for Nf = N−1.14 We have therefore found that
the IR physics has a real adjoint fermion multiplet and a fundamental fermion multiplet of
U(Nf ) flavor group, along with a Majorana fermion singlet. Let us compute the anomaly
indices I1 and I2 of these fermions. We have that an adjoint fermion measure contributes
only to the SU(Nf ) Chern-Simons level which we labeled with s and gives

s = Nf

2 mod 1 , (3.12)

with no contribution to the U(1) Chern-Simons level t. So the indices I1 and I2 are given by

I1(adj) = 2sNf − t
N2
f

mod 2 = 1 mod 2 , (3.13)

I2(adj) = 2 t

N lcm(N,Nf ) mod 2 = 0 mod 2 (3.14)

14The statement U(Nf )/ZN ∼= U(Nf ) is always true when gcd(N,Nf ) = 1. More generally U(Nf )/ZN ∼=
U(Nf )/ZN′ whenever gcd(N,Nf ) = gcd(N ′, Nf ).
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The fundamental ψI contributes s = 1/2 mod 1 and t = NfN
2

2 mod 1,15 so we have

I1(f) = 1 mod 2 (3.15)
I2(f) = 1 mod 2 . (3.16)

The ξ fermion does not contribute to I1,2 indices. The total indices of the Higgs theory
with Nf = N − 1 are

I1 = 0 mod 2 (3.17)
I2 = 1 mod 2 . (3.18)

What we have seen is that the theory with the Higgs has a mixed T -flavor anomaly,
and the theory cannot be gapped without breaking the flavor symmetry. In fact even just
the U(1) subgroup of the flavor group U(Nf ) already has a mixed anomaly with T , as can
be seen by noticing that since N has to be even to preserve the T -symmetry, then Nf is
odd. Hence, ψI can be seen as odd number of Dirac fermions carrying a U(1) charge.

3.1 Interlude: the mod 16 indices

Here we fix the νT and νT ′ mod 16 indices of the theory. For the purpose of this section we
will take Nf to be the number of fundamental fermion flavors, and keep the fundamental
scalar arbitrary, as nothing depends on them. Firstly let us discuss the νT anomaly. We
have an adjoint Majorana, consisting of N2− 1 Majorana fermions, one for each generator
of SU(N). On top of that we also have 2NNf fundamental fermions. The total νT -index
is given by

νT = N2 − 1 + 2NNf mod 16 . (3.19)

The last term comes from taking into account NNf Dirac fermions. Note that the index is
potentially gauge dependent, as we could combine the T symmetry with the gauge transfor-
mation (in the fundamental representation) of the type U = diag(−1,−1, . . . ,−1, 1, . . . 1)
where there are 2k entries of −1 and N − 2k entries of 1 (see [9] for a related discussion).
Acting on the adjoint fermion λab , viewed as an N × N matrix, the gauge transformation
leaves the sign of (N + 2k)2 + (2k)2 − 1 (the −1 is because the matrix λab is traceless)
entries invariant and flips 2(2k)(N −2k) entries. Hence, it contributes to the change of the
νT -index by 8k(N − 2k) mod 16 = 8kN mod 16. Further, 2kNf fundamental fermions will
flip sign, so that it will contribute 8kNf to the change of νT . So the total change of the νT
index is

∆νT = 8k(N +Nf ) mod 16 = 0 mod 16 , (3.20)

where we used the fact that N +Nf is even. So the νT -index is not ambiguous.
Further we can rewrite the equation (3.19) as

νT = (N +Nf )2 − 1−N2
f mod 16 = 1− 2(−1)

N+Nf
2 −N2

f mod 16 . (3.21)
15Recall that our convention is that each scalar carries a unit baryon charge, so that ψI has baryon

charge N .
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The above formula can be further simplified if Nf is even, then we have

νT = 3− 2(−1)
N+Nf

2 − 2(−1)
Nf

2 mod 16 , Nf = 0 mod 2 . (3.22)

When Nf is odd, we distinguish two cases Nf = 1 mod 4 and Nf = 3 mod 4. We have that

νT = 4− 4(−1)
Nf−1

4 − 2(−1)
N+Nf

2 mod 16 , Nf = 1 mod 4 ,

νT = −4− 4(−1)
Nf−3

4 − 2(−1)
N+Nf

2 mod 16 , Nf = 3 mod 4 ,
(3.23)

Finally, we can also define the νT ′-index. In this case the Dirac fermions do not
contribute at all, and only the Cartan piece16 of the Majorana-adjoint fermion contribute
to the νT ′ index, so that

νT ′ = N − 1 mod 16 . (3.24)

3.2 The full parity anomaly analysis

The same analysis for the mixed T -flavor anomaly can be carried out for the general case,
similar to what was discussed right before section 3.1. As alluded to at the beginning of
section 3, the faithful global symmetry of QCD3(adj/f) is given by

F = U(Nf )
ZN

. (3.25)

Naively, the group (both gauge and global) acting on the fields in the Lagrangian is SU(N)×
SU(Nf )×U(1). However, the group does not act faithfully on the fields. Through its action
on the fundamental fields, we have the identifications

