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A B S T R A C T 

The distribution of dark and luminous matter can be mapped around galaxies that gravitationally lens background objects into 

arcs or Einstein rings. New surv e ys will soon observ e hundreds of thousands of galaxy lenses and current labour-intensive 
analysis methods will not scale up to this challenge. We develop an automatic Bayesian method, which we use to fit a sample of 
59 lenses imaged by the Hubble Space Telescope . We set out to leave no lens behind and focus on ways in which automated fits 
fail in a small handful of lenses, describing adjustments to the pipeline that ultimately allows us to infer accurate lens models for 
all 59 lenses. A high-success rate is key to a v oid catastrophic outliers that would bias large samples with small statistical errors. 
We establish the two most difficult steps to be subtracting foreground lens light and initializing a first approximate lens model. 
After that, increasing model complexity is straightforward. We put forward a likelihood cap method to a v oid the underestimation 

of errors due to pixel discretization noise inherent to pixel-based methods. With this new approach to error estimation, we find 

a mean ∼1 per cent fractional uncertainty on the Einstein radius measurement, which does not degrade with redshift up to at 
least z = 0.7. This is in stark contrast to measurables from other techniques, like stellar dynamics and demonstrates the power of 
lensing for studies of galaxy evolution. Our PyAutoLens software is open source, and is installed in the Science Data Centres 
of the ESA Euclid mission. 

Key words: gravitational lensing: strong – software: data analysis – galaxies: fundamental parameters – dark matter. 

1

G
b
a  

p  

t
m
t

h
g  

K  

S  

c
e  

e  

m

�

c  

W  

t  

t  

H  

e

o  

(  

L  

(  

s  

S  

l  

S
2

l  

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/3275/6710381 by U
niversity of D

urham
 user on 21 N

ovem
ber 2022
 I N T RO D U C T I O N  

alaxy-scale strong lensing is the distortion of light rays from a 
ackground source into multiple images by the gravitational field of 
 foreground galaxy along the same line of sight. From the apparent
osition, shape, and flux of those multiple images, it is possible
o infer both the intrinsic morphology of the background galaxy at 
agnified resolution and the distribution of (all gravitating) mass in 

he foreground lens. 
In combination with kinematic measurements lensing methods 

ave inferred the mean total density profile of massive elliptical 
alaxies, and how that evolves with redshift (Gavazzi et al. 2007 ;
oopmans et al. 2009 ; Auger et al. 2010 ; Bolton et al. 2012 ;
onnenfeld et al. 2013a ), and put constraints on their dark matter
ontent, stellar mass-to-light ratio, and inner structure (Sonnenfeld 
t al. 2012 ; Oldham & Auger 2018 ; Nightingale et al. 2019 ; Shu
t al. 2015 , 2016a ). If the background source is variable and the mass
odel known measurements of time delays between multiple images 
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an constrain the value of the Hubble constant (Suyu et al. 2017 ;
ong et al. 2019 ). If the lens galaxy contains small substructures,

hey also perturb the multiple images, and provide a clean test of
he nature of dark matter (Vegetti et al. 2010 ; Li et al. 2016 , 2017 ;
ezaveh et al. 2016 ; Despali et al. 2019 ; Ritondale et al. 2019 ; He

t al. 2021 ; Amorisco et al. 2022 ). 
Currently, a couple of hundred strong lensing systems have been 

bserved by dedicated surveys, such as the Sloan Lens A CS (SLA CS)
Bolton et al. 2006 ; Auger et al. 2010 ), BOSS Emission Line
ens (BELLS) (Brownstein et al. 2012 ), Strong Lensing Le gac y

SL2S) (Gavazzi et al. 2012 ) surv e ys, BELLS GALaxy-Ly α EmitteR
Ystems (BELLS GALLERY) (Shu et al. 2016c , b ), the SLACS
urv e y for the Masses (S4TM) Surv e y (Shu et al. 2017 ), LEnSed

aeS in the EBOSS suRv e y (LESSER) (Cao et al. 2020 ), and the
pectroscopic Identification of Lensing Objects (Talbot et al. 2018 , 
021 ). 
During the next decade, a couple of hundred thousand strong 

enses will be disco v ered by wide-field surv e ys including Euclid,
SST, and SKA (Collett 2015 ). Such large samples of strong lenses
ill contain rare ‘golden’ systems such as double or triple source
lane systems (Collett & Auger 2014 ; Collett & Bacon 2016 ;
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ollett & Smith 2020 ), and unlock considerable scientific potential
hrough vastly impro v ed statistics (e.g. Orban De Xivry & Marshall
009 ; Birrer et al. 2020 ; Cao et al. 2020 ; Sonnenfeld & Cautun 2021 ;
onnenfeld 2021 ). To tackle the forthcoming thousand-fold increase

n data volume, model inference must be automated, and made robust
ithout human intervention. 
Convolutional Neural Networks (CNNs) are a fast approach

hat have recently been shown to be successful at lens modelling.
ezaveh, Le v asseur & Marshall ( 2017 ) and Le v asseur, Hezaveh &
echsler ( 2017 ) modelled nine lens systems observed by the Hubble

pace Telescope ( HST ). Ho we ver, this approach requires a large,
nd significantly varied and unbiased training set of mock lenses to
earn from. These are requirements that can be difficult to guarantee,
hich could be problematic for source galaxies with irregular
orphologies. Using a different method, Shajib et al. ( 2021 ) used

he DOLPHIN software to model 23 lenses from an initial sample of
0 SLACS lenses. 
We use the PyAutoLens software (Nightingale & Dye 2015 ,

ereafter N15 ; Nightingale, Dye & Massey 2018 , hereafter N18 ), an
pen-source Bayesian forward-modelling project designed specif-
cally with automation in mind. We develop an automated data
nalysis pipeline that models the distribution of foreground light and
ass as a sum of smooth analytic functions, and the background

ight as either another sum of analytic functions (e.g. Tessore,
ellagamba & Metcalf 2016 ), or as a pixellated image (Warren &
ye 2003 ; Dye & Warren 2005 ; Suyu et al. 2006 ; Vegetti &
oopmans 2009 ; Joseph et al. 2019 ; Galan et al. 2021 ). By fitting
 mock sample of ∼500 lenses, we further show that previous
ersions of PyAutoLens (like many lens fitting algorithms) un-
erestimated the statistical uncertainty of lens model parameters.
 major component of this is a discretization effect inherent

o pixel-based source reconstructions – for which we provide a
olution. 

We apply our automated lens modelling pipeline to a uniform
ample of 59 SLACS and BELLS GALLERY lenses that were
bserved with the HST . Our goal is to model every single lens and
herefore leave no lens behind : if we were analysing ∼100 000 lenses,
ven a low rate of (unflagged) f ailures w ould require unfeasible
uman intervention, and would bias the increasingly tight statistical
recision of subsequent scientific analysis. Our first, ‘blind’ analysis
chieves a promising success rate of 85 per cent. We then emphasize
rying to understand why some lenses are not well fit, and impro v e
ur pipeline until they are. This mirrors the kind of methodology
hat will be possible with future large samples: a fairly fixed initial
ramework, that is adapted after early results. In this paper, we are
rying to establish that first fixed framework. 

With the full sample modelled, we investigate the accuracy to
hich the Einstein radius is reco v ered. Cao et al. ( 2020 ) recently
emonstrated the robustness of the measurement by comparing the
instein radii of power-law fits to mock lenses with complex mass
istributions, inferred from SDSS-MaNGA stellar dynamics data to
heir true values. They showed that the Einstein radius was reco v ered
o 0.1 per cent accuracy, taking into account both systematic and
tatistical sources of uncertainty. We examine how this compares
o the statistical uncertainties we infer for the Einstein radii of the
LA CS and GALLERY sample. Further , we compare to previous

iterature measurements (Bolton et al. 2008a ; Shu et al. 2016b ) to
erify our results and quantify how the uncertainty varies due to
ifferent methods and assumptions. Our work therefore provides an
utlook on the accuracy to which we can anticipate measuring the
instein radius in upcoming large samples of tens of thousands of

enses. 
NRAS 517, 3275–3302 (2022) 
This paper is structured as follows. In Section 2 , we give a
rief o v erview of lensing theory and provide the mass and light
rofile parametrizations we adopt. Section 3 describes the sample
election and data reduction procedure for the data images of the
LACS and GALLERY samples. The method is then explained

n detail in Section 4 and applied to a sample of mock data in
ection 5 to investigate problems associated with pixelized source
econstructions. The results of applying the automated procedure to
he SLACS and GALLERY samples are then presented in Section 6 .
inally we discuss the implications for the future of automated
nalyses in Section 7 and summarize in Section 8 . Throughout this
ork we assume a Planck 2015 cosmological model Ade et al. ( 2016 ).
he results of every fit to the SLACS and GALLERY data sets can
e found at the following link https://zenodo.org/r ecor d/6104823 . 

 LENS  M O D E L L I N G  T H E O RY  

he aim of this study is to investigate the practicalities of automated
xtended source modelling to infer the mass distributions of a large
ample of lenses. We giv e a brief o v ervie w of rele v ant theory for this
nalysis in Section 2.1 , and describe our choice of mass and light
rofile parametrizations in Sections 2.2 and 2.3 , respectively. 

.1 Lensing theory 

trong lensing occurs in and around regions, where the surface mass
ensity of the lens �( R ) exceeds the critical surface mass density for
ensing 

 crit = 

c 2 

4 πG 

D s 

D l D ls 
, (1) 

here D l , D s , and D ls are, respectively, the angular diameter distances
o the lens to the source, and from the lens to the source, and c
s the speed of light. Hence, assuming a cosmological model, it is
ossible to fix the 3D geometry of the lens system using the observed
edshifts of the foreground lens and background source galaxies. An
xtended distribution of matter can be described by its convergence,
 dimensionless 2D projected surface mass density defined as 

( x , y ) = 

�( x , y ) 

� crit 
. (2) 

he lensing properties of a galaxy with κ( x , y ) are characterized by the
rojected gravitational potential φ that satisfies the Poisson equation:
 

2 φ = 2 κ . The lens galaxy deflects light rays from the source galaxy
y an amount described by the deflection angle field, α = ∇φ. The
oal of lens modelling, then, is to solve the lens equation, 

= θ − α( θ ) , (3) 

hich relates the observed image positions θ = ( θ1 , θ2 ) of deflected
ight rays in the image plane from a source at position β = ( β1 , β2 )
n the source plane. Given a lensed image and (a model of) the
istribution of foreground mass, one can invert equation ( 3 ) to reco v er
he distribution of light in the source plane. In Fig. 1 , the pixelized
ource plane reconstructions of the lenses fitted in this work are
hown next to their lensed data image. 

Gravitational lensing magnifies the background source, including
n (infinitely thin) region of infinite magnification in the lens plane
nown as the tangential critical curve. Axisymmetric lenses have a
ircular critical curve known as the Einstein radius, R Ein . The mean
urface mass density inside R Ein is equal to the critical surface mass
ensity � crit of the lens (equation 1 ). The Einstein radius and enclosed

https://zenodo.org/record/6104823


Automated strong lensing 3277 

Figure 1. Lens subtracted data images (left) and their corresponding pixel-grid reconstructions (right) for the ‘Gold’ sample of lens galaxies (see Section 6.1 
for a description of our classification process). Lenses are in order of Right Ascension with SLACS lenses appearing first followed by GALLERY lenses. The 
full model fits for these lenses, plotted with an indication of scale, are available in Appendix C . 
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instein mass 

 Ein = πR 

2 
Ein � crit , (4) 

re thus uniquely defined in the axisymmetric case, quantifying the 
ize and efficiency of the lens. 

F or asymmetric, irre gular, and realistic lenses, the definition of
instein radius must be generalized. Several conventions are possible 

see Meneghetti et al. 2013 for a good overview), but we choose to
se the effective Einstein radius 

 Ein , eff = 

√ 

A 

π
, (5) 

here A is the area enclosed by the tangential critical curve. This
efinition is self-consistent across different mass density profiles, 
nd clearly reco v ers the definition of R Ein in the case of a circular
ritical curve. To calculate this in practice, we first obtain the set
f points that defines the tangential critical curve contour from our 
ensing maps, using a marching squares algorithm, then compute the 
nclosed area using Green’s theorem 

 = 

“
d x d y = 

∮ 
x d y. (6) 
.2 Mass profile parametrization 

e model the distribution of mass in the lens galaxy as a power-law
llipsoidal mass Distribution (PLEMD), assuming that this is able to 
apture the combined mass distribution of both baryonic and dark 
atter. The convergence is 

( x , y ) = 

�( x , y ) 

� crit 
= 

3 − γ

1 + q 

(
b √ 

x 2 + y 2 /q 2 

)γ−1 

(7) 

Suyu 2012 ), where γ is the logarithmic slope of the mass distribution
n 3D, 1 ≥ q > 0 is the projected minor to major axial ratio of
he elliptical isodensity contours, and b ≥ 0 is the angular scale
ength of the profile (referred to in some papers as the Einstein
adius, but distinct from the more robust effective Einstein radius 
n equation ( 5 )). The profile has additional free parameters for
he central coordinates ( x c , y c ) and position angle φ, measured
ounterclockwise from the positive x -axis, and external shear. When 
arying the ellipticity, we actually sample from and adjust free 
arameters 

 1 = 

1 − q 

1 + q 
sin 2 φ, ε 2 = 

1 − q 

1 + q 
cos 2 φ. (8) 

ecause these are defined continuously in −1 < ε i < 1, eliminating
he periodic boundaries associated with angle φ and the discontinuity 
MNRAS 517, 3275–3302 (2022) 
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t q = 0. We similarly parametrize the external lensing shear as
omponents γ 1ext and γ 2ext . The external shear magnitude γ ext and
ngle φext are reco v ered from these parameters by 

ext = 

√ 

γ 2 
1 ext + γ 2 

2 ext , tan 2 φext = 

γ2 ext 

γ1 ext 
. (9) 

The special case γ = 2 reco v ers the singular isothermal ellipse
SIE) mass distribution, in which the steady-state motions of particles
ave constant 1D velocity dispersion σ SIE when projected along
ny line of sight. For this distribution of mass, the critical curve is
he ellipse at κ = 1/2. Our definition of ef fecti ve Einstein radius
equation 5 ) means that the ellipse is R Ein, eff = qx 2 + y 2 / q , and the
elocity dispersion is 

SIE = c 

√ 

R Ein D s 

4 πD l D ls 
. (10) 

.3 Light profile parametrization 

e model the foreground galaxy’s light distribution as the sum of
wo S ́ersic profiles with different ellipticities but a common centre.
his replicates the bulge and disc components that constitute an
arly-type Galaxy (ETG) (Vika et al. 2014 ; Oh, Greene & Lackner
017 ), and significantly increased the Bayesian evidence compared
o a single S ́ersic model, in a precursor study of three SLACS galaxies
Nightingale et al. 2019 ). The S ́ersic profile is 

 ( x , y ) = I eff exp 

⎧ ⎨ 

⎩ 

−k eff 

⎡ 

⎣ 

( √ 

qx 2 + y 2 /q 

R eff 

) 

1 
n 

− 1 

⎤ 

⎦ 

⎫ ⎬ 

⎭ 

, (11) 

here I eff is the surface brightness at the ef fecti ve radius R eff , defined
ere in the intermediate axis normalization, 1 n is the S ́ersic index, and
 eff is a normalization constant related to n such that R eff encloses half
f the total light from the model (Graham & Driver 2005 ). The axial
atio and position angle of each component are parametrized during
he fitting process, using elliptical components as in equation ( 8 ).
side from the two components’ common centre, all free parameters

re fitted independently of each other to allow for more complex
ight distributions. For example, the flux ratio of the two S ́ersics
s unconstrained, and the profiles may be elongated by different
mounts and rotationally offset from one another. 

We model the distribution of light in the source galaxy as either
 single Se ́rsic profile or using a pixelated source reconstruction
epending on the phase of the automated procedure, described in
ection 4.3 . The source galaxy is ultimately reconstructed on an
daptive Voronoi mesh, for which the procedure is described in detail
n Section 4.2 . 

 DATA  

.1 Lens sample selection 

e analyse strong gravitational lenses around massive elliptical
alaxies drawn from the SLACS (Bolton et al. 2008b ) and BELLS
ALLERY samples (Shu et al. 2016b ). The SLACS sample were

dentified as lenses using SDSS spectroscopy to find higher redshift
mission lines after subtracting a principle component model of the
NRAS 517, 3275–3302 (2022) 

 This definition keeps the area enclosed within a given isophote constant as q 
s varied, and is distinct from ‘major axis normalization’ where the term ( qx 2 

 y 2 / q ) would instead be ( x 2 + y 2 / q 2 ). 

r

2

u

oreground galaxy spectrum (Bolton et al. 2006 ). This technique was
odified for the GALLERY surv e y to specifically select even higher

edshift Ly α-emitting (LAE) source galaxies (Shu et al. 2016b ).
pectroscopic redshifts of the lens and source are known, and follow-
p high-resolution imaging has been carried out for all systems. 
To keep the data quality reasonably uniform (as it would be for a

arge future surv e y), we restrict the SLACS sample to the 43 lenses
maged to at least 1-orbit depth in the HST Advanced Camera for
urv e ys (ACS) F 814 W band. We add the 17 grade-A confirmed
AE lenses from GALLERY, all of which have been observed to 1-
rbit depth in the HST Wide Field Camera 3 (WFC3) F 606 W band.
ev eral systems hav e second or third fore ground lenses of low mass.
o we ver, for this first attempt at automation, in which we shall try to
t only a single main lens, we have not considered GALLERY lens
0918 + 4518, which has two equally bright lens galaxies. We end up
ith a set of 59 lenses. 

