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ABSTRACT

The distribution of dark and luminous matter can be mapped around galaxies that gravitationally lens background objects into
arcs or Einstein rings. New surveys will soon observe hundreds of thousands of galaxy lenses and current labour-intensive
analysis methods will not scale up to this challenge. We develop an automatic Bayesian method, which we use to fit a sample of
59 lenses imaged by the Hubble Space Telescope. We set out to leave no lens behind and focus on ways in which automated fits
fail in a small handful of lenses, describing adjustments to the pipeline that ultimately allows us to infer accurate lens models for
all 59 lenses. A high-success rate is key to avoid catastrophic outliers that would bias large samples with small statistical errors.
We establish the two most difficult steps to be subtracting foreground lens light and initializing a first approximate lens model.
After that, increasing model complexity is straightforward. We put forward a likelihood cap method to avoid the underestimation
of errors due to pixel discretization noise inherent to pixel-based methods. With this new approach to error estimation, we find
a mean ~1 per cent fractional uncertainty on the Einstein radius measurement, which does not degrade with redshift up to at
least z = 0.7. This is in stark contrast to measurables from other techniques, like stellar dynamics and demonstrates the power of
lensing for studies of galaxy evolution. Our PyAutoLens software is open source, and is installed in the Science Data Centres

of the ESA Euclid mission.
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1 INTRODUCTION

Galaxy-scale strong lensing is the distortion of light rays from a
background source into multiple images by the gravitational field of
a foreground galaxy along the same line of sight. From the apparent
position, shape, and flux of those multiple images, it is possible
to infer both the intrinsic morphology of the background galaxy at
magnified resolution and the distribution of (all gravitating) mass in
the foreground lens.

In combination with kinematic measurements lensing methods
have inferred the mean total density profile of massive elliptical
galaxies, and how that evolves with redshift (Gavazzi et al. 2007;
Koopmans et al. 2009; Auger et al. 2010; Bolton et al. 2012;
Sonnenfeld et al. 2013a), and put constraints on their dark matter
content, stellar mass-to-light ratio, and inner structure (Sonnenfeld
et al. 2012; Oldham & Auger 2018; Nightingale et al. 2019; Shu
etal. 2015, 2016a). If the background source is variable and the mass
model known measurements of time delays between multiple images

* E-mail: amy.etherington @durham.ac.uk

© The Author(s) 2022.

can constrain the value of the Hubble constant (Suyu et al. 2017;
Wong et al. 2019). If the lens galaxy contains small substructures,
they also perturb the multiple images, and provide a clean test of
the nature of dark matter (Vegetti et al. 2010; Li et al. 2016, 2017;
Hezaveh et al. 2016; Despali et al. 2019; Ritondale et al. 2019; He
et al. 2021; Amorisco et al. 2022).

Currently, a couple of hundred strong lensing systems have been
observed by dedicated surveys, such as the Sloan Lens ACS (SLACS)
(Bolton et al. 2006; Auger et al. 2010), BOSS Emission Line
Lens (BELLS) (Brownstein et al. 2012), Strong Lensing Legacy
(SL2S) (Gavazzi et al. 2012) surveys, BELLS GALaxy-Lyo EmitteR
sYstems (BELLS GALLERY) (Shu et al. 2016¢, b), the SLACS
Survey for the Masses (S4TM) Survey (Shu et al. 2017), LEnSed
laeS in the EBOSS suRvey (LESSER) (Cao et al. 2020), and the
Spectroscopic Identification of Lensing Objects (Talbot et al. 2018,
2021).

During the next decade, a couple of hundred thousand strong
lenses will be discovered by wide-field surveys including Euclid,
LSST, and SKA (Collett 2015). Such large samples of strong lenses
will contain rare ‘golden’ systems such as double or triple source
plane systems (Collett & Auger 2014; Collett & Bacon 2016;
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Collett & Smith 2020), and unlock considerable scientific potential
through vastly improved statistics (e.g. Orban De Xivry & Marshall
2009; Birrer et al. 2020; Cao et al. 2020; Sonnenfeld & Cautun 2021;
Sonnenfeld 2021). To tackle the forthcoming thousand-fold increase
in data volume, model inference must be automated, and made robust
without human intervention.

Convolutional Neural Networks (CNNs) are a fast approach
that have recently been shown to be successful at lens modelling.
Hezaveh, Levasseur & Marshall (2017) and Levasseur, Hezaveh &
Wechsler (2017) modelled nine lens systems observed by the Hubble
Space Telescope (HST). However, this approach requires a large,
and significantly varied and unbiased training set of mock lenses to
learn from. These are requirements that can be difficult to guarantee,
which could be problematic for source galaxies with irregular
morphologies. Using a different method, Shajib et al. (2021) used
the DOLPHIN software to model 23 lenses from an initial sample of
50 SLACS lenses.

We use the PyAutoLens software (Nightingale & Dye 2015,
hereafter N15; Nightingale, Dye & Massey 2018, hereafter N18), an
open-source Bayesian forward-modelling project designed specif-
ically with automation in mind. We develop an automated data
analysis pipeline that models the distribution of foreground light and
mass as a sum of smooth analytic functions, and the background
light as either another sum of analytic functions (e.g. Tessore,
Bellagamba & Metcalf 2016), or as a pixellated image (Warren &
Dye 2003; Dye & Warren 2005; Suyu et al. 2006; Vegetti &
Koopmans 2009; Joseph et al. 2019; Galan et al. 2021). By fitting
a mock sample of ~500 lenses, we further show that previous
versions of PyAutoLens (like many lens fitting algorithms) un-
derestimated the statistical uncertainty of lens model parameters.
A major component of this is a discretization effect inherent
to pixel-based source reconstructions — for which we provide a
solution.

We apply our automated lens modelling pipeline to a uniform
sample of 59 SLACS and BELLS GALLERY lenses that were
observed with the HST. Our goal is to model every single lens and
therefore leave no lens behind: if we were analysing ~100 000 lenses,
even a low rate of (unflagged) failures would require unfeasible
human intervention, and would bias the increasingly tight statistical
precision of subsequent scientific analysis. Our first, ‘blind” analysis
achieves a promising success rate of 85 per cent. We then emphasize
trying to understand why some lenses are not well fit, and improve
our pipeline until they are. This mirrors the kind of methodology
that will be possible with future large samples: a fairly fixed initial
framework, that is adapted after early results. In this paper, we are
trying to establish that first fixed framework.

With the full sample modelled, we investigate the accuracy to
which the Einstein radius is recovered. Cao et al. (2020) recently
demonstrated the robustness of the measurement by comparing the
Einstein radii of power-law fits to mock lenses with complex mass
distributions, inferred from SDSS-MaNGA stellar dynamics data to
their true values. They showed that the Einstein radius was recovered
to 0.1 percent accuracy, taking into account both systematic and
statistical sources of uncertainty. We examine how this compares
to the statistical uncertainties we infer for the Einstein radii of the
SLACS and GALLERY sample. Further, we compare to previous
literature measurements (Bolton et al. 2008a; Shu et al. 2016b) to
verify our results and quantify how the uncertainty varies due to
different methods and assumptions. Our work therefore provides an
outlook on the accuracy to which we can anticipate measuring the
Einstein radius in upcoming large samples of tens of thousands of
lenses.
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This paper is structured as follows. In Section 2, we give a
brief overview of lensing theory and provide the mass and light
profile parametrizations we adopt. Section 3 describes the sample
selection and data reduction procedure for the data images of the
SLACS and GALLERY samples. The method is then explained
in detail in Section 4 and applied to a sample of mock data in
Section 5 to investigate problems associated with pixelized source
reconstructions. The results of applying the automated procedure to
the SLACS and GALLERY samples are then presented in Section 6.
Finally we discuss the implications for the future of automated
analyses in Section 7 and summarize in Section 8. Throughout this
work we assume a Planck 2015 cosmological model Ade etal. (2016).
The results of every fit to the SLACS and GALLERY data sets can
be found at the following link https://zenodo.org/record/6104823.

2 LENS MODELLING THEORY

The aim of this study is to investigate the practicalities of automated
extended source modelling to infer the mass distributions of a large
sample of lenses. We give a brief overview of relevant theory for this
analysis in Section 2.1, and describe our choice of mass and light
profile parametrizations in Sections 2.2 and 2.3, respectively.

2.1 Lensing theory

Strong lensing occurs in and around regions, where the surface mass
density of the lens X (R) exceeds the critical surface mass density for
lensing

¢z Dy
4G D] Dls ’

crit — (1)
where Dy, Dy, and Dy are, respectively, the angular diameter distances
to the lens to the source, and from the lens to the source, and ¢
is the speed of light. Hence, assuming a cosmological model, it is
possible to fix the 3D geometry of the lens system using the observed
redshifts of the foreground lens and background source galaxies. An
extended distribution of matter can be described by its convergence,
a dimensionless 2D projected surface mass density defined as
_ ()

Ky = S @
crit

The lensing properties of a galaxy with « (x, y) are characterized by the
projected gravitational potential ¢ that satisfies the Poisson equation:
V2¢ = 2«. The lens galaxy deflects light rays from the source galaxy
by an amount described by the deflection angle field, « = V¢. The
goal of lens modelling, then, is to solve the lens equation,

B=0—a), 3

which relates the observed image positions 8 = (6, 6,) of deflected
light rays in the image plane from a source at position g = (81, f2)
in the source plane. Given a lensed image and (a model of) the
distribution of foreground mass, one can invert equation (3) to recover
the distribution of light in the source plane. In Fig. 1, the pixelized
source plane reconstructions of the lenses fitted in this work are
shown next to their lensed data image.

Gravitational lensing magnifies the background source, including
an (infinitely thin) region of infinite magnification in the lens plane
known as the tangential critical curve. Axisymmetric lenses have a
circular critical curve known as the Einstein radius, Rg;,. The mean
surface mass density inside Rg, is equal to the critical surface mass
density X of the lens (equation 1). The Einstein radius and enclosed
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Figure 1. Lens subtracted data images (left) and their corresponding pixel-grid reconstructions (right) for the ‘Gold’ sample of lens galaxies (see Section 6.1
for a description of our classification process). Lenses are in order of Right Ascension with SLACS lenses appearing first followed by GALLERY lenses. The
full model fits for these lenses, plotted with an indication of scale, are available in Appendix C.

Einstein mass
2
Mg, = nREin 2:crita (4)

are thus uniquely defined in the axisymmetric case, quantifying the
size and efficiency of the lens.