(u, v, eiθ) ∼ (ue2πi/N , v, eiθe−2πi/N ), (u, v, eiθ) ∼ (u, ve2πi/Nf , eiθe−2πi/Nf ), (3.26)

where u ∈ SU(N) and v ∈ SU(Nf ). The faithful full symmetry group must therefore be

K = U(1)× SU(Nf )× SU(N)
ZN × ZNf

∼=
SU(N)×U(Nf )

ZN
, (3.27)

which gives the global symmetry group F = U(Nf )/ZN after we quotient away the gauge
symmetry group SU(N). Thus, in order to use the parity anomaly to analyze such a
theory, one has to generalize the basic parity anomaly described in section 2 to the case
when the global symmetry is U(Nf )/ZN . This generalization was carried out in section 2.1
by constructing the two mod 2 indices I1 and I2 replacing the U(1) Chern-Simons level
modulo 1 in the case of the basic parity anomaly. In this subsection, we give a fuller
analysis of both the ’t Hooft and the parity anomalies in the UV for the fermionic and
scalar theories.

16The Majorana-adjoint is algebra-valued, which we can decompose into Cartan and non-Cartan gener-
ators. Recall that T ′ = CT , where C is the complex-conjugation. Under C the roots of the Lie group flip
sign. Cartan generators are all invariant under C, while the non-Cartan can be combined into a combination
which transforms with a + and a −. Hence, under T ′ all non-Cartan components will cancel each other’s
contribution to the νT ′ -index, and only Cartan components will contribute.
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Recall that the theory can be made invariant under the time-reversal symmetry with
an appropriate bare Chern-Simons term for SU(N),

SCS = irbare
4π

∫
X4

Tr (f ∧ f) , (3.28)

where f is the field strength of the SU(N) dynamical gauge field a and rbare is the bare
Chern-Simons level. In the scalar theory, rbare = d(adj)/2 = N/2 as we have seen earlier.
For the fermionic theory, there is an additional contribution from the Nf fundamental
fermions, resulting in rbare = d(adj) +Nfd(f) = (N +Nf )/2. To study the anomalies, we
turn on the background gauge fields for the global symmetry U(Nf )/ZN . More specifically,
we couple the theory to an su(Nf )-valued background gauge field Af and a u(1)-valued
background gauge field A, corresponding to the SU(Nf ) and U(1) factors in the structure
group K, respectively. Due to the discrete quotient, these gauge fields do not have the
correct normalization to qualify as bona fide SU(Nf ) and U(1) gauge fields; their normal-
izations, together with that of the dynamical gauge field a for SU(N), are related so that
the theory is put on a K-bundle.

In addition to simply coupling background gauge fields to the theory, we can add the
Chern-Simons counterterms

Sct = isbare
4π

∫
X4

Tr (Ff ∧ Ff ) + itbare
4π

∫
X4
F ∧ F , (3.29)

with integer levels sbare and tbare. If we turn on the background gauge fields in a (SU(Nf )×
U(1))-bundle, the integrality condition for sbare and tbare suffices to make Sct gauge invari-
ant. However, since the full symmetry structure of the theory is given by (3.27), the
background fields can be put in a U(Nf )/ZN -bundle that is not a (SU(Nf )×U(1))-bundle,
provided that we also put the dynamical gauge field in a non-trivial PSU(N)-bundle.17 The
bare Chern-Simons levels rbare, sbare, tbare, are then subject to more stringent conditions.
These conditions are [6] (see also appendix B for the derivation, which is similar to the
derivation of the indices I1 and I2 in section 2.1)

Nrbare − tbare ∈ N2Z, Nfsbare − tbare ∈ N2
fZ, tbare ∈ NNfZ, (3.30)

If we plug in the third requirement into the first we have that there must exist integers a, b
such that

aN + bNf = rbare, (3.31)

which hold if and only if18

rbare = 0 mod gcd(N,Nf ). (3.32)
17It is still an SU(N) gauge theory because we only sum over the gauge field with this fixed bundle in

the path integral.
18To see this let us assume that r = ng + q, where g = gcd(N,Nf ), n ∈ Z, q ∈ Z and 0 < q < g. Since

g = gcd(N,Nf ), there have to exist integers ãN + b̃Nf = g, and, moreover, g is the smallest number that
can appear on the right-hand side of this equation for any ã, b̃, at least one of which is not zero. But then
there would exist integers a′, b′ such that a′N + b′Nf = q < g invalidating the assumption that r is not a
multiple of g.
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If this condition is not satisfied, then it is not possible to couple the theory to the back-
ground gauge fields for the global symmetry group F = U(Nf )/ZN , even with the possi-
bility of adding Chern-Simons counterterms; this is a pure flavor ’t Hooft anomaly in F .
’t Hooft anomalies of this kind have been used to establish IR dualities between different
UV theories [6]. In this paper, however, we only consider theories with no pure flavor
’t Hooft anomaly and will focus on the mixed flavor-T ’t Hooft anomalies.