.2 Data reduction 

ST imaging of both the SLACS and GALLERY samples was
educed using custom pipelines. The procedure for the SLACS
ample is described in Bolton et al. ( 2008a ) and produces images
ith 0.05 arcsec pixels; the procedure for GALLERY is described

n Brownstein et al. ( 2012 ) and Shu et al. ( 2016c ), and produces
mages with 0.04 arcsec pixels. The point spread function (PSF) was
etermined for both samples using the Tiny Tim software Krist
 1993 ). The aforementioned papers also describe an optional method
o subtract the lens galaxy’s light by fitting it with a b-spline. Our
ipeline benefits from fitting the lens light simultaneously with its
ass, so we shall generally not use the b-spline data. Ho we ver, our

ipeline struggles to automatically deblend the lens and source light
f three systems, so we shall try the b-spline data there. 

 M E T H O D  

.1 Ov er view 

ur strong lens analysis is carried out using the software PyAu-
oLens , 2 which is described in N18 , building on the works of
arren & Dye ( 2003 , hereafter WD03 ), Suyu et al. ( 2006 , hereafter

06 ), and N15 . 
To fit a lens model to an image, PyAutoLens first assumes a

arametrization for the distribution of light and mass in the lens,
nd the distribution of light in the source, using the parametric
rofiles described in Sections 2.2 and 2.3 . The parametrized intensity
 of the lens light is e v aluated at the centre of every image pixel,
onvolved with the instrumental PSF, and subtracted from the
bserved image. The mass model is then used to ray-trace image-
ixels from their image-plane positions θ to source-plane positions

(via the lens equation 3 ). The source analysis finally follows,
hich PyAutoLens performs using one of two approaches: (i)
arametric profiles in the source-plane (e.g. the S ́ersic profile) are
sed to simply e v aluate I at every value of β; (ii) a pixelized source
econstruction is performed on an adaptive Voronoi mesh, where the
alues of β are used to pair image-pixels to the Voronoi source
ixels which reconstruct the source (see WD03 , S06 , N15 , and
18 for a full description of lensing analyses with pixelized source

econstructions). 
 The PyAutoLens software is open source and available from https://gith 
b.com/Jammy2211/PyAutoLens . 

https://github.com/Jammy2211/PyAutoLens
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Table 1. Composition of the pipelines that make up our uniform analysis. Where prior info is not passed from previous pipelines; see Table A2 for the specific 
priors used on each model parameter. 

Pipeline Phase Galaxy component Model Varied Prior info Phase description 

Source 
Parametric 

SP 

1 Lens light S ́ersic + Exp – Fit only the lens light model and subtract it from the data image. 

SP 

2 
Lens mass SIE + shear – Fit the lens mass model and source light profile, comparing the 

lensed source model to the lens light subtracted image from SP 

1 . 
Source light S ́ersic –

SP 

3 

Lens light S ́ersic + Exp – Refit the lens light model with default priors and fit the mass and 
source models with priors informed from SP 

2 . 
Lens mass SIE + shear SP 

2 

Source light S ́ersic SP 

2 

Source 
Inversion 

SI 1 

Lens light S ́ersic + Exp � SP 

3 Fix lens light and mass parameters to those from the source 
parametric pipeline and fit pixelization and regularization 
parameters on magnification adaptive pixel-grid. 

Lens mass SIE + shear � SP 

3 

Source light MPR –

SI 2 
Lens light S ́ersic + Exp � SP 

3 Refine the lens mass model parameters, keeping lens light and 
source-grid parameters fixed to those from previous phases. 

Lens mass SIE + shear SP 

3 

Source light MPR � SI 1 

SI 3 

Lens light S ́ersic + Exp � SP 

3 Fit BPR pixelization and regularization parameters, using the 
lensed source image from SI 2 to determine the source galaxy pixel 
centres. Lens light and mass parameters are fixed to those from 

previous phases. 
Lens mass SIE + shear � SP 

3 

Source light BPR –

SI 4 

Lens light S ́ersic + Exp � SP 

3 Refine lens mass model parameters on the BPR grid, keeping lens 
light and source-grid parameters fixed to those from previous 
phases. 

Lens mass SIE + shear SI 2 

Source light BPR � SI 3 

Light 
Parametric 

LP 

1 
Lens light S ́ersic + S ́ersic – Fit lens light parameters, with lens mass and source parameters 

fixed to the result of the source inversion pipeline. 
Lens mass SIE + shear � SI 4 

Source light BPR SI 3 

Mass Total 

MT 

1 

Lens light S ́ersic + S ́ersic � LP 

1 Fit the lens mass parameters, now with the slope of the density 
profile free to vary within the uniform prior [1.5-3.0], all other 
mass priors are informed from SI 4 . The lens and source light are 
fixed to those from the LP 

1 pipeline. 
Lens mass PLEMD + shear SI 4 

Source light BPR SI 3 

MT 

1 
ext 

Lens light S ́ersic + S ́ersic � LP 

1 An extension of the MT 

1 phase to ensure robust error inference on 
parameters. The lens mass parameters are re-fitted, capping 
likelihood e v aluations to a fixed v alue (See Section 5 for details.) 

Lens mass PLEMD + shear MT 

1 

Source light BPR MT 

1 
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The following link ( ht tps://github.com/Jammy2211/aut olens lik 

lihood function ) contains Jupyter notebooks that provide a visual 
tep-by-step guide of the PyAutoLens likelihood function used in 
his work. We have received feedback from readers of other papers 
sing PyAutoLens (who are less familiar with strong lens mod- 
lling) that they were unclear on the exact procedure that translates
 strong lens model to a likelihood value. The notebooks aims to
larify this and provides links to all previous literature describing the 
yAutoLens likelihood function, alongside an explanation of the 

echnical aspects of the linear algebra and Bayesian inference. We 
rovide a brief description of the PyAutoLens likelihood function 
r
elow, but we recommend these notebooks to the interested reader if
nything is unclear. 

.2 Sour ce r econstruction 

fter subtracting the foreground lens emission and ray-tracing 
oordinates to the source-plane via the mass model, the source is
econstructed in the source-plane using an adaptive Voronoi mesh 
hich accounts for irregular or asymmetric source morphologies (see 
ig. 1 ). Our results use the PyAutoLens pixelization VoronoiB-
ightnessImage , which adapts the centres of the Voronoi pixels 
MNRAS 517, 3275–3302 (2022) 
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o the reconstructed source morphology, such that more resolution is
edicated to its brighter central regions (Nightingale et al. 2018 ). 
The reconstruction computes the linear superposition of PSF-

meared source pixel images, which best fits the observed image. This
ses the matrix f ij , which maps the j th pixel of each lensed image to
ach source pixel i . Following the formalism of (Warren & Dye 2003 ,

D03 hereafter), we define the vector � D i = 

∑ J 

j = 1 f ij ( d j − b j ) /σ 2 
j 

nd curvature matrix F ik = 

∑ J 

j = 1 f ij f kj /σ
2 
j , where d j are the ob-

erved image flux values with statistical uncertainties σ j and b j are
he model lens light values. The source pixel surface brightnesses
 alues are gi ven by s = F 

−1 D , which are solved via a linear inversion
hat minimizes 

2 = 

J ∑ 

j = 1 

[ (∑ I 

i = 1 s i f ij 
) + b j − d j 

σj 

] 

. (12) 

he term 

∑ I 

i = 1 s i f ij maps the reconstructed source back to the image-
lane for comparison with the observed data. 
This matrix inversion is ill-posed, therefore to a v oid o v er-fitting

oise the solution is regularized using a linear regularization ma-
rix H (see WD03 ). Regularization acts as a prior on the source
econstruction, penalizing solutions, where the difference in recon-
tructed flux of these two neighboring Voronoi source pixels is
arge. Our results uses the PyAutoLens regularization scheme
daptiveBrightness , which adapts the degree of smoothing

o the reconstructed source’s luminous emission (Nightingale et al.
018 ). This has three hyper parameters, the inner regularization
oefficient, outer regularization coefficient, and a parameter which
ontrols how the outer and inner regions of the source plane are
efined for regularization. The degree of smoothing is chosen
bjectively using the Bayesian formalism introduced by Suyu et al.
 2006 ). The likelihood function used in this work is taken from (Dye
t al. 2008 ) and is given by 

− 2 ln ε = χ2 + s T H s + ln [ det ( F + H ) ] − ln [ det ( H ) ] 

+ 

J ∑ 

j = 1 

ln 
[
2 π ( σ j ) 

2 
]
. (13) 

.3 Automated pr ocedur e 

.3.1 PyAutoLens 

yAutoLens is designed to approach lens modelling in a fully
utomated way ( N18 , Nightingale et al. 2021b ). This uses a tech-
ique we term ‘non-linear search chaining’, which sequentially
ts lens models of gradually increasing complexity. By initially
tting simpler lens models one can ensure that their corresponding
on-linear parameter spaces are sampled in an efficient and robust
anner that prevents local maxima being inferred. The resulting

ens models then act as initialization in subsequent model-fits,
hich add more complexity to the lens model, guiding the non-

inear search on where to look in parameter space for the highest
ikelihood lens models, ensuring the global maximum model has
he highest chance of being inferred. Non-linear search chaining is
erformed using the probabilistic programming language PyAut-
Fit ( ht tps://github.com/rhayes777/PyAut oFit ), a spin off project
f PyAutoLens , which generalizes the statistical methods used to
odel strong lenses into a general purpose statistics library. 
To perform model-fitting PyAutoLens uses the nested sampling

lgorithm dynesty (Speagle 2020a ), which obtains the posterior
robability distributions for a given lens model’s parameters. Nested
ampling’s ability to robustly sample from low dimensional (e.g.
NRAS 517, 3275–3302 (2022) 
ewer than ∼30 parameters) complex parameter space distributions
akes it well suited to lens modelling. We use dynesty ’s random
alk sampling for every model-fit performed in this work, which we

ound gave a significant impro v ement o v er other sampling techniques
wing to its better accounting of the covariance between lens model
arameters. Since nested sampling starts by randomly sampling from
he prior, the size and choice of priors directly impact the expected
umber of nested sampling iterations alongside how likely it is
hat a local maximum is incorrectly inferred. As such, using more
nformative priors will reduce the amount of time needed to integrate
 v er the posterior and guide towards sampling the highest likelihood
lobal maxima solutions. 
Non-linear search chaining allows us to construct informative

riors from the results of one dynesty search and pass them to
ubsequent model-fits, thereby guiding them on where to sample
arameter space. This uses a technique called prior passing (see
18 ), which sets the prior of each parameter as a Gaussian whose
ean is that parameter’s previously inferred median PDF (probability

ensity function) value and its width is a customisable value specific
o every lens model and parameter. The specific order of prior passing
sed in this study is given in Table 1 . The prior widths have been
arefully chosen to ensure they are broad enough not to omit valid
ens model solutions, but suf ficiently narro w to ensure the lens model
oes not inadvertently infer local maxima. More quantitatively, the
rior widths are typically greater than ∼10 times the errors we
ltimately infer on each parameter, meaning it has negligible impact
n the posterior (see Section 5 ). 

.3.2 User set-up 

n this work, we use the standardized Source Light and Mass (SLaM)
ipelines that are available, and fully customisable in PyAutoLens .
rom these, we construct a pipeline that chains together a total of
1 dynesty searches, which we apply to every lens in our sample,
hich we describe in detail in Section 4.3.3 . Before we run the SLaM
ipelines, a few brief pre-processing steps must be carried out; we
escribe those here, as well as our chosen pipeline settings. 
We define a circular mask centred on the lens galaxy that defines

he image pixels we fit to. For the SLACS and GALLERY lenses,
e use a standard size of 3.5 and 3.0 arcsec radius, respectively. This

s increased to 4.0 arcsec for the SLACS lenses J0912 + 0029 and
0216-0813, and for the GALLERY lens J0755 + 3445. All image
ixels outside this mask are completely omitted from the analysis,
eaning they are not traced to the source plane and included in the

ource reconstruction procedure. 
We create scalable noise maps, unique to each lens, that define

n y re gions inside the mask that we do not wish to fit (e.g. unrelated
stronomical sources projected by chance along adjacent lines of
ight). In these regions, the image values are scaled to near zero
nd the noise-map values to large values such that the likelihood
alculation ef fecti vely ignores them. Such areas of high flux would
therwise be indistinguishable from the source flux to the fitting
rocedure. We adopt this noise map approach o v er the complete
emoval of such regions, since image-pixels are still traced to the
ource-plane and included in the source reconstruction procedure.
his a v oids creating discontinuities or ‘holes’ in the source pixeliza-

ion, which can degrade the quality of the overall reconstruction. The
aps are produced in a graphical user interface (GUI) available in
yAutoLens , designed to reduce the human time necessary for
reating each unique map ( ∼1 min per lens). We acknowledge this
ask is o v erly time-intensiv e when considering the incoming samples

https://github.com/rhayes777/PyAutoFit
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f tens of thousands of lenses and provide a discussion of possible
outes to automation of this pre-processing step in Section 7.1 . 

Finally, we store an array containing the coordinates of the pixels 
ontaining the peak surface brightness of each multiple image of the 
ource g alaxy, ag ain selected by the user via a GUI. These coordinates 
re used to remo v e local maxima from the parameter spaces explored
hroughout the pipeline. In practise, this is done by discarding any 

odels where the ray-traced points in the source plane are not within
 positions threshold value of each other. This value is initially set
o 0.7 arcsec. 3 Both the threshold and the positions themselves are 
hen iteratively updated throughout the SLaM pipeline by solving the 
ens equation using the maximum likelihood mass model estimated 
n a previous fit. For each iteration, the value is set to three times the
eparation of the positions found after solving the lens equation or
 value of 0.2 arcsec, whichever is largest. This ensures that, as
e progress from parametric to pixelized source reconstructions, we 
 v oid the under and o v er-magnified solutions that can be problematic
or these methods Maresca, Dye & Li ( 2020 ). 

.3.3 Uniform analysis 

he uniform analysis ultimately aims to constrain the parameters 
escribing the mass and light distributions. The lens galaxy’s mass 
s parametrized as a PLEMD (equation 7 ), while the lens light is
odelled as a double Se ́rsic profile, which is a sum of two S ́ersic

rofiles (equation 11 ) with a common centre. This is achieved by
econstructing the source galaxy’s light distribution on an adaptive 
rightness-based pixelization and regularization (BPR) grid. The 
niform analysis is constructed from multiple pipelines that each 
ocus on fitting a specific aspect of the lens model, which we describe
elow. F or an o v erview of the composition of the o v erall method see
able 1 . A scaled down version of this pipeline was used by Cao
t al. ( 2020 ) to model fifty simulated strong lenses. 

We begin with the source parametric (SP) pipeline that fits the 
oreground lens galaxy’s light profile, alongside a robust initialization 
f less complex models for the mass distribution of the lens and light
istribution of the source galaxy. The lens mass is modelled as an
IE (equation 7 with γ = 2) plus external shear. The lens light is
odelled by the sum of a S ́ersic and Exponential (equation 11 with
 = 1) profile. The source galaxy’s light is described by a single
 ́ersic profile; this is key to the initialization of the model using the
P pipeline, as it allows us to compute an initial estimate of the
ass profile without dynesty getting stuck in a local maximum 

as methods with a pixelized source frequently do; N18 , Maresca 
t al. 2020 ). 

The source inversion (SI) pipeline then refines the lens galaxy’s 
ass distribution by modelling the source galaxy using an adaptive 

ixelization. This allows more realistic morphologies of the source 
alaxy to be recognized, which in turn impro v es the model for the lens
alaxy’s mass. The pixelization and it’s pix el-to-pix el re gularization 
re described by a set of hyper-parameters (see Section 4.2 for
ore details) that are fitted for as free parameters in the fit, these

re first initialized using a magnification based pixelization and 
egularization (MPR) grid. The source model from this fit is then 
 This choice of arcsecond value reflects a low threshold for what we consider 
 plausible lens model, removing only extremely unphysical mass models. 
 or e xample, without it the mass model could choose to be close to zero by 
tting a source to only one multiple image with its centre aligned directly 
ehind that image. We note this means we do not require the locations of the 
ultiple images to be extremely accurate. 

5

W  

l  

T  

r  

l  

B  
sed to inform the the BPR pixelization that adapts to the surface
rightness of the source galaxy, thereby reconstructing areas of high 
ux with higher resolution and lower regularization relative to areas 
f low flux. 
The light parametric (LP) pipeline re-fits the lens galaxy’s light 

rofile. This produces a more accurate estimate of the lens galaxy’s
ight than previously, because the lensed source galaxy’s light is 
ow reconstructed using the Voronoi pixelization, thereby reducing 
esiduals, which otherwise impact the lens light model fit. The lens
ight model is now composed of two S ́ersic profiles (the second com-
onent now has a free S ́ersic index). This fit is performed using broad
ninformative priors and thus does not use any information about the
ens galaxy’s light profile estimated by the previous pipelines. 