For asymmetric, irregular, and realistic lenses, the definition of
Einstein radius must be generalized. Several conventions are possible
(see Meneghetti et al. 2013 for a good overview), but we choose to
use the effective Einstein radius

A
Rein, et = 1/ p ()

where A is the area enclosed by the tangential critical curve. This
definition is self-consistent across different mass density profiles,
and clearly recovers the definition of Rg;, in the case of a circular
critical curve. To calculate this in practice, we first obtain the set
of points that defines the tangential critical curve contour from our
lensing maps, using a marching squares algorithm, then compute the
enclosed area using Green’s theorem

A:/ﬁxdy:?{xdy. (6)

2.2 Mass profile parametrization

We model the distribution of mass in the lens galaxy as a power-law
ellipsoidal mass Distribution (PLEMD), assuming that this is able to
capture the combined mass distribution of both baryonic and dark
matter. The convergence is

S(y) 3-y ( b )V‘ -
2:crit 1+‘1 \/)C2+y2/q2

(Suyu 2012), where y is the logarithmic slope of the mass distribution
in 3D, 1 > g > 0 is the projected minor to major axial ratio of
the elliptical isodensity contours, and b > 0 is the angular scale
length of the profile (referred to in some papers as the Einstein
radius, but distinct from the more robust effective Einstein radius
in equation (5)). The profile has additional free parameters for
the central coordinates (x., y.) and position angle ¢, measured
counterclockwise from the positive x-axis, and external shear. When
varying the ellipticity, we actually sample from and adjust free
parameters

k(x,y) =

q . q
sin 2¢, & = cos2¢. 8
a ¢ 2= 14y ¢ (8)

because these are defined continuously in —1 < ¢; < 1, eliminating
the periodic boundaries associated with angle ¢ and the discontinuity

£ =
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at ¢ = 0. We similarly parametrize the external lensing shear as
components ¥ jex and yzey. The external shear magnitude y ey and
angle ¢y are recovered from these parameters by

V2ex
Vext = \/ Vi + Vit » tan 2 = ) )
lext

The special case y = 2 recovers the singular isothermal ellipse
(SIE) mass distribution, in which the steady-state motions of particles
have constant 1D velocity dispersion ogg when projected along
any line of sight. For this distribution of mass, the critical curve is
the ellipse at k = 1/2. Our definition of effective Einstein radius
(equation 5) means that the ellipse is REgin, off = cpc2 + yz/q, and the
velocity dispersion is

OSIE = C _— (10)

2.3 Light profile parametrization

We model the foreground galaxy’s light distribution as the sum of
two Sérsic profiles with different ellipticities but a common centre.
This replicates the bulge and disc components that constitute an
early-type Galaxy (ETG) (Vika et al. 2014; Oh, Greene & Lackner
2017), and significantly increased the Bayesian evidence compared
to a single Sérsic model, in a precursor study of three SLACS galaxies
(Nightingale et al. 2019). The Sérsic profile is

1
\/ﬁ "
16, y) = Ler exp § —ken <"x+y/") —1| ¢, an
Refr
where . is the surface brightness at the effective radius R, defined
here in the intermediate axis normalization,' n is the Sérsic index, and
kefr 1s a normalization constant related to n such that R encloses half
of the total light from the model (Graham & Driver 2005). The axial
ratio and position angle of each component are parametrized during
the fitting process, using elliptical components as in equation (8).
Aside from the two components’ common centre, all free parameters
are fitted independently of each other to allow for more complex
light distributions. For example, the flux ratio of the two Sérsics
is unconstrained, and the profiles may be elongated by different
amounts and rotationally offset from one another.
We model the distribution of light in the source galaxy as either
a single Sefsic profile or using a pixelated source reconstruction
depending on the phase of the automated procedure, described in
Section 4.3. The source galaxy is ultimately reconstructed on an
adaptive Voronoi mesh, for which the procedure is described in detail
in Section 4.2.

3 DATA

3.1 Lens sample selection

We analyse strong gravitational lenses around massive elliptical
galaxies drawn from the SLACS (Bolton et al. 2008b) and BELLS
GALLERY samples (Shu et al. 2016b). The SLACS sample were
identified as lenses using SDSS spectroscopy to find higher redshift
emission lines after subtracting a principle component model of the

!This definition keeps the area enclosed within a given isophote constant as ¢
is varied, and is distinct from ‘major axis normalization’ where the term (gx*
+ y2/q) would instead be (x> + y2/¢?).
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foreground galaxy spectrum (Bolton et al. 2006). This technique was
modified for the GALLERY survey to specifically select even higher
redshift Lyo-emitting (LAE) source galaxies (Shu et al. 2016b).
Spectroscopic redshifts of the lens and source are known, and follow-
up high-resolution imaging has been carried out for all systems.

To keep the data quality reasonably uniform (as it would be for a
large future survey), we restrict the SLACS sample to the 43 lenses
imaged to at least 1-orbit depth in the HST Advanced Camera for
Surveys (ACS) F814W band. We add the 17 grade-A confirmed
LAE lenses from GALLERY, all of which have been observed to 1-
orbit depth in the HST Wide Field Camera 3 (WFC3) F606W band.
Several systems have second or third foreground lenses of low mass.
However, for this first attempt at automation, in which we shall try to
fit only a single main lens, we have not considered GALLERY lens
J0918+-4518, which has two equally bright lens galaxies. We end up
with a set of 59 lenses.

3.2 Data reduction

HST imaging of both the SLACS and GALLERY samples was
reduced using custom pipelines. The procedure for the SLACS
sample is described in Bolton et al. (2008a) and produces images
with 0.05 arcsec pixels; the procedure for GALLERY is described
in Brownstein et al. (2012) and Shu et al. (2016¢), and produces
images with 0.04 arcsec pixels. The point spread function (PSF) was
determined for both samples using the Tiny Tim software Krist
(1993). The aforementioned papers also describe an optional method
to subtract the lens galaxy’s light by fitting it with a b-spline. Our
pipeline benefits from fitting the lens light simultaneously with its
mass, so we shall generally not use the b-spline data. However, our
pipeline struggles to automatically deblend the lens and source light
of three systems, so we shall try the b-spline data there.

4 METHOD

4.1 Overview

Our strong lens analysis is carried out using the software PyAu-
toLens,? which is described in N18, building on the works of
Warren & Dye (2003, hereafter WD03), Suyu et al. (2006, hereafter
S06), and N15.

To fit a lens model to an image, PyAutoLens first assumes a
parametrization for the distribution of light and mass in the lens,
and the distribution of light in the source, using the parametric
profiles described in Sections 2.2 and 2.3. The parametrized intensity
I of the lens light is evaluated at the centre of every image pixel,
convolved with the instrumental PSF, and subtracted from the
observed image. The mass model is then used to ray-trace image-
pixels from their image-plane positions 6 to source-plane positions
B (via the lens equation 3). The source analysis finally follows,
which PyAutoLens performs using one of two approaches: (i)
parametric profiles in the source-plane (e.g. the Sérsic profile) are
used to simply evaluate / at every value of S; (ii) a pixelized source
reconstruction is performed on an adaptive Voronoi mesh, where the
values of B are used to pair image-pixels to the Voronoi source
pixels which reconstruct the source (see WDO03, S06, N15, and
N18 for a full description of lensing analyses with pixelized source
reconstructions).

2The PyAutoLens software is open source and available from https://gith
ub.com/Jammy2211/PyAutoLens.
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Table 1. Composition of the pipelines that make up our uniform analysis. Where prior info is not passed from previous pipelines; see Table A2 for the specific

priors used on each model parameter.

Pipeline Phase  Galaxy component Model Varied Priorinfo Phase description
SP! Lens light Sérsic + Exp - Fit only the lens light model and subtract it from the data image.
Lens mass SIE + shear - Fit the lens mass model and source light profile, comparing the
Sp? lensed source model to the lens light subtracted image from SP'.
Source . Source light Sérsic -
Parametric
Lens light Sérsic + Exp - Refit the lens light model with default priors and fit the mass and
Sp3 source models with priors informed from SP2.
Lens mass SIE + shear Sp?
Source light Sérsic Sp?
Lens light Sérsic + Exp v Sp3 Fix lens light and mass parameters to those from the source
parametric pipeline and fit pixelization and regularization
st' parameters on magnification adaptive pixel-grid.
Lens mass SIE + shear v sp3
Source light MPR -
Lens light Sérsic + Exp v Sp3 Refine the lens mass model parameters, keeping lens light and
SI? source-grid parameters fixed to those from previous phases.
Lens mass SIE + shear sp3
Source Source light MPR v SI!
Inversion Lens light Sérsic + Exp v Sp3 Fit BPR pixelization and regularization parameters, using the
lensed source image from SI? to determine the source galaxy pixel
SP? centres. Lens light and mass parameters are fixed to those from
previous phases.
Lens mass SIE + shear v Sp3
Source light BPR -
Lens light Sérsic + Exp v sp3 Refine lens mass model parameters on the BPR grid, keeping lens
light and source-grid parameters fixed to those from previous
SI* phases.
Lens mass SIE + shear SI?
Source light BPR v SP
Lens light Sérsic + Sérsic - Fit lens light parameters, with lens mass and source parameters
Light LP! fixed to the result of the source inversion pipeline.
Parametric Lens mass SIE + shear v SI4
Source light BPR SP
Lens light Sérsic + Sérsic v LP! Fit the lens mass parameters, now with the slope of the density
profile free to vary within the uniform prior [1.5-3.0], all other
mass priors are informed from SI*. The lens and source light are
MT! fixed to those from the LP' pipeline.
Lens mass PLEMD + shear SI4
Mass Total Source light BPR N&
Lens light Sérsic + Sérsic v LP! An extension of the MT! phase to ensure robust error inference on
MT! parameters. The lens mass parameters are re-fitted, capping
ext likelihood evaluations to a fixed value (See Section 5 for details.)
Lens mass PLEMD + shear MT!
Source light BPR MT!

The following link (https://github.com/Jammy?2211/autolens_lik
elihood_function) contains Jupyter notebooks that provide a visual
step-by-step guide of the PyAutoLens likelihood function used in
this work. We have received feedback from readers of other papers
using PyAutoLens (who are less familiar with strong lens mod-
elling) that they were unclear on the exact procedure that translates
a strong lens model to a likelihood value. The notebooks aims to
clarify this and provides links to all previous literature describing the
PyAutoLens likelihood function, alongside an explanation of the
technical aspects of the linear algebra and Bayesian inference. We
provide a brief description of the PyAutoLens likelihood function

below, but we recommend these notebooks to the interested reader if
anything is unclear.

4.2 Source reconstruction

After subtracting the foreground lens emission and ray-tracing
coordinates to the source-plane via the mass model, the source is
reconstructed in the source-plane using an adaptive Voronoi mesh
which accounts for irregular or asymmetric source morphologies (see
Fig. 1). Our results use the PyAutoLens pixelization VoronoiB-
rightnessImage, which adapts the centres of the Voronoi pixels

MNRAS 517, 3275-3302 (2022)
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to the reconstructed source morphology, such that more resolution is
dedicated to its brighter central regions (Nightingale et al. 2018).
The reconstruction computes the linear superposition of PSF-
smeared source pixel images, which best fits the observed image. This
uses the matrix f;;, which maps the jth pixel of each lensed image to
each source pixel i. Following the formalism of (Warren & Dye 2003,
WDO03 hereafter), we define the vector 5,» = ij=l fijd; —bj) /sz

and curvature matrix Fj; = ijz1 fij frj/o?, where d; are the ob-
served image flux values with statistical uncertainties o and b; are
the model lens light values. The source pixel surface brightnesses
values are given by s = F~' D, which are solved via a linear inversion
that minimizes

W= i (Xiisify) +b;=d; |

gj

(12)

i=1

The term Eil:l s; fi maps the reconstructed source back to the image-
plane for comparison with the observed data.

This matrix inversion is ill-posed, therefore to avoid over-fitting
noise the solution is regularized using a linear regularization ma-
trix H (see WDO03). Regularization acts as a prior on the source
reconstruction, penalizing solutions, where the difference in recon-
structed flux of these two neighboring Voronoi source pixels is
large. Our results uses the PyAutoLens regularization scheme
AdaptiveBrightness, which adapts the degree of smoothing
to the reconstructed source’s luminous emission (Nightingale et al.
2018). This has three hyper parameters, the inner regularization
coefficient, outer regularization coefficient, and a parameter which
controls how the outer and inner regions of the source plane are
defined for regularization. The degree of smoothing is chosen
objectively using the Bayesian formalism introduced by Suyu et al.
(2006). The likelihood function used in this work is taken from (Dye
et al. 2008) and is given by

—2Ine = x> +s"Hs + In [det(F + H)] — In [det(H)]

J
—|—Zln[27r(aj)2] (13)

=1

4.3 Automated procedure

4.3.1 PyAutoLens

PyAutoLens is designed to approach lens modelling in a fully
automated way (N18, Nightingale et al. 2021b). This uses a tech-
nique we term ‘non-linear search chaining’, which sequentially
fits lens models of gradually increasing complexity. By initially
fitting simpler lens models one can ensure that their corresponding
non-linear parameter spaces are sampled in an efficient and robust
manner that prevents local maxima being inferred. The resulting
lens models then act as initialization in subsequent model-fits,
which add more complexity to the lens model, guiding the non-
linear search on where to look in parameter space for the highest
likelihood lens models, ensuring the global maximum model has
the highest chance of being inferred. Non-linear search chaining is
performed using the probabilistic programming language PyAut -
oFit (https:/github.com/rhayes777/PyAutoFit), a spin off project
of PyAutoLens, which generalizes the statistical methods used to
model strong lenses into a general purpose statistics library.

