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Ising Machines for Diophantine Problems in Physics

Steven A. Abel* and Luca A. Nutricati

Diophantine problems arise frequently in physics, in for example anomaly
cancellation conditions, string consistency conditions and so forth. We
present methods to solve such problems to high order on annealers that are
based on the quadratic Ising Model. This is the intrinsic framework for both
quantum annealing and for common forms of classical simulated annealing.
We demonstrate the method on so-called Taxicab numbers (discovering some
apparently new ones), and on the realistic problem of anomaly cancellation in
U(1) extensions of the Standard Model.

1. Introduction

As well as being of intrinsic interest in number theory, Diophan-
tine problems play an important role in fundamental physics.
The purpose of this paper is to develop methods for solving the
kinds of Diophantine problems that frequently occur in particle
physics, where for example they appear in anomaly cancellation
conditions as systems of cubic equations. They also appear in in-
dex theorems, in consistency conditions in string theory, in prob-
lems relevant for computing the effective potential in string the-
ory and for finding vacua with small cosmological constant, as
well as in powerful nonperturbative methods that are used in
field theory, such as ’t Hooft anomaly matching,[1] and a mul-
titude of other applications.
Unfortunately Diophantine problems are also notoriously dif-

ficult to solve. Sometimes they can be significantly simplified
using for example Gröbner basis methods, but typically such a
problem is computationally hard. This is certainly the case for the
typical anomaly cancellation problem, which entails the solving
of a coupled set of cubic equations with an independent rational
variable appearing for every charge of every particle. In a system
whose size is comparable to that of say the Standard Model of
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particle physics, an exhaustive scan for
anomaly cancellation becomes infeasi-
ble even when the domain of allowed
charges is restricted. (See for example
Refs. [2–5].) In the case of string the-
ory even well established heuristic tech-
niques such as genetic algorithms run
up against a bottleneck with param-
eter spaces that are far smaller than
the ones that we shall consider here.
(For example the study of monad bun-
dle constructions in Ref. [6] involved a

complicated set of constraints that prevented it being extended to
consider the full set of phenomenological constraints of the Stan-
dardModel, including for example the correct Yukawa couplings,
because the search space is too large, indeed comparable to some
of the larger parameter spaces that we will consider here.) Indeed
determining precisely which complexity class a problem falls into
is itself an important question. (See for example Ref. [7], and for
discussions in the string theory context Refs. [8–11].)
For such problems, scaleable Ising hardware solvers, which

form the basis of both simulated and quantum annealers (as in-
troduced in Ref. [12, 13]), could have huge impact, particularly as
NP problems can be formulated as Ising problemswith only poly-
nomial overhead.[14,15] (For some practical applications of Ising
machines and for recent reviews see Refs. [16, 17]).
This paper will show how to encode Diophantine problems of

the kind described above onto such machines. We shall do this
by focusing on two Diophantine tasks.
The first is the purely number theoretic one of finding what we

will refer to generally as “Taxicab” numbers, namely those num-
bers that can be expressed inmore than one way as sums of equal
powers. The most famous example is the number of Hardy and
Ramanujan’s eponymous taxi, Ta(2) = 1729. This is the smallest
of the following list of numbers, all of which are expressible as
the sum of two cubes in two different ways:

1729 = 13 + 123 = 93 + 103,

4104 = 93 + 153 = 163 + 23,

20683 = 243 + 193 = 103 + 273,

32832 = 323 + 43 = 183 + 303, (1)

…

We shall use the notation (k,m, n), to refer to such numbers,
where k is the power, while m and n are the number of terms on
each side. Thus Ta(2) = 1729 is defined to be the smallest (3,2,2)
number, while Fermat’s theorem is the statement that (k, 1, 2)
numbers only exist for k = 2. Here we will develop annealing
methods to determine the above list of (3,2,2) numbers (where
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we consider all numbers in the list to be of interest not just the
smallest). We also test our methods on several variations, namely
(4,3,3), (3,1,5), (3,1,7), (3,6,6), (3,7,7), (3,8,8). Examples of most
of these are known, and can be found in Refs. [18–22], although
some were discovered only with the advent of high performance
computing and appeared relatively recently. However some, such
as (3,7,7) and (3,8,8) numbers, do not seem to have been known
before. (Indeed as we shall see the latter represent solutions in a
search space of size ∼ 1024.)
The second task that we will consider is the physical one of

finding solutions to the anomaly cancellation conditions of a typ-
ical extension of the Standard Model of particle physics. In four
space-time dimensions this is as mentioned also a cubic (i.e. ho-
mogeneous, third order) Diophantine problem, in which the in-
tegers correspond to the numerators of rational gauge charges.
(In 2d dimensions the equations are instead order d + 1). In this
case as well, we will find that a sufficiently well-crafted encoding
onto an annealer allows one to solve for anomaly cancellation in
the systems considered in Refs. [3–5], at an already relatively ad-
vanced level, and in a very short time, and certainly without hav-
ing to perform any kind of exhaustive scan.
Although we will not consider ’t Hooft anomaly matching ex-

plicitly in our discussion, it is worthmentioning that this nonper-
turbative procedure is morally a generalisation of the Ta(2) Taxi-
cab problem. That is, when two particle theories are duals of each
other, then by ’t Hooft’s argument they must realise the same set
of global anomalies in two different ways. Similarly physical tri-
alities and quadralities are generalisations of the Ta(3) and Ta(4)
Taxicab problems (which realise the same number in 3 and 4 dif-
ferent ways respectively). Such systems exist but are compara-
tively rare.[23–25]