Finally, the mass total (MT) pipeline extends the complexity of the
odel of the lens galaxy’s mass to that of the PLEMD (equation 7 ),
hereby the slope of the density profile ( γ ) is now a free parameter

n the model. A uniform prior between 1.5 and 3 is assumed on the
lope. To ensure robust error inference on the parameters of our final
odel, the MT phase is extended by re-running the same model with
 ‘likelihood cap’ applied (see Section 5 for details). The term ‘mass
otal’ is used to distinguish this pipeline from the ‘mass light dark’
LaM pipeline which is not used in this work. Instead of fitting a
ass model that represents the total mass distribution this pipeline 
ts one that separately models the light and dark mater (Nightingale
t al. 2019 ). 

.3.4 Results data base 

pon completion of a uniform pipeline there are dynesty samples 
f 11 different model-fits, alongside additional metadata describing 
uantities such as each parameter’s estimate their errors and the 
yAutoLens settings. Across our sample of 59 strong lenses, 

his creates o v er 500 lens modelling results, necessitating tools to
utomate their processing and inspection. PyAutoFit outputs all 
odelling results to a queryable SQLite data base (Hipp 2020 ), such

hat they can be easily loaded into a Jupyter notebook or PYTHON

cript post-analysis. By adopting PyAutoFit , all PyAutoLens 
esults support this SQLite data base which is the primary tool we
se for analysing lens modelling results. 

 DEALI NG  WI TH  NOI SE  IN  L I K E L I H O O D  

VA L UAT I O N S  

15 demonstrated that pixelized source reconstructions can be 
ubject to a discretization bias that ultimately leads to the under-
stimation of errors calculated by a typical non-linear search ( N15 ).
his is a result of discrete jumps in the likelihood as the lens model
arameters are smoothly varied, which hinders convergence and 
arameter marginalization. N15 suggests this may be a common 
roblem for methods that employ pixelized sources. Here, we 
nvestigate the effects of the bias further using a large sample of
ock observations. 

.1 Mock data sample 

e create 59 synthetic lenses similar to our SLACS and GALLERY
enses to approximately resemble the real data but with known truths.
he mass distribution of each synthetic lens is a PLEMD; we set the

adius b and ellipticity parameters ε 1 and ε 2 to those of the SIE
ens model measured in previous lensing analyses (see table 5 of
olton et al. 2008b and table 2 of Shu et al. 2016c , for SLACS
MNRAS 517, 3275–3302 (2022) 
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M

Figure 2. We create a sample of mock lenses that closely resemble each of the 59 SLACS and GALLERY lenses in our observed data sample, which we use 
for testing for data discretization bias. We show eight of these mock images (right-hand panel) alongside the real data image they were simulated to represent 
(left-hand panel with lens name). The mock images are simulated without light from the lens galaxy, as such we compare to the data images where the lens 
galaxy’s (double Se ́rsic) light profile has been subtracted. 
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Figure 3. Comparison of the log likelihood as a function of density profile 
slope when using a parametric source (pink curve) or brightness-based 
pixelization and regularization (BPR) pixelizations to fit to mock data. All 
model parameters other than the slope are fixed to their true values. The yellow 

line reveals the full level of noise in the likelihood due to the particulars of 
the source plane pixelization by using a new random seed for the k -means 
algorithm that pixelates the source plane for every likelihood e v aluation. The 
other three colours use fixed k -means seeds, as is done throughout the rest of 
this paper. 
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nd GALLERY parameters, respectively). We set the slope γ of the
ensity profiles to the lensing and dynamics measurements of Auger
t al. ( 2010 ) (SLACS) and Shu et al. ( 2016c ) (GALLERY), where
he slope of the density profile is not available. We instead use the
alues inferred by preliminary runs of our own strong lensing-only
nalysis. The surface brightness of each source galaxy is simulated
s an elliptical S ́ersic, the parameters of which are set to those
nferred during preliminary runs of our source parametric pipeline
see Section 4 for more detail). 4 The redshifts of the lens and source
re set to those known for the corresponding real strong lens. 

F or ev ery synthetic lens configuration, we create six mock ob-
erv ations, each with dif ferent realizations of observ ational noise.
o mimic the HST observations, the lensed image of the source is
enerated with a pixel scale of 0.05 arcsec (SLACS) and 0.04 arcsec
GALLERY), and convolved with the instrumental point spread
unction (PSF) modelled from the actual image of the strong lens we
re simulating. The synthetic images include a flat sky background
f 37.5 (SLACS) and 31.5 electrons per second (GALLERY) and
ix different realizations of Poisson noise. We choose not to simulate
ight from the lens galaxy since this has the potential to introduce
ystematic effects that we are not interested in investigating with this
ample (see Section 5 ). Across the resulting suite of 354 synthetic
bservations, the S/N of the brightest pixel in each image ranges
rom 4 to 68. Fig. 2 compares a subset of simulated mock lenses with
heir real data counterparts. 

.2 The origin of discretization bias and error underestimation 

irst, we investigate how discretization bias manifests in PyAu-
oLens , whose source pixelization differs in its implementation

rom N15 and N18 . This is illustrated in Fig. 3 , which plots the
ariation of the log likelihood of a lens model when changing only the
lope parameter γ of the mass distribution (fixing all other parameters
o their true values). The parametric source model produces a smooth
ikelihood curve. The BPR pixelization methods produce a higher
ikelihood, but one that is subject to seemingly random noise. These
spikes’ in log likelihood occur o v er small ranges in the slope param-
ter; at least an order of magnitude smaller than the errors one infers
or γ when fitting this lens with a parametric source. This confuses
NRAS 517, 3275–3302 (2022) 

 The S ́ersic source parameters were optimized for an SIE mass profile but 
imulated with a PLEMD, leading to a difference in magnification of the 
ource galaxy in the mock data. As a result, some lensed sources were 
imulated with lower signal-to-noise ratio (S/N) values than observed. In 
hese cases, we manually adjust their intensity value to give a peak S/N � 3. 
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he nested sampler, which converges to positive spikes in likelihood
hat are tiny volumes of the multi-dimensional parameter space, and
hus significantly underestimate the total statistical uncertainty. 

To perform a source reconstruction using a pixelized source, one
ust first define a procedure that determines the shape and locations

f the source-plane pixels, its discretization. For example, in the case
f PyAutoLens , one can alter the random seed that determines
he centres of the Voronoi source pixels. This element of choice
ak es the lik elihood ill-determined, as is demonstrated in Fig. 3

y the three different realizations of noise that are unco v ered for
he differently seeded grids (the only difference between the fits
hat produces the blue, orange, and purple likelihood surface is the
hoice of k -means seed that determines the source-pixel centres).
f we choose to pass a random k -means seed to each individual
t (the yellow curve in Fig. 3 ), the full scale of the noise due to
ifferent source discretizations is revealed likelihood e v aluations of
lmost identical lens models can yield very different likelihood values
hen the source pixelization changes. Sampling the parameter space
hen using a random k -means seed is therefore prohibitively slow,
ltimately leading to the non-linear search becoming stuck and being
nable to converge. 

art/stac2639_f2.eps
art/stac2639_f3.eps
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Figure 4. Histogram of log-likelihood values from re-fitting the best-fit 
model with a new k -means seed 500 times, while keeping the model 
parameters fixed. The dashed line is the fitted Gaussian curve to these 
values. The vertical line shows the maximum likelihood value of the best-fit 
parameters found without a likelihood cap, which is always boosted by noise 
to extremely high likelihood. For clarity, we show three of the six distributions 
from different noise realization images of the mock lens, the same behaviour 
is evident in the three distributions not shown here. 
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In fact, repeat likelihood e v aluations of an identical lens model
lso yield different likelihood values if the source pixelization’s 
iscretization changes. Fig. 4 shows the result of doing exactly 
his, where log likelihood values are computed using an identical 
ens model 500 times (we use the best fit lens model parameters
rom our fitting procedure to do this) with each computation using
nly a different Voronoi mesh to reconstruct the source. The three 
ifferent coloured histograms show the results of this procedure 
or three of the six noise realization images of a lens that arrive
t three different best fit lens models. In all cases, the histograms
f log likelihood v alues sho w that changes in log likelihood of
rder ∼50 are possible by just changing the source pixelization. To 
erform parameter estimation changes in log likelihood of order ∼10 
efine how precisely a parameter is estimated at ∼3 σ confidence. 
hus, if our log likelihoods can fluctuate by of order ∼50 in a
eemingly arbitrary way, this will be detrimental to parameter and 
rror estimation. 

Why does the log likelihood vary when we change the source 
ix elization? F or a giv en lens model, there are certain source
ixelizations, where the centres of their Voronoi source pixels line up 
ith the locations of the traced image-pixels mapped from the image 
ata in a ‘preferable’ way. Their alignment allows the source pixels to
econstruct the image data more accurately in a way that is penalized
ess by regularization (see S06 ). This produces what we consider an
rtificial ‘boost’ in likelihood. Conversely, other pixelizations have a 
ess fortuitous alignment, such that their reconstruction of the image 
ata is worse and they are more heavily penalized by regularization 
roducing an artificial ‘drop’ in log likelihood. Fig. 4 shows that the
istribution of log-likelihoods appears to be Gaussian, a property we 
ill use when we put forward a solution to this problem. 
We are now in a position to explain the spiky likelihood surface

hown for the fixed seed BPR pixelizations in Fig. 3 . Let us
rst consider in more detail, the BPR pixelization implemented 

n PyAutoLens . To construct the source-pixel centres, the BPR 

ixelization applies a weighted k -means algorithm in the image 
lane to determine a set of coordinates that are adapted to the lensed
ource’s surface brightness. This k -means algorithm is seeded such 
hat the same image-plane coordinates are inferred if the procedure 
using the same inputs) is run multiple times (thus the completely 
andom changes to the source pixelization used to construct the 
istograms shown in Fig. 4 cannot explain these likelihood spikes). 
hese image-plane coordinates are then ray-traced via the mass 
odel to the source-plane and are used as the centres of the source

ixels of the Voronoi mesh. To produce the blue, orange, and purple
urves shown in Fig. 3 , the coordinates that construct the source
ixelization are therefore fixed in the image-plane, but vary smoothly 
ith the mass model in the source plane. The spiky likelihood surface

an therefore be explained by how the continuous change in the
ositions of the source pixels generating the Voronoi pixelization 
roduces discrete changes in the Voronoi mesh (either creating new 

ells or changing the value of flux across cell boundaries – these
hanges may occur less frequently with interpolation of the source 
ixel grid). The reconstruction then receives boosts and drops in log
ikelihood as for certain mass models (values of γ ) since the positions
f the source pixels align more or less fa v ourably with the data. 

.3 Testing for error underestimation in lens modelling 

n the context of a full non-linear search which v aries e very lens
odel parameter, we expect that lik elihood spik es due to this

referable alignment of the source pixelization with the data will 
e present, ne gativ ely impacting our inference on each parameter’s
DF . T o investigate this, we fit the full sample of 354 mock images
see section 5.1 ) with a uniform pipeline constructed from the SLaM
ipelines in PyAutoLens . The pipeline is the equi v alent of that
escribed in Section 4.3.3 but created for fitting images without the
ens galaxy’s light distribution (see Appendix A1 for an o v erview of
he pipeline). The pipeline, then, infers the mass parameters of the
ens galaxy described by a PLEMD, while reconstructing the source 
alaxy on a BPR pixelization. We choose not to fit for an external
hear (which is not present in the lens models of the simulated data)
n order to simplify our investigation of likelihood boosts. Our main
oal, here, is to determine if the error estimates inferred by the
on-linear search are being underestimated as a result of the data
iscretization bias. 
Fig. 5 shows the posterior PDFs obtained for individual runs of

hree lenses in our mock sample. For each lens, six realizations of
he image data with different noise maps were simulated and fitted,
hich correspond to the six individual PDFs shown on each panel of
ig. 5 . Not only do the PDF contours rarely contain the true parameter
represented by the grey dashed lines) they also rarely overlap with
ach other. To verify this is due to data discretization bias, for each
f the 354 synthetic images we now produce 500 new likelihood
 v aluations – fixing all lens and source model parameters to the best-
tting values, but randomizing the k -means seed used to pixelate

he source plane. For 94.6 per cent of these 177 000 calculations, the
ew likelihood is lower than the best-fit model likelihood, indicating 
hat the likelihood values inferred by dynesty were systematically 
oosted relative to the majority of possible source pixelizations. Fig. 4 
hows this for three example cases, where the solid lines show the
aximum log likelihood model inferred via dynesty compared to 
 histogram of these 500 models draw using random k -means seeds.

The likelihood boosted solutions inferred by dynesty occupy a 
iny volume of parameter space, such that parameter marginalization 
ignificantly underestimates the width of the posterior PDF. For 
ach of the lens model parameters, we calculate the percentage of
he 354 model fits that reco v er the true parameter within their 1D
arginalized 68.7, 95, and 99 per cent credible regions (blue bars

n Fig. 6 ). On average for all lens model parameters, the truth is
eco v ered only 30 or 50 per cent of the time at the 68.7 and 95 per
ent credible regions, these coverage probabilities are significantly 
maller than the percentage credible regions they were calculated for 
the reported uncertainties are too small. 
MNRAS 517, 3275–3302 (2022) 
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Figure 5. For three typical synthetic lenses, the posterior PDF of model 
parameters inferred from mock observations. With a likelihood cap (yellow), 
these PDFs have sufficient width to include the true value (crossed lines). 
Without a likelihood cap, the PDFs from mock data with different realizations 
of observational noise (six other colours) are too narrow because of noise in 
the likelihood e v aluations. Fitted parameters sho wn are the mass-density 
slope ( γ ), mass normalization ( R al ), and two components of ellipticity ( ε 1 , 
ε 2 ); all other free parameters are marginalized o v er. 

Figure 6. Co v erage probabilities of the lens model parameters with (pink) 
and without (blue) a likelihood cap applied to the non-linear search. The thin 
bars give the coverage probabilities of individual lens model parameters as 
labelled, and the wider bars represent the average of these values. 
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.4 Likelihood cap for improving sample statistics 

e now investigate the efficacy of placing a ‘log likelihood cap’
n the non-linear search, where this cap is estimated in a way that
eeks to smooth out likelihood spikes in parameter space. The cap
s computed by taking the maximum likelihood lens model of the
on-linear search inferred by the MT 

1 
ext search in the SLaM pipeline

nd computing 500 likelihood e v aluations using this model but each
ith a different k -means seed. This process produces the histograms

hown in Fig. 4 , which are fitted with a Gaussian whose mean then
cts as the log likelihood cap. We then repeat the final MT 

1 search of
he pipeline (with identical parameters, hyper-parameters, k -means
eed, etc.), but any log likelihood e v aluation no w returns no more
han this value. If a log likelihood is computed abo v e this cap, it is
ounded down to the cap’s value before it is returned to dynesty ,
e note that this assumes that dynesty has not converged on a

ocal maxima in MT 

1 . The yellow shaded contours in Fig. 5 show
he PDFs inferred by MT 

1 
ext using this log likelihood cap, which now

ppear larger , smoother , and do not have undesirable properties such
s islands and discontinuities that are seen for the PDFs inferred
ithout this cap. 
When performed on our 354 synthetic images, the final parameter

stimation now converges more consistently for different realizations
f noise (for the sake of visual clarity, Fig. 5 only shows one
DF, but all six PDFs do now o v erlap for each data set). The
o v erage probabilities for the 1D marginalized 68.7 per cent or 95 and
9 per cent credible regions have increased significantly for all lens
odel parameters with the use of the likelihood cap (see Fig. 6 for the

omparison with and without the likelihood cap). On average, the true
ens model parameters are reco v ered 61 and 80 per cent of the time
t the 68.7 or 95 per cent credible re gions, respectiv ely. Although we
o not obtain full co v erage, this is a significant impro v ement in error
stimation compared to not including the likelihood capped phase.
urthermore, for each lens model parameter, we compare the mean

of the best-fitting values of the six noise realizations, and find that
hese are reco v ered 74 per cent of the time at the 68.7 per cent credible
egion on average for all parameters. This suggests that the likelihood
ap is producing errors that are consistent with the uncertainty due
o random noise in the image, and that our posteriors reco v er the true
alues slightly less frequently than hoped due to systematic biases
n particular lens configurations that offset the inferred parameters
rom the truth. 
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Table 2. Best-fit physical parameters for SLACS lenses. These are derived quantities obtained from the varied 
parameters of the lens mass model (Table B1 ). Lens light model parameters are presented in (Table B4 ). 