To perform model-fitting PyAutoLens uses the nested sampling
algorithm dynesty (Speagle 2020a), which obtains the posterior
probability distributions for a given lens model’s parameters. Nested
sampling’s ability to robustly sample from low dimensional (e.g.
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fewer than ~30 parameters) complex parameter space distributions
makes it well suited to lens modelling. We use dynesty’s random
walk sampling for every model-fit performed in this work, which we
found gave a significant improvement over other sampling techniques
owing to its better accounting of the covariance between lens model
parameters. Since nested sampling starts by randomly sampling from
the prior, the size and choice of priors directly impact the expected
number of nested sampling iterations alongside how likely it is
that a local maximum is incorrectly inferred. As such, using more
informative priors will reduce the amount of time needed to integrate
over the posterior and guide towards sampling the highest likelihood
global maxima solutions.

Non-linear search chaining allows us to construct informative
priors from the results of one dynesty search and pass them to
subsequent model-fits, thereby guiding them on where to sample
parameter space. This uses a technique called prior passing (see
N18), which sets the prior of each parameter as a Gaussian whose
mean is that parameter’s previously inferred median PDF (probability
density function) value and its width is a customisable value specific
to every lens model and parameter. The specific order of prior passing
used in this study is given in Table 1. The prior widths have been
carefully chosen to ensure they are broad enough not to omit valid
lens model solutions, but sufficiently narrow to ensure the lens model
does not inadvertently infer local maxima. More quantitatively, the
prior widths are typically greater than ~10 times the errors we
ultimately infer on each parameter, meaning it has negligible impact
on the posterior (see Section 5).

4.3.2 User set-up

In this work, we use the standardized Source Light and Mass (SLaM)
pipelines that are available, and fully customisable in PyAutoLens.
From these, we construct a pipeline that chains together a total of
11 dynesty searches, which we apply to every lens in our sample,
which we describe in detail in Section 4.3.3. Before we run the SLaM
pipelines, a few brief pre-processing steps must be carried out; we
describe those here, as well as our chosen pipeline settings.

We define a circular mask centred on the lens galaxy that defines
the image pixels we fit to. For the SLACS and GALLERY lenses,
we use a standard size of 3.5 and 3.0 arcsec radius, respectively. This
is increased to 4.0 arcsec for the SLACS lenses J09124-0029 and
J0216-0813, and for the GALLERY lens J0755+3445. All image
pixels outside this mask are completely omitted from the analysis,
meaning they are not traced to the source plane and included in the
source reconstruction procedure.

We create scalable noise maps, unique to each lens, that define
any regions inside the mask that we do not wish to fit (e.g. unrelated
astronomical sources projected by chance along adjacent lines of
sight). In these regions, the image values are scaled to near zero
and the noise-map values to large values such that the likelihood
calculation effectively ignores them. Such areas of high flux would
otherwise be indistinguishable from the source flux to the fitting
procedure. We adopt this noise map approach over the complete
removal of such regions, since image-pixels are still traced to the
source-plane and included in the source reconstruction procedure.
This avoids creating discontinuities or ‘holes’ in the source pixeliza-
tion, which can degrade the quality of the overall reconstruction. The
maps are produced in a graphical user interface (GUI) available in
PyAutoLens, designed to reduce the human time necessary for
creating each unique map (~1 min per lens). We acknowledge this
task is overly time-intensive when considering the incoming samples
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of tens of thousands of lenses and provide a discussion of possible
routes to automation of this pre-processing step in Section 7.1.

Finally, we store an array containing the coordinates of the pixels
containing the peak surface brightness of each multiple image of the
source galaxy, again selected by the user via a GUI. These coordinates
are used to remove local maxima from the parameter spaces explored
throughout the pipeline. In practise, this is done by discarding any
models where the ray-traced points in the source plane are not within
a positions threshold value of each other. This value is initially set
to 0.7 arcsec.? Both the threshold and the positions themselves are
then iteratively updated throughout the SLaM pipeline by solving the
lens equation using the maximum likelihood mass model estimated
in a previous fit. For each iteration, the value is set to three times the
separation of the positions found after solving the lens equation or
a value of 0.2arcsec, whichever is largest. This ensures that, as
we progress from parametric to pixelized source reconstructions, we
avoid the under and over-magnified solutions that can be problematic
for these methods Maresca, Dye & Li (2020).

4.3.3 Uniform analysis

The uniform analysis ultimately aims to constrain the parameters
describing the mass and light distributions. The lens galaxy’s mass
is parametrized as a PLEMD (equation 7), while the lens light is
modelled as a double Sefsic profile, which is a sum of two Sérsic
profiles (equation 11) with a common centre. This is achieved by
reconstructing the source galaxy’s light distribution on an adaptive
brightness-based pixelization and regularization (BPR) grid. The
uniform analysis is constructed from multiple pipelines that each
focus on fitting a specific aspect of the lens model, which we describe
below. For an overview of the composition of the overall method see
Table 1. A scaled down version of this pipeline was used by Cao
et al. (2020) to model fifty simulated strong lenses.

We begin with the source parametric (SP) pipeline that fits the
foreground lens galaxy’s light profile, alongside a robust initialization
of less complex models for the mass distribution of the lens and light
distribution of the source galaxy. The lens mass is modelled as an
SIE (equation 7 with y = 2) plus external shear. The lens light is
modelled by the sum of a Sérsic and Exponential (equation 11 with
n = 1) profile. The source galaxy’s light is described by a single
Sérsic profile; this is key to the initialization of the model using the
SP pipeline, as it allows us to compute an initial estimate of the
mass profile without dynesty getting stuck in a local maximum
(as methods with a pixelized source frequently do; N18, Maresca
et al. 2020).

The source inversion (SI) pipeline then refines the lens galaxy’s
mass distribution by modelling the source galaxy using an adaptive
pixelization. This allows more realistic morphologies of the source
galaxy to be recognized, which in turn improves the model for the lens
galaxy’s mass. The pixelization and it’s pixel-to-pixel regularization
are described by a set of hyper-parameters (see Section 4.2 for
more details) that are fitted for as free parameters in the fit, these
are first initialized using a magnification based pixelization and
regularization (MPR) grid. The source model from this fit is then

3This choice of arcsecond value reflects a low threshold for what we consider
a plausible lens model, removing only extremely unphysical mass models.
For example, without it the mass model could choose to be close to zero by
fitting a source to only one multiple image with its centre aligned directly
behind that image. We note this means we do not require the locations of the
multiple images to be extremely accurate.
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used to inform the the BPR pixelization that adapts to the surface
brightness of the source galaxy, thereby reconstructing areas of high
flux with higher resolution and lower regularization relative to areas
of low flux.

The light parametric (LP) pipeline re-fits the lens galaxy’s light
profile. This produces a more accurate estimate of the lens galaxy’s
light than previously, because the lensed source galaxy’s light is
now reconstructed using the Voronoi pixelization, thereby reducing
residuals, which otherwise impact the lens light model fit. The lens
light model is now composed of two Sérsic profiles (the second com-
ponent now has a free Sérsic index). This fit is performed using broad
uninformative priors and thus does not use any information about the
lens galaxy’s light profile estimated by the previous pipelines.

Finally, the mass total (MT) pipeline extends the complexity of the
model of the lens galaxy’s mass to that of the PLEMD (equation 7),
whereby the slope of the density profile (y) is now a free parameter
in the model. A uniform prior between 1.5 and 3 is assumed on the
slope. To ensure robust error inference on the parameters of our final
model, the MT phase is extended by re-running the same model with
a ‘likelihood cap’ applied (see Section 5 for details). The term ‘mass
total’ is used to distinguish this pipeline from the ‘mass light dark’
SLaM pipeline which is not used in this work. Instead of fitting a
mass model that represents the total mass distribution this pipeline
fits one that separately models the light and dark mater (Nightingale
et al. 2019).

4.3.4 Results data base

Upon completion of a uniform pipeline there are dynesty samples
of 11 different model-fits, alongside additional metadata describing
quantities such as each parameter’s estimate their errors and the
PyAutoLens settings. Across our sample of 59 strong lenses,
this creates over 500 lens modelling results, necessitating tools to
automate their processing and inspection. PyAutoFit outputs all
modelling results to a queryable SQLite data base (Hipp 2020), such
that they can be easily loaded into a Jupyter notebook or PYTHON
script post-analysis. By adopting PyAutoFit, all PyAutoLens
results support this SQLite data base which is the primary tool we
use for analysing lens modelling results.

5 DEALING WITH NOISE IN LIKELIHOOD
EVALUATIONS

N15 demonstrated that pixelized source reconstructions can be
subject to a discretization bias that ultimately leads to the under-
estimation of errors calculated by a typical non-linear search (N15).
This is a result of discrete jumps in the likelihood as the lens model
parameters are smoothly varied, which hinders convergence and
parameter marginalization. N15 suggests this may be a common
problem for methods that employ pixelized sources. Here, we
investigate the effects of the bias further using a large sample of
mock observations.

5.1 Mock data sample

We create 59 synthetic lenses similar to our SLACS and GALLERY
lenses to approximately resemble the real data but with known truths.
The mass distribution of each synthetic lens is a PLEMD; we set the
radius b and ellipticity parameters ¢; and &, to those of the SIE
lens model measured in previous lensing analyses (see table 5 of
Bolton et al. 2008b and table 2 of Shu et al. 2016¢, for SLACS
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Figure 2. We create a sample of mock lenses that closely resemble each of the 59 SLACS and GALLERY lenses in our observed data sample, which we use
for testing for data discretization bias. We show eight of these mock images (right-hand panel) alongside the real data image they were simulated to represent
(left-hand panel with lens name). The mock images are simulated without light from the lens galaxy, as such we compare to the data images where the lens

galaxy’s (double Sefsic) light profile has been subtracted.

and GALLERY parameters, respectively). We set the slope y of the
density profiles to the lensing and dynamics measurements of Auger
et al. (2010) (SLACS) and Shu et al. (2016¢c) (GALLERY), where
the slope of the density profile is not available. We instead use the
values inferred by preliminary runs of our own strong lensing-only
analysis. The surface brightness of each source galaxy is simulated
as an elliptical Sérsic, the parameters of which are set to those
inferred during preliminary runs of our source parametric pipeline
(see Section 4 for more detail).*The redshifts of the lens and source
are set to those known for the corresponding real strong lens.

For every synthetic lens configuration, we create six mock ob-
servations, each with different realizations of observational noise.
To mimic the HST observations, the lensed image of the source is
generated with a pixel scale of 0.05 arcsec (SLACS) and 0.04 arcsec
(GALLERY), and convolved with the instrumental point spread
function (PSF) modelled from the actual image of the strong lens we
are simulating. The synthetic images include a flat sky background
of 37.5 (SLACS) and 31.5 electrons per second (GALLERY) and
six different realizations of Poisson noise. We choose not to simulate
light from the lens galaxy since this has the potential to introduce
systematic effects that we are not interested in investigating with this
sample (see Section 5). Across the resulting suite of 354 synthetic
observations, the S/N of the brightest pixel in each image ranges
from 4 to 68. Fig. 2 compares a subset of simulated mock lenses with
their real data counterparts.