Constructing suitably efficient encodings for these sorts of
problems requires significant advancement. Firstly as we shall re-
view we are interested in the kinds of set-ups found in quantum
annealers, in which problems are encoded in the Hamiltonian of
a quadratic Ising model, which must then be minimised to solve
the problem. Thus the crux of thematter in encoding a non-trivial
system of cubic- and higher-order Diophantine equations is to
implement a reduction procedure that can represent the com-
plete system as a single loss-function represented by a spin-
Hamiltonian that is at most quadratic. Of course Diophantine
problems, in particular factorisation, have been considered on
Ising model annealers before,[26–31] along with quadratic systems
of polynomial equations.[32,33] However both these problems can
be mapped into the optimisation of an order four Hamiltonian
which can in turn be reduced to a quadratic Ising model suitable
for a quantum annealer, with only two layers of reduction. By con-
trast, here we will be considering problems of order much higher
than two. To accomplish this, we use a procedure to automate the
reduction of an arbitrary order Hamiltonian to a quadratic one.
This procedure, which iterates that first appearing in Ref. [34]
and then more recently in Refs. [16, 27, 35, 36], is completely
problem-independent and therefore potentially applicable to any
set of Diophantine equations. It can perform the many layers of
reduction required to reach a quadratic spin-Hamiltonian repre-
sentation of the high order problems we will be considering.
Furthermore, the integers in the Diophantine equations are

naturally encoded using a binary representation, which is what
ultimately will enable the procedure to be much more efficient

than a systematic scan. However this in turn leads to large and
highly connected Ising model encodings of the Diophantine sys-
tem of equations. Thus to improve efficiency we introduce a tech-
nique we refer to as solution-mining. This innovation begins by
finding one solution in the conventional manner. A random per-
turbation from this solution then serves as the new starting point
for the next run. From there the system often tunnels to a new so-
lution nearby, and when it does so this serves as the next starting
point, and so on. This approach appears to be effective for prob-
lems, like anomaly cancellation, that contain many coupled Dio-
phantine equations, and it allows the domain of solutions to wan-
der in the parameter space. We shall describe these techniques in
Section 2.
The rest of the paper is organised as follows. In Section 3we be-

gin with a warm-up problem which is to solve a single Diophan-
tine polynomial equation with two variables. We use this simple
problem to discuss how annealing is implemented on a quantum
annealer, and to compare the performance of currently available
quantum annealers with classical simulated annealers. Our con-
clusion here is that quantum annealers are only just beginning to
catch up with classical simulated annealing in terms of the com-
plexity of problems that can be embedded and solved, but when
they do become competitive the potential speed-ups could be sub-
stantial for this kind of problem. Then Sections 4 and 5 consider
the Taxicab problems, and anomalies respectively.

2. Methods for encoding Diophantine problems

The general principle behind an Ising machine is to solve prob-
lems by reformulating their solution as the minimisation of a
function H of spin variables 𝜎𝓁 = ±1, where 𝓁 labels the spin
sites. On a quantum annealer this so-called problem-Hamiltonian,
H, is forced (by the physical architecture of the annealer) to be
quadratic in the spins,

H(𝜎𝓁) =
∑
𝓁

h𝓁𝜎𝓁 +
∑
𝓁m

J𝓁m𝜎𝓁𝜎m , (2)

where the spins would of course correspond to physical qubits.
We can postpone further discussion of the physical realisation
of the system (which will be described later) and focus on the
embedded abstract problem which will apply to any annealer of
this kind.
Specialising to the present case, we are interested in solving a

set of polynomial Diophantine equations fA(ti) = 0, where ti ∈ ℤ
are the would-be integer solutions to the problem of interest.
These integers will be encoded on the annealer in a binary for-
mat, namely we will use the following encoding:

ti = 𝜏i,0 + 2𝜏i,1 +⋯ + 2𝛽−1𝜏i,𝛽−1 + si . (3)

We use 𝜏 to denote the binary variables corresponding to a given
spin,

𝜏i,k = 1
2
(1 + 𝜎i,k) , (4)

with 𝜏i,k ∈ {0, 1}, and where we allow classical integer shifts,
si ∈ ℤ. These shifts can for example be negative to allow the
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domain to include negative integers or, as will be the case for
solution-mining, they can be adjusted iteratively to explore the
search space.
We would like to use such an encoding to solve the Diophan-

tine equations, and this can in principle be done by finding the
minimum of a loss-function Hamiltonian,

HD ≡
∑
A

(fA(ti(𝜎𝓁)))
2 . (5)

In addition one may wish to add several constraints: for exam-
ple the Taxicab numbers are usually defined as the smallest num-
bers expressible in two different ways. Such conditions can be
included with a constraint Hamiltonian,HC, which might in the
case of the Taxicab numbers be simply the numbers themselves
(since they are positive). Thus we begin with an idealised (i.e.
non-quadratic) system,

H̃(𝜎𝓁) = HD(ti(𝜎𝓁)) +HC(ti(𝜎𝓁)) . (6)

Note that solutions to theDiophantine equations all haveHD = 0,
so that constraints imposed by HC would independently select
the preferred solution. However the converse is generally not
true: that is one should avoid over-weighting the constraints HC
such that competing minima appear that have lower HC but
HD ≠ 0. Of course in many cases the desired solutions are very
rare, so it is often much more efficient (or more precisely not
an NP-hard problem) to simply apply any desired constraints by
post-processing the solutions (e.g. for the Taxicab numbers, one
could simply select by hand the smallest number).