Class Lens name R Ein, eff γ q φ γ ext φext 

Gold J0008-0004 1 . 15 + 0 . 007 
−0 . 009 2 . 08 + 0 . 08 

−0 . 07 0 . 72 + 0 . 03 
−0 . 03 42 + 5 . 1 −6 . 1 0 . 023 + 0 . 018 

−0 . 014 96 + 15 
−23 

J0029-0055 0 . 934 + 0 . 007 
−0 . 008 2 . 32 + 0 . 13 

−0 . 13 0 . 78 + 0 . 06 
−0 . 07 22 + 9 . 3 −12 0 . 013 + 0 . 019 

−0 . 012 11 + 32 
−44 

J0157-0056 0 . 912 + 0 . 013 
−0 . 012 2 . 23 + 0 . 08 

−0 . 09 0 . 56 + 0 . 07 
−0 . 05 112 + 4 . 8 −7 . 6 0 . 182 + 0 . 021 

−0 . 027 102 + 3 . 0 −3 . 2 

J0216-0813 1 . 183 + 0 . 014 
−0 . 011 1 . 99 + 0 . 05 

−0 . 06 0 . 8 + 0 . 04 
−0 . 03 75 + 9 . 2 −6 . 3 0 . 009 + 0 . 012 

−0 . 011 2 + 37 
−55 

J0252 + 0039 1 . 024 + 0 . 004 
−0 . 002 1 . 92 + 0 . 08 

−0 . 11 0 . 89 + 0 . 02 
−0 . 02 111 + 3 . 5 −4 . 0 0 . 024 + 0 . 005 

−0 . 003 117 + 6 . 1 −6 . 4 

J0330-0020 1 . 088 + 0 . 009 
−0 . 012 2 . 15 + 0 . 02 

−0 . 02 0 . 79 + 0 . 07 
−0 . 08 94 + 11 

−14 0 . 041 + 0 . 021 
−0 . 018 54 + 12 

−15 

J0728 + 3835 1 . 244 + 0 . 012 
−0 . 008 1 . 99 + 0 . 12 

−0 . 1 0 . 68 + 0 . 05 
−0 . 04 65 + 3 . 4 −3 . 4 0 . 068 + 0 . 015 

−0 . 021 61 + 5 . 5 −6 . 3 

J0737 + 3216 0 . 976 + 0 . 003 
−0 . 002 2 . 28 + 0 . 07 

−0 . 07 0 . 86 + 0 . 04 
−0 . 03 96 + 5 . 4 −5 . 6 0 . 109 + 0 . 007 

−0 . 011 10 + 1 . 7 −1 . 4 

J0822 + 2652 1 . 129 + 0 . 011 
−0 . 018 2 . 1 + 0 . 08 

−0 . 07 0 . 54 + 0 . 04 
−0 . 05 75 + 4 . 9 −4 . 3 0 . 1 + 0 . 021 

−0 . 018 72 + 6 . 6 −6 . 3 

J0841 + 3824 0 . 956 + 0 . 096 
−0 . 063 2 . 27 + 0 . 2 −0 . 16 0 . 69 + 0 . 15 

−0 . 14 117 + 24 
−28 0 . 144 + 0 . 047 

−0 . 031 117 + 6 . 8 −7 . 2 

J0903 + 4116 1 . 261 + 0 . 005 
−0 . 005 2 . 23 + 0 . 05 

−0 . 05 0 . 88 + 0 . 04 
−0 . 03 52 + 12 

−7 . 6 0 . 062 + 0 . 01 
−0 . 012 63 + 5 . 6 −4 . 9 

J0912 + 0029 1 . 393 + 0 . 011 
−0 . 007 2 . 14 + 0 . 05 

−0 . 05 0 . 79 + 0 . 04 
−0 . 04 27 + 8 . 1 −6 . 9 0 . 033 + 0 . 011 

−0 . 012 126 + 12 
−9 . 3 

J0936 + 0913 1 . 081 + 0 . 004 
−0 . 005 2 . 13 + 0 . 08 

−0 . 08 0 . 79 + 0 . 05 
−0 . 05 134 + 4 . 9 −5 . 8 0 . 061 + 0 . 013 

−0 . 011 105 + 6 . 6 −7 . 4 

J0946 + 1006 1 . 409 + 0 . 001 
−0 . 001 2 . 06 + 0 . 03 

−0 . 03 0 . 9 + 0 . 0 −0 . 01 68 + 1 . 8 −2 . 2 0 . 09 + 0 . 004 
−0 . 003 68 + 0 . 79 

−0 . 65 

J0956 + 5100 1 . 314 + 0 . 002 
−0 . 001 2 . 05 + 0 . 02 

−0 . 02 0 . 79 + 0 . 01 
−0 . 01 143 + 1 . 0 −1 . 3 0 . 066 + 0 . 003 

−0 . 005 53 + 1 . 4 −0 . 97 

J0959 + 0410 0 . 985 + 0 . 014 
−0 . 017 2 . 08 + 0 . 07 

−0 . 07 0 . 52 + 0 . 07 
−0 . 1 59 + 5 . 3 −6 . 2 0 . 038 + 0 . 024 

−0 . 025 60 + 18 
−33 

J1020 + 1122 1 . 065 + 0 . 011 
−0 . 009 2 . 15 + 0 . 11 

−0 . 12 0 . 54 + 0 . 04 
−0 . 04 131 + 3 . 3 −2 . 8 0 . 159 + 0 . 023 

−0 . 024 131 + 3 . 2 −4 . 3 

J1023 + 4230 1 . 411 + 0 . 009 
−0 . 009 1 . 95 + 0 . 16 

−0 . 12 0 . 92 + 0 . 05 
−0 . 04 177 + 14 

−17 0 . 023 + 0 . 01 
−0 . 009 68 + 18 

−25 

J1029 + 0420 0 . 947 + 0 . 01 
−0 . 01 1 . 43 + 0 . 05 

−0 . 06 0 . 62 + 0 . 02 
−0 . 03 111 + 3 . 4 −3 . 4 0 . 152 + 0 . 02 

−0 . 02 100 + 2 . 3 −4 . 5 

J1032 + 5322 1 . 03 + 0 . 011 
−0 . 007 2 . 11 + 0 . 02 

−0 . 03 0 . 69 + 0 . 07 
−0 . 05 143 + 5 . 5 −6 . 3 0 . 039 + 0 . 019 

−0 . 019 167 + 13 
−19 

J1142 + 1001 0 . 908 + 0 . 024 
−0 . 027 2 . 03 + 0 . 1 −0 . 1 0 . 49 + 0 . 11 

−0 . 06 144 + 4 . 7 −4 . 7 0 . 21 + 0 . 04 
−0 . 05 148 + 5 . 0 −6 . 3 

J1143-0144 1 . 611 + 0 . 013 
−0 . 014 2 . 15 + 0 . 03 

−0 . 03 0 . 73 + 0 . 04 
−0 . 04 116 + 5 . 6 −4 . 5 0 . 038 + 0 . 01 

−0 . 01 166 + 13 
−9 . 1 

J1205 + 4910 1 . 218 + 0 . 008 
−0 . 008 1 . 92 + 0 . 07 

−0 . 09 0 . 74 + 0 . 08 
−0 . 06 149 + 6 . 8 −5 . 6 0 . 019 + 0 . 011 

−0 . 019 99 + 33 
−28 

J1213 + 6708 1 . 322 + 0 . 018 
−0 . 023 2 . 8 + 0 . 07 

−0 . 07 0 . 92 + 0 . 07 
−0 . 11 3 + 74 

−49 0 . 045 + 0 . 018 
−0 . 019 9 + 15 

−15 

J1218 + 0830 1 . 217 + 0 . 01 
−0 . 008 2 . 35 + 0 . 07 

−0 . 06 0 . 35 + 0 . 03 
−0 . 02 144 + 1 . 4 −2 . 0 0 . 353 + 0 . 011 

−0 . 021 140 + 1 . 3 −0 . 96 

J1250 + 0523 1 . 144 + 0 . 006 
−0 . 005 1 . 84 + 0 . 04 

−0 . 04 0 . 91 + 0 . 03 
−0 . 04 129 + 7 . 2 −7 . 6 0 . 024 + 0 . 014 

−0 . 01 132 + 15 
−9 . 9 

J1402 + 6321 1 . 349 + 0 . 005 
−0 . 007 2 . 00 + 0 . 18 

−0 . 13 0 . 72 + 0 . 04 
−0 . 04 63 + 3 . 1 −2 . 6 0 . 030 + 0 . 019 

−0 . 014 1 + 14 
−9 . 9 

J1420 + 6019 1 . 075 + 0 . 002 
−0 . 002 1 . 94 + 0 . 04 

−0 . 04 0 . 43 + 0 . 02 
−0 . 02 111 + 0 . 45 

−0 . 60 0 . 118 + 0 . 009 
−0 . 009 110 + 1 . 1 −1 . 0 

J1430 + 4105 1 . 481 + 0 . 002 
−0 . 002 2 . 02 + 0 . 01 

−0 . 01 0 . 91 + 0 . 01 
−0 . 01 120 + 2 . 1 −1 . 9 0 . 088 + 0 . 002 

−0 . 002 22 + 0 . 64 
−0 . 53 

J1432 + 6317 1 . 284 + 0 . 01 
−0 . 009 1 . 79 + 0 . 06 

−0 . 04 0 . 88 + 0 . 05 
−0 . 05 102 + 12 

−11 0 . 099 + 0 . 016 
−0 . 016 115 + 3 . 8 −5 . 0 

J1451-0239 0 . 96 + 0 . 017 
−0 . 015 2 . 29 + 0 . 1 −0 . 11 0 . 54 + 0 . 06 

−0 . 07 30 + 3 . 7 −4 . 5 0 . 193 + 0 . 042 
−0 . 025 27 + 3 . 6 −3 . 1 

J1525 + 3327 1 . 29 + 0 . 012 
−0 . 007 1 . 92 + 0 . 06 

−0 . 05 0 . 59 + 0 . 04 
−0 . 04 117 + 2 . 8 −3 . 1 0 . 14 + 0 . 01 

−0 . 011 87 + 3 . 1 −3 . 2 

J1627-0053 1 . 217 + 0 . 002 
−0 . 002 2 . 08 + 0 . 08 

−0 . 09 0 . 84 + 0 . 03 
−0 . 01 8 + 2 . 6 −3 . 2 0 . 019 + 0 . 005 

−0 . 004 6 + 6 . 8 −7 . 9 

J1630 + 4520 1 . 791 + 0 . 006 
−0 . 004 1 . 96 + 0 . 09 

−0 . 08 0 . 83 + 0 . 01 
−0 . 01 70 + 2 . 7 −2 . 5 0 . 023 + 0 . 006 

−0 . 004 59 + 7 . 6 −9 . 8 

J2238-0754 1 . 268 + 0 . 004 
−0 . 003 2 . 07 + 0 . 09 

−0 . 07 0 . 83 + 0 . 03 
−0 . 04 137 + 5 . 8 −6 . 0 0 . 004 + 0 . 007 

−0 . 006 3 + 52 
−35 

J2300 + 0022 1 . 219 + 0 . 008 
−0 . 005 2 . 55 + 0 . 07 

−0 . 16 0 . 62 + 0 . 05 
−0 . 04 74 + 3 . 8 −3 . 7 0 . 094 + 0 . 012 

−0 . 018 9 + 4 . 0 −3 . 3 

J2303 + 1422 1 . 628 + 0 . 007 
−0 . 005 2 . 09 + 0 . 04 

−0 . 04 0 . 53 + 0 . 05 
−0 . 05 34 + 1 . 6 −1 . 4 0 . 002 + 0 . 007 

−0 . 005 171 + 44 
−49 

J2341 + 0000 1 . 338 + 0 . 009 
−0 . 005 2 . 12 + 0 . 06 

−0 . 05 0 . 8 + 0 . 03 
−0 . 03 81 + 3 . 7 −3 . 5 0 . 027 + 0 . 009 

−0 . 014 167 + 8 . 9 −10 . 

Silver J0959 + 4416 0 . 972 + 0 . 023 
−0 . 02 2 . 5 + 0 . 19 

−0 . 23 0 . 67 + 0 . 14 
−0 . 1 83 + 16 

−9 . 8 0 . 027 + 0 . 037 
−0 . 026 88 + 57 

−29 

J1016 + 3859 1 . 004 + 0 . 026 
−0 . 02 2 . 23 + 0 . 15 

−0 . 2 0 . 56 + 0 . 13 
−0 . 13 92 + 11 

−10 . 0 . 217 + 0 . 05 
−0 . 042 113 + 6 . 1 −4 . 9 

J1153 + 4612 1 . 029 + 0 . 007 
−0 . 005 1 . 72 + 0 . 08 

−0 . 1 0 . 61 + 0 . 03 
−0 . 03 104 + 1 . 9 −1 . 6 0 . 181 + 0 . 013 

−0 . 013 101 + 1 . 9 −2 . 1 

J1416 + 5136 1 . 246 + 0 . 014 
−0 . 018 2 . 0 + 0 . 01 

−0 . 01 0 . 73 + 0 . 11 
−0 . 09 103 + 7 . 9 −3 . 9 0 . 152 + 0 . 025 

−0 . 032 108 + 4 . 7 −2 . 8 

Bronze J1103 + 5322 1 . 065 + 0 . 007 
−0 . 007 1 . 79 + 0 . 01 

−0 . 01 0 . 53 + 0 . 04 
−0 . 04 49 + 1 . 8 −1 . 5 0 . 103 + 0 . 013 

−0 . 009 0 + 3 . 2 −2 . 2 
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Further testing is necessary to understand the systematics that 
esult from the source discretization bias as well as any systematic 
ffsets in inferred lens parameters in particular lens configurations. 
his would require a larger set of mocks than was simulated for

his study (see Section 7.4 for more discussion) and is beyond the
cope of this work. At present, it appears that the likelihood cap is
f fecti ve at improving the coverage probability of the 68.7 per cent
redible region (only 7 per cent shy of achieving co v erage for lens
odels parameters on average). Since the mock data was simulated 

o be representative of the observed data, we assume this will be
rue of the errors on the data adopting the same approach. As
uch, all errors quoted in this work are those at the 68.7 per cent
MNRAS 517, 3275–3302 (2022) 
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Table 3. Best-fit physical parameters for BELLS GALLERY lenses. These are derived quantities obtained from 

the varied parameters of the lens mass model (Table B2 ). Lens light model parameters are presented in (Table B3 ). 

Class Lens name R Ein, ef f f γ q φ γ ext φext 

Gold J0029 + 2544 1 . 347 + 0 . 014 
−0 . 012 2 . 05 + 0 . 12 

−0 . 15 0 . 65 + 0 . 07 
−0 . 08 128 + 6 . 7 −7 . 6 0 . 029 + 0 . 033 

−0 . 018 149 + 40 . 
−31 

J0113 + 0250 1 . 329 + 0 . 006 
−0 . 005 1 . 77 + 0 . 15 

−0 . 11 0 . 75 + 0 . 02 
−0 . 02 178 + 2 . 8 −4 . 4 0 . 079 + 0 . 014 

−0 . 012 15 + 3 . 9 −5 . 9 
J0201 + 3228 1 . 713 + 0 . 011 

−0 . 005 2 . 09 + 0 . 09 
−0 . 1 0 . 78 + 0 . 03 

−0 . 02 125 + 5 . 4 −3 . 6 0 . 063 + 0 . 016 
−0 . 014 53 + 4 . 7 −5 . 7 

J0237-0641 0 . 619 + 0 . 02 
−0 . 025 1 . 91 + 0 . 18 

−0 . 1 0 . 79 + 0 . 12 
−0 . 09 131 + 30 . 

−17 0 . 027 + 0 . 044 
−0 . 033 6 + 36 

−55 
J0742 + 3341 1 . 241 + 0 . 01 

−0 . 013 2 . 21 + 0 . 06 
−0 . 08 0 . 29 + 0 . 04 

−0 . 04 56 + 3 . 4 −3 . 0 0 . 107 + 0 . 016 
−0 . 023 44 + 6 . 4 −8 . 7 

J0755 + 3445 2 . 073 + 0 . 005 
−0 . 004 1 . 77 + 0 . 08 

−0 . 05 0 . 53 + 0 . 01 
−0 . 01 15 + 1 . 9 −1 . 5 0 . 24 + 0 . 006 

−0 . 006 28 + 1 . 6 −1 . 1 
J0856 + 2010 0 . 951 + 0 . 035 

−0 . 04 2 . 23 + 0 . 08 
−0 . 09 0 . 36 + 0 . 09 

−0 . 06 45 + 5 . 9 −4 . 3 0 . 153 + 0 . 023 
−0 . 03 93 + 6 . 5 −7 . 2 

J0918 + 5105 1 . 645 + 0 . 005 
−0 . 009 2 . 38 + 0 . 16 

−0 . 18 0 . 78 + 0 . 04 
−0 . 06 95 + 18 

−9 . 4 0 . 259 + 0 . 034 
−0 . 02 125 + 0 . 60 

−1 . 3 
J1110 + 2808 0 . 904 + 0 . 027 

−0 . 026 2 . 03 + 0 . 09 
−0 . 07 0 . 82 + 0 . 08 

−0 . 07 77 + 22 
−16 0 . 123 + 0 . 043 

−0 . 028 55 + 7 . 1 −6 . 3 
J1110 + 3649 1 . 151 + 0 . 001 

−0 . 001 2 . 23 + 0 . 07 
−0 . 08 0 . 77 + 0 . 02 

−0 . 02 174 + 1 . 4 −1 . 5 0 . 025 + 0 . 005 
−0 . 005 64 + 5 . 6 −5 . 8 

J1116 + 0915 0 . 811 + 0 . 053 
−0 . 054 2 . 22 + 0 . 16 

−0 . 17 0 . 21 + 0 . 05 
−0 . 05 86 + 4 . 3 −3 . 5 0 . 393 + 0 . 053 

−0 . 046 88 + 3 . 6 −2 . 8 
J1141 + 2216 1 . 283 + 0 . 027 

−0 . 019 2 . 13 + 0 . 09 
−0 . 11 0 . 58 + 0 . 09 

−0 . 09 57 + 5 . 5 −7 . 6 0 . 043 + 0 . 026 
−0 . 022 38 + 23 

−30 . 
J1201 + 4743 1 . 171 + 0 . 004 

−0 . 002 2 . 74 + 0 . 05 
−0 . 21 0 . 82 + 0 . 06 

−0 . 06 130 + 14 
−7 . 8 0 . 069 + 0 . 004 

−0 . 01 42 + 3 . 7 −3 . 4 
J1226 + 5457 1 . 398 + 0 . 004 

−0 . 003 2 . 24 + 0 . 07 
−0 . 1 0 . 86 + 0 . 02 

−0 . 02 130 + 6 . 6 −7 . 9 0 . 189 + 0 . 012 
−0 . 012 156 + 0 . 76 

−0 . 75 
J2228 + 1205 1 . 21 + 0 . 024 

−0 . 024 2 . 2 + 0 . 14 
−0 . 1 0 . 51 + 0 . 1 −0 . 05 116 + 5 . 7 −8 . 0 0 . 202 + 0 . 026 

−0 . 023 141 + 5 . 7 −3 . 3 
J2342-0120 1 . 091 + 0 . 006 

−0 . 004 2 . 34 + 0 . 07 
−0 . 09 0 . 44 + 0 . 05 

−0 . 03 114 + 3 . 6 −2 . 5 0 . 13 + 0 . 009 
−0 . 016 94 + 4 . 4 −2 . 6 
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redible region of the PDFs inferred by the likelihood capped MT 

1 
ext 

hase. 