With the properly normalized bare Chern-Simons levels, we can now determine whether
the theory remains invariant under T or not by looking at the effective Chern-Simons levels

r = rbare + rreg. = 0, s = sbare + sreg., t = tbare + treg.. (3.33)

The theory is T -invariant when all effective Chern-Simons level vanish. However, since we
can shift the counterterms sbare and tbare, the levels s and t are not invariant quantities;
we must look at s and t modulo these shifts. Suppose that the shifts in the bare Chern-
Simons levels are ∆r = 0, ∆t, ∆s. Again, these levels must define a properly quantized
Chern-Simons term and so must satisfy (3.30):

∆t ∈ N2Z, ∆t ∈ NNfZ, Nf∆s−∆t ∈ N2
fZ. (3.34)

In exactly the same way as in section 2.1, the first two conditions can be combined to yield
∆t ∈ N lcm(N,Nf )Z. We can see that t is invariant modulo N lcm(N,Nf ) and Nfs − t is
invariant modulo N2

f . Thus, the invariant quantities that capture the parity anomaly are
the indices

I1 = 2Nfs− t
N2
f

mod 2 and I2 = 2t
N lcm(N,Nf ) mod 2, (3.35)

as defined by (2.18).

The fermionic theory. Let us now consider more specifically the fermionic theory,
where the Nf fundamental fields are fermions. First, we will determine the conditions on
N and Nf such that the theory is T -symmetric and the global symmetry F has no ’t Hooft
anomaly. As we have discussed, when the theory is assumed to be T -symmetric, the bare
Chern-Simons level rbare is given by (N + Nf )/2. As this bare Chern-Simons level must
be an integer, we either need both N and Nf to be even or both to be odd. To eliminate
the ’t Hooft anomaly, we need to satisfy (3.32), so we need (N +Nf )/2 to be a multiple of
gcd(N,Nf ) to eliminate the ’t Hooft anomaly. Together with the assumption that N +Nf

is even to make the theory T -invariant from the get-go, one can then show that the theory
is T -symmetric with no ’t Hooft anomaly in F if and only if N and Nf have the same
number of factors of 2.

The theory has the parity anomaly given by the non-vanishing pair of indices I1 and I2:

I1 = 0 mod 2, I2 = 1 mod 2. (3.36)

To see this, recall that after coupling the theory to the background gauge fields of the
global symmetry, there are induced Chern-Simons levels sind, tind for both Af and A due
to the fundamental fermions’ regulators. In our convention, they are given by

sreg. = −N2 , treg. = −1
2NNf . (3.37)
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Next, we have to determine the levels sbare and tbare for the Chern-Simons counterterms.
As we have discussed, they must satisfy

N(N +Nf )
2 − tbare ∈ N2Z, Nfsbare − tbare ∈ N2

fZ, tbare ∈ NNfZ, (3.38)

where we again used the fact that rbare = (N +Nf )/2 for the fermionic theory. Since the
indices I1 and I2 are defined in such a way that two different pairs of sbare and tbare that
satisfy these conditions give the same indices, it is enough to find just any pair of sbare and
tbare that works. It is easy to verify that

sbare = N

2

(
N

gcd(N,Nf ) + 1
)

and tbare = NNf

2

(
N

gcd(N,Nf ) + 1
)

(3.39)

do the job. The effective Chern-Simons levels are then given by

s = sbare + sreg. = N2

2gcd(N,Nf ) ,

t = tbare + treg. = N2Nf

2gcd(N,Nf ) = Nfs,

(3.40)

from which we obtain the indices I1 = 0 mod 2 and I2 = 1 mod 2 as claimed, using the
definition (2.18) and the identity gcd(N,Nf )lcm(N,Nf ) = NNf to arrive at the final result.

The scalar theory. The anomaly analysis for the theory with fundamental scalar fields
goes almost exactly the same as the fermionic theory, with a crucial difference that the bare
Chern-Simons level for the dynamical gauge field is now rbare = N/2 instead of (N+Nf )/2.
The condition for the vanishing ’t Hooft anomaly becomes totally different as a result. For
the theory to be T -symmetric, N must now be even only. Then N/gcd(N,Nf ) must be
even and Nf/gcd(N,Nf ) must be odd for the pure ’t Hooft anomaly to vanish.

The scalar theory has the parity anomaly captured by the two indices I1 and I2, which
in this case are also given by

I1 = 0 mod 2, and I2 = 1 mod 2. (3.41)

Since the fields that are charged under the global symmetry F are scalars, there is no
contribution to the Chern-Simons levels of the background fields Af and A. We only need
to consider the bare Chern-Simons levels, sbare and tbare, in the derivation of the indices.
Again, they must satisfy (3.30), which now reads

N2

2 − tbare ∈ N2Z, Nfsbare − tbare ∈ N2
fZ, tbare ∈ NNfZ, (3.42)

where rbare = N/2 is used here. One choice of sbare and tbare that works is given by

sbare = N2

2gcd(N,Nf ) , tbare = N2Nf

2gcd(N,Nf ) , (3.43)

which gives the indices I1 = 0 mod 2 and I2 = 1 mod 2 through (2.18).
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3.3 Possible free fermion phases

Here we speculate on the possible IR phases of the scalar and the fermion theories. In
the case of extremely massive fundamental matter,19 the theory is essentially in the T -
preserving Super Yang-Mills. Super Yang-Mills was argued to break spontaneously the
supersymmetry [19] and to have a decoupled TQFT in addition. The massive fundamental
matter will then be deconfined because of the TQFT, allowing for fractional excitations,
i.e. excitations in the representation of U(Nf ) not only U(Nf )/ZN . What we are interested
in is the phase when the fundamental matter is light, or when the scalars condense. We
already saw that in the particular case when Nf = N − 1, the Higgs phase is essentially
the free fermion phase. We will here consider the possibility that the IR physics is a free
fermion composite phase.