2.1. Reduction

For a Diophantine system containing order-d polynomials in ti,
the rawHamiltonian H̃ in Equation (6) is an order-2d polynomial
in the spins, 𝜎𝓁 . For example the Ta(2) problem yields an order-6
spin-polynomial. Therefore we now arrive at the task of trans-
forming H̃ into an equivalent quadratic problem-Hamiltonian,
H, that is guaranteed to have the same minima, but which can
be implemented on the annealer.
For this task we shall use the reduction method described in

the Appendix of Ref. [36]. This method works by introducing aux-
illiary spins1 to represent pairs of spins in the original Hamil-
tonian of Equation (6), and is one of the many methods in the
comprehensive survey of Ref. [35]. (We should remark that there
exist “qubit-saving” reduction methods that do not require auxil-
liary spins, but these are more task specific and currently appear
to be restricted to reduction of terms in the Hamiltonian with
products of 3 or 4 spins.[27])
The method works as follows. We begin with the raw polyno-

mial H̃(𝜎𝓁) written as a function of binary variables using Equa-
tion (4). Suppose H̃ has terms involving products of two binary
variables 𝜏1 and 𝜏2. Now consider adding to the polynomial H̃ a

1 We think it is more accurate to use ‘auxilliary’ to refer to both ab-
stract spins and later to qubits, rather than the quantum computing
term, ‘ancillary’.

quadratic term that involves the binary variables together with a
new auxiliary variable 𝜏12, which is of the form

Q(𝜏12; 𝜏1, 𝜏2) = Λ(𝜏1𝜏2 − 2𝜏12(𝜏1 + 𝜏2) + 3𝜏12) . (7)

Inspection shows that a sufficiently large and positive overall cou-
pling Λ enforces 𝜏12 = 𝜏1𝜏2. Importantly the minimum at this
point hasQ = 0. Therefore we may replace the product 𝜏1𝜏2 with
𝜏12 wherever it appears within H̃, and the new Hamiltonian is
guaranteed to have the same set of minima as the original H̃.
Therefore the process can be iterated until one arrives at the
desired problem-Hamiltonian which is quadratic in spins, and
which is schematically of the form

HD +HC = H̃(𝜏1, 𝜏2,… , 𝜏12, 𝜏13,… , 𝜏12,34, 𝜏12,56 ⋯)

+
∑
i>j

Q(𝜏ij; 𝜏i, 𝜏j) +
∑

i<j,k<m

Q(𝜏ij,km; 𝜏ij, 𝜏km)

+⋯ (8)

with the constraints imposed by the Q terms ensuring that this
quadratic Hamiltonian has the same minima as the original
order-2d polynomial.
We can check that the reduction works correctly with the ex-

ample order-3 Hamiltonian

H̃ = 𝜎1𝜎2𝜎3

≡ 8𝜏1𝜏2𝜏3 − 4𝜏1𝜏2 − 4𝜏1𝜏3 − 4𝜏2𝜏3 + 2𝜏1 + 2𝜏2 + 2𝜏3 , (9)

where we drop the constant −1 in translating to the binary vari-
ables. This Hamiltonian has 4 minima at 𝜎1𝜎2𝜎3 = −1 (which
corresponds in binary language to any one of the 𝜏𝓁 being zero,
or all of them), as opposed to the seven solutions to 𝜏1𝜏2𝜏3 = 0.
As described above we can reduce the trilinear term by trad-
ing 𝜏1𝜏2 for an auxiliary binary 𝜏12 and adding the Hamilto-
nian Q(𝜏12; 𝜏1, 𝜏2). The quadratic problem-Hamiltonian (in so-
called ‘quadratic unconstrained binary optimisation’ (QUBO)
language) is then

H = Q(𝜏12; 𝜏1, 𝜏2) + 8𝜏12𝜏3 − 4𝜏12 − 4𝜏1𝜏3 − 4𝜏2𝜏3

+ 2𝜏1 + 2𝜏2 + 2𝜏3. (10)

It is easy to verify that provided Λ > 2 the original 4 degenerate
solutions hold in the new combined Hamiltonian as required.
With the increasing complexity of the raw Hamiltonian H̃ and

a limited number of physical qubits at our disposal, we of course
aim to find a reduction procedure that minimises the number
of auxiliary variables. Therefore, the central question is how can
we choose the smallest set of spin pairs that correctly collapses
all the higher order terms to quadratics? In the case of cubic to
quadratic, finding a spin-optimised procedure is equivalent to the
set cover problem which can in turn be cast as 0-1 ‘integer lin-
ear programming’ (ILP).[37] Both set cover and 0-1 ILP are well
known to be NP-complete by analogy with vertex cover.[38] There-
fore, generalising this to arbitrary order Hamiltonians would re-
cast our spin-optimised problem into a task which is at least
equivalent to solving k − 2 NP-complete problems, where k is the
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Figure 1. In (a) we plot the average number of auxilliary spins required to
quadratise the Hamiltonian, versus the square root of the number of cubic
interactions for different numbers of total spins n. These curves exhibit a
linear behavior in the central region where the slope is given by the square
root of the total number of spins, as we can see in (b). In (c) we plot the
time required to quadratise the Hamiltonian as a function of the number
of cubic couplings. We clearly see the time increasing linearly with the size
of the problem.

order of the Hamiltonian and therefore k − 2 are the required
layers of reduction. For this reason, we shall use a different ap-
proach based on a simple greedy algorithm which works as fol-
lows: at each reduction stage it finds the pair of binary variables
𝜏i𝜏j that appearsmost often in theHamiltonian; wherever the pair
appears, we replace 𝜏i𝜏j with the auxilliary logical spin 𝜏ij, and add
the penalty term in Equation (7). The quadratised Hamiltonian is
constructed by repeating these three steps iteratively. In the lan-
guage of set covering, this is equivalent to the greedy heuristic al-
gorithm first proposed in Ref. [39]. In Figure 1 we have collected

three plots which show how the average number of required aux-
illiary variables grows as we increase the number of cubic inter-
actions, the rate of this growth in the linear central region and
the time required to perform the reduction as a function of the
number of cubic couplings.
These results are very similar to those obtained in Ref. [37]

where the optimal reduction is found by solving exactly the equiv-
alent 0-1 ILP. Two important remarks are in order. First, as we
can see in Figure 1a, both methods saturate approximately when
the Hamiltonian contains all possible cubic interactions with n
qubits, namely when N3-couplings ≈