 RESU LTS  

.1 Automation 

e now inspect the results of our automated modelling procedure
n the SLACS and BELLS GALLERY samples and quantify what
raction of lenses were fitted with a reliable lens model without
uman intervention. To facilitate this, we visually inspect every lens
odel, first after the SP pipeline and then again on completion of the

niform procedure. We label the final model of every lens in one of
our categories: 

(i) Gold (54/59): The fit represents a physically plausible model
f the lens and source. 
(ii) Silver (4/59): The fit represents a physically plausible model

f the lens and source. Ho we ver, achie ving this required changes to
ata pre-processing that may not be easy to automate (e.g. masking,
ens light subtraction), and may degrade the quality of the inferred
ens model. 

(iii) Bronze (1/59): The fit represents a physically plausible model
f the lens (with the correct number of multiple images), but other
eatures in the data (e.g. residuals from lens light subtraction) visibly
egrade the quality of the source model. 
(iv) Failure (0/59): The fit produces a physically implausible lens
odel (e.g. with an incorrect number of multiple images). 

After a first blind run, we find nine galaxies outside the ‘Gold’
ample. In eight/nine cases, they went wrong during the first SP
ipeline. We determine what went wrong, describe simple interven-
ions and rerun the pipeline. Our interventions successfully move
ll of these lenses into the ‘Bronze’, ‘Silver’, or ‘Gold’ categories.
hrough this process, we suggest ways to reduce the failure rate in
nalyses of future large samples of lenses. For future analysis of large
ens samples, one can anticipate undergoing this process on a subset
f lenses before modelling the full sample. 
If a lens ends up in the ‘Gold’, ‘Silver’, or ‘Bronze’ categories,

e consider its ef fecti ve Einstein Radius R Ein, eff to be measured
NRAS 517, 3275–3302 (2022) 
ccurately. If a lens is in the ‘Gold’ or ‘Silv er’ cate gories, we also
onsider more detailed quantities of the mass model (e.g. the slope
) to be reliable. Indeed, we shall find our best-fit models broadly
onsistent with those from previous literature, in Sections 7.2 and 7.3 .

.1.1 Fully automated success 

e immediately place 50/59 lenses (85 per cent) in the ‘Gold’ sample
fter the first blind run of our uniform pipeline. These models
ho w lo w le vels of residuals and physically plausible source galaxy
orphologies. Best-fitting model parameters are listed in Tables 2

SLACS) and 3 (GALLERY), and reconstructions are shown in
ppendix C . 

.1.2 Semi-automated success 

its to 4/59 lens systems converge to models with the wrong number
f lensed images. In all four cases, the fits incorrectly converge to a
ighly elliptical mass distribution early in the SP pipeline, and could
ot reco v er the better solution in the SI or subsequent pipelines.
he model of J1451-0239 fits four images to what is (by eye) a

wo image system (Fig. 7 ). Fits to J0237-0239 and J0856 + 2010
onverge to single-image models, each missing a central counter-
mage that is close to the centre of the lens galaxy and therefore
ifficult to disentangle from the lens galaxy’s light (Fig. 8 ). The
odel of J0841 + 3824 is multiply imaged, but its very faint counter

mage is in the wrong location (Fig. 9 ). 
We fixed this by rerunning the pipeline for these lenses, but

estricting the SP 

2 phase to more circular mass models via a uniform
rior ε i ∈ [ − 0.2, 0.2] instead of a Gaussian with σ = 0.3. To better
nd the global maximum likelihood solution for lenses J0237-0239,
0841 + 3824, and J0856 + 2010, we also increased the number of
ynesty live points to 600 from 200 in SP 

2 (this was not necessary
or J1451-0239, where a change has no consequences other than
ncreased runtime). With these settings, the automated modelling
rocedure is a success and the models (also shown in Fig. 1 ) are
o v ed into the ‘Gold’ sample. 
These fits can be easily fixed by a more restrictive (or an all-round

etter) early initialization. Our solution of forcing fairly circular
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(a) (b)

Figure 7. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the mass distribution to ε I 
∈ [ − 0.2, 0.2], the system is fitted successfully, and is classified as a ‘Gold’ model. 

(a) (b)

Figure 8. (a) Model fits for the systems that fail to fit the counter image in the Source Parametric phase. (b) After tightening the prior on the elliptical components 
of the mass distribution to ε I ∈ [ − 0.2, 0.2], the systems are fitted successfully, and are classified as ‘Gold’ models. 

(a) (b)

Figure 9. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the mass distribution to ε I 
∈ [ − 0.2, 0.2], the system is fitted successfully, and is classified as a ‘Gold’ model. 
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odels works well for early-type galaxy lenses, but would need 
o be rethought if the sample could include late-type galaxies with 
edge-on) discs. Since spectroscopic lens detection techniques also 
dentify the lens galaxy type, a different prior could be used for each.

For now, we conclude that the biggest challenge of scaling up lens
odelling to large samples is fitting an initial physically plausible 

ens model. Once a simple lens model is correctly initialized, 
othing prevents subsequent convergence of increasingly complex 
istributions of source light and lens mass. We shall discuss this
urther in Section 7.1 . 
i  
.1.3 Success with human intervention 

its to 3/59 lens systems converge to a model in which imperfect lens
ight subtraction has left a spurious residual ring of lens light that
ecomes considered part of the source. This again happens during the
arly SP pipeline, after which the S ́ersic model of the source is too
arge (Fig. 10 a). Subsequent pixelized source models also include the
esidual lens light. Unlike the previous failure modes, we could not
nd small changes to the automated pipeline that fix these model fits.
For lenses J1153 + 4612, J1016 + 3859, and J0959 + 4416, we

nstead use the b-spline subtracted data (Section 3.2 ). These versions
MNRAS 517, 3275–3302 (2022) 
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(a) (b)

Figure 10. (a) Model fits for the lens systems that fail to fit successful models in the Source Parametric pipeline as a result of bad lens light subtractions. The 
model reproduces lens light emission that remains in the subtracted image and significant residuals can be seen, where the source emission is being ignored by 
the model. (b) For these systems, we replace the data with b-spline subtracted data and use custom masks to arrive at successful model fits classified as ‘Silver’ 
models. 
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re-subtract the lens galaxy’s light more cleanly than our double
 ́ersic fit. Even then, we mask small remaining residuals near the
entre of J1153 + 4612 and J1016 + 3859. We finally refit all three
enses using the version of the pipeline (which was also for the mock
ata) that does not fit the lens light. This results in successful models,
s assessed by our visual inspection criteria (Fig. 10 b). Although we
rrive at successful model fits, we categorize these lenses in the
Silver’ sample, because the lens light was not fitted in a Bayesian
anner. 
The fit to 1/59 lens systems includes a counter-image that repro-

uces a residual knot of lens light emission instead of the adjacent but
ainter true counter-image (Fig. 11 ). It can be fixed by masking the
not of lens light and rerunning the pipeline. Ho we ver, this process
ould be difficult to automate with monochromatic imaging, so we
lace J1416 + 5136 in the ‘Silver’ sample. 

.1.4 Remaining problematic lens 

he lens J1103 + 5322 is the only system that is unable to pass our
isual inspection criteria on completion of the uniform pipeline. In
he SP pipeline, the model fits an appropriate model that fits the
lobal lensed structure of the source, ho we ver significant residuals
re present in the fit. The lens light subtraction leaves a quadrupole-
ike feature in the centre of the subtracted image as well as flux
xtending past the Einstein-ring feature. The SP pipeline is able to fit
 model that fits solely to the source light, ho we ver continuation of the
ipeline leads to a final model that reconstructs the lens light residual
tructure, which in Fig. 12 can be seen to extend far beyond the
mission from the source. This feature could impact the measurement
f parameters, which depend on the gradient of the flux in the lensed
NRAS 517, 3275–3302 (2022) 
ource like the slope of the mass model. Replacing the data with the b-
pline subtracted data resulted in similar residual lens light emission
eing reconstructed by the source galaxy. Nevertheless, we believe
hat this model estimates R Ein, eff accurately, our measurement is
ithin 5 per cent of previous literature measurements (see Section 7.2

or a discussion on the expected uncertainty between these methods).
s a result, we place this lens in our ‘Bronze’ sample. 

.2 Statistical uncertainty on measurements 

.2.1 Effect of the likelihood cap 

n Section 5 , we demonstrated the necessity of a likelihood capped
hase ( MT 

1 
ext ) to increase the formal statistical errors inferred by the

on-linear search such that they better recovered the true parameters
n mock data. We now quantify the effect this phase has on the
ncertainties inferred on real data (see Fig. 13 for its affect on the
ensity profile slope errors). On average, we find that this approach
as increased the inferred non-linear search errors by a factor of
5, as assessed by the median of individual factor increases for all
ass model parameters. We quote the median increase to a v oid bias

rom five lenses whose errors increase by a factor of over 1000 upon
ntroduction of the log likelihood cap. On investigation, we found
hese lenses correspond to those with the largest difference between
he likelihood inferred in MT 

1 and the likelihood cap applied to
T 

1 
ext (defined as the mean of 500 repeated likelihood e v aluations

ith the same mass model, but different data discretizations).
ence, these lenses are the ones that were in the most ‘likelihood-
oosted’ regions of parameter space and as a result significantly
nderestimated the error. In the most extreme example, J0755 + 3445,
he error inferred on the slope parameter with a likelihood cap is

art/stac2639_f10.eps
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(a) (b)

Figure 11. (a) Model fits for the lens system that misses the counter image, instead fitting a counter image to lens light residuals. (b) The lens requires rerunning 
with our own double S ́ersic subtracted data using the without lens light pipeline, as well as a custom mask to arrive at the successful ‘Silver’ model fit. 

(a) (b)

Figure 12. (a) The single lens J1103 + 5322 is successful on completion of the Source Parametric pipeline, the parametric source a v oids fitting to lens light 
residuals that remain in the subtracted image. (b) Ho we ver, on completion of the pipeline the pixelized source reconstruction is unable to a v oid fitting to these 
residuals, leading to this lens’s classification of ‘Bronze’. 

Figure 13. Comparison of the distribution of inferred slopes (left) and their 
associated 1 σ credible region (right) with and without a likelihood cap applied 
to the non-linear search. 
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Table 4. Summary of the average 68 per cent credible region 
errors inferred for all mass model parameters with and without 
a likelihood cap applied to the non-linear search. 

Model parameter Mean error Median error 
cap without cap cap without cap 

b 0.036 0.010 0.027 0.005 
γ 0.087 0.014 0.079 0.002 
ε 1 0.039 0.010 0.028 0.005 
ε 2 0.038 0.025 0.031 0.015 
γ1 ext 0.018 0.005 0.016 0.003 
γ2 ext 0.019 0.009 0.017 0.004 
x c 0.016 0.006 0.014 0.003 
y c 0.016 0.004 0.013 0.004 
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4453 times larger than that inferred without a cap (see Ritondale 
t al. 2019 , for a discussion of this lens). This highlights the scale at
hich the certainty of parameters can be incorrectly inferred without 

onsideration of the source discretization bias. Further quantification 
f the average errors inferred at the 68 per cent credible region for
ach mass model parameter with and without a likelihood cap is
iven in Table 4 . 
Of all the mass model parameters, the likelihood cap has the 

argest effect on the density profile slope. The median factor increase 
n the error size before and after the cap is 24. The distribution of the
8 per cent credible region errors with and without the cap are plotted
n the right-hand panel of Fig. 13 . Notably there are two extreme
utliers in the distribution of errors inferred without a cap, that are
he two largest errors inferred across both distributions. For the lenses
1016 + 3859 and J0959 + 4416, both of which were replaced with b-
pline subtracted data as an intervention to achieve model fits, the 
rror actually decreases when the likelihood cap is applied. Although 
he uncertainty on the slope measurement is in general, as expected, 
ignificantly increased in MT 

1 
ext relative to MT 

1 , the distribution 
f slopes inferred does not change significantly (left-hand panel of 
ig. 13 ). The mean increases from 2.08 to 2.12 and the standard
eviation increases from 0.21 to 0.24. 
We derive errors on the ef fecti ve Einstein radius by calculating

 posterior PDF from all possible ef fecti ve Einstein radii given
he accepted non-linear search samples and their weights. We find 
he inclusion of the likelihood cap increases the mean 68 per cent
redible region error on the ef fecti ve Einstein radius from 0.3 to
.1 per cent, and does not affect the distribution of R Ein, eff we infer
see Fig. 14 ). This suggests that, on average, the Einstein radius
an be measured to ∼1 per cent uncertainty, taking into account
ncertainties in the noise and source discretization. We note that this
oes not account for any systematic error that would result from
iscrepancies between the assumed mass model and the underlying 
ass distribution. Ho we ver, although the mean uncertainty on R Ein, eff 

s low, two lenses (J0841 + 3824 and J1116 + 0915) have anomalously
MNRAS 517, 3275–3302 (2022) 
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Figure 14. Comparison of the distribution of inferred Einstein radii (left) 
and their associated percentage error at the 1 σ credible region (right), with 
and without a likelihood cap applied to the non-linear search. 
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Figure 15. Inferred percentage errors on the Einstein radii at the 68 per cent 
credible region as a function of observable properties of the lens galaxy, and 
the S/N of the source. Parameters for linear fits to these data are given in 
Table 5 . 

Table 5. Linear fit results for the correlations with the uncertainty on the 
Einstein radius. Errors quoted on the gradient and intercept are the 1 σ
confidence intervals. 

Parameter Gradient Intercept 

R Ein, eff (arcsec) −0.027 ± 0.007 0.044 ± 0.008 
R Ein, eff (arcsec) [ > 5 per cent 
remo v ed] 

−0.017 ± 0.004 0.029 ± 0.004 

peak source S/N (0.0 ± 1.0) × 10 −4 0.011 ± 0.004 
R Ein, eff / R Eff ( − 6.4 ± 4.0) × 10 −4 0.015 ± 0.004 
z lens 0.0 ± 0.01 0.010 ± 0.004 
σ (km s −1 ) ( − 3.4 ± 3.7) × 10 −5 0.020 ± 0.010 
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arge uncertainties of 8.6 and 6.6 per cent, respectively. Hence, for
ome lens configurations it appears the Einstein radius can not be
etermined with such certainty. This may be an indication that the
nderlying mass distribution for these lenses is more complex than
he PLEMD that we assume in our model fits. This seems reasonable
or these two lenses since J0841 + 3824 is one of the few disky
alaxies in the sample with obvious extended spiral features in the
ata, and J1116 + 0915 contains a visible mass clump to the North of
he lens that we do not fit for with our uniform approach. 

.2.2 What drives the precision of a lens model? 

o investigate what properties of the lens or data (if any) drive the
recision of the lens model, we measure correlation coefficients
etween statistical uncertainty on the ef fecti ve Einstein radius and
bservable properties of the lens galaxy: including the Einstein radius
tself, the ratio of the Einstein radius to the ef fecti ve radius, the lens
edshift, the velocity dispersion of the lens, and the peak S/N of the
ource (Fig. 15 ). Linear fits show no clear trend with most of these
arameters. The only non-negligible correlation (defined as a non-
ero gradient with > 3 σ significance) is with the Einstein radius. The
orrelation remains when we repeat the linear fit removing the two
ncertainties that are larger than 5 per cent that could bias the relation,
lthough the effect size does reduce by o v er a third (Table 5 ). 