Let us remind the readers that we will only consider the cases where there is a mixed
flavor-T anomaly, and not the cases where there is a pure flavor anomaly. Indeed, free
fermions never have a pure flavor anomaly in 3d. To satisfy this condition we require that
N/2 = 0 mod gcd(N,Nf ) for the bosonic theory and (N +Nf )/2 = 0 mod gcd(N,Nf ) for
the fermionic theory.

Further there is no way for us to conclusively determine whether this indeed happens,
as surely the anomaly can be saturated in other ways. For example one obvious way to
saturate all the anomalies is to spontaneously break the T -symmetry. Another possibility
would be to spontaneously break the flavor symmetry.20 We do not discuss these possibil-
ities here, but just mention that they are certainly viable alternatives to free fermions. In
fact all of our proposals with free fermions are sensitive to N , and hence if we are to have
a smooth large N limit, we expect that free fermion phase will not be viable, and a natural
candidate is a T -broken phase. See also comments on this in the conclusion. Also note
that if the number of fermionic flavors is sufficiently high the theory can enter a conformal
regime [30–32].

Recall that the UV indices I1 and I2 are give by

I1 = 0 mod 2 , (3.44)
I2 = 1 mod 2 . (3.45)

for both the fermionic and the bosonic theory.
Let us look at the fermionic theory first. Consider the νT index of the fermionic theory

we have

νT = N2 − 1 + 2NNf mod 16 = (N +Nf )2 + (1−N2
f )− 2 mod 16 . (3.46)

Now notice that (N + Nf )2 − 2 mod 16 = ±2 mod 16 because N + Nf must be even to
preserve T -symmetry. So

νT = −(N2
f − 1)± 2 mod 16 . (3.47)

19It is only possible to give a mass to fundamental matter while preserving T symmetry if the number of
fundamental flavors is even, and hence N is even.

20The breaking of the flavor symmetry could probably not saturate the νT and the νT ′ indices completely,
so additional assumptions would likely be needed.
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The above suggests that the IR physics requires a Majorana fermion in the adjoint represen-
tation contributing ±(N2

f − 1) mod 16 and a single Dirac fermion contributing ±2 mod 16.
Indeed, a Dirac fermion in the representation 1q with q = lcm(N,Nf ) contributes (I1, I2) =
(1, 1) to the parity anomaly indices, and the adjoint Majorana fermion contributes (I1, I2) =
(1, 0) giving the total index (I1, I2) = (0, 1) as it should.

The trouble is that the νT ′ index only sees the Majorana fermion which contributes
νT ′ = Nf − 1 mod 16, which is in general not equal to the UV index νT ′ = N − 1 mod 16
unless Nf = N mod 16. We therefore to postulate an even number of neutral Majorana
fermions to compensate for the difference, having them transform differently under T but
with the same sign under T ′.

Now look at the bosonic theory. Here we have that

νT = N2 − 1 mod 16 (3.48)

which is either −1 or 3 depending on N (recall that N has to be even). We can write
this as 1 ± 2 mod 16, implying a single Majorana fermion and a Dirac fermion in the IR.
Indeed, the Dirac fermion has (I1, I2) = (0, 1) without the need of a Majorana adjoint in
the bosonic theory. Now again we must postulate the existence of some neutral Majorana
fermions21 in order to satisfy the anomaly νT ′ .

Let us now consider a scalar theory with Nf < N − 1 in the Higgs phase. Such a
Higgs phase consists of a SU(N − Nf ) gauge theory coupled to Nf fundamental fermion,
a singlet Majorana fermion ξ = φ†Kλφ

K and an adjoint Majorana ΛIJ = φ†Iλφ
J − 1

Nf
δI
Jξ.

The SU(N −Nf ) gauge theory coupled to Nf fermions was postulated to reduce to Dirac
fermion with the minimal baryon charge, and a second Majorana adjoint Λ̃JI of the flavor
group, as well as some extra neutral Majorana fermions. However, note that the two
Majorana adjoint must transform oppositely under both T and T ′ in order to match the
νT and νT ′ indices, so there is nothing preventing the two from lifting each other. This
would match all our assumptions above, and is further evidence that the Majorana adjoint
is necessary in the IR theory of the fermionic theory.

While the above discussion presents a self-consistent proposal, alternative possibilities
certainly exist. In fact, we saw that in the fully Higgsed example with Nf = N − 1, we
have a theory with a fundamental U(Nf ) fermion, a real adjoint and a neutral adjoint.
It is certainly possible to come up with other proposals for certain values of N and Nf

which will do the job. For example, by glancing at tables 1 and 2, we can match the parity
anomaly with only a single Dirac fermion in a rank-2 (either symmetric or anti-symmetric)
representation of SU(Nf ) with odd baryon charge in the scalar theory with gcd(N,Nf ) = 2.
Another example, this time in the fermionic theory when N and Nf are coprime, is to
saturate the parity anomaly with two Dirac fermions, one in the representation 1q with
q an odd multiple of N , another in the representation fq with q an even multiple of N .
Again, a number of neutral Majorana fermions must be postulated to satisfy the νT and
νT ′ anomalies in both examples.