(n
3

)
. Second, we see that in ei-

ther case the number of auxilliary spins increases linearly with
the square root of the number of cubic interactions and the
growth rate is given by the square root of the total number of
spins, as shown in Figure 1b. Nevertheless, as we can see in
Fig 1a, in some regions our procedure uses a number of aux-
iliaries that is larger than the value at saturation, especially in
the n = 12 and n = 13 cases. This is of course due to the fact
that we are not seeking an exact solution of the spin-optimised
reduction problem. Indeed, a local optimal choice of our reduc-
tion algorithm does not necessarily lead to a global minimum
in terms of the number of auxilliary spins. More precisely, in
the language of the equivalent set covering problem, it has been
shown in Ref. [39] that this greedy algorithm returns to an ap-
proximate solution which cannot be bigger than H(n) times the
minimum one, where H(n) is the n-th harmonic number and n
the size of the set to be covered (namely in our case the set of all
higher order couplings). However, in the problems treated below,
the greedy algorithmwe adopt returns quadratisedHamiltonians
with at most ∼ 300 logical spins, far below the limit imposed by
for example the number of available qubits in the currently ac-
cessible quantum annealers, making it unnecessary to solve the
problem exactly. Finally, we should remark that this procedure is
straightforwardly generalisable to Hamiltonians of arbitrary or-
der, requiring a number of steps which grows roughly linearly
with the size of the problem, as we can see in Figure 1c and also
in Ref. [39]. As expected, this is in contrast with the exact method
discussed in Ref. [37] which shows an exponentially increasing
amount of time with the increasing complexity of the Hamilto-
nian.
Reduced Hamiltonians can be represented using connected

graphs in which nodes correspond to spins and links to cou-
plings. As an example, Figure 2 is a representation of the quadra-
tisedHamiltonian associated to the first Diophantine equation in
Table 2.

2.2. Solution Mining for Improved Performance

Given the increase in difficulty with bitnumber, 𝛽, we will utilise a
method for improving the performance. This method allows one
to explore larger regions of parameter space (i.e. larger integers)
without increasing 𝛽, yielding in turn solutions with larger val-
ues.
The method operates iteratively, by at each run constructing a

brand new Hamiltonian from the previously found solutions. At
say the k-th iteration, we minimise the Hamiltonian looking for
solutions of the form

tki = 𝜏
(k)
i,0 + 2𝜏 (k)i,1 + ski , (11)

Fortschr. Phys. 2022, 2200114 2200114 (4 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 2. Representation ofH = (x21 + x22 − 149)2 as a quadratised Ising model. Nodes, corresponding to spins, can be arranged in a circle, and they are
quadratically coupled by the links. (Diagrams for non-quadratised models would contain junctions in the couplings). Weaker couplings are represented
in light grey, gradually getting darker for higher coupling strengths. Linear couplings are coloured from dark blue (large negative terms) to dark red (large
positive terms).

where k = 0,… , N (with N being the total number of anneal
runs), and where ski is a classical shift that centres the new search,
which is determined from a solution found in the (k − 1)-th run:
if we designate the previous solution t̂k−1i , then the {ski } are chosen
such that

tki ∈ [t̂k−1i − 1 , t̂k−1i + 2] or

tki ∈ [t̂k−1i − 2 , t̂k−1i + 1] , (12)

based on a random choice.
This procedure finds new solutions by performing a kind of

“random tunnelling” from previously found solutions (hence the
name “solution-mining”). It generally operates well when there
are many variables in the system and many different equations,
because in such systems the solutions can be relatively close in
each dimension of the search space (even though the total Ham-
ming distance could be very large due to the large number of
dimensions). For the two specific example problems we are dis-

cussing here, it is not a useful enhancement for finding Taxi-
cab numbers because there one is seeking the smallest numbers,
and (as we shall see) the solutions to the Diophantine system are
very widely spaced. However for solving anomaly equations the
method is a significant improvement. In such systems, new so-
lutions to the anomaly equations tend to appear with consistent
frequency when the allowed charge size is increased, and it is the
sheer number of anomaly equations and charges that makes the
problem difficult.
It should be noted that there is no additional cost for solution-

mining because even though a brand new Hamiltonian must
be constructed at each stage, the embedding graph remains the
same if the values of 𝛽 do not change. This means we construct
an entirely new Hamiltonian H̃, but do not need to perform a
new reduction of the solution. On a quantum annealer we per-
form reverse annealing (to be explained below) in order to collect
the solution and construct the new Hamiltonian at each stage,
which then simply has to be translated into new couplings via
the updated {ski } values.

Fortschr. Phys. 2022, 2200114 2200114 (5 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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3. Quantum versus Classical Annealers for
Diophantine Equations

In this section we shall compare quantum and classical annealers
to solve Diophantine equations, using the encoding methods de-
scribed above on a simple warm-up problem. It has been already
shown in Ref. [32] that a quantum annealer can successfully be
used to solve second order systems of polynomial equations. On
the other hand, simulated annealing and variations thereof have
been extensively applied for similar purposes (see Ref [40, 41])
along with other techniques such as genetic algorithms, particle
swarm optimisation and so on (see for example [42–45]). In the
following we shall see that quantum annealing is also successful
in solving equations of order higher than two, retrieving most of
the results found using Particle Swarm Optimisation in Ref. [43]
and Fuzzy Adaptive Simulated Annealing in Ref. [40]. We shall
find that simulated annealing on the quadratised Hamiltonian
can be used to solve problems which are still hard to embed in
a quantum annealer due to technological limitations (restricted
number of qubits and limited connectivity). Such problems will
realistically be solvable in the near futurewith annealers that have
higher connectivity but still with at most quadratic interactions.
Let us first outline the central features of the quantum an-

nealer that we will need for this study (for a comprehensive re-
view see Ref. [16]). The quantum annealer is defined by a Hamil-
tonian of physical qubits of the form

(s) = A(s)
∑
𝓁

𝜎𝓁,x + B(s)H(𝜎𝓁,z) , (13)

where H is the problem-Hamiltonian in Equation 2, 𝜎𝓁,x and
𝜎𝓁,z are the Pauli matrices acting on the 𝓁th qubit, and A(s),
B(s) are smooth functions such that A(1) = B(0) = 0 and
A(0) = B(1) = 1. Meanwhile the internal couplings h𝓁 and J𝓁m
are fixed in each anneal session.
Since(1) = H(𝜎𝓁), the usual quantum annealing strategy is

adiabatically to adjust the pre-factors A(s) and B(s) using the pa-
rameter s, such that the system ends up in a global minimum of
H. The time dependence of s(t) is defined by the user in a so-called
anneal-schedule. Thus during a reverse anneal for example one be-
gins at s = 1 andwith the system set in any eigenstate of

⨂
𝓁 𝜎𝓁,z.