 DISCUSSION  

.1 Can we truly leave no lens behind? 

he success of our uniform pipeline makes us optimistic for the
uture of automated strong lens analysis. We initially fitted 50/59
85 per cent) lenses in a blind run. We increased this to 54/59
92 per cent) ‘Gold’ lenses after tweaking model priors, 58/59
98 per cent) ‘Gold’ or ‘Silver’ lenses with some pre-fitting and
asking of lens light, and 59/59 (100 per cent) including one suc-

essful model of the lens whose model of the source includes poorly-
ubtracted residuals of lens light. With just one pipeline, we have
nferred parameters for 59/59 lenses that measure the lens galaxy’s
instein radius and other mass distribution parameters (of the power-

aw profile with an external shear we assume) that depend on only
he first deri v ati ve of the potential of the lens galaxy. For 58/59
ystems, we measure parameters describing their mass (including
he parameters that depend on the gradient of the source flux such
s γ ). As well as this, we reconstruct a de-lensed image of the
NRAS 517, 3275–3302 (2022) 
ource galaxy enabling study of its morphology. For 54/59 systems,
e measure parameters describing their mass distribution and light
istribution (as a double S ́ersic profile) as well as reconstructing a
e-lensed image of the source galaxy. 
The most challenging step in automating lens modelling is in

he initial estimation of a simple lens model (in this work, we
se an SIE plus shear). Notably, once our early SP phases arrived
t a successful fit to this model, the rest of our pipeline al w ays
an to completion, successfully increasing the model complexity.

e therefore recommend that effort to further impro v e automation
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Figure 16. The Einstein radii measured by PyAutoLens 
(
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AL 
Ein 

)
are 

generally consistent with those measured by previous analyses of the SLACS 
(Bolton et al. 2008a ) and GALLERY (Shu et al. 2016c ) lenses 

(
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lit 
Ein 

)
. This 

shows the fractional difference between new and old measurements, as a 
function of PyAutoLens axial ratio, q AL . 
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hould focus on ‘lens model initialization’ and find ways to a v oid
r flag the problematic solutions that occur at early stages of the
nalysis. Provided that our sample of lenses is representative of the 
arger population of lenses that will be disco v ered by future surv e ys,
his strategy will lead to a high success rate for even complex mass fits
nd reduce the need for visual inspection of the results. An obvious
tarting point to impro v e lens model initialization by PyAutoLens
ould be to further simplify the non-linear parameter space of the 
P pipeline, for example by assuming models for the lens and source

ight with fewer parameters (e.g. Massey & Refregier 2005 ; Birrer,
mara & Refregier 2015 ; Tagore & Jackson 2016 ; Berg ́e et al.
019 ). 
Convolutional neural networks (CNNs) have also been suggested 

s a fast method for automated lens fitting (Hezaveh et al. 2017 ;
e v asseur et al. 2017 ; Morningstar et al. 2019 ). They provide
 particularly compelling solution to the problem of lens model 
nitialization. F or e xample, Pearson et al. ( 2021 ) combined a CNN
ith PyAutoLens , using models from the CNN to initialize the 
ass model priors of a PyAutoLens model-fit. In the majority of

ases tested on mock data, the authors argued that a combination of
he two methods outperformed either method individually. Indeed, 
he strengths of a CNN (fast run-times, a v oidance of unphysical
olutions) complement, the weaknesses of Bayesian inference ap- 
roaches like PyAutoLens . It is concei v able that a CNN could
eplace PyAutoLens ’s initial lens model fits altogether and allow 

he method to focus entirely on fitting more complex lens models 
ith well characterizd errors: a task better suited to PyAutoLens ’s

ully Bayesian approach than a CNN. At least, a CNN might be able
o identify and isolate which lenses will eventually make the gold 
ample, and reduce manual intervention Maresca et al. ( 2020 ). CNNs
ill also have an as-yet unquantified fraction of failures. If the lenses
here a CNN fails are different to where traditional model-fitting 

pproaches fail, combining the two may be key to maximizing the 
uccess rate of lens model initialization. 

The second major challenge for automated lens modelling is 
eblending the foreground lens light. Within our sample, PyAu- 
oLens could not deblend the lens and source light in 3/59 systems,
nd required visual inspection to recognize these bad fits. In these 
ases, we instead used b-spline fits that were created via a time-
onsuming manual process. This issue will be more pre v alent in
uclid, owing to its lower spatial resolution than HST and lens 
amples with smaller Einstein radii (Collett 2015 ) – both of which 
o v e the source’s light closer to that of the lens. Furthermore, our

nalysis included pre-processing steps that manually remo v ed the 
ight of foreground stars and interloper galaxies via a GUI, a task
hich is o v erly time-intensiv e for an individual scientist to perform
n larger samples of lenses. 
We propose two directions for future work that could impro v e

utomatic deblending. First, there are CNN architectures dedicated 
o the task of image deblending and segmentation (these architectures 
o not attempt to estimate the lens model parameters). These have 
een applied successfully on galaxy catalogues (Burke et al. 2019 ; 
ausen & Robertson 2020 ) and in studies of strong lenses (Rojas et al.
021 ) with multi-wavelength imaging seen to impro v e debelending 
uality . Alternatively , this task seems well suited to citizen science
K ̈ung et al. 2015 ; Marshall et al. 2016 ; More et al. 2016 ), whereby
embers of the public could use a GUI to mark-out regions of the

ata they believe correspond to the lens, source and other objects. The
esired outputs of either approach are pix el-lev el masks describing 
here the source, lens and other objects are in the image data, which

ould be used for the automated removal or masking of contaminating 
ight before lens modelling begins. 
.2 Einstein radius measurements and uncertainty 

he statistical precision with which the Einstein radius can be mea-
ured is promising for many possible scientific studies. For example, 
onnenfeld & Cautun ( 2021 )’s proposed method to constrain the
opulation-level parameters of lens galaxies relies on being able 
o accurately measure the Einstein radii of the sample of galaxies.
revious studies have attempted to account for the very small formal
tatistical uncertainties on model parameters (in particular those 
nferred with parametric source methods) and associated systematic 
ncertainties by comparing the fractional difference of parameter 
stimates using different approaches. Bolton et al. ( 2008b ) and
onnenfeld et al. ( 2013b ) reported a typical expected systematic
ncertainty on the Einstein radius of ∼2–3 per cent. This value of un-
ertainty is often adopted o v er (or combined with) those determined
rom the non-linear search. Furthermore, given the Einstein radius is 
xpected to be a model-independent quantity (Falco, Gorenstein & 

hapiro 1985 ; Unruh, Schneider & Sluse 2017 ; Cao et al. 2020 ),
t is typically assumed that this amount of uncertainty accounts for
ifferences in the assumed parametrization of the mass model. 

.2.1 Einstein radii compared to previous measurements 

n a similar fashion to Bolton et al. ( 2008b ) and Sonnenfeld et al.
 2013a ), we now compare our measurements of Einstein radii with
hose that exist in the literature (see Fig. 16 ) and estimate the
ncertainty introduced as a result of the different methods. The full
LACS and GALLERY samples have previously been modelled 
ith SIE profiles to measure the Einstein radii for supplementing a
ynamical analysis of the lenses (SIE models of SLACS by Bolton
t al. 2008a and SIE or SIE + shear models of GALLERY by Shu
MNRAS 517, 3275–3302 (2022) 

art/stac2639_f16.eps


3292 A. Etherington et al. 

M

e  

m  

P  

l  

E  

o
3

 

b  

e  

o  

a  

a  

i  

d  

l  

P  

i  

m  

i  

e  

0  

t

d  

a  

(  

I  

R  

a  

c  

t  

m  

w  

G  

o  

e  

t  

p  

a  

i  

l  

d  

m  

t  

F

7

W  

s  

l  

s  

u  

r  

p  

a  

o  

s  

m  

a  

e  

b
 

h  

C  

s  

5  

o  

d  

p  

i  

a  

p  

t  

p  

e  

s  

t  

p
 

0  

t  

o  

u  

u  

d  

s  

(  

R  

F  

w  

p
 

c  

i  

F  

i  

b  

f  

u
 

s  

r  

r  

m  

t  

r  

f  

w  

s  

p  

t

7

N  

r  

h  

i  

w  

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/3275/6710381 by U
niversity of D

urham
 user on 21 N

ovem
ber 2022
t al. 2016c ). In this comparison, therefore, not only are the lensing
ethods very different, but we have also assumed the more complex
LEMD plus external shear (PL + ext) mass distribution for the

ens galaxy. Compared to these previous measurements, we find
instein radii with root mean square (RMS) fractional difference
f 7.4 per cent. This is larger than the (empirically moti v ated) ∼2–
 per cent uncertainty that is typically assumed. 
Se veral dif ferences between the methods could lead to variation

etween their inferred Einstein radii. Bolton et al. ( 2008a ), and Shu
t al. ( 2016c ) model the background source using either a single
r multiple S ́ersic ellipsoid components, and both choose different
pproaches to the lens light subtraction procedure than the one we
dopt. While Bolton et al. ( 2008b ) and Sonnenfeld et al. ( 2013a )
nvestigated differences like these, neither were concerned with
ifferences in the assumed mass model. Indeed, for a subset of 14
enses that were also analysed by Shajib et al. ( 2021 ) assuming a
L + ext model, the RMS fractional difference is only 1.6 per cent,

t may be that the reduced uncertainty is a result of fitting the same
ass model. Although, this is not of concern if the Einstein radius is

ndeed model-independent. For this Cao et al. ( 2020 ) provide good
 vidence, sho wing that the assumption of the PL + ext exhibits only
.05 ± 0.17 per cent systematic error on the Einstein radius relative
o complex ‘MaNGA’ mock data. 

Notably, though, we find that five of the six lenses whose R Ein 

iffer by o v er 10 per cent in the SLACS and GALLERY samples are
ccompanied by extremely large values of external shear magnitude
ranging from 0.16 to 0.39) when fitted with our PL + ext models.
f these high-shear lenses are remo v ed from the comparison, the
MS fractional difference drops to 4.2 per cent. Cao et al. ( 2020 )
lso demonstrated that the asymmetry in complex mass distributions
an lead to the inference of spurious external shears. On average,
hey inferred an external shear magnitude of 0.015, despite the
ock data being generated without external shear. In this work,
e infer an average of 0.096 shear magnitude for the SLACS and
ALLERY lenses. These large shear values may be partly a result
f the additional complexity in the asymmetry of real lenses. Cao
t al. ( 2020 ) required the multiple Gaussian expansion components
hat represented the stellar mass to share a common axial ratio and
osition angle – this may not be a realistic representation of the
ngular structure of real lenses (Nightingale et al. 2019 ). Given that it
s the lenses with high-external shears that differ most from previous
iterature measurements of R Ein , we speculate that the assumption of a
ifferent mass model (in particular the assumption of external shear)
ay drive the larger fractional uncertainty. This would imply that

he Einstein radius is less model-independent than is often assumed.
urther work to test this hypothesis would be valuable. 

.2.2 Statistical uncertainty on Einstein radii 

e now consider the size of the errors we measure on the Ein-
tein radius, based entirely on our own PL + ext models. Our
ikelihood cap method (Section 5 ) addressed the small formal
tatistical uncertainties on the mass model parameters and allows
s to infer uncertainties that account for differences in possible noise
ealizations and the choice of data discretization. Moreo v er, since
ix el-grid methods hav e the fle xibility to reconstruct the source with
s much complexity as the data needs, they are not subject to the
 v erfitting that occurs in parametric source methods due to o v erly
implistic source assumptions. With this approach, we measure a
ean uncertainty on the inferred Einstein radius of ∼1 per cent,

lbeit with a wide range of outliers, and 2/59 lens configurations
NRAS 517, 3275–3302 (2022) 
xceeding 5 per cent. Adopting a uniform uncertainty could therefore
e problematic for some statistical inferences. 
F or e xample, determining the population lev el parameters of

undreds of thousands of lenses, as described by Sonnenfeld &
autun ( 2021 ), Sonnenfeld ( 2021 ), Sonnenfeld et al. ( 2013a ) might

uffer from such inaccurate individual posteriors as those with up to
 per cent uncertainty on the Einstein radius. The increase in the width
f the posteriors inferred as a result of the likelihood cap approach
emonstrated in this work should a v oid biases in the population level
arameters constrained in studies such as these. Ho we v er, the y will
n turn increase the amount of lenses required to be able to make such
 constraint. Moreo v er, the co v erage probabilities of the lens model
arameters with a likelihood cap (see Fig. 6 ) did not quite reach
he expected level, potentially indicating an under confidence in the
osterior. Under confidence in the posterior could lead to biases in
stimates of the population parameters such as an o v erestimate in the
catter of the population (Wagner-Carena et al. 2021 ). We discuss
he importance of further testing of the confidence of the individual
osteriors further in Section 7.4 . 
For comparison, Cao et al. ( 2020 ) inferred an average of

.01 per cent statistical uncertainty on the Einstein radius when fitting
o mock data simulated using ‘MaNGA’ galaxies without the use
f a likelihood cap. This order of magnitude difference from the
ncertainties inferred in this study is likely a combination of the
se of the likelihood cap increasing the errors in this work, and
ifferences in the quality of the data. Cao et al. ( 2020 )’s mock lensed
ources are simulated with S/N of 50 and have visible extended arcs
or complete Einstein rings) that the lenses with the largest errors on
 Ein inferred in this work do not often appearing closer to point-like.
urthermore, they do not include the lens galaxy’s light, a component
hich we have shown in this study can hinder the lens model fitting
rocedure. 
Based on the empirical relations we derived in Section 6.2.2 , the

ertainty to which one can measure the Einstein radius is remarkably
ndependent of a number of data properties and galaxy observables.
 or e xample, it might be e xpected that a higher S/N source galaxy

mage would tighten the constraints, ho we ver this does not appear to
e the case for the Einstein radius measurement. This is encouraging
or future surv e ys that will not achieve as high S/N as the HST data
sed in this study. 
The only parameter we investigate that exhibits a statistically

ignificant correlation with measurement uncertainty on the Einstein
adius is the Einstein radius itself. Measurements of the Einstein
adius become less certain for small Einstein radii, and therefore low-
ass galaxies. This could also be rele v ant for surv e ys such as Euclid

hat are forecast to detect samples of lenses with smaller Einstein
adii (typically ∼0.5 arcsec according to Collett 2015 ). Interpolating
rom our empirical relationship, fitted to the sample excluding the two
ith anomalously large uncertainty, a lens with this Einstein radius

hould be measurable to ∼2.1 per cent accuracy. Ho we ver, since the
ixel-scale and PSF of the Euclid VIS instrument are roughly twice
hat of HST , this should be considered a lower limit. 

.2.3 Implications for studies of galaxy evolution 

otably, there does not appear to be a correlation between the lens
edshift and measurement uncertainty on the Einstein radius. This
ighlights the power of strong lensing as a tool for investigations
nto galaxy evolution. If the lensing measurements do not degrade
ith redshift, then inferences of how galaxy properties evolve will
e well constrained even to high redshift. This is in contrast to
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Figure 17. The statistical uncertainty on a galaxy’s total mass, when mea- 
sured from its ef fecti ve Einstein radius, does not degrade with lens redshift z � 

0.7 (top panel). This is in stark comparison to most astrophysical observables. 
F or e xample, the uncertainty on a galaxy’s total mass when measured from 

stellar dynamics (velocity dispersion) increases for more distant galaxies 
because of cosmological dimming and beam smearing (bottom panel). 
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Figure 18. Our measurements of the density profile slope (left) and the 
magnitude of external shear (right) in SLACS lenses, compared with previous, 
independent measurements by Shajib et al. ( 2021 ). 
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.g. stellar dynamics data, where cosmological dimming effects 
educe the certainty of the stellar velocity dispersion (and therefore 
ynamical mass) of distant galaxies. The increase in fractional 
ncertainty of the velocity dispersion, σ err / σ within our SLACS and 
ALLERY samples is shown in Fig. 17 . Within both samples σ err / σ

ncreases with redshift (the difference in fibre apertures used for 
LACS and GALLERY means direct comparison of their errors is 
ot straightforward, albeit they still highlight that in general higher 
edshift galaxy measurements are lower S/N). 

This creates an interesting dichotomy between using strong lensing 
o study galaxy evolution and other methods. In lensing, provided 
e are able to find the lenses at the highest redshifts (surv e ys such

s Euclid and the Vera Rubin Observatory will observe lenses at 
edshift of up to ∼2 (Collett 2015 )) we can anticipate that we
ill be able to measure their properties as well as those at lower

edshifts. Issues that plague comparisons between the properties of 
ow and high-redshift galaxies via a technique like stellar dynamics, 
or example beam smearing Tiley et al. ( 2019 ), will therefore be
ess problematic. Ho we ver, whilst comparing their properties may 
e more straightforward, strong lens samples will have complicated 
election effects Sonnenfeld ( 2022 ) that a carefully constructed 
ynamics sample can more easily mitigate. The reduced lensing 
f ficiency of lo wer mass galaxies may also restrict the high-redshift
amples to only the most massive galaxies, albeit this is a limitation
or most observing techniques. A strength of lensing, therefore, is 
hat it offers a different means by which to study galaxy evolution
hat complements the strengths and weaknesses of other techniques. 

.3 Measurements of other lens model parameters 

n addition to the total mass enclosed within the Einstein radius,
trong lensing information also constrains quantities like gradients 
f the distribution of mass, and the amount of external shear. This
s captured in a model-dependent way via the parameters of our 
L + ext mass model (see Sonnenfeld & Cautun 2021 for a model-

ndependent expression of this information). We shall now compare 
ur measurements of radial density gradient γ and shear magnitude 
ext to measurements made using previous independent analyses of 
 v erlapping sets of lenses. 
Shajib et al. ( 2021 ) modelled 23 SLACS lenses, including 14 in

ur sample. Like us, they used a uniform pipeline that simultaneously 
odelled the distribution of mass and light. They too described 

he lens galaxy’s light as a double S ́ersic profile whose centres are
ligned. Ho we v er, unlike us, the y fix ed the S ́ersic inde x of each to
alues of n = 1 and n = 4 (the exponential and de Vaucouleurs profiles
espectively) and join the axis ratios of the two profiles. A major
ifference in the two techniques lies in the source reconstruction; 
hajib et al. ( 2021 ) reconstructed the source using a S ́ersic profile
nd shapelet basis functions. 