21The exact number of the neutral Majoranas cannot be constrained a priori, but we believe a good
guiding principle is to minimize the emergent flavor symmetries which such fermions necessarily carry.
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SU(Nf ) q/N gcd(N,Nf ) I1 I2 νT

1 odd any 1 1 2 mod 16
1 even any 0 0 2 mod 16
f odd 1 0 0 2Nf mod 16
f even 1 1 0 2Nf mod 16

odd 2 1 1 Nf (Nf − 1) mod 16
even 2 0 0 Nf (Nf − 1) mod 16
odd 2 1 1 Nf (Nf + 1) mod 16
even 2 0 0 Nf (Nf + 1) mod 16

adj 0 any 1 0 N2
f − 1 mod 16

Table 1. Indices for fermions in some representations of U(Nf )/ZN in the fermionic theory. The
representations of U(Nf )/ZN Rq are given in terms of the SU(Nf ) representations R and the U(1)
charge q.

SU(Nf ) q/N gcd(N,Nf ) I1 I2 νT

1 odd any 0 1 2 mod 16
1 even any 0 0 2 mod 16
f odd 1 1 1 2Nf mod 16
f even 1 1 0 2Nf mod 16

odd 2 0 1 Nf (Nf − 1) mod 16
even 2 0 0 Nf (Nf − 1) mod 16
odd 2 0 1 Nf (Nf + 1) mod 16
even 2 0 0 Nf (Nf + 1) mod 16

adj 0 any 1 0 N2
f − 1 mod 16

Table 2. Indices for fermions in some representations of U(Nf )/ZN in the scalar theory. The
representations of U(Nf )/ZN Rq are given in terms of the SU(Nf ) representations R and the U(1)
charge q.

Note that the free fermion phases generically have more flavor symmetries than the
UV theories. Such symmetries are emergent. Further, these emergent symmetries can also
carry addition ’t Hooft anomalies, but since they do not exist in the UV there is no sense in
matching them. In addition, we could imagine defining additional time-reversal symmetries
by combining them with discrete subgroups of exact flavor symmetries, allowing us to define
additional mod 16 indices. Such indices do not give any new information.

4 Conclusion and outlook

In this paper we considered 3d SU(N) Yang-Mills theories with one adjoint fermion and
either bosonic or fermionic flavor matter. We showed that such systems have interesting
mixed flavor-T ’t Hooft anomalies — parity anomalies — which constrain the IR physics.
Such anomalies are in certain case — when there is no pure flavor anomalies — possible to
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saturate by massless composite fermions. The anomalies are characterized by two mod 2
indices I1 and I2 described in section 2. While the anomalies can be matched in multiple
ways, we proposed some scenarios saturated by composite fermions saturating I1,2 indices
as well as the mod 16 indices νT,T ′ .

An interesting application of these anomalies is in the understanding of minimally
supersymmetric T -preserving Super QCD theories in 3d, which are exactly of the sort
discussed here. Such theories are significantly less understood than their 4d counterparts
because of the lack of holomorphy.

Let us also comment briefly on the large N limit. In this limit we do not expect the
mixed flavor-T anomalies in the pure fermionic theories to be saturated by free fermions.
Indeed, consider the case of SU(N) with one fundamental flavor and one adjoint flavor.
In this case we saw that free fermions require neutral Majorana fermions to saturate the
νT ′ index. But this means that the free fermions are inconsistent with the smoothness
of the large N limit. Further, the mixed U(1)B − T anomaly requires a Dirac fermion
charged under U(1)B, and such but no such state exists in cut of the planar limit of the
current-current correlator (see discussion in [33]). Another option is to have spontaneous
breaking of U(1)B symmetry, but this seems unlikely as it requires a condensation of an
operator with a very large classical dimension. A natural way to saturate anomalies then is
to break T symmetry spontaneously. In this case the domain walls of the T related vacua
would carry anomaly inflows which are likely saturated by chiral fermions. We leave the
exploration of such domain wall theories for the future.

We conclude by making some brief comments on similar anomalies in 4d. Consider the
Super Yang-Mills in 4d, with an SU(N) gauge field coupled to a single Weyl fermion in the
adjoin representation. As is well known by now it has a mixed ’t Hooft anomaly between
a discrete ZχN chiral symmetry due to the quantization of the instanton number and Z[1]

N

1-form symmetry [14]. The anomaly is saturated by spontaneous breaking of the discrete
chiral symmetry. Now if we couple the model to massive fundamental matter (bosonic or
fermionic), similar considerations to those of this paper will lead to the conclusion that
there is a mixed anomaly between the discrete chiral symmetry and the flavor symmetry.
A simple way to see that is to observe that if one activates U(1) baryon gauge fields, one
can activate the “1-form symmetry” fractional ’t Hooft fluxes, causing the chiral symmetry
to break. Note that if we give a mass to adjoint fermions the chiral symmetry is explicitly
broken, but we can now have a θ term, with T symmetry at θ = 0, π. It was shown
in [14] that there may be a mixed anomaly between T and flavor symmetry, which one may
think is virtually the same as the mixed ZχN -flavor anomaly we discuss here. However, the
anomaly between T and flavor symmetry is weaker. In particular for a single fundamental
fermion with θ = π no anomaly between T and U(1)-baryon exists (see [14] for details) and
that theory can be trivially gapped. This is not the case for a theory with a single adjoint
Weyl fermion and a single fundamental fermion or boson where there is a mixed ZχN–U(1)
mixed anomaly. In this respect the anomaly is akin to the anomalies discussed in [34, 35].