Then one allows the system to evolve quantum-mechanically by
bringing s to small values using a piecewise-linear function s(t) of
time t, which completes back at s(tfinal) = 1 when the measure-
ment of final spins is made.
A technological limitation is that the connectivity of the quan-

tum annealing device in terms of the allowed non-vanishing cou-
plings J𝓁m between qubits is limited. Let us be specific to the ar-
chitecture we will be using in this work, namely D-Wave’s [46]
Advantage_system4.1: this annealer contains 5627 qubits, con-
nected in a Pegasus structure, but only has a total of 40279 cou-
plings between them.
The warm-up problem that we will use to compare this kind

of annealer with classical simulated annealing is simply to find
solutions of a generic Diophantine equation

f (x1,… , xN) = 0 , (14)

Table 1. A selection of Diophantine equations and cor-
responding solutions found using the D-Wave’s quan-
tum annealer. Naux is the number of auxilliary qubits
necessary to quadratise the Hamiltonian, and 𝛽 is the
number of qubits used to encode each variable (see
Equation (3)).

Equation Solution Naux 𝛽

x21 + x22 = 625 15,20 35 5

x31 + x32 = 1008 2,10 33 4

x41 + x42 = 1921 6,5 12 3

⋮

x71 + x72 = 4799353 9,4 26 4

⋮

x151 + x152 = 1088090731 4,3 12 3

where x1,… , xN ∈ ℤ and f : ℤN → ℤ is a generic order k polyno-
mial function.
In order to solve such an equation, we again square it to form

the problem-Hamiltonian:

H(x1,… , xN) ≡ [f (x1,… , xN)]
2 . (15)

The next step is to binary encode x1,… , xN as in Equation (3),
choosing the values of si and 𝛽 depending on the specific prob-
lem.
The above Hamiltonian is therefore an order-2k polynomial in

𝜏i,j. Nevertheless, regardless of how high the order is, it can al-
ways be reduced to a quadratic Ising Hamiltonian making use
of the procedure described in Section 2.1. Using the D-Wave’s
quantum annealer we find all the solutions listed in Table 2 of
Ref. [43] (which have also been found using Fuzzy Adaptive Sim-
ulated Annealing in Ref. [40]). We report some of them in Table 1.
To test this method further, we move on to Diophantine equa-

tions with increasingly many variables. As one would expect, the
higher the number of variables, the higher will be the average
number of interactions per qubit. This often means that when
the connectivity of the problem exceeds the native connections
supported by the D-Wave Quantum Processor Unit (QPU), a sin-
gle binary variable in the quadratic optimization problem needs
to be represented by two (ormore) qubits (called a ‘chain’) instead
of one. This procedure, known as embedding is carried out by an
embedding algorithm, and should be carefully monitored as it
can lead to so-called broken-chains that have two or more physical
qubits in the same chain taking different values. This ultimately
limits the size of problems that can be solved on quantum an-
nealers, while performing classical annealing on the same Ising
Hamiltonian turns out to be successful in all the examples treated
in Table 2, where we list the equations solved using both classical
(cyan) and quantum (blue) annealing.
This reproduces the results in Refs. [40, 43] obtained using Par-

ticle SwarmOptimisation and Fuzzy Adaptive Simulated Anneal-
ing respectively.

4. Ramanujan (TaxiCab) Numbers

Having demonstrated that problems such as these can in princi-
ple be already solved on a quantum annealer, we are now ready

Fortschr. Phys. 2022, 2200114 2200114 (6 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Table 2. A list of Diophantine equations solved using both quantum (blue)
and classical (cyan) annealing.

to move on to the more complicated class of problems outlined
in the introduction, beginning in this section with Taxicab num-
bers. In line with the above discussion, classical simulated an-
nealing turns out to be superior currently for these problems, so
we will use that annealing method in this and the next section.
In general, finding Taxicab numbers is not a trivial task and

for higher Taxicabs, such as Ta(7), Ta(8) etc., only an upper bound
is known.[47] Indeed (using the (k,m, n) notation for these num-
bers), it is interesting to note that no (5,2,2) numbers have been
found, despite searches up to 1026 (see Ref. [18]).
Let us show explicitly how we use the reduction technique of

Subsection 2.1 to construct an Ising Model Hamiltonian whose
ground states are precisely the Taxicab numbers we want to find.
As a first example we focus on Ta(2), i.e. we want to find four
non-negative integer numbers such that

a3 + b3 = c3 + d3 , a ≠ {c, d} . (16)

We again use binary encoding (see Equation (3)) with 𝛽 = 5,
si = 1 (numbers from 1 to 32) and ti ∈ {a, b, c, d}. To impose the
equality between the two sums of cubes we define the following
Hamiltonian

HD = (a3 + b3 − c3 − d3)2 . (17)

However, this is not the end of the story as must also encode the
constraint a ≠ {c, d} to avoid all the trivial minima of the above
Hamiltonian, which occur when a = c and b = d or vice versa. In

other wordswewant to construct theHC Hamiltonian such that it
has its globalminimumwhen a ≠ c and a ≠ d. It ismore straight-
forward to write such a constraint Hamiltonian directly in terms
of binary variables 𝜏i,k, where i ∈ {a, b, c, d} and k = 0,… , 𝛽 − 1.
It is easy to see that the Hamiltonian

HC ≡ H𝛿(a, c) +H𝛿(a, d)

≡

𝛽−1∏
k=0

(
1 − (𝜏a,k − 𝜏c,k)

2
)
+

𝛽−1∏
k=0

(
1 − (𝜏a,k − 𝜏d,k)

2
)

(18)

achieves this. Explicitly, one finds that

HC =

⎧⎪⎪⎨⎪⎪⎩
0, when a ≠ c and a ≠ d ,
1, when a = c and a ≠ d ,
1, when a = d and a ≠ c ,
2, when a = c = d .