5.2 The origin of discretization bias and error underestimation

First, we investigate how discretization bias manifests in PyAu-
toLens, whose source pixelization differs in its implementation
from N15 and N18. This is illustrated in Fig. 3, which plots the
variation of the log likelihood of a lens model when changing only the
slope parameter y of the mass distribution (fixing all other parameters
to their true values). The parametric source model produces a smooth
likelihood curve. The BPR pixelization methods produce a higher
likelihood, but one that is subject to seemingly random noise. These
‘spikes’ in log likelihood occur over small ranges in the slope param-
eter; at least an order of magnitude smaller than the errors one infers
for y when fitting this lens with a parametric source. This confuses

4The Sérsic source parameters were optimized for an SIE mass profile but
simulated with a PLEMD, leading to a difference in magnification of the
source galaxy in the mock data. As a result, some lensed sources were
simulated with lower signal-to-noise ratio (S/N) values than observed. In
these cases, we manually adjust their intensity value to give a peak S/N > 3.
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Figure 3. Comparison of the log likelihood as a function of density profile
slope when using a parametric source (pink curve) or brightness-based
pixelization and regularization (BPR) pixelizations to fit to mock data. All
model parameters other than the slope are fixed to their true values. The yellow
line reveals the full level of noise in the likelihood due to the particulars of
the source plane pixelization by using a new random seed for the k-means
algorithm that pixelates the source plane for every likelihood evaluation. The
other three colours use fixed k-means seeds, as is done throughout the rest of
this paper.

the nested sampler, which converges to positive spikes in likelihood
that are tiny volumes of the multi-dimensional parameter space, and
thus significantly underestimate the total statistical uncertainty.

To perform a source reconstruction using a pixelized source, one
must first define a procedure that determines the shape and locations
of the source-plane pixels, its discretization. For example, in the case
of PyAutoLens, one can alter the random seed that determines
the centres of the Voronoi source pixels. This element of choice
makes the likelihood ill-determined, as is demonstrated in Fig. 3
by the three different realizations of noise that are uncovered for
the differently seeded grids (the only difference between the fits
that produces the blue, orange, and purple likelihood surface is the
choice of k-means seed that determines the source-pixel centres).
If we choose to pass a random k-means seed to each individual
fit (the yellow curve in Fig. 3), the full scale of the noise due to
different source discretizations is revealed likelihood evaluations of
almostidentical lens models can yield very different likelihood values
when the source pixelization changes. Sampling the parameter space
when using a random k-means seed is therefore prohibitively slow,
ultimately leading to the non-linear search becoming stuck and being
unable to converge.

220Z JaqWIBAON | Z U0 Jasn weyin( Jo Ausiaaiun Aq 18€0129/S/ZE/S/ L S/a1o1le/seluw/wod dno-olwapeoe//:sdiy Wwolj papeojumo(]


art/stac2639_f2.eps
art/stac2639_f3.eps

ke 111 |
40 4| === mn2
run 3
30
20 o
10 o
A
A%
\
0 T T T

66560 66580 66600 66620 66640 66660 66680
Log-Likelihood

Figure 4. Histogram of log-likelihood values from re-fitting the best-fit
model with a new k-means seed 500 times, while keeping the model
parameters fixed. The dashed line is the fitted Gaussian curve to these
values. The vertical line shows the maximum likelihood value of the best-fit
parameters found without a likelihood cap, which is always boosted by noise
to extremely high likelihood. For clarity, we show three of the six distributions
from different noise realization images of the mock lens, the same behaviour
is evident in the three distributions not shown here.

In fact, repeat likelihood evaluations of an identical lens model
also yield different likelihood values if the source pixelization’s
discretization changes. Fig. 4 shows the result of doing exactly
this, where log likelihood values are computed using an identical
lens model 500 times (we use the best fit lens model parameters
from our fitting procedure to do this) with each computation using
only a different Voronoi mesh to reconstruct the source. The three
different coloured histograms show the results of this procedure
for three of the six noise realization images of a lens that arrive
at three different best fit lens models. In all cases, the histograms
of log likelihood values show that changes in log likelihood of
order ~50 are possible by just changing the source pixelization. To
perform parameter estimation changes in log likelihood of order ~10
define how precisely a parameter is estimated at ~30 confidence.
Thus, if our log likelihoods can fluctuate by of order ~50 in a
seemingly arbitrary way, this will be detrimental to parameter and
error estimation.

Why does the log likelihood vary when we change the source
pixelization? For a given lens model, there are certain source
pixelizations, where the centres of their Voronoi source pixels line up
with the locations of the traced image-pixels mapped from the image
datain a ‘preferable’ way. Their alignment allows the source pixels to
reconstruct the image data more accurately in a way that is penalized
less by regularization (see S06). This produces what we consider an
artificial ‘boost’ in likelihood. Conversely, other pixelizations have a
less fortuitous alignment, such that their reconstruction of the image
data is worse and they are more heavily penalized by regularization
producing an artificial ‘drop’ in log likelihood. Fig. 4 shows that the
distribution of log-likelihoods appears to be Gaussian, a property we
will use when we put forward a solution to this problem.

We are now in a position to explain the spiky likelihood surface
shown for the fixed seed BPR pixelizations in Fig. 3. Let us
first consider in more detail, the BPR pixelization implemented
in PyAutoLens. To construct the source-pixel centres, the BPR
pixelization applies a weighted k-means algorithm in the image
plane to determine a set of coordinates that are adapted to the lensed
source’s surface brightness. This k-means algorithm is seeded such
that the same image-plane coordinates are inferred if the procedure
(using the same inputs) is run multiple times (thus the completely
random changes to the source pixelization used to construct the
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histograms shown in Fig. 4 cannot explain these likelihood spikes).
These image-plane coordinates are then ray-traced via the mass
model to the source-plane and are used as the centres of the source
pixels of the Voronoi mesh. To produce the blue, orange, and purple
curves shown in Fig. 3, the coordinates that construct the source
pixelization are therefore fixed in the image-plane, but vary smoothly
with the mass model in the source plane. The spiky likelihood surface
can therefore be explained by how the continuous change in the
positions of the source pixels generating the Voronoi pixelization
produces discrete changes in the Voronoi mesh (either creating new
cells or changing the value of flux across cell boundaries — these
changes may occur less frequently with interpolation of the source
pixel grid). The reconstruction then receives boosts and drops in log
likelihood as for certain mass models (values of y) since the positions
of the source pixels align more or less favourably with the data.

5.3 Testing for error underestimation in lens modelling

In the context of a full non-linear search which varies every lens
model parameter, we expect that likelihood spikes due to this
preferable alignment of the source pixelization with the data will
be present, negatively impacting our inference on each parameter’s
PDF. To investigate this, we fit the full sample of 354 mock images
(see section 5.1) with a uniform pipeline constructed from the SLaM
pipelines in PyAutoLens. The pipeline is the equivalent of that
described in Section 4.3.3 but created for fitting images without the
lens galaxy’s light distribution (see Appendix A1l for an overview of
the pipeline). The pipeline, then, infers the mass parameters of the
lens galaxy described by a PLEMD, while reconstructing the source
galaxy on a BPR pixelization. We choose not to fit for an external
shear (which is not present in the lens models of the simulated data)
in order to simplify our investigation of likelihood boosts. Our main
goal, here, is to determine if the error estimates inferred by the
non-linear search are being underestimated as a result of the data
discretization bias.

Fig. 5 shows the posterior PDFs obtained for individual runs of
three lenses in our mock sample. For each lens, six realizations of
the image data with different noise maps were simulated and fitted,
which correspond to the six individual PDFs shown on each panel of
Fig. 5. Not only do the PDF contours rarely contain the true parameter
(represented by the grey dashed lines) they also rarely overlap with
each other. To verify this is due to data discretization bias, for each
of the 354 synthetic images we now produce 500 new likelihood
evaluations — fixing all lens and source model parameters to the best-
fitting values, but randomizing the k-means seed used to pixelate
the source plane. For 94.6 per cent of these 177 000 calculations, the
new likelihood is lower than the best-fit model likelihood, indicating
that the likelihood values inferred by dynesty were systematically
boosted relative to the majority of possible source pixelizations. Fig. 4
shows this for three example cases, where the solid lines show the
maximum log likelihood model inferred via dynesty compared to
a histogram of these 500 models draw using random k-means seeds.

The likelihood boosted solutions inferred by dynesty occupy a
tiny volume of parameter space, such that parameter marginalization
significantly underestimates the width of the posterior PDF. For
each of the lens model parameters, we calculate the percentage of
the 354 model fits that recover the true parameter within their 1D
marginalized 68.7, 95, and 99 per cent credible regions (blue bars
in Fig. 6). On average for all lens model parameters, the truth is
recovered only 30 or 50 per cent of the time at the 68.7 and 95 per
cent credible regions, these coverage probabilities are significantly
smaller than the percentage credible regions they were calculated for
— the reported uncertainties are too small.
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Figure 5. For three typical synthetic lenses, the posterior PDF of model
parameters inferred from mock observations. With a likelihood cap (yellow),
these PDFs have sufficient width to include the true value (crossed lines).
Without a likelihood cap, the PDFs from mock data with different realizations
of observational noise (six other colours) are too narrow because of noise in
the likelihood evaluations. Fitted parameters shown are the mass-density
slope (y), mass normalization (Ry), and two components of ellipticity (e1,
&2); all other free parameters are marginalized over.
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Figure 6. Coverage probabilities of the lens model parameters with (pink)
and without (blue) a likelihood cap applied to the non-linear search. The thin
bars give the coverage probabilities of individual lens model parameters as
labelled, and the wider bars represent the average of these values.

5.4 Likelihood cap for improving sample statistics

We now investigate the efficacy of placing a ‘log likelihood cap’
on the non-linear search, where this cap is estimated in a way that
seeks to smooth out likelihood spikes in parameter space. The cap
is computed by taking the maximum likelihood lens model of the
non-linear search inferred by the MT], search in the SLaM pipeline
and computing 500 likelihood evaluations using this model but each
with a different k-means seed. This process produces the histograms
shown in Fig. 4, which are fitted with a Gaussian whose mean then
acts as the log likelihood cap. We then repeat the final MT' search of
the pipeline (with identical parameters, hyper-parameters, k-means
seed, etc.), but any log likelihood evaluation now returns no more
than this value. If a log likelihood is computed above this cap, it is
rounded down to the cap’s value before it is returned to dynesty,
we note that this assumes that dynesty has not converged on a
local maxima in MT!. The yellow shaded contours in Fig. 5 show
the PDFs inferred by MT.,, using this log likelihood cap, which now
appear larger, smoother, and do not have undesirable properties such
as islands and discontinuities that are seen for the PDFs inferred
without this cap.

‘When performed on our 354 synthetic images, the final parameter
estimation now converges more consistently for different realizations
of noise (for the sake of visual clarity, Fig. 5 only shows one
PDF, but all six PDFs do now overlap for each data set). The
coverage probabilities for the 1D marginalized 68.7 per cent or 95 and
99 per cent credible regions have increased significantly for all lens
model parameters with the use of the likelihood cap (see Fig. 6 for the
comparison with and without the likelihood cap). On average, the true
lens model parameters are recovered 61 and 80 per cent of the time
at the 68.7 or 95 per cent credible regions, respectively. Although we
do not obtain full coverage, this is a significant improvement in error
estimation compared to not including the likelihood capped phase.
Furthermore, for each lens model parameter, we compare the mean

of the best-fitting values of the six noise realizations, and find that
these are recovered 74 per cent of the time at the 68.7 per cent credible
region on average for all parameters. This suggests that the likelihood
cap is producing errors that are consistent with the uncertainty due
to random noise in the image, and that our posteriors recover the true
values slightly less frequently than hoped due to systematic biases
in particular lens configurations that offset the inferred parameters
from the truth.
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Table 2. Best-fit physical parameters for SLACS lenses. These are derived quantities obtained from the varied

parameters of the lens mass model (Table B1). Lens light model parameters are presented in (Table B4).