The anomaly puts constraints on the IR physics, requiring either the gapless phase,
chiral symmetry breaking or flavor symmetry breaking. For massive matter, we already
know that discrete chiral symmetry is broken and there are N vacua. The anomaly in
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question, being the mixed anomaly between the chiral symmetry and flavor makes the
chiral symmetry breaking robust against the deformation by light matter.22 An interesting
application of our QCD3(adj/f) is the study of domain walls between the N vacua of
the theory, and what anomaly descends onto the domain wall. The most interesting such
domain walls are those which preserve time-reversal symmetry. The elementary domain
walls connecting neighbouring vacua do not preserve T symmetry except when the gauge
group is SU(2). However, if the theory is supersymmetric, the domain walls are BPS and
there exists a composite domain wall which preserves the time-reversal symmetry, and
hence would have an interesting mixed flavor-T anomaly descending on it [40].
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A The SU(2) scalar

Consider an SU(2) scalar doublet φ coupled to the SU(2) gauge field via a covariant deriva-
tive Dµ = ∂µ − iaµ. The general Lagrangian is given by

(Dµφ)†(Dµφ) + V (φ†φ) . (A.1)

There is a manifest U(1)B symmetry taking φ → eiαφ. However, we will now show that
there is a large SO(3) flavor symmetry which is not manifest.

To see this note that an SU(2) doublet can be written as 4 real scalars

φ =
(
φA
φB

)
=
(
ξ1 + iξ2
ξ3 + iξ4

)
. (A.2)

Now consider a free SU(2) scalar doublet theory

∂µφ
†∂µφ =

4∑
i=1

(∂µξi)2 . (A.3)

22If matter is scalar, then when scalars condense the theory enters a Higgs phase. Moreover, if number of
scalar flavors Ns = N−1 the gauge group can be completely Higgsed without breaking the flavor symmetry
like in section 3 and it can be shown that the theory has massless fermions which reproduce the anomaly.
Also note that in the case of the fermionic theory the Vafa-Witten-Weingarten theorems [36, 37] forbids
the breaking of the vector-like flavor symmetries as well as massless composites [38] (see also [39]).
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The theory above has an obvious SO(4) ∼= (SU(2) × SU(2))/Z2 symmetry. We want to
gauge an SU(2) subgroup of SO(4). As we will see this subgroup is a normal subgroup, so
when it is gauged the remaining symmetry is SO(4)/SU(2) ∼= SO(3).

To see that the relevant SU(2) subgroup is a normal subgroup, consider a quaternion

ξ = ξ1I + iσ1ξ4 − iσ2ξ3 + iσ3ξ2 =
(
φA −φ∗B
φB φ∗A

)
=
(
φ iσ2Kφ

)
, (A.4)

where in the last step we wrote the quaternion in terms of the scalar doublet (A.2), with
the help of the complex-conjugation operator.

The space of quaternions H is invariant under the (SU(2) × SU(2))/Z2 generated by
the left and right SU(2) action of the quaternions,

ξ → ULξU
†
R , UL,R ∈ SU(2)L,R . (A.5)

Indeed one can easily check that ULξU †R is a quaternion.23 Moreover, the left action on ξ
acts as follows

ξ → Uξ =
(
Uφ iσ2KUφ

)
, (A.6)

where note that iσ2KU = Uiσ2K.
Hence, we identify the left action on the quaternion ξ as the SU(2) symmetry that we

wish to gauge. Moreover, note that the left-action is quite clearly a normal subgroup, so
gauging it leaves a quotient SO(3) ∼= SO(4)/SU(2).

B Quantization of the Chern-Simons levels for SU(N)×SU(Nf )×U(1)
ZN ×ZNf

Consider the gauge fields of a SU(N)×SU(Nf )×U(1)
ZN×ZNf

gauge bundle. Let ψ be the field carrying
the color index of SU(N), the flavor index of SU(Nf ) index and the charge U(1). The
transformations on ψ are the usual

U(1) : ψ → eiψψ

SU(N) : ψ → Uψ ,U ∈ SU(N)
SU(Nf ) : ψ → Uψ ,U ∈ SU(Nf ) .

(B.1)

The covariant derivative acting on ψ is given by

Dµ = ∂µ − iaµ − iAfµ − iA , (B.2)

with curvatures of a,Af and A being f, Ff and F .
We want to see when conditions (3.30) are satisfied, that we have

r

4π

∫
tr(f ∧ f) + s

4π

∫
tr(Ff ∧ Ff ) + t

4π

∫
F ∧ F = 0 mod 2π , (B.3)

where the integration is over a closed spin manifold. Naively we only demand that r, s
and t are integers, but this is not correct because of the gauge group has a quotient by

23This follows almost immediately because σ2ξσ2 = ξ∗ and U∗L,R = σ2UL,Rσ
2.
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ZN and ZNf . The first of these quotients can render 1
4π
∫

tr f ∧ f quantized in units of24

2π
N , but only if there is a corresponding fractional quantization in the U(1) part. Similarly,
1

4π
∫

trFf ∧ Ff can be quantized in units of 2π/Nf . Because of the twists by ZN and ZNf ,
A is not properly quantized and F can have 1/N and 1/Nf fractional parts.