(19)

The Hamiltonian we shall use is then the sum

H̃ = HD +HC . (20)

Written is terms of 𝜏’s, this Hamiltonian is a polynomial of order
2𝛽 for 𝛽 ≥ 3. Again, setting 𝛽 = 5 and using the technique de-
scribed in Section 2 we can reduce it to a quadratic Hamiltonian
by adding 98 auxilliary spins.
In Figure 3 we represent the reduced Hamiltonian for 𝛽 = 4.

We see that stronger couplings are rare among the interactions,
which mostly form a very complex network of weaker couplings
in the background. Classical annealing on the reduced Hamilto-
nian yields all the solutions written in Equation (1), namely all
the Taxicab numbers with a, b, c, d ≤ 32.
Let us now push this further and attempt to solve more com-

plicated generalisation of the Taxicab problem, (k,m, n) where

(k,m, n) ≡ ak1 + … + akm

= bk1 + … + bkn, (21)

where {a1,… , am} ≠ {b1,… , bn}. Beginning with (4,3,3) num-
bers,

(4, 3, 3) = a4 + b4 + c4

= d4 + e4 + f 4 , (22)

we define the following Hamiltonians

HD = (a4 + b4 + c4 − d4 − e4 − f 4)2 , (23)

and

HC = H𝛿(a, d) +H𝛿(a, e) +H𝛿(a, f ) , (24)

to impose the equality in Equation (22) and also to force a ≠

d, e, f . The order of the complete Hamiltonian, which is the sum
of Equation 24 and Equation 23, is 2𝛽 for 𝛽 ≥ 4. Again, it can
be reduced to a quadratic one by adding 66 auxilliary variables in
the case with 𝛽 = 4 and 154 in the case with 𝛽 = 5. Several anneal

Fortschr. Phys. 2022, 2200114 2200114 (7 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 3. Representation of the Ising Hamiltonian corresponding to the Ta(2) problem.

runs (each with 10000 reads) with 𝛽 = 4, 5 yield the following re-
sults (Table 3)
To comment on the efficacy of the method: the search space is

of order 326 ∼ 109, and yet these solutions are found after order
105 reads.
For the remainder of this section we consider the (3, n,m)

numbers, where n,m ∈ ℕ+. For this purpose we define the fol-
lowing Hamiltonian

H̃ =

(
n∑
i=1

a3i −
m∑
i=1

b3i

)2

, (25)

where in this case we do not add any constraint Hamiltonian to
enforce {ai} ≠ {bi} when n = m, because here it is sufficient to
simply check at the end of each anneal run if the minimum is
trivial or not.
Tables 4-5 list some of the solutions found for n = 1 and m =

5, 7 with 𝛽 = 5, 6. Cases with n = m ≡ N, with N = 6, 7, 8 are
listed in Tables 6–8.
Note that all the above solutions are non-trivial (3, n,m) num-

bers, in that they are not sums of smaller solutions. Indeed, it

Table 3. List of (4,3,3) numbers found using 𝛽 = 3, 4, 5 and 10000 reads
per anneal run.

(4,3,3) a b c d e f

2673 3 6 6 7 2 4

16562 9 1 10 11 6 5

28593 2 13 2 9 6 12

35378 13 4 9 11 12 1

43218 11 13 2 14 7 7

54977 4 8 15 9 14 10

195122 21 5 2 9 13 20

324818 14 9 23 21 2 19

619337 28 8 5 7 26 20

847602 1 25 26 29 19 10

1071713 12 32 7 28 26 3

1178898 29 11 26 1 32 19

1328498 29 9 28 23 32 3

Fortschr. Phys. 2022, 2200114 2200114 (8 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Table 4. A list of (3,1,5) numbers found using 𝛽 = 5, 6. The reduction
needs 120 and 216 auxilliary spins respectively.

(3,1,5) a1 b1 b2 b3 b4 b5

729 9 1 3 4 5 8

1728 12 3 10 4 8 5

68921 41 3 17 21 28 32

125000 50 2 8 24 36 40

185193 57 16 17 30 40 44

216000 60 11 16 25 45 47

262144 64 9 18 31 44 52

Table 5.A list of (3,1,7) numbers found using 𝛽 = 5, 6. The reduction needs
160 and 288 auxilliary spins respectively.

(3,1,7) a1 b1 b2 b3 b4 b5 b6 b7

2744 14 2 3 5 7 8 9 10

13824 24 3 5 8 9 13 15 19

32768 32 1 6 15 16 17 20 23

148877 53 3 21 24 28 29 32 36

205379 59 5 12 13 18 23 43 47

238328 62 17 20 22 31 32 38 46

may happen that a (3, n,m) number is actually the sum of (3, p, q)
and (3, k, l) numbers with p + k = n and q + l = m. In order
to avoid such trivial solutions, we have simply removed them by
hand at the end of each anneal run.

5. Anomaly Cancellation in the Standard Model
with an Extra U(1)

Having road-tested our reduction methods on simple problems,
we now turn to a physical application, namely the anomaly can-
cellation conditions in the Standard Model extended by an extra
U(1) gauge symmetry. This is one of the simplest and most stud-
ied extensions of the Standard Model (see Ref. [48] for a review of
Z′ physics), and it has been the target of numerous experimental
searches.[49]

Table 6. (3,6,6) solutions with 𝛽 = 4, 5. The reduction needs 120 and 240
auxilliary spins respectively.