For all but one lens, Shajib et al. ( 2021 ) and our measurements of γ
nd γ ext are consistent (Fig. 18 ). For the discrepant lens J2300 + 0022,
yAutoLens infers γ = 2.55 and γ ext = 0.08, compared to Shajib 
t al. ( 2021 )’s γ = 1.85 and γ ext = 0.03. We believe this discrepancy
ould be a result of the different order of operations in a model fit.
hajib et al. ( 2021 ) initialize their lens model assuming γ ext = 0.0
nd relax this assumption once other components of the model are
t. In contrast, the first mass model we fit in our analysis assumes
riors on the shear parameters that allo w v alues up to γ ext = 0.2.
ndeed, for J2300 + 0022 our search yields a best-fit shear of γ ext =
.07. Discarding this lens, we find a mean difference of −0.07 ± 0.07
etween the slopes inferred by the two methods, where the error is
ropagated from the standard error on the means of the two samples.
n average, PyAutoLens measures slightly shallower slopes than 
hajib et al. ( 2021 ), although this is not a significant difference – the
ean discrepancy for the sample is consistent with zero at the current

ncertainty level. A larger sample of measurements may be able to
iscern if there are systematic differences introduced on the density 
lope as a result of the lensing technique. We note that we measure
 scatter of 0.17 between the slope measurements suggesting there 
ay be systematic uncertainty between the two methods. 
Ritondale et al. ( 2019 ) modelled 17 GALLERY lenses, including

5 in our sample. Although they do not adopt a uniform analysis
ipeline, their lens modelling technique more closely resembles 
urs, because they reconstruct the source galaxy using a pixelization. 
n average, PyAutoLens measures a 0.13 ± 0.21 steeper density 

lope (Fig. 19 ). The scatter in this difference is comparable to the
verage uncertainty that we infer for the GALLERY lenses (0.11) but
n order of magnitude larger than the average uncertainty inferred 
y Ritondale et al. ( 2019 ) (left-hand panel of Fig. 20 ). In fact,
he uncertainties inferred by Ritondale et al. ( 2019 ) more closely
esemble those from PyAutoLens before we used a likelihood 
ap to a v oid source discretization bias (Section 5 ). This suggests
hat discretization bias may also affect the pixelized-source method 
f Ritondale et al. ( 2019 ). Conversely, the uncertainties derived by
MNRAS 517, 3275–3302 (2022) 
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M

Figure 19. Our measurements of the density profile slope (left) and the 
magnitude of external shear (right) in BELLS GALLERY lenses, compared 
with previous, independent measurements by Ritondale et al. ( 2019 ). 

Figure 20. The statistical uncertainty on measurements of the radial gradient 
of the total lens mass, reported by PyAutoLens are similar to those found 
by Shajib et al. ( 2021 ) for SLACS lenses (left). Ho we ver, the uncertainty 
reported by Ritondale et al. ( 2019 ) for GALLERY lenses (right) is an order of 
magnitude smaller. That method uses a pixelized source, and may be subject 
to the source discretization bias that we discuss in Section 5 . 
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hajib et al. ( 2021 ), whose analytic approach to source reconstruction
an not be affected by discretization bias, are similar to ours with the
ikelihood cap (right-hand panel of Fig. 20 ). 

It is reassuring that independent analyses yield results that are
onsistent in many ways. Ho we ver, the relati vely small number of
ens systems in common to multiple analyses prevents much more
etailed comparison between codes or modelling assumptions. The
nconsistencies in other aspects of results highlights an urgent need
or larger-scale tests. 

.4 Large-scale tests of lens modelling 

 vital but unintended consequence of this paper, is a solution
o, and better understanding of the source discretization bias that
reviously caused parameter uncertainties to be underestimated.
his occurred in both synthetic and real lenses, as a result of noise

n the likelihood e v aluations of methods using a pixelized source
econstruction (due to particular alignments of source pixels being
rbitrarily more or less penalized by regularization). Our likelihood
NRAS 517, 3275–3302 (2022) 
ap solution successfully reduced noise and smoothed posterior
DFs. It increased the size of our uncertainties such that they had
oughly the expected level of coverage, and improved the recovery
f all parameters in our synthetic data. Although the likelihood cap
as determined in an empirical way, the size of the inferred errors

s inherently linked to this choice of likelihood cap. It may be that
 different choice of likelihood cap could provide better coverage
robabilities than the one we adopted. Further investigation would
e warranted to understand at a deeper level what causes these spikes
n likelihood in pixelized source reconstructions, as impro v ements
ay be possible by changing the approach to pixelizing the source

lane, or regularizing the pixelized source. 
Our work shows the importance of testing strong lens modelling
ethods on larger samples than previously attempted. Even our mock

ample comprising six noise realizations of 59 lens configurations
ields insufficient statistics to determine whether the inferred central
alues and statistical uncertainty on mass model parameters are
onsistent with the expectations of drawing each measurement from
 normal distribution. Equally, whilst there is evidence for small
ystematic biases in the estimates of certain mass model parameters,
e do not have enough unique lens configurations to determine

he primary causes. Given that we are just a few years away from
odelling samples of tens of thousands of lenses tests of strong

ens modelling methodology on synthetic data with complex mass
istributions (e.g. Mukherjee et al. 2018 ; Enzi et al. 2020 ; Cao et al.
022 ; He et al. 2022 ) must now scale up to ensure that error estimates
re robust and systematic biases understood. 

.5 Computational costs 

very SLACS and GALLERY lens modelled in this work was
nalysed using a single 2x Intel Xeon Gold 5120 x @ 2.20GHz
PU on the Distributed Research Utilising Advanced Computing

DiRAC) Data-Centric System on the COSMA7 machine at Durham
niversity. Run times depend primarily on the number of image
ixels fitted after masking, which due to the standard 3.5 arcsec
ircular mask used to fit most lenses is fixed. The lower resolution of
LACS lenses (0.05 arcsec pix el −1 ) means the y contain fewer image
ixels than GALLERY lenses (0.04 arcsec pixel −1 ) and the fits were
herefore faster. For SLACS lenses, the source parametric pipeline
akes between 10–24 h, the source inversion pipeline 10–36 h, the
ight pipeline 10–72 h, and mass pipeline 6–48 h. GALLERY lenses
ake longer on average, where the source parametric pipeline takes
etween 10–36 h, the source inversion pipeline 10–48 h, the light
ipeline 12–144 h, and mass pipeline 12–72 h. The scatter in run
imes is due to many factors: lens galaxy S/N, source galaxy S/N,
ens configuration, lens morphology, source morphology, etc. 

Based on the longest GALLERY run times, the upper limit for
he o v erall run time is 300 CPU hours. F or 100 000 strong lenses
his would require 30 000 000 CPU hours o v er the 5–10 yr lifetime
f a surv e y like Euclid , producing an upper limit of ∼6000 000 CPU
ours per year. For the recent DiRAC resources allocation call, this
mount of CPU time is a ‘small’ project. We therefore anticipate
hat the analysis performed in this work will not be limited by CPU
esources in the near future. Based on profiling of PyAutoLens , we
nticipate the run time of a single lens will reduce by a factor of four
r abo v e when fitting lower resolution wide-field imaging data (e.g.
he resolution of Euclid data is 0.1 arcsec pixel −1 ). The 3.5 arcsec
ircular masks assumed throughout this work are also unnecessarily
arge for many lens systems, and reducing the mask size to 2.5 arcsec
peeds up the analysis by factors of three and abo v e. 
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 SU M M A RY  

ens of thousands of strong gravitational lenses will be imaged 
n the next few years, but current analysis techniques are labour- 
ntensive. We use open source software PyAutoLens to develop 
 fully automated, Bayesian analysis of all 59 strong g alaxy–g alaxy
enses that have been observed by the HST under certain conditions. 
dopting the open source software PyAutoLens provides an opti- 
istic outlook for the future of automated analysis: for 54/59 lenses

92 per cent) we achieved successful model fits (determined via visual 
lassification) with no human intervention. We illustrate why other 
ts initially went wrong, and present solutions that allowed us to infer
ccurate models for all 59/59 lenses (100 per cent) and recommend 
teps necessary for analysing the larger incoming samples. Notably, 
he difficulties primarily happen at the beginning of the analysis 
hen attempting to determine an initial, approximate, lens model 
and often reflect confusion between light from the foreground 

ens and background source. Once a simple model is initialized, 
ur pipeline w ork ed flawlessly to automatically fit a sequence of
ore complex models that measure more detailed properties of the 

ens galaxy. We therefore discuss how combining a convolutional 
eural network with a Bayesian approach like PyAutoLens could 

ncrease the automation success rate whilst extracting maximum 

hysical information from each strong lens. 
We also use synthetic observations of ∼500 lenses to explain and 

olve a problem common to pixel-based strong lensing methods that 
auses the statistical uncertainty on model parameters to be underes- 
imated. This is fundamentally due to noise in likelihood e v aluations,
aused by discretization effects in pixelized reconstructions of the 
ource galaxy. We implemented an empirical correction that ‘caps’ 
he likelihood value to suppress noise. This significantly impro v es 
he measurement of the synthetic lens parameters, and leads to error
stimates on different noise realizations of identical data sets that 
re more consistent with one another. On the real data, we found
his empirical correction (using the likelihood cap) gave a five fold 
verage increase in the inferred uncertainties on model parameters. 
omparing to previous literature results, we suggested this bias may 
e leading to uncertainty under estimation in other studies that use 
imilar methods. Given the incoming samples of tens of thousands 
f strong gravitational lenses, we believe more detailed study of such 
ystematics on larger mock samples is key. 

Accurately knowing the systematic uncertainty on measurements 
f Einstein radius (total galaxy mass) will become vitally important 
or large samples of lenses, which beat down statistical uncertainty. 
revious studies often assume a constant uncertainty of 2–3 per cent. 
e find substantial variation between lenses with a mean of 1 per cent

nd 57/59 lenses with < 3 per cent, but 2/59 lenses with > 5 per cent.
uture analysis of large samples, where careful control of systematics 

s paramount, must therefore adopt more rigorous errors. Our 
instein radii measurements assumed only a single type of parametric 
ass model and we do not investigate the degree of uncertainty that

esults from making different mass model assumptions. 
Notably, the uncertainty on our measurements of Einstein radii 

and those of the lens models in general) do not increase with redshift.
hat is, we learn as much about the strong lenses at redshift ∼0.7
s those at redshift ∼0.1. This is in stark contrast to other astro-
hysical probes of a galaxy’s structure (e.g. dynamics, morphology), 
here cosmological dimming effects and beam smearing degrade 
easurements of distant galaxies. Nor does uncertainty on Einstein 

adii depend strongly upon the signal-to-noise ratio of our data. 
his makes strong lensing a compelling technique to study galaxy 
volution: once high redshift strong lenses are found, it should be 
B

traight forward to measure their properties. Of course, the technique 
as its own challenges, for example complicated selection effects, 
ut it should nevertheless provide an invaluable tool for studies of
alaxy evolution o v er the next decade. 
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his work uses the following software packages: 

(i) ASTROPY (Astropy Collaboration et al. 2013 ; Price-Whelan 
t al. 2018 ) 

(ii) CORNER.PY (F oreman-Macke y 2016 ) 
(iii) DYNESTY (Speagle 2020b ) 
(iv) MATPLOTLIB (Hunter 2007 ) 
(v) Numba (Lam, Pitrou & Seibert 2015 ) 
(vi) NUMPY (van der Walt, Colbert & Varoquaux 2011 ) 
(vii) PYAUTOFIT (Nightingale, Hayes & Griffiths 2021a ) 
(viii) PYAUTOLENS (Nightingale & Dye 2015 ; Nightingale et al. 

018 , 2021b ) 
(ix) PYTHON (Van Rossum & Drake 2009 ) 
(x) Scikit-image (Van der Walt et al. 2014 ) 
(xi) Scikit-learn (Pedregosa et al. 2011 ) 
(xii) SCIPY (Virtanen et al. 2020 ) 
(xiii) SQLITE (Hipp 2020 ) 
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Table A2. The initial priors on every parameter of every light and mass 
profile fitted in this work. Column 1 gives the model component name. 
Column 2 gives the parameter. Column 3 gives the prior, where U ( a, b) is a 
uniform prior between a and b , and N ( μ, σ ) is a Gaussian prior with mean 
μ and variance σ 2 . Note that due to prior passing (see Section 4 ), the final 
priors used to fit a model, corresponding to the results given in this work, will 
be updated from the abo v e values. The priors of every fit can be found at the 
following link https://zenodo.org/r ecor d/6104823 . 

Model Parameter Prior 

Elliptical b (arcsec) U (0 , 8) 
Power-Law (PL) γ U (1 . 5 , 3) 

ε 1 N (0 , 0 . 3) 
ε 2 N (0 , 0 . 3) 

x c (arcsec) N (0 , 0 . 05) 
y c (arcsec) N (0 , 0 . 05) 

Sersic R eff (arcsec) U (0 , 30) 
n U (0 . 5 , 5) 

log 10 I 0 ( e - s -1 ) 
U ( −6 , 6) 

ε 1 N (0 , 0 . 5) 
ε 2 N (0 , 0 . 5) 

x c (arcsec) N (0 , 0 . 1) 
y c (arcsec) N (0 , 0 . 1) 

Shear γ1 ext U ( −0 . 2 , 0 . 2) 
γ2 ext U ( −0 . 2 , 0 . 2) 

T

P

S
p

S
i

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517
able B4. Light model parameters for the first five SLACS lenses in
rder of Right Ascension. 

lease note: Oxford University Press is not responsible for the content
r functionality of any supporting materials supplied by the authors. 
ny queries (other than missing material) should be directed to the 

orresponding author for the article. 

PPEN D IX  A :  W I T H O U T  LENS  L I G H T  

IPELINE  

he pipelines that make up the uniform analysis for modelling 
 lensed image that does not contain the lens galaxy’s light are
resented in Table A1 . This pipeline was used to analyse the mock
ata in this work. As well as this, a variation on this analysis that also
ncludes external shear in the mass model, was used to fit the four
enses that required lens subtracted data to arrive at successful model 
ts. The initial model fit priors, and those used when we choose not

o inform priors with prior passing, are given in Table A2 . 
able A1. Pipeline model components for the analysis which fits to a lensed imag

ipeline Phase Galaxy component Model Varied Prior info Ph

ource 
arametric 

SP 

1 Lens mass SIE � – Fi
mo

Source light S ́ersic � –

ource 
nversion 

SI 1 Lens mass SIE SP 

3 Fi
pix
pix

Source light MPR � –
SI 2 Lens mass SIE � SP 

3 Re
to 

Source light MPR SI 1 

SI 3 Lens mass SIE SP 

3 Fi
im
pa

Source light BPR � –
SI 4 Lens mass SIE � SI 2 Re

so
Source light BPR SI 3 

ass total MT 

1 Lens mass PLEMD � SI 4 Fi
va
fro

Source light BPR SI 3 
MNRAS 517, 3275–3302 (2022) 

e which does not contain emission from the lens galaxy. 

ase description 

t the lens mass model and source light profile, comparing the lensed source 
del to mock image. 

x lens mass parameters to those from the source parametric pipeline and fit 
elization and regularization parameters on magnification adaptive 
el-grid. 

fine the lens mass model parameters, keeping source-grid parameters fixed 
those from previous phase. 

t BPR pixelization and regularization parameters, using the lensed source 
age from SI 2 to determine the source galaxy pixel centres. Lens mass 
rameters are fixed to those from previous phase. 

fine lens mass model parameters on the BPR grid, keeping lens light and 
urce-grid parameters fixed to those from previous phases. 

t the lens mass parameters, now with the slope of the density profile free to 
ry within the uniform prior [1.5-3.0], all other mass priors are informed 
m SI 4 . 