Class Lens name REin, eft y q 13 yxt Xt
Gold J0008-0004 11579007 2.08%008 0727093 42 002370018 96713
J0029-0055  0.93470007  23pF003 0787006 22103 0.01370019 11t
J0157-0056 091270013 2237008 0567007 112738 01827003 102739
J0216-0813 118370014 1997005 0.8700 75122 0.009T012  2f]
J0252+0039  1.02470003 19270 0.89700F  111F3)  0.024700% 11778
J0330-0020  1.08870%%  2.15%002  0.79t00T  o4tll 0.041%002 54112
J0728+3835  1.2447000% 1997017 0.68T00 6573 0.0687007 61733
J073743216  0.97610903  2.28T097 086700 9673F  0.109T50T 10t
1082242652 11297001 2.170%8 0.547008 75749 0.17001 72788
J08414+3824 095675996 227702 0.697013 11773 01447007 117768
J0903+4116 126170003 2231005 088700 52T 0.0627001, 63735
J0912+0029  1.393%0000 2147003 0797000 27785 0.033T0010 126743
J0936+0913  1.0817000: 2137008 0797007 1347E% 006170017 105758
J0946+1006 140970900 2.0670:03 0.9%00, 68715 0.09T000; 68T
J0956+5100  1.31470007  2.05700; 079001 143F1%  0.06670003 53T,
J0959+0410  0.9857001%  2.08T07  0.5270Y 59733 0.038700%% 60Ty}
J1020+1122 1.065F050  245T00 0547000 131738 01597092 131132
J1023+4230  L4LLIT000 1957015 092700 17775 0.0237000, 6878
J1029+0420  0.94710:01 1431095 0627002 11173, 052700 100723
J1032+5322 1037000 211500 0.69%000 143737 0.03970015 167113
J1142+1001  0.908¥00%  2.03%01 0497006 144737 0217000 148729
J1143-0144  L6IITOON 215700y 073700 116738 0.0387000 166753
7120544910 1.218%000% 1927007 0747008 149%8% 0.0197001 99733
J1213+6708 132270018 2.87007 092100 3T 004570018 ofl2
J121840830 12174050 2351007 0357005 144f)d 0.353F000 140703,
J1250+0523 114470006 184T000 0917003 120772 0.024T001 13275
J14024+6321  1.349%0905  2.00M018 0727000 6338 0.0307001  1hY
J142046019 10757590 1.947000 0437002 11110 0.118T00% 1107
J1430+4105 148170002 2.027000 091700 12073y 0.088700%5  2270%)
J143246317 12847000 1797000 0.88700  102F17  0.09970018 115738
J1451-0239 09610011 220701, 0547005 30737 01937002 27739
152543327 1.2970003 1924006 0.50t000 117728 014700 8713
J1627-0053 121779902 2.08%008  0.84100 8128 001970007 6783
J1630+4520 179170008 1.96700s  0.83%001 70731 0.02370008 59178
122380754 1.2687000% 2077090 0.837003 137738 0.00470007 37132
1230040022 121970008 255T0OT0.62700 7438 0.004T001  9tEY
12303+1422  1.628%000T  2.00M008 053700 3414 0.002709T 17175
1234140000 1.338%0002 2127008 087003 81737 0.027700% 16775
Silver J0959+4416  0.972700% 257039 0.67101%  83h%  0.027700  88T3]
J101643859  1.00410026  223F005 0567013 92l 0217700, 11316
J1153+4612  1.020%0%0T 172t 0617003 10472 018170013 1011))
J1416+5136  1.24670018 2,000 0.73%000 103170 01521008 108+57
Bronze  J1103+5322 10657000, L797001  0.53%00r 491 o0a03t00n 0733

Further testing is necessary to understand the systematics that
result from the source discretization bias as well as any systematic
offsets in inferred lens parameters in particular lens configurations.
This would require a larger set of mocks than was simulated for
this study (see Section 7.4 for more discussion) and is beyond the
scope of this work. At present, it appears that the likelihood cap is

effective at improving the coverage probability of the 68.7 per cent
credible region (only 7 per cent shy of achieving coverage for lens
models parameters on average). Since the mock data was simulated
to be representative of the observed data, we assume this will be
true of the errors on the data adopting the same approach. As
such, all errors quoted in this work are those at the 68.7 percent
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Table 3. Best-fit physical parameters for BELLS GALLERY lenses. These are derived quantities obtained from
the varied parameters of the lens mass model (Table B2). Lens light model parameters are presented in (Table B3).

Class Lens name REin, efff Yy q ¢ y o

Gold 1002942544 1.347+0:014 2051002 0.65100T 128187 0.029100% 14974
JO11340250  1.329+0:006 L7750 075700 1782 00797001 1573
3020143228 1713104001 200109 078700y 12513 0.06370018  53TE7
J0237-0641 0.619700, LOITO® 079700 131539 0.02710033 6130
1074243341 1.2417000 2217006 029700 56735 01077001 4478
J0755+3445  2.07375000 L7708 053100 15T 0247000 28T
J0856+2010  0.95175:0% 2237008 036700 45135 01537098 93783
J091845105  1.645t0005 2387016 0787000 95T 0259700 12570%0
JI110+2808  0.90470057 2037007 0.8 77t 0423700 5517
J1110+3649 L1510l 2231000 0771002 174t 0.025T000 64738
JU64+0915  0.811700% 2207016 021700 86T4Y 03937003 8838
J14142216  1.28375:0%7 213709 0587000 s7He 0.043700%8 38+
J1201+4743 11717500 2.7470% 0.82700¢ 13073, 0.069T000 4273
1122645457 1.39870-004 224100086700 130155 018970013 1567078
1222841205 1.21750 22104 0511 0s 116750 020275028 141137
12342-0120 1.09179:000 2347000 0447007 114138 0.13700% 94758

credible region of the PDFs inferred by the likelihood capped MT!
phase.

6 RESULTS

6.1 Automation

We now inspect the results of our automated modelling procedure
on the SLACS and BELLS GALLERY samples and quantify what
fraction of lenses were fitted with a reliable lens model without
human intervention. To facilitate this, we visually inspect every lens
model, first after the SP pipeline and then again on completion of the
uniform procedure. We label the final model of every lens in one of
four categories:

(1) Gold (54/59): The fit represents a physically plausible model
of the lens and source.

(ii) Silver (4/59): The fit represents a physically plausible model
of the lens and source. However, achieving this required changes to
data pre-processing that may not be easy to automate (e.g. masking,
lens light subtraction), and may degrade the quality of the inferred
lens model.

(iii) Bronze (1/59): The fit represents a physically plausible model
of the lens (with the correct number of multiple images), but other
features in the data (e.g. residuals from lens light subtraction) visibly
degrade the quality of the source model.

(iv) Failure (0/59): The fit produces a physically implausible lens
model (e.g. with an incorrect number of multiple images).

After a first blind run, we find nine galaxies outside the ‘Gold’
sample. In eight/nine cases, they went wrong during the first SP
pipeline. We determine what went wrong, describe simple interven-
tions and rerun the pipeline. Our interventions successfully move
all of these lenses into the ‘Bronze’, ‘Silver’, or ‘Gold’ categories.
Through this process, we suggest ways to reduce the failure rate in
analyses of future large samples of lenses. For future analysis of large
lens samples, one can anticipate undergoing this process on a subset
of lenses before modelling the full sample.

If a lens ends up in the ‘Gold’, ‘Silver’, or ‘Bronze’ categories,
we consider its effective Einstein Radius R, i to be measured
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accurately. If a lens is in the ‘Gold’ or ‘Silver’ categories, we also
consider more detailed quantities of the mass model (e.g. the slope
y) to be reliable. Indeed, we shall find our best-fit models broadly
consistent with those from previous literature, in Sections 7.2 and 7.3.

6.1.1 Fully automated success

We immediately place 50/59 lenses (85 per cent) in the ‘Gold’ sample
after the first blind run of our uniform pipeline. These models
show low levels of residuals and physically plausible source galaxy
morphologies. Best-fitting model parameters are listed in Tables 2
(SLACS) and 3 (GALLERY), and reconstructions are shown in
Appendix C.

6.1.2 Semi-automated success

Fits to 4/59 lens systems converge to models with the wrong number
of lensed images. In all four cases, the fits incorrectly converge to a
highly elliptical mass distribution early in the SP pipeline, and could
not recover the better solution in the SI or subsequent pipelines.
The model of J1451-0239 fits four images to what is (by eye) a
two image system (Fig. 7). Fits to J0237-0239 and J0856+4-2010
converge to single-image models, each missing a central counter-
image that is close to the centre of the lens galaxy and therefore
difficult to disentangle from the lens galaxy’s light (Fig. 8). The
model of J0841+-3824 is multiply imaged, but its very faint counter
image is in the wrong location (Fig. 9).

We fixed this by rerunning the pipeline for these lenses, but
restricting the SP? phase to more circular mass models via a uniform
prior ¢; € [— 0.2, 0.2] instead of a Gaussian with o = 0.3. To better
find the global maximum likelihood solution for lenses J0237-0239,
J0841+3824, and JO856+2010, we also increased the number of
dynesty live points to 600 from 200 in SP? (this was not necessary
for J1451-0239, where a change has no consequences other than
increased runtime). With these settings, the automated modelling
procedure is a success and the models (also shown in Fig. 1) are
moved into the ‘Gold” sample.

These fits can be easily fixed by a more restrictive (or an all-round
better) early initialization. Our solution of forcing fairly circular
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(a) Unsuccessful model fit in the Source Parametric pipeline.
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(b) Successful model fit on completion of the pipeline.

Figure 7. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the mass distribution to &;
€ [— 0.2, 0.2], the system is fitted successfully, and is classified as a ‘Gold’ model.
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(a) Unsuccessful model fit in the Source Parametric pipeline.
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(b) Successful model fit on completion of the pipeline.

Figure 8. (a) Model fits for the systems that fail to fit the counter image in the Source Parametric phase. (b) After tightening the prior on the elliptical components
of the mass distribution to &; € [— 0.2, 0.2], the systems are fitted successfully, and are classified as ‘Gold’ models.
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(a) Unsuccessful model fit in the Source Parametric pipeline.
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(b) Successful model fit on completion of the pipeline.

Figure 9. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the mass distribution to &;
e[ — 0.2, 0.2], the system is fitted successfully, and is classified as a ‘Gold’ model.

models works well for early-type galaxy lenses, but would need
to be rethought if the sample could include late-type galaxies with
(edge-on) discs. Since spectroscopic lens detection techniques also
identify the lens galaxy type, a different prior could be used for each.

For now, we conclude that the biggest challenge of scaling up lens
modelling to large samples is fitting an initial physically plausible
lens model. Once a simple lens model is correctly initialized,
nothing prevents subsequent convergence of increasingly complex
distributions of source light and lens mass. We shall discuss this
further in Section 7.1.

6.1.3 Success with human intervention

Fits to 3/59 lens systems converge to a model in which imperfect lens
light subtraction has left a spurious residual ring of lens light that
becomes considered part of the source. This again happens during the
early SP pipeline, after which the Sérsic model of the source is too
large (Fig. 10a). Subsequent pixelized source models also include the
residual lens light. Unlike the previous failure modes, we could not
find small changes to the automated pipeline that fix these model fits.