(3,6,6) a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

5012 2 4 5 7 12 14 3 6 8 9 11 13

7975 1 7 8 10 14 15 3 4 9 11 12 16

8309 1 5 7 10 14 16 4 6 9 12 13 15

41873 3 8 11 14 26 27 1 6 13 19 22 28

48438 9 13 17 20 22 28 1 4 15 18 23 30

51318 1 10 15 17 21 32 3 5 9 16 28 29

52359 5 6 7 11 26 32 3 14 15 20 24 29

78730 2 3 23 26 28 30 11 14 16 20 31 32

86400 3 9 21 24 31 32 4 5 26 27 28 30

Table 7. (3,7,7) solutions with 𝛽 = 5. The reduction needs 280 auxilliary
spins.

(3,7,7) a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5 b6 b7

39256 3 8 9 14 17 22 27 2 5 11 16 19 21 26

45063 3 5 7 13 14 19 32 2 9 10 15 18 23 28

46411 7 9 14 17 18 23 27 3 5 8 10 11 22 32

52094 1 6 13 17 22 23 28 3 7 14 16 18 21 31

63224 7 9 12 18 20 24 32 2 3 13 14 19 29 30

73276 6 12 14 15 24 29 30 9 17 18 20 23 27 28

77687 2 9 17 21 24 28 30 4 5 15 16 26 27 32

Table 8. (3,8,8) solutions with 𝛽 = 5. The reduction needs 320 auxilliary
spins. Note that even the smallest (3,8,8) number represents a solution in
a search space of size 3216 ∼ 1024.

(3,8,8) a1 a2 a3 a4 a5 a6 a7 a8 b1 b2 b3 b4 b5 b6 b7 b8

50139 1 3 6 10 12 20 23 30 2 5 9 13 17 19 25 27

73206 1 3 4 17 20 25 26 30 5 8 9 10 19 21 28 32

78202 3 4 17 18 19 24 27 30 1 2 9 16 20 22 28 32

85418 2 3 9 16 18 23 31 32 6 10 14 15 24 26 27 30

The generalities of anomaly cancellation for such systems have
been discussed in Refs. [2–5, 50–60]. In this work we will for con-
creteness specialise to the models studied in Ref. [4]. Here, the
main assumption is that the chiral fermions appear in the usual
3 families of quarks and leptons, together with 3 right-handed
neutrinos. The charges under the additional U(1) are labelled
by {Qi,Ui, Di, Li, Ei, Ni}, respectively, with i ∈ {1, 2, 3} indicating
the generation number. Under this assumption the anomaly can-
cellation condition yields the following set of Diophantine equa-
tions for the charges:

3∑
i=1

(6Qi + 3Ui + 3Di + 2Li + Ei + Ni) = 0 , (26)

3∑
i=1

(3Qi + Li) = 0 , (27)

3∑
i=1

(2Qi +Ui + Di) = 0 , (28)

3∑
i=1

(Qi + 8Ui + 2Di + 3Li + 6Ei) = 0 , (29)

3∑
i=1

(Q2
i − 2U2

i + D2
i − L2i + E2i ) = 0 , (30)

3∑
i=1

(6Q3
i + 3U3

i + 3D3
i + 2L3i + E3i + N3

i ) = 0 . (31)

A general solution to the above equations has already been found
analytically in Ref. [4]. However, we shall demonstrate here that
these problems can be also tackled using Ising model anneal-
ing (in practice here we use simulated annealing, but ultimately
quantum annealers will be practicable).

Fortschr. Phys. 2022, 2200114 2200114 (9 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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As for the Taxicab problem, we begin constructing the Hamil-
tonian by simply squaring and summing the left hand side of all
the above equations. We encode all the variables involved as in
Equation (3) with ti ∈ {Qi,Ui, Di, Li, Ei, Ni} and take si = −1 for
all the charges. We set 𝛽 = 2, thus looking for solutions with en-
tries from −1 to 2. Note that although the number of bits we use
to represent each variable is relatively low, the number of pos-
sible configurations of these 3 × 6 = 18 charges with possible
values in [−1, 2] is already quite high: 418 ∼ 1010. It is worth men-
tioning that in this particular case a comprehensive scan can be
completed with far fewer attempts due to generation permuta-
tion symmetry in the equations. Indeed, it is easy to see that the
anomaly equations are invariant under arbitrary permutations of
{A1, A2, A3}, where A ∈ {Q,U,D, L, E, N}, giving an (S3)

6 permu-
tational symmetry that could be exploited if we were looking for
solutions by exhaustive scanning over all the different configura-
tions.
Of course our goal here is to avoid using such tricks, but to in-

stead find solutions using annealing on the reduced IsingHamil-
tonian. For 𝛽 = 2 the reduction requires only 18 auxiliaries. We
have performed several anneal runs with 10000 reads obtaining
an average of 60 distinct solutions per anneal run. In the follow-
ing table we present a sample of three of them.
One might expect higher values of 𝛽 to lead to new solutions

with bigger entries, along with those previously found. However,
for this specific problem, classical annealing turns out to be un-
fruitful for 𝛽 > 2. To explain why it is useful to inspect how the
energy gap Δ between the ground state and the first excited state
scales as a function of the size of the problem. It can be shown
(see Ref. [33]) that

Δ ∼ 

(2−n𝜇
m𝛼

)
, (32)

where 𝛼 and 𝜇 are the number of additions and multiplications
respectively in the Hamiltonian written in terms of binary vari-
ables,m is the number of equations we want to solve and n is the
the effective precision, which is the difference between the largest
and smallest nonzero absolute values representable among all
the variables in the system. Increasing 𝛽 makes all these param-
eter bigger, including n and 𝜇, causing an exponential shrinkage
of the energy gap between the ground states and the first excited
states, which in turn considerably affects the algorithm’s perfor-
mance.
To improve our results and find solutions with bigger entries

we use the solution-mining method described in Section 2.2.
After 30 anneal runs this yields 153 solutions with entries be-
tween −13 and 13. Note that a complete scan on all possible such
configurations, even exploiting the (S3)

6 permutational symme-

try, would involve
(13×2+1

3

)6
∼ 1020 trials, which is infeasible with

conventional computing methods. It should be noted that we do
not make use of the permutational symmetry and the Ising ma-
chine is in principle succeeding within a search space of 2618 ∼
3 × 1025, although it is not yet clear how exhaustive the method
of small 𝛽 plus solution mining can eventually be.
In Table 9 we present a sample of ten of the solutions found.
The first of these solutions is equivalent to one found previ-

ously in Table 10. This is because in the first anneal run the algo-
rithm looks for solutions centered around zero, i.e. with entries

Table 9. A sample of ten solutions found using the solution-mining
method.