To see when the above is satisfied, we decompose A = A1
N + A2

NF
, where A1 and A2 are

properly normalized gauge fields. Note that there is ambiguity how this is done, because
one can always shift A1 → NΛ and A2 → NfΛ with Λ an arbitrary U(1) gauge field. We
have that â = a+ A1

N IN×N and Âf = Af + A2
Nf

INf×Nf are properly normalized U(N) and
U(Nf ) gauge fields.

We now note that (B.3) can be written as

r

4π

∫
tr
(
f̂ ∧ f̂

)
+ s

4π

∫
tr
(
F̂f ∧ F̂f

)
+ t−Nr

4πN2

∫
F1 ∧ F1 + t−Nfs

4πN2
f

∫
F2 ∧ F2

+ t

2πNNf

∫
F1 ∧ F2 = 0 mod 2π . (B.4)

The first row is 0 mod 2π whenever r and s are integral, which is a prerequisite. For the
other terms to vanish we must have conditions (3.30), repeated here for convenience

t−Nr ∈ N2Z ,

t−Nfs ∈ N2
fZ ,

t ∈ NNfZ .

(3.30)

This completes the proof.

C Indices for free Dirac fermions in some representations of U(Nf)/ZN

In this appendix, we compute the I1 and I2 indices that characterize the mixed U(Nf )/ZN–
T anomaly for a fermion in some simple irreducible representations of the global symme-
try group F = U(Nf )/ZN . We consider representations that are singlet under SU(Nf ),
representations whose Nf -ality under SU(Nf ) is equal to gcd(N,Nf ), and the adjoint rep-
resentation. The fermion is assumed to be Dirac when the representation is complex, and
Majorana when it is real. The results from these computations are given in tables 1 and 2.

First, consider the case when the fermion is a Dirac fermion in the representation Rq of
G, where the notation means that it is in the representation R of the SU(N) part and has
charge q under the U(1) part of G. For this to be a genuine representation of U(Nf )/ZN ,
we need

q = `N and |R| − q = 0 mod Nf . (C.1)

The indices I1 and I2, defined in (2.18), are given in terms of the representation as

I1 = 2
N2
f

(
Nfd(R)− 1

2q
2dim(R)

)
mod 2,

I2 = q2dim(R)
N lcm(N,Nf ) mod 2,

(C.2)

24We consider only spin manifolds.
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where d(R) is the Dynkin index of the representation R with the normalization d(f) = 1/2
for the fundamental representation f.

Going forward, we will write g for the gcd between N and Nf .

C.1 Singlets of SU(Nf )

Consider a Dirac fermion in the representation 1q of G. The charge q is given by q = `N =
kNf . This means we can write q = κL where L = lcm(N,Nf ). Writing L = NNf/g, we
find that the indices I1 and I2 are given by

I1 = −κ
2(NNf )2

g2N2
f

mod 2 = −κ2n2 mod 2,

I2 = κ2NNf

gN
mod 2 = κ2nf mod 2,

(C.3)

where nf := Nf/g and n := nf/g. In the fermionic theory, N and Nf must have the same
parity in order to make the pure ’t Hooft anomaly in G vanish. Consequently, both n and
nf are odd. As we can choose κ to be whatever we want, the possibilities for the indices are

(I1, I2) = (1, 1) mod 2 or (0, 0) mod 2, (C.4)

depending on the parity of κ.
Let’s now consider the scalar theory. The pure ’t Hooft anomaly vanishing condi-

tion is N/2 = 0 mod g. So we can write N = 2gñ for some integer ñ. By definition,
gcd(2gñ, gnf ) = ggcd(2ñ, nf ) = g, so we need nf to be odd and gcd(ñ, nf ) = 1. The
charge condition now becomes 2`ñ = knf , so k is always even, while ` can be either even
or odd following our argument above in the fermionic theory. So, the two possibilities for
the indices are

(I1, I2) = (0, 1) mod 2 or (0, 0) mod 2. (C.5)

C.2 Representations with |R| = gcd(N,Nf )

We now work out the indices for a Dirac fermion in the complex representation Rq with
|R| = g, for g = 1 and g = 2.

g = 1. When g = 1 (in particular, N and Nf are both odd) there is only one represen-
tation R of SU(Nf ) that we need to consider: the fundamental representation f.

Since d(f) = 1
2 and dim(f) = Nf , as well as q = `N = kNf + 1, the two indices I1 and

I2 are given by

I1 = Nf − (kNf + 1)2Nf

N2
f

= 1− (1 + kNf )2

Nf

= −k(2 + kNf ) mod 2 ,

(C.6)
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and

I2 = `2N2Nf

N lcm(N,Nf ) mod 2

= `2 mod 2 .
(C.7)

When ` is odd, kNf = `N − 1 is even because N is odd, and vice versa. And since Nf is
odd as well, this means we must take k to be even. Therefore, the only possibilities for the
indices I1 and I2 in this case are

(I1, I2) = (0, 1) mod 2 or (1, 0) mod 2. (C.8)

Things are different in the scalar theory. In this case, the vanishing of the pure ’t Hooft
anomaly requires N/2 to be a multiple of g. In the particular case that g = 1, we just
need N to be even, without any restriction on Nf apart from being odd. Then, the charge
condition kNf = `N − 1 is always odd regardless of `, and so is k because Nf is odd.