For lenses J1153+4612, J1016+4-3859, and J0959+4416, we
instead use the b-spline subtracted data (Section 3.2). These versions

MNRAS 517, 3275-3302 (2022)

220Z JaqWIBAON | Z U0 Jasn weyin( Jo Ausiaaiun Aq 18€0129/S/ZE/S/ L S/a1o1le/seluw/wod dno-olwapeoe//:sdiy Wwolj papeojumo(]


art/stac2639_f7.eps
art/stac2639_f8.eps
art/stac2639_f9.eps

3288  A. Etherington et al.

Subtracted Image Residuals
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(a) Unsuccessful model fit in the Source Parametric pipeline.
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(b) Successful model fit on completion of the pipeline.

Figure 10. (a) Model fits for the lens systems that fail to fit successful models in the Source Parametric pipeline as a result of bad lens light subtractions. The
model reproduces lens light emission that remains in the subtracted image and significant residuals can be seen, where the source emission is being ignored by
the model. (b) For these systems, we replace the data with b-spline subtracted data and use custom masks to arrive at successful model fits classified as ‘Silver’

models.

pre-subtract the lens galaxy’s light more cleanly than our double
Sérsic fit. Even then, we mask small remaining residuals near the
centre of J11534-4612 and J1016+3859. We finally refit all three
lenses using the version of the pipeline (which was also for the mock
data) that does not fit the lens light. This results in successful models,
as assessed by our visual inspection criteria (Fig. 10b). Although we
arrive at successful model fits, we categorize these lenses in the
‘Silver’ sample, because the lens light was not fitted in a Bayesian
manner.

The fit to 1/59 lens systems includes a counter-image that repro-
duces aresidual knot of lens light emission instead of the adjacent but
fainter true counter-image (Fig. 11). It can be fixed by masking the
knot of lens light and rerunning the pipeline. However, this process
would be difficult to automate with monochromatic imaging, so we
place J14164-5136 in the ‘Silver’ sample.

6.1.4 Remaining problematic lens

The lens J1103+4-5322 is the only system that is unable to pass our
visual inspection criteria on completion of the uniform pipeline. In
the SP pipeline, the model fits an appropriate model that fits the
global lensed structure of the source, however significant residuals
are present in the fit. The lens light subtraction leaves a quadrupole-
like feature in the centre of the subtracted image as well as flux
extending past the Einstein-ring feature. The SP pipeline is able to fit
amodel that fits solely to the source light, however continuation of the
pipeline leads to a final model that reconstructs the lens light residual
structure, which in Fig. 12 can be seen to extend far beyond the
emission from the source. This feature could impact the measurement
of parameters, which depend on the gradient of the flux in the lensed
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source like the slope of the mass model. Replacing the data with the b-
spline subtracted data resulted in similar residual lens light emission
being reconstructed by the source galaxy. Nevertheless, we believe
that this model estimates Rgiy o accurately, our measurement is
within 5 per cent of previous literature measurements (see Section 7.2
for a discussion on the expected uncertainty between these methods).
As a result, we place this lens in our ‘Bronze’ sample.

6.2 Statistical uncertainty on measurements

6.2.1 Effect of the likelihood cap

In Section 5, we demonstrated the necessity of a likelihood capped
phase (MT. ) to increase the formal statistical errors inferred by the
non-linear search such that they better recovered the true parameters
on mock data. We now quantify the effect this phase has on the
uncertainties inferred on real data (see Fig. 13 for its affect on the
density profile slope errors). On average, we find that this approach
has increased the inferred non-linear search errors by a factor of
~5, as assessed by the median of individual factor increases for all
mass model parameters. We quote the median increase to avoid bias
from five lenses whose errors increase by a factor of over 1000 upon
introduction of the log likelihood cap. On investigation, we found
these lenses correspond to those with the largest difference between
the likelihood inferred in MT! and the likelihood cap applied to
MT!, (defined as the mean of 500 repeated likelihood evaluations
with the same mass model, but different data discretizations).
Hence, these lenses are the ones that were in the most ‘likelihood-
boosted” regions of parameter space and as a result significantly
underestimated the error. In the most extreme example, J0755+3445,
the error inferred on the slope parameter with a likelihood cap is
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(b) Successful model fit on completion of the pipeline.

Figure 11. (a) Model fits for the lens system that misses the counter image, instead fitting a counter image to lens light residuals. (b) The lens requires rerunning
with our own double Sérsic subtracted data using the without lens light pipeline, as well as a custom mask to arrive at the successful ‘Silver’ model fit.
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(a) Successful model fit in the Source Parametric pipeline.
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(b) Unsuccessful model fit on completion of the pipeline.

Figure 12. (a) The single lens J1103+5322 is successful on completion of the Source Parametric pipeline, the parametric source avoids fitting to lens light
residuals that remain in the subtracted image. (b) However, on completion of the pipeline the pixelized source reconstruction is unable to avoid fitting to these

residuals, leading to this lens’s classification of ‘Bronze’.
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Figure 13. Comparison of the distribution of inferred slopes (left) and their
associated 1o credible region (right) with and without a likelihood cap applied
to the non-linear search.

64453 times larger than that inferred without a cap (see Ritondale
et al. 2019, for a discussion of this lens). This highlights the scale at
which the certainty of parameters can be incorrectly inferred without
consideration of the source discretization bias. Further quantification
of the average errors inferred at the 68 per cent credible region for
each mass model parameter with and without a likelihood cap is
given in Table 4.

Of all the mass model parameters, the likelihood cap has the
largest effect on the density profile slope. The median factor increase
in the error size before and after the cap is 24. The distribution of the
68 per cent credible region errors with and without the cap are plotted
in the right-hand panel of Fig. 13. Notably there are two extreme
outliers in the distribution of errors inferred without a cap, that are
the two largest errors inferred across both distributions. For the lenses
J10164-3859 and J0959+4416, both of which were replaced with b-
spline subtracted data as an intervention to achieve model fits, the
error actually decreases when the likelihood cap is applied. Although

Table 4. Summary of the average 68 per cent credible region
errors inferred for all mass model parameters with and without
a likelihood cap applied to the non-linear search.

Mean error Median error
cap withoutcap cap without cap

Model parameter

b 0036 0010 0027  0.005
y 0087 0014 0079  0.002
£ 0039 0010 0028  0.005
& 0038 0025 0031 0015
View 0018 0005 0016  0.003
Voew 0019 0009 0017 0004
Xe 0016 0006 0014  0.003
e 0016 0004 0013 0004

the uncertainty on the slope measurement is in general, as expected,
significantly increased in MT., relative to MT!, the distribution
of slopes inferred does not change significantly (left-hand panel of
Fig. 13). The mean increases from 2.08 to 2.12 and the standard
deviation increases from 0.21 to 0.24.

We derive errors on the effective Einstein radius by calculating
a posterior PDF from all possible effective Einstein radii given
the accepted non-linear search samples and their weights. We find
the inclusion of the likelihood cap increases the mean 68 per cent
credible region error on the effective Einstein radius from 0.3 to
1.1 per cent, and does not affect the distribution of R;, o we infer
(see Fig. 14). This suggests that, on average, the Einstein radius
can be measured to ~1 per cent uncertainty, taking into account
uncertainties in the noise and source discretization. We note that this
does not account for any systematic error that would result from
discrepancies between the assumed mass model and the underlying
mass distribution. However, although the mean uncertainty on Rg;n, cfr
is low, two lenses (JO841+4-3824 and J1116+0915) have anomalously
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Figure 14. Comparison of the distribution of inferred Einstein radii (left)
and their associated percentage error at the 1o credible region (right), with
and without a likelihood cap applied to the non-linear search.

large uncertainties of 8.6 and 6.6 per cent, respectively. Hence, for
some lens configurations it appears the Einstein radius can not be
determined with such certainty. This may be an indication that the
underlying mass distribution for these lenses is more complex than
the PLEMD that we assume in our model fits. This seems reasonable
for these two lenses since JO841+3824 is one of the few disky
galaxies in the sample with obvious extended spiral features in the
data, and J1116+0915 contains a visible mass clump to the North of
the lens that we do not fit for with our uniform approach.

6.2.2 What drives the precision of a lens model?

To investigate what properties of the lens or data (if any) drive the
precision of the lens model, we measure correlation coefficients
between statistical uncertainty on the effective Einstein radius and
observable properties of the lens galaxy: including the Einstein radius
itself, the ratio of the Einstein radius to the effective radius, the lens
redshift, the velocity dispersion of the lens, and the peak S/N of the
source (Fig. 15). Linear fits show no clear trend with most of these
parameters. The only non-negligible correlation (defined as a non-
zero gradient with >3o significance) is with the Einstein radius. The
correlation remains when we repeat the linear fit removing the two
uncertainties that are larger than 5 per cent that could bias the relation,
although the effect size does reduce by over a third (Table 5).

7 DISCUSSION

7.1 Can we truly leave no lens behind?

The success of our uniform pipeline makes us optimistic for the
future of automated strong lens analysis. We initially fitted 50/59
(85 percent) lenses in a blind run. We increased this to 54/59
(92 percent) ‘Gold’ lenses after tweaking model priors, 58/59
(98 percent) ‘Gold’” or ‘Silver’ lenses with some pre-fitting and
masking of lens light, and 59/59 (100 per cent) including one suc-
cessful model of the lens whose model of the source includes poorly-
subtracted residuals of lens light. With just one pipeline, we have
inferred parameters for 59/59 lenses that measure the lens galaxy’s
Einstein radius and other mass distribution parameters (of the power-
law profile with an external shear we assume) that depend on only
the first derivative of the potential of the lens galaxy. For 58/59
systems, we measure parameters describing their mass (including
the parameters that depend on the gradient of the source flux such
as y). As well as this, we reconstruct a de-lensed image of the
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Figure 15. Inferred percentage errors on the Einstein radii at the 68 per cent
credible region as a function of observable properties of the lens galaxy, and
the S/N of the source. Parameters for linear fits to these data are given in
Table 5.

Table 5. Linear fit results for the correlations with the uncertainty on the
Einstein radius. Errors quoted on the gradient and intercept are the lo
confidence intervals.

Parameter Gradient Intercept
REin, efr (arcsec) —0.027 £ 0.007 0.044 £+ 0.008
REin, eff (arcsec) [>5 per cent —0.017 £+ 0.004 0.029 + 0.004
removed]

peak source S/N 0.0+ 1.0) x 107 0.011 £ 0.004
REin, eft/REft (—64+£4.0) x 10~ 0.015 £+ 0.004
Zlens 0.0 £0.01 0.010 £ 0.004
o (kms™h) (34437 x 102 0.020£0.010

source galaxy enabling study of its morphology. For 54/59 systems,
we measure parameters describing their mass distribution and light
distribution (as a double Sérsic profile) as well as reconstructing a
de-lensed image of the source galaxy.

The most challenging step in automating lens modelling is in
the initial estimation of a simple lens model (in this work, we
use an SIE plus shear). Notably, once our early SP phases arrived
at a successful fit to this model, the rest of our pipeline always
ran to completion, successfully increasing the model complexity.
We therefore recommend that effort to further improve automation
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should focus on ‘lens model initialization’ and find ways to avoid
or flag the problematic solutions that occur at early stages of the
analysis. Provided that our sample of lenses is representative of the
larger population of lenses that will be discovered by future surveys,
this strategy will lead to a high success rate for even complex mass fits
and reduce the need for visual inspection of the results. An obvious
starting point to improve lens model initialization by PyAutoLens
would be to further simplify the non-linear parameter space of the
SP pipeline, for example by assuming models for the lens and source
light with fewer parameters (e.g. Massey & Refregier 2005; Birrer,
Amara & Refregier 2015; Tagore & Jackson 2016; Bergé et al.
2019).