Q1 Q2 Q3 U1 U2 U3 D1 D2 D3 L1 L2 L3 E1 E2 E3 N1 N2 N3

−1 0 1 −1 0 1 1 −1 0 1 0 −1 0 −1 1 1 0 −1

0 −2 2 1 −1 2 −2 0 0 0 1 −1 0 −1 −1 0 1 1

3 −1 −2 −1 −2 3 −4 2 2 0 −3 3 2 −2 0 2 −3 1

3 −2 −1 1 −3 3 −4 3 0 −1 0 1 −1 0 0 3 −3 1

−1 1 0 −2 −1 4 −5 4 0 −2 −1 3 0 2 −3 1 −2 2

1 −1 0 0 −2 5 −6 4 −1 −1 0 1 0 −1 −2 0 −2 5

1 0 0 −1 −2 6 −7 4 −2 −3 0 0 2 1 −4 0 0 7

2 −1 −1 2 −3 4 −6 2 1 0 0 0 −3 1 −1 −3 −2 8

2 −2 −2 2 1 2 −2 −1 2 6 −1 1 −3 −1 −5 −10 −2 9

1 −3 0 1 5 2 −2 1 −3 2 1 3 −5 −3 −4 −13 0 13

Table 10. A sample of three solutions found using 𝛽 = 2 and 10000 reads
in each anneal run.

Q1 Q2 Q3 U1 U2 U3 D1 D2 D3 L1 L2 L3 E1 E2 E3 N1 N2 N3

1 0 −1 −1 1 0 1 −1 0 −1 0 1 −1 0 1 0 1 −1

−1 1 0 0 −1 1 −1 1 0 −1 0 1 0 1 −1 1 0 −1

1 −1 0 −1 1 0 1 0 −1 1 0 −1 −1 1 0 −1 0 1

between [−1, 2]. Then it starts exploring the neighborhood of the
solution found in the previous anneal run, gradually finding so-
lutions with larger entries.

6. Conclusions

Diophantine problems in physics and beyond are often compu-
tationally hard. In this paper we have investigated the use of
Ising machines for finding solutions to such problems, and have
shown that they can succeed within search spaces that are vast.
For example finding the (3,8,8) number 50139, the lowest num-
ber we find that can be written as the sum of eight cubes in two
different ways, represents a search in a space of size 1024. Further-
more using “solution mining” for the task of anomaly cancella-
tion, we find a proven ability to find solutions in search spaces of
order 1026.
The methods described here are valid for any Ising machine,

including both quantum and simulated annealers. We found
that currently available quantum annealers can already solve a
large variety of Diophantine problems at a relatively advanced
level, but they are not yet competitive with their simulated coun-
terparts. Nevertheless there are several reasons to believe that
ultimately quantum annealers will become dominant for such
tasks. The first is to do with the current obstacle to performing
higher order tasks on a quantum annealer which is the fact
that with the increasing complexity of the equations, finding a
suitable embedding (i.e. an embedding such that the connectiv-
ity and the number of auxilliary qubits required are within the
limits imposed by the quantum processing unit) is a non trivial
task. Indeed it is worth noting that deciding whether a graph G
can be embedded in a graphH is itself an NP-complete problem
(whenH is arbitrary but as in current annealers G is built out of
Chimera or Pegasus sub-graphs).[61] Thus one expects significant

Fortschr. Phys. 2022, 2200114 2200114 (10 of 12) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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improvement in embedding as the overall size of the annealer,
and the connectivity of its sub-graphs is continually increased.
The second reason to be optimistic about quantum annealers

is in the potential speed-up in the way that they find global min-
ima. For example there are many techniques open to quantum
annealers such as diabatic annealing that have the potential to
avoid anneal times increasing exponentially with the difficulty of
the problem,[62] an issue that is seen in both adiabatic quantum
annealing and in simulated annealing. These physical aspects of
quantum annealing which were also crucial in the quantum field
theory tunneling studies in Refs. [63–65] cannot be efficiently
simulated classically. Indeed discrete problems generally favour
quantum annealers because in a sense these machines can op-
erate by performing a quantum gradient descent by tunnelling.
By contrast any simulation method requires a defined dynami-
cal process for its evolution, in order to hop between potential
solutions, and this tends to become increasingly delicate with
the difficulty of the problem. Thus for certain problems quan-
tum tunneling could be an enormous advantage. For example,
it has already been shown that quantum annealing overcomes
simulated annealing in a large variety of cases (see for exam-
ple Refs. [66–68]). Particularly interesting are the results found
in Ref. [68] showing quantum annealing outperforming classical
annealing by a factor of 108 in finding the minimum of a particu-
lar crafted problem with tall and narrow energy barriers separat-
ing local minima. This is precisely the kind of configuration one
expects when solving Diophantine problems.
In summary, we believe that the methods presented here

should be an effective heuristic search method for the many dis-
crete problems one encounters in physics. In particular it will be
interesting to employ them in the string theory landscape con-
text, and compare them to the genetic algorithmic and machine
learning techniques that have been studied in Refs. [6, 69–86].
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