/3/3275/6710381 by U
niversity of D

urham
 user on 21 N

ovem
ber 2022

https://zenodo.org/record/6104823
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PPENDIX  B:  IN FERRED  M O D E L  

A R A M E T E R S  

e present the best fit model parameters for all SLACS and
ALLERY lenses. The PLEMD + ext mass model parameters are
iven in Tables B1 (SLACS) and B2 (GALLERY). The double
 ́ersic light model parameters for the Gold sample are presented
NRAS 517, 3275–3302 (2022) 

able B1. Mass distribution model fit parameters for the first ten SLACS lenses. T

lass Lens name b (arcsec) γ ε 1 

old J0008-0004 1 . 178 +0.021 
-0.015 2 . 08 +0.08 

-0.07 0 . 16 +0.028 
-0.025 0 . 01

J0029-0055 0 . 971 +0.026 
-0.015 2 . 32 +0.13 

-0.13 0 . 089 +0.05 
-0.044 0 . 08

J0157-0056 0 . 999 +0.033 
-0.034 2 . 23 +0.08 

-0.09 −0 . 198 +0.067 
-0.049 −0 . 19

J0216-0813 1 . 188 +0.013 
-0.013 1 . 99 +0.05 

-0.06 0 . 056 +0.034 
-0.035 −0 . 09

J0252 + 0039 1 . 021 +0.005 
-0.006 1 . 92 +0.08 

-0.11 −0 . 041 +0.01 
-0.01 −0 . 0

J0330-0020 1 . 113 +0.022 
-0.022 2 . 15 +0.02 

-0.02 −0 . 017 +0.052 
-0.046 −0 . 11

J0728 + 3835 1 . 274 +0.029 
-0.024 1 . 99 +0.12 

-0.1 0 . 145 +0.03 
-0.028 −0 . 12

J0737 + 3216 0 . 982 +0.009 
-0.008 2 . 28 +0.07 

-0.07 −0 . 017 +0.017 
-0.014 −0 . 07

J0822 + 2652 1 . 235 +0.034 
-0.035 2 . 1 +0.08 

-0.07 0 . 147 +0.041 
-0.043 −0 . 26

J0841 + 3824 1 . 005 +0.158 
-0.139 2 . 27 +0.2 

-0.16 −0 . 149 +0.089 
-0.096 −0 . 10

able B2. GALLERY mass distribution model fit parameters. 

lass Lens name b (arcsec) γ ε 1 ε 2

old J0029 + 2544 1 . 395 +0.074 
-0.039 2 . 05 +0.12 

-0.15 −0 . 203 +0.055 
-0.078 0 . 014

J0113 + 0250 1 . 293 +0.037 
-0.028 1 . 77 +0.15 

-0.11 −0 . 006 +0.017 
-0.019 0 . 068

J0201 + 3228 1 . 727 +0.022 
-0.018 2 . 09 +0.09 

-0.1 −0 . 114 +0.026 
-0.02 −0 . 02

J0237-0641 0 . 615 +0.117 
-0.078 1 . 91 +0.18 

-0.1 −0 . 117 +0.033 
-0.018 0 . 026

J0742 + 3341 1 . 684 +0.134 
-0.097 2 . 21 +0.06 

-0.08 0 . 506 +0.053 
-0.049 0 . 001

J0755 + 3445 2 . 0 +0.071 
-0.055 1 . 77 +0.08 

-0.05 0 . 156 +0.016 
-0.014 0 . 131

J0856 + 2010 1 . 157 +0.071 
-0.087 2 . 23 +0.08 

-0.09 0 . 474 +0.079 
-0.079 −0 . 151

J0918 + 5105 1 . 642 +0.035 
-0.037 2 . 38 +0.16 

-0.18 −0 . 024 +0.057 
-0.064 −0 . 081

J1110 + 2808 0 . 902 +0.029 
-0.026 2 . 03 +0.09 

-0.07 0 . 041 +0.053 
-0.081 −0 . 045

J1110 + 3649 1 . 188 +0.011 
-0.012 2 . 23 +0.07 

-0.08 −0 . 024 +0.007 
-0.008 −0 . 016

J1116 + 0915 1 . 247 +0.188 
-0.156 2 . 22 +0.16 

-0.17 0 . 071 +0.097 
-0.101 −0 . 393

J1141 + 2216 1 . 381 +0.067 
-0.071 2 . 13 +0.09 

-0.11 0 . 243 +0.058 
-0.069 0 . 009

J1201 + 4743 1 . 221 +0.023 
-0.018 2 . 74 +0.05 

-0.21 −0 . 095 +0.019 
-0.032 0 . 007

J1226 + 5457 1 . 385 +0.008 
-0.009 2 . 24 +0.07 

-0.1 −0 . 074 +0.011 
-0.015 0 . 127

J2228 + 1205 1 . 338 +0.072 
-0.063 2 . 2 +0.14 

-0.1 −0 . 262 +0.049 
-0.08 0 . 048

J2342-0120 1 . 313 +0.048 
-0.044 2 . 34 +0.07 

-0.09 −0 . 298 +0.06 
-0.034 −0 . 129
n Tables B4 (SLACS) and B3 (GALLERY). We present the
ight parameters only for the ‘Gold’ sample since the ‘Silver’
nd ‘Bronze’ samples either do not fit the lens light or provide
odels we do not trust. All errors quoted are those derived

rom the 68 per cent credible region of the PDF output from
ynesty . 
he full table is available online. 

ε 2 γ1 ext γ2 ext x c (arcsec) y c (arcsec) 

4 +0.031 
-0.033 −0 . 006 +0.011 

-0.015 −0 . 023 +0.017 
-0.017 −0 . 015 +0.012 

-0.012 0 . 034 +0.012 
-0.014 

9 +0.062 
-0.04 0 . 005 +0.021 

-0.017 0 . 012 +0.019 
-0.023 −0 . 019 +0.014 

-0.02 −0 . 017 +0.014 
-0.016 

9 +0.054 
-0.06 −0 . 077 +0.022 

-0.02 −0 . 165 +0.023 
-0.027 −0 . 137 +0.026 

-0.02 0 . 031 +0.026 
-0.026 

7 +0.024 
-0.029 0 . 001 +0.02 

-0.019 0 . 009 +0.016 
-0.016 0 . 009 +0.008 

-0.006 0 . 011 +0.008 
-0.008 

45 +0.01 
-0.008 −0 . 02 +0.005 

-0.005 −0 . 013 +0.005 
-0.005 0 . 0 +0.006 

-0.005 −0 . 005 +0.006 
-0.006 

9 +0.042 
-0.043 0 . 039 +0.018 

-0.02 −0 . 013 +0.019 
-0.018 −0 . 051 +0.017 

-0.026 −0 . 021 +0.017 
-0.026 

2 +0.027 
-0.027 0 . 056 +0.015 

-0.02 −0 . 037 +0.012 
-0.013 −0 . 006 +0.013 

-0.012 0 . 004 +0.013 
-0.012 

2 +0.021 
-0.02 0 . 038 +0.007 

-0.007 0 . 103 +0.009 
-0.01 −0 . 008 +0.004 

-0.004 −0 . 006 +0.004 
-0.004 

4 +0.039 
-0.038 0 . 057 +0.025 

-0.025 −0 . 082 +0.017 
-0.024 −0 . 014 +0.022 

-0.016 −0 . 103 +0.022 
-0.028 

4 +0.175 
-0.12 −0 . 118 +0.043 

-0.04 −0 . 083 +0.049 
-0.052 −0 . 25 +0.046 

-0.043 −0 . 204 +0.046 
-0.034 

 

γ1 ext γ2 ext x c (arcsec) y c (arcsec) 

 

+0.045 
-0.055 −0 . 025 +0.03 

-0.031 −0 . 049 +0.025 
-0.027 0 . 09 +0.023 

-0.026 0 . 036 +0.023 
-0.026 

 

+0.013 
-0.017 0 . 041 +0.013 

-0.013 0 . 14 +0.012 
-0.012 0 . 031 +0.009 

-0.011 0 . 008 +0.009 
-0.008 

 

+0.019 
-0.012 0 . 06 +0.015 

-0.012 −0 . 039 +0.016 
-0.008 0 . 002 +0.016 

-0.014 0 . 026 +0.016 
-0.013 

 

+0.075 
-0.101 0 . 006 +0.051 

-0.06 −0 . 015 +0.068 
-0.04 0 . 146 +0.033 

-0.033 0 . 021 +0.033 
-0.027 

 

+0.061 
-0.061 0 . 107 +0.018 

-0.024 −0 . 217 +0.026 
-0.025 0 . 136 +0.018 

-0.048 −0 . 062 +0.018 
-0.015 

 

+0.016 
-0.012 0 . 201 +0.008 

-0.009 0 . 268 +0.007 
-0.011 0 . 069 +0.004 

-0.011 −0 . 159 +0.004 
-0.005 

 

+0.069 
-0.098 −0 . 021 +0.032 

-0.032 −0 . 014 +0.027 
-0.023 0 . 171 +0.021 

-0.039 −0 . 063 +0.021 
-0.018 

 

+0.023 
-0.041 −0 . 246 +0.023 

-0.033 −0 . 122 +0.007 
-0.007 −0 . 019 +0.027 

-0.014 0 . 004 +0.027 
-0.016 

 

+0.056 
-0.058 0 . 114 +0.042 

-0.037 −0 . 09 +0.025 
-0.029 −0 . 106 +0.03 

-0.023 −0 . 141 +0.03 
-0.035 

 

+0.013 
-0.013 0 . 019 +0.003 

-0.003 0 . 129 +0.007 
-0.006 −0 . 0 +0.003 

-0.003 −0 . 009 +0.003 
-0.002 

 

+0.069 
-0.072 0 . 016 +0.034 

-0.045 −0 . 653 +0.041 
-0.053 −0 . 034 +0.047 

-0.032 0 . 086 +0.047 
-0.044 

 

+0.072 
-0.085 0 . 042 +0.032 

-0.033 −0 . 117 +0.032 
-0.031 0 . 088 +0.04 

-0.033 −0 . 035 +0.04 
-0.028 

 

+0.035 
-0.043 0 . 069 +0.0 

-0.017 −0 . 016 +0.007 
-0.009 −0 . 046 +0.001 

-0.004 0 . 025 +0.001 
-0.011 

 

+0.014 
-0.016 −0 . 139 +0.01 

-0.007 −0 . 011 +0.009 
-0.01 0 . 023 +0.004 

-0.004 0 . 006 +0.004 
-0.003 

 

+0.079 
-0.057 −0 . 196 +0.03 

-0.035 −0 . 198 +0.033 
-0.022 −0 . 057 +0.026 

-0.026 −0 . 005 +0.026 
-0.031 

 

+0.036 
-0.025 −0 . 019 +0.014 

-0.021 −0 . 254 +0.015 
-0.008 0 . 051 +0.013 

-0.01 0 . 02 +0.013 
-0.014 
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Table B3. Light model parameters for the first five GALLERY lenses in order of Right Ascension. The full table is available online. 

lens noise S ́ersic R eff (arcsec) n I 0 ( × 10 −3 ) φ q ε 1 ε 2 

x c ( ×
10 −3 arcsec) 

y c ( ×
10 −3 arcsec) 

J0029 + 2544 0 . 11 +0.11 
-0.045 I 16 . 84 +3.89 

-6.68 3 . 9 +0.58 
-0.5 0 . 04 +0.01 

-0.02 −2 +4 
-4 0 . 33 +0.09 

-0.14 −0 . 04 +0.07 
-0.07 0 . 5 +0.16 

-0.18 0 . 49 +0.63 
-0.8 −0 . 71 +0.51 

-1.02 

II 0 . 59 +0.04 
-0.02 3 . 5 +0.04 

-0.04 17 . 93 +0.61 
-1.19 −43 +3 

-3 0 . 82 +0.01 
-0.0 −0 . 1 +0.0 

-0.0 0 . 01 +0.01 
-0.01 

J0113 + 0250 0 . 00032 +0.0012 
-0.00018 I 2 . 43 +0.82 

-0.6 1 . 0 +0.28 
-0.23 1 . 5 +0.36 

-0.35 −71 +3 
-3 0 . 35 +0.07 

-0.08 −0 . 29 +0.06 
-0.05 −0 . 38 +0.09 

-0.09 5 . 0 +1.41 
-1.5 −2 . 03 +1.76 

-1.55 

II 1 . 72 +0.24 
-0.2 3 . 9 +0.21 

-0.24 2 . 15 +0.5 
-0.38 −3 +0 

-0 0 . 54 +0.01 
-0.02 −0 . 04 +0.01 

-0.01 0 . 29 +0.01 
-0.01 

J0201 + 3228 160 +370 
-130 I 2 . 12 +0.59 

-0.35 1 . 4 +0.19 
-0.18 7 . 65 +1.47 

-1.69 −47 +2 
-3 0 . 79 +0.02 

-0.02 −0 . 12 +0.01 
-0.01 −0 . 01 +0.01 

-0.01 0 . 68 +0.63 
-0.56 3 . 2 +0.63 

-0.61 

II 1 . 09 +0.08 
-0.08 4 . 9 +0.06 

-0.08 9 . 03 +0.75 
-0.69 −85 +4 

-4 0 . 91 +0.01 
-0.01 −0 . 01 +0.01 

-0.01 −0 . 04 +0.01 
-0.01 

J0237-0641 1 . 4 +15 
-1.4 I 10 . 62 +12.78 

-7.09 3 . 5 +1.3 
-0.8 0 . 15 +0.45 

-0.12 3 +26 
-17 0 . 64 +0.31 

-0.19 0 . 03 +0.2 
-0.07 0 . 22 +0.12 

-0.21 0 . 48 +0.7 
-0.83 −2 . 23 +0.71 

-0.73 

II 0 . 91 +0.11 
-0.14 4 . 8 +0.11 

-0.47 6 . 92 +1.71 
-0.82 80 +20 

-316 0 . 98 +0.02 
-0.05 0 . 0 +0.01 

-0.01 −0 . 01 +0.01 
-0.01 

J0742 + 3341 1 . 1 +28 
-1.1 I 10 . 31 +8.57 

-8.83 3 . 1 +1.28 
-0.95 0 . 24 +2.42 

-0.14 27 +7 
-7 0 . 53 +0.14 

-0.11 0 . 25 +0.09 
-0.1 0 . 18 +0.09 

-0.13 −0 . 19 +0.58 
-0.63 1 . 35 +0.59 

-0.68 

II 1 . 04 +0.25 
-0.11 4 . 6 +0.16 

-0.23 9 . 12 +1.38 
-2.27 62 +1 

-2 0 . 71 +0.01 
-0.18 0 . 14 +0.01 

-0.01 −0 . 1 +0.02 
-0.01 

Table B4. Light model parameters for the first five SLACS lenses in order of Right Ascension. The full table is available online. 

lens noise S ́ersic R eff (arcsec) n I 0 ( × 10 −3 ) φ q ε 1 ε 2 

x c ( ×
10 −3 arcsec) 

y c ( ×
10 −3 arcsec) 

J0008-0004 1500 +210 
-460 I 27 . 25 +1.2 

-22.87 2 . 2 +2.65 
-0.94 0 . 01 +0.0 

-0.0 46 +3 
-15 0 . 63 +0.11 

-0.23 0 . 23 +0.2 
-0.19 −0 . 02 +0.04 

-0.03 −3 . 25 +0.0 
-2.21 4 . 05 +0.0 

-1.36 

II 1 . 69 +0.69 
-0.09 4 . 3 +0.28 

-0.1 27 . 93 +0.0 
-11.49 26 +3 

-1 0 . 9 +0.0 
-0.01 0 . 04 +0.01 

-0.0 0 . 03 +0.0 
-0.0 

J0029-0055 470 +120 
-100 I 0 . 33 +0.02 

-0.02 2 . 8 +0.1 
-0.09 905 . 32 +0.08 

-80.08 22 +0 
-0 0 . 9 +0.0 

-0.0 0 . 04 +0.0 
-0.0 0 . 04 +0.0 

-0.0 −5 . 57 +0.0 
-0.26 1 . 92 +0.0 

-0.25 

II 3 . 0 +0.22 
-0.17 1 . 6 +0.11 

-0.11 49 . 4 +0.0 
-5.06 27 +1 

-1 0 . 79 +0.01 
-0.01 0 . 09 +0.01 

-0.01 0 . 07 +0.01 
-0.01 

J0157-0056 120 +30. 
-26 I 1 . 86 +0.56 

-0.34 0 . 8 +0.28 
-0.13 7 . 3 +0.0 

-1.09 −58 +5 
-6 0 . 72 +0.05 

-0.07 −0 . 15 +0.04 
-0.04 −0 . 07 +0.04 

-0.04 −5 . 09 +0.0 
-0.14 1 . 65 +0.0 

-0.31 

II 1 . 04 +0.02 
-0.06 4 . 9 +0.04 

-0.07 66 . 77 +0.01 
-1.89 68 +0 

-0 0 . 67 +0.0 
-0.0 0 . 13 +0.0 

-0.0 −0 . 14 +0.0 
-0.0 

J0216-0813 850 +52 
-70. I 1 . 54 +0.33 

-0.2 3 . 9 +0.32 
-0.24 115 . 98 +0.03 

-28.97 85 +0 
-0 0 . 81 +0.0 

-0.0 0 . 02 +0.0 
-0.0 −0 . 11 +0.0 

-0.0 −7 . 13 +0.0 
-0.39 3 . 76 +0.0 

-0.44 

II 3 . 75 +2.41 
-0.49 0 . 8 +0.27 

-0.13 16 . 96 +0.01 
-10.44 50 +3 

-5 0 . 66 +0.07 
-0.13 0 . 2 +0.14 

-0.05 −0 . 04 +0.04 
-0.04 

J0252 + 0039 210 +52 
-43 I 0 . 94 +0.03 

-0.03 0 . 9 +0.05 
-0.05 125 . 89 +0.0 

-3.86 −65 +1 
-1 0 . 77 +0.01 

-0.01 −0 . 1 +0.01 
-0.01 −0 . 09 +0.01 

-0.01 −6 . 69 +0.0 
-0.38 −1 . 61 +0.0 

-0.42 

II 0 . 62 +0.05 
-0.04 4 . 9 +0.06 

-0.1 132 . 34 +0.01 
-11.09 54 +20 

-22 0 . 99 +0.01 
-0.01 0 . 0 +0.0 

-0.0 −0 . 0 +0.0 
-0.0 
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n this study, we categorized the model fits into ‘Gold’, ‘Silver’, and
Bronze’ depending on the quality of the model fit. The ‘Gold’ fits are
resented in Fig. C2 for SLACS lenses and Fig. C1 for GALLERY
enses. The ‘Silver’ lenses are then presented in Fig. C3 and the
Bronze’ lens in Fig. C4 . 
MNRAS 517, 3275–3302 (2022) 

N
ovem

ber 2022



3300 A. Etherington et al. 

MNRAS 517, 3275–3302 (2022) 

Figure C1. Model fits for the first five GALLERY lenses in order of Right Ascension. Model fits for the full sample of lenses are available online. Residuals 
are the normalized residuals. 
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MNRAS 517, 3275–3302 (2022) 

Figure C2. Model fits for the first five SLACS lenses in the ‘Gold’ sample in order of Right Ascension. Model fits for the full sample of lenses are available 
online. Residuals are the normalized residuals. 
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Figure C3. SLACS ‘Silver’ model fits. Residuals are the normalized residuals. 

Figure C4. SLACS ‘Bronze’ model fit. Residuals are the normalized residuals. 
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