Convolutional neural networks (CNNs) have also been suggested
as a fast method for automated lens fitting (Hezaveh et al. 2017;
Levasseur et al. 2017; Morningstar et al. 2019). They provide
a particularly compelling solution to the problem of lens model
initialization. For example, Pearson et al. (2021) combined a CNN
with PyAutoLens, using models from the CNN to initialize the
mass model priors of a PyAutoLens model-fit. In the majority of
cases tested on mock data, the authors argued that a combination of
the two methods outperformed either method individually. Indeed,
the strengths of a CNN (fast run-times, avoidance of unphysical
solutions) complement, the weaknesses of Bayesian inference ap-
proaches like PyAutoLens. It is conceivable that a CNN could
replace PyAutoLens’s initial lens model fits altogether and allow
the method to focus entirely on fitting more complex lens models
with well characterizd errors: a task better suited to PyAutoLens’s
fully Bayesian approach than a CNN. At least, a CNN might be able
to identify and isolate which lenses will eventually make the gold
sample, and reduce manual intervention Maresca et al. (2020). CNNs
will also have an as-yet unquantified fraction of failures. If the lenses
where a CNN fails are different to where traditional model-fitting
approaches fail, combining the two may be key to maximizing the
success rate of lens model initialization.

The second major challenge for automated lens modelling is
deblending the foreground lens light. Within our sample, PyAu-
toLens could not deblend the lens and source light in 3/59 systems,
and required visual inspection to recognize these bad fits. In these
cases, we instead used b-spline fits that were created via a time-
consuming manual process. This issue will be more prevalent in
Euclid, owing to its lower spatial resolution than HST and lens
samples with smaller Einstein radii (Collett 2015) — both of which
move the source’s light closer to that of the lens. Furthermore, our
analysis included pre-processing steps that manually removed the
light of foreground stars and interloper galaxies via a GUI, a task
which is overly time-intensive for an individual scientist to perform
on larger samples of lenses.

We propose two directions for future work that could improve
automatic deblending. First, there are CNN architectures dedicated
to the task of image deblending and segmentation (these architectures
do not attempt to estimate the lens model parameters). These have
been applied successfully on galaxy catalogues (Burke et al. 2019;
Hausen & Robertson 2020) and in studies of strong lenses (Rojas et al.
2021) with multi-wavelength imaging seen to improve debelending
quality. Alternatively, this task seems well suited to citizen science
(Kiing et al. 2015; Marshall et al. 2016; More et al. 2016), whereby
members of the public could use a GUI to mark-out regions of the
data they believe correspond to the lens, source and other objects. The
desired outputs of either approach are pixel-level masks describing
where the source, lens and other objects are in the image data, which
could be used for the automated removal or masking of contaminating
light before lens modelling begins.

Automated strong lensing 3291

v
0.1 4
- * *
=m
X 00 L - i-_?_b'.‘?ﬁ+_
s «® " b
=
& ~0.1 4 *
25
& 024
X
70v3 -

T T T T T T T T
02 03 04 05 06 0.7 0.8 0.9

qAL

Lens Name
J0959+4416 J0912+0029 & J1420+6019 A JO113+0250
J1016+3859 J0936+0913 J1430+4105 < J0201+3228
J1153+4612 J0946+1006 A J1432+6317 » J0237-0641
® J1416+5136 J0956+5100 J1451-0239 ® J0742+3341
J0008-0004 A J0959+0410 J1525+3327 v J0755+3445
J0029-0055 m J1020+1122 Vv J1627-0053 <« J0918+5105
v J0157-0056 +  J1023+4230 B J1630+4520 » J1110+2808
> J0216-0813 J1029+0420 12238-0754 J1110+3649
X J0252+0039 J1032+5322 — J2300+0022 J1116+0915
J0330-0020 J1142+1001 J2303+1422 J1141+2216
J0728+3835 J1143-0144 12341+0000 J1201+4743
#*  J0737+3216 J1205+4910 J1103+5322 ® J1226+5457
@ 10822+2652 J1213+6708 W J1402+6321 ®  J2228+1205
J0841+3824 J1218+0830 v  J0029+2544 12342-0120

J0903+4116 4 J1250+0523

Figure 16. The Einstein radii measured by PyAutoLens (R]’;h) are

generally consistent with those measured by previous analyses of the SLACS
(Bolton et al. 2008a) and GALLERY (Shu et al. 2016¢) lenses (Rgn) This
shows the fractional difference between new and old measurements, as a
function of PyAutoLens axial ratio, gar .

7.2 Einstein radius measurements and uncertainty

The statistical precision with which the Einstein radius can be mea-
sured is promising for many possible scientific studies. For example,
Sonnenfeld & Cautun (2021)’s proposed method to constrain the
population-level parameters of lens galaxies relies on being able
to accurately measure the Einstein radii of the sample of galaxies.
Previous studies have attempted to account for the very small formal
statistical uncertainties on model parameters (in particular those
inferred with parametric source methods) and associated systematic
uncertainties by comparing the fractional difference of parameter
estimates using different approaches. Bolton et al. (2008b) and
Sonnenfeld et al. (2013b) reported a typical expected systematic
uncertainty on the Einstein radius of ~2-3 per cent. This value of un-
certainty is often adopted over (or combined with) those determined
from the non-linear search. Furthermore, given the Einstein radius is
expected to be a model-independent quantity (Falco, Gorenstein &
Shapiro 1985; Unruh, Schneider & Sluse 2017; Cao et al. 2020),
it is typically assumed that this amount of uncertainty accounts for
differences in the assumed parametrization of the mass model.

7.2.1 Einstein radii compared to previous measurements

In a similar fashion to Bolton et al. (2008b) and Sonnenfeld et al.
(2013a), we now compare our measurements of Einstein radii with
those that exist in the literature (see Fig. 16) and estimate the
uncertainty introduced as a result of the different methods. The full
SLACS and GALLERY samples have previously been modelled
with SIE profiles to measure the Einstein radii for supplementing a
dynamical analysis of the lenses (SIE models of SLACS by Bolton
et al. 2008a and SIE or SIE + shear models of GALLERY by Shu
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et al. 2016¢). In this comparison, therefore, not only are the lensing
methods very different, but we have also assumed the more complex
PLEMD plus external shear (PL 4 ext) mass distribution for the
lens galaxy. Compared to these previous measurements, we find
Einstein radii with root mean square (RMS) fractional difference
of 7.4 per cent. This is larger than the (empirically motivated) ~2—
3 per cent uncertainty that is typically assumed.

Several differences between the methods could lead to variation
between their inferred Einstein radii. Bolton et al. (2008a), and Shu
et al. (2016c) model the background source using either a single
or multiple Sérsic ellipsoid components, and both choose different
approaches to the lens light subtraction procedure than the one we
adopt. While Bolton et al. (2008b) and Sonnenfeld et al. (2013a)
investigated differences like these, neither were concerned with
differences in the assumed mass model. Indeed, for a subset of 14
lenses that were also analysed by Shajib et al. (2021) assuming a
PL + ext model, the RMS fractional difference is only 1.6 per cent,
it may be that the reduced uncertainty is a result of fitting the same
mass model. Although, this is not of concern if the Einstein radius is
indeed model-independent. For this Cao et al. (2020) provide good
evidence, showing that the assumption of the PL + ext exhibits only
0.05 £ 0.17 per cent systematic error on the Einstein radius relative
to complex ‘MaNGA’ mock data.

Notably, though, we find that five of the six lenses whose Rp;,
differ by over 10 per cent in the SLACS and GALLERY samples are
accompanied by extremely large values of external shear magnitude
(ranging from 0.16 to 0.39) when fitted with our PL + ext models.
If these high-shear lenses are removed from the comparison, the
RMS fractional difference drops to 4.2 per cent. Cao et al. (2020)
also demonstrated that the asymmetry in complex mass distributions
can lead to the inference of spurious external shears. On average,
they inferred an external shear magnitude of 0.015, despite the
mock data being generated without external shear. In this work,
we infer an average of 0.096 shear magnitude for the SLACS and
GALLERY lenses. These large shear values may be partly a result
of the additional complexity in the asymmetry of real lenses. Cao
et al. (2020) required the multiple Gaussian expansion components
that represented the stellar mass to share a common axial ratio and
position angle — this may not be a realistic representation of the
angular structure of real lenses (Nightingale et al. 2019). Given that it
is the lenses with high-external shears that differ most from previous
literature measurements of Rg;,, we speculate that the assumption of a
different mass model (in particular the assumption of external shear)
may drive the larger fractional uncertainty. This would imply that
the Einstein radius is less model-independent than is often assumed.
Further work to test this hypothesis would be valuable.

7.2.2 Statistical uncertainty on Einstein radii

We now consider the size of the errors we measure on the Ein-
stein radius, based entirely on our own PL + ext models. Our
likelihood cap method (Section 5) addressed the small formal
statistical uncertainties on the mass model parameters and allows
us to infer uncertainties that account for differences in possible noise
realizations and the choice of data discretization. Moreover, since
pixel-grid methods have the flexibility to reconstruct the source with
as much complexity as the data needs, they are not subject to the
overfitting that occurs in parametric source methods due to overly
simplistic source assumptions. With this approach, we measure a
mean uncertainty on the inferred Einstein radius of ~1 per cent,
albeit with a wide range of outliers, and 2/59 lens configurations
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exceeding 5 per cent. Adopting a uniform uncertainty could therefore
be problematic for some statistical inferences.

For example, determining the population level parameters of
hundreds of thousands of lenses, as described by Sonnenfeld &
Cautun (2021), Sonnenfeld (2021), Sonnenfeld et al. (2013a) might
suffer from such inaccurate individual posteriors as those with up to
5 per cent uncertainty on the Einstein radius. The increase in the width
of the posteriors inferred as a result of the likelihood cap approach
demonstrated in this work should avoid biases in the population level
parameters constrained in studies such as these. However, they will
in turn increase the amount of lenses required to be able to make such
a constraint. Moreover, the coverage probabilities of the lens model
parameters with a likelihood cap (see Fig. 6) did not quite reach
the expected level, potentially indicating an under confidence in the
posterior. Under confidence in the posterior could lead to biases in
estimates of the population parameters such as an overestimate in the
scatter of the population (Wagner-Carena et al. 2021). We discuss
the importance of further testing of the confidence of the individual
posteriors further in Section 7.4.

For comparison, Cao et al. (2020) inferred an average of
0.01 per cent statistical uncertainty on the Einstein radius when fitting
to mock data simulated using ‘MaNGA’ galaxies without the use
of a likelihood cap. This order of magnitude difference from the
uncertainties inferred in this study is likely a combination of the
use of the likelihood cap increasing the errors in this work, and
differences in the quality of the data. Cao et al. (2020)’s mock lensed
sources are simulated with S/N of 50 and have visible extended arcs
(or complete Einstein rings) that the lenses with the largest errors on
Rpgiy inferred in this work do not often appearing closer to point-like.
Furthermore, they do not include the lens galaxy’s light, a component
which we have shown in this study can hinder the lens model fitting
procedure.

Based on the empirical relations we derived in Section 6.2.2, the
certainty to which one can measure the Einstein radius is remarkably
independent of a number of data properties and galaxy observables.
For example, it might be expected that a higher S/N source galaxy
image would tighten the constraints, however this does not appear to
be the case for the Einstein radius measurement. This is encouraging
for future surveys that will not achieve as high S/N as the HST data
used in this study.

The only parameter we investigate that exhibits a statistically
significant correlation with measurement uncertainty on the Einstein
radius is the Einstein radius itself. Measurements of the Einstein
radius become less certain for small Einstein radii, and therefore low-
mass galaxies. This could also be relevant for surveys such as Euclid
that are forecast to detect samples of lenses with smaller Einstein
radii (typically ~0.5 arcsec according to Collett 2015). Interpolating
from our empirical relationship, fitted to the sample excluding the two
with anomalously large uncertainty, a lens with this Einstein radius
should be measurable to ~2.1 per cent accuracy. However, since the
pixel-scale and PSF of the Euclid VIS instrument are roughly twice
that of HST, this should be considered a lower limit.