To show that there is as solution where ` is odd, we first suppose otherwise and assume
that ` = 2˜̀ is even and k odd. By adding NNf to both sides of the charge condition
equation, we get

(k +N)Nf = (2˜̀+Nf )N − 1, (C.9)

generating a new solution `′ = 2˜̀+Nf odd and k′ = k +N odd, contradicting our initial
assumption. So it is always possible to choose both ` and k to be both odd in the scalar
theory. The possibilities of the indices in the scalar theory are

(I1, I2) = (1, 1) mod 2 or (1, 0) mod 2. (C.10)

g = 2. Let’s look at another simple example with g = 2. In the fermionic theory, both
N and Nf must be even, say N = 2pn and Nf = 2unf where n, nf are coprime. Since
gcd(N,Nf ) = 2, min(p, u) must equal 1. Moreover, since we need (N + Nf )/2 to be a
multiple of g = 2 to have a vanishing pure ’t Hooft anomaly for G, we need both N/g and
Nf/g to be odd. All these imply that p = u = 1. Hence,

N = 2n, Nf = 2nf , gcd(n, nf ) = 1 . (C.11)

The charge q of this representation is given by q = `N such that

`N = kNf + 2 , (C.12)

for some integers `, k. When R is the rank-2 totally antisymmetric representation, we have
dim(R) = 1

2Nf (Nf − 1) and d(R) = 1
2(Nf − 2). Then, it can be shown that

I1 = 1− 1
2(4 + kNf )(Nf − 1)k mod 2 ,

I2 = `2(Nf − 1) mod 2 .
(C.13)

If we want to match the mixed T-anomaly with this representation instead of the Dirac
singlet (in addition to the adjoint Majorana), we need to get I1 = I2 = 1 mod 2. This is
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only possible when ` is odd and k is even. But from the condition 2`n = 2(knf + 1), we
see that if ` is odd, k must be even, and vice versa. Thus, we only need to show that there
exists a solution to the condition `N = kNf + 2 such that ` is odd.

We proceed exactly as in the g = 1 case. Suppose to the contrary, that a solution
(`, k) to our charge condition only exist when ` = 2˜̀ is even and k odd. Then, the charge
condition becomes

2˜̀n = knf + 1. (C.14)

Adding nnf to both sides of the equation, we get

(2˜̀+ nf )n = (k + n)nf + 1. (C.15)

Thus, (2˜̀+nf , k+n) is also a solution to the charge condition if (`, k) is. But 2˜̀+nf is odd
because nf is odd, contradicting our initial assumption. Therefore, it is always possible to
choose ` such that it is odd. The two possibilities of the indices are

(I1, I2) = (1, 1) mod 2 or (0, 0) mod 2 . (C.16)

For the scalar theory, the vanishing ’t Hooft anomaly requires N/2 = 0 mod 2 so
N = 4ñ for some integer ñ. Moreover, since gcd(N,Nf ) is 2 and not more, we must
have Nf = 2nf with nf odd and gcd(ñ, nf ) = 1. Then, the charge condition becomes
knf = 2`ñ − 1, telling us that k is always odd in this case. Using the same method as in
all our discussion so far, we can show that ` can be chosen to be either odd or even. Thus,
the possibilities for the indices are

(I1, I2) = (0, 1) mod 2 or (0, 0) mod 2 . (C.17)

When R = , we obtain the same results as in the antisymmetric case. More pre-
cisely, we use

dim( ) = 1
2Nf (Nf + 1) and d( ) = 1

2(Nf + 2) (C.18)

to obtain

I1 = −1− k2nf (2nf + 1) mod 2 ,
I2 = `2(2nf + 1) mod 2 .

(C.19)

Then, from the fact that nf is odd in both the fermionic and the bosonic cases, the two
indices solely rely on the parities of ` and k, which we have just analyzed in the couple
preceding paragraphs. Thus,

(I1, I2) = (1, 1) mod 2 or (0, 0) mod 2 (C.20)

in the fermionic case, and

(I1, I2) = (0, 1) mod 2 or (0, 0) mod 2 (C.21)

in the scalar theory.
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C.3 The adjoint representation

Finally, let’s look at the indices from a Majorana fermion in the adjoint representation
adj0. Since it is neutral under U(1) and is a Majorana fermion, the indices are instead
given by

I1 = d(adj)
Nf

mod 2, I2 = 0 mod 2, (C.22)

where the factor of 2 difference in I1 compared to (C.2) is because the Chern-Simons level
induced from the regulator of a Majorana fermion is half of the Dirac fermion’s contribution.
The Dynkin index d(adj) of the adjoint representation of SU(Nf ) in our normalization is
Nf , so the indices contributed by an adjoint Majorana fermion are

(I1, I2) = (1, 0) mod 2, (C.23)

in both the fermionic and the scalar theories.
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