7.2.3 Implications for studies of galaxy evolution

Notably, there does not appear to be a correlation between the lens
redshift and measurement uncertainty on the Einstein radius. This
highlights the power of strong lensing as a tool for investigations
into galaxy evolution. If the lensing measurements do not degrade
with redshift, then inferences of how galaxy properties evolve will
be well constrained even to high redshift. This is in contrast to
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Figure 17. The statistical uncertainty on a galaxy’s total mass, when mea-
sured from its effective Einstein radius, does not degrade with lens redshift z <
0.7 (top panel). This is in stark comparison to most astrophysical observables.
For example, the uncertainty on a galaxy’s total mass when measured from
stellar dynamics (velocity dispersion) increases for more distant galaxies
because of cosmological dimming and beam smearing (bottom panel).

e.g. stellar dynamics data, where cosmological dimming effects
reduce the certainty of the stellar velocity dispersion (and therefore
dynamical mass) of distant galaxies. The increase in fractional
uncertainty of the velocity dispersion, o ,/o within our SLACS and
GALLERY samples is shown in Fig. 17. Within both samples o ,,/o
increases with redshift (the difference in fibre apertures used for
SLACS and GALLERY means direct comparison of their errors is
not straightforward, albeit they still highlight that in general higher
redshift galaxy measurements are lower S/N).

This creates an interesting dichotomy between using strong lensing
to study galaxy evolution and other methods. In lensing, provided
we are able to find the lenses at the highest redshifts (surveys such
as Euclid and the Vera Rubin Observatory will observe lenses at
redshift of up to ~2 (Collett 2015)) we can anticipate that we
will be able to measure their properties as well as those at lower
redshifts. Issues that plague comparisons between the properties of
low and high-redshift galaxies via a technique like stellar dynamics,
for example beam smearing Tiley et al. (2019), will therefore be
less problematic. However, whilst comparing their properties may
be more straightforward, strong lens samples will have complicated
selection effects Sonnenfeld (2022) that a carefully constructed
dynamics sample can more easily mitigate. The reduced lensing
efficiency of lower mass galaxies may also restrict the high-redshift
samples to only the most massive galaxies, albeit this is a limitation
for most observing techniques. A strength of lensing, therefore, is
that it offers a different means by which to study galaxy evolution
that complements the strengths and weaknesses of other techniques.

7.3 Measurements of other lens model parameters

In addition to the total mass enclosed within the Einstein radius,
strong lensing information also constrains quantities like gradients
of the distribution of mass, and the amount of external shear. This
is captured in a model-dependent way via the parameters of our
PL + ext mass model (see Sonnenfeld & Cautun 2021 for a model-
independent expression of this information). We shall now compare
our measurements of radial density gradient y and shear magnitude
y ' to measurements made using previous independent analyses of
overlapping sets of lenses.

Shajib et al. (2021) modelled 23 SLACS lenses, including 14 in
our sample. Like us, they used a uniform pipeline that simultaneously
modelled the distribution of mass and light. They too described
the lens galaxy’s light as a double Sérsic profile whose centres are
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Figure 18. Our measurements of the density profile slope (left) and the
magnitude of external shear (right) in SLACS lenses, compared with previous,
independent measurements by Shajib et al. (2021).

aligned. However, unlike us, they fixed the Sérsic index of each to
values of n =1 and n =4 (the exponential and de Vaucouleurs profiles
respectively) and join the axis ratios of the two profiles. A major
difference in the two techniques lies in the source reconstruction;
Shajib et al. (2021) reconstructed the source using a Sérsic profile
and shapelet basis functions.

For all but one lens, Shajib et al. (2021) and our measurements of y
and y ' are consistent (Fig. 18). For the discrepant lens J2300+0022,
PyAutoLens infers y = 2.55 and y*** = 0.08, compared to Shajib
etal. (2021)’s y = 1.85 and y**' = 0.03. We believe this discrepancy
could be a result of the different order of operations in a model fit.
Shajib et al. (2021) initialize their lens model assuming ' = 0.0
and relax this assumption once other components of the model are
fit. In contrast, the first mass model we fit in our analysis assumes
priors on the shear parameters that allow values up to y<* = 0.2.
Indeed, for J2300+0022 our search yields a best-fit shear of y*' =
0.07. Discarding this lens, we find a mean difference of —0.07 4= 0.07
between the slopes inferred by the two methods, where the error is
propagated from the standard error on the means of the two samples.
On average, PyAutoLens measures slightly shallower slopes than
Shajib et al. (2021), although this is not a significant difference — the
mean discrepancy for the sample is consistent with zero at the current
uncertainty level. A larger sample of measurements may be able to
discern if there are systematic differences introduced on the density
slope as a result of the lensing technique. We note that we measure
a scatter of 0.17 between the slope measurements suggesting there
may be systematic uncertainty between the two methods.

Ritondale et al. (2019) modelled 17 GALLERY lenses, including
15 in our sample. Although they do not adopt a uniform analysis
pipeline, their lens modelling technique more closely resembles
ours, because they reconstruct the source galaxy using a pixelization.
On average, PyAutoLens measures a 0.13 4= 0.21 steeper density
slope (Fig. 19). The scatter in this difference is comparable to the
average uncertainty that we infer for the GALLERY lenses (0.11) but
an order of magnitude larger than the average uncertainty inferred
by Ritondale et al. (2019) (left-hand panel of Fig. 20). In fact,
the uncertainties inferred by Ritondale et al. (2019) more closely
resemble those from PyAutoLens before we used a likelihood
cap to avoid source discretization bias (Section 5). This suggests
that discretization bias may also affect the pixelized-source method
of Ritondale et al. (2019). Conversely, the uncertainties derived by
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Figure 19. Our measurements of the density profile slope (left) and the
magnitude of external shear (right) in BELLS GALLERY lenses, compared
with previous, independent measurements by Ritondale et al. (2019).
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Figure 20. The statistical uncertainty on measurements of the radial gradient
of the total lens mass, reported by PyAutoLens are similar to those found
by Shajib et al. (2021) for SLACS lenses (left). However, the uncertainty
reported by Ritondale et al. (2019) for GALLERY lenses (right) is an order of
magnitude smaller. That method uses a pixelized source, and may be subject
to the source discretization bias that we discuss in Section 5.

Shajib et al. (2021), whose analytic approach to source reconstruction
can not be affected by discretization bias, are similar to ours with the
likelihood cap (right-hand panel of Fig. 20).

It is reassuring that independent analyses yield results that are
consistent in many ways. However, the relatively small number of
lens systems in common to multiple analyses prevents much more
detailed comparison between codes or modelling assumptions. The
inconsistencies in other aspects of results highlights an urgent need
for larger-scale tests.

7.4 Large-scale tests of lens modelling

A vital but unintended consequence of this paper, is a solution
to, and better understanding of the source discretization bias that
previously caused parameter uncertainties to be underestimated.
This occurred in both synthetic and real lenses, as a result of noise
in the likelihood evaluations of methods using a pixelized source
reconstruction (due to particular alignments of source pixels being
arbitrarily more or less penalized by regularization). Our likelihood
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cap solution successfully reduced noise and smoothed posterior
PDFs. It increased the size of our uncertainties such that they had
roughly the expected level of coverage, and improved the recovery
of all parameters in our synthetic data. Although the likelihood cap
was determined in an empirical way, the size of the inferred errors
is inherently linked to this choice of likelihood cap. It may be that
a different choice of likelihood cap could provide better coverage
probabilities than the one we adopted. Further investigation would
be warranted to understand at a deeper level what causes these spikes
in likelihood in pixelized source reconstructions, as improvements
may be possible by changing the approach to pixelizing the source
plane, or regularizing the pixelized source.

Our work shows the importance of testing strong lens modelling
methods on larger samples than previously attempted. Even our mock
sample comprising six noise realizations of 59 lens configurations
yields insufficient statistics to determine whether the inferred central
values and statistical uncertainty on mass model parameters are
consistent with the expectations of drawing each measurement from
a normal distribution. Equally, whilst there is evidence for small
systematic biases in the estimates of certain mass model parameters,
we do not have enough unique lens configurations to determine
the primary causes. Given that we are just a few years away from
modelling samples of tens of thousands of lenses tests of strong
lens modelling methodology on synthetic data with complex mass
distributions (e.g. Mukherjee et al. 2018; Enzi et al. 2020; Cao et al.
2022; He et al. 2022) must now scale up to ensure that error estimates
are robust and systematic biases understood.

7.5 Computational costs

Every SLACS and GALLERY lens modelled in this work was
analysed using a single 2x Intel Xeon Gold 5120 x @ 2.20GHz
CPU on the Distributed Research Utilising Advanced Computing
(DiRAC) Data-Centric System on the COSMA7 machine at Durham
University. Run times depend primarily on the number of image
pixels fitted after masking, which due to the standard 3.5 arcsec
circular mask used to fit most lenses is fixed. The lower resolution of
SLACS lenses (0.05 arcsec pixel~!) means they contain fewer image
pixels than GALLERY lenses (0.04 arcsec pixel ') and the fits were
therefore faster. For SLACS lenses, the source parametric pipeline
takes between 10-24h, the source inversion pipeline 10-36h, the
light pipeline 10-72 h, and mass pipeline 6-48 h. GALLERY lenses
take longer on average, where the source parametric pipeline takes
between 10-36h, the source inversion pipeline 10-48h, the light
pipeline 12-144h, and mass pipeline 12-72h. The scatter in run
times is due to many factors: lens galaxy S/N, source galaxy S/N,
lens configuration, lens morphology, source morphology, etc.

Based on the longest GALLERY run times, the upper limit for
the overall run time is 300 CPU hours. For 100000 strong lenses
this would require 30 000 000 CPU hours over the 5-10 yr lifetime
of a survey like Euclid, producing an upper limit of ~6000 000 CPU
hours per year. For the recent DiRAC resources allocation call, this
amount of CPU time is a ‘small’ project. We therefore anticipate
that the analysis performed in this work will not be limited by CPU
resources in the near future. Based on profiling of PyAutoLens, we
anticipate the run time of a single lens will reduce by a factor of four
or above when fitting lower resolution wide-field imaging data (e.g.
the resolution of Euclid data is 0.1 arcsec pixel™!). The 3.5 arcsec
circular masks assumed throughout this work are also unnecessarily
large for many lens systems, and reducing the mask size to 2.5 arcsec
speeds up the analysis by factors of three and above.
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8§ SUMMARY

Tens of thousands of strong gravitational lenses will be imaged
in the next few years, but current analysis techniques are labour-
intensive. We use open source software PyAutoLens to develop
a fully automated, Bayesian analysis of all 59 strong galaxy—galaxy
lenses that have been observed by the HST under certain conditions.
Adopting the open source software PyAutoLens provides an opti-
mistic outlook for the future of automated analysis: for 54/59 lenses
(92 per cent) we achieved successful model fits (determined via visual
classification) with no human intervention. We illustrate why other
fits initially went wrong, and present solutions that allowed us to infer
accurate models for all 59/59 lenses (100 per cent) and recommend
steps necessary for analysing the larger incoming samples. Notably,
the difficulties primarily happen at the beginning of the analysis
when attempting to determine an initial, approximate, lens model
— and often reflect confusion between light from the foreground
lens and background source. Once a simple model is initialized,
our pipeline worked flawlessly to automatically fit a sequence of
more complex models that measure more detailed properties of the
lens galaxy. We therefore discuss how combining a convolutional
Neural network with a Bayesian approach like PyAutoLens could
increase the automation success rate whilst extracting maximum
physical information from each strong lens.

We also use synthetic observations of ~500 lenses to explain and
solve a problem common to pixel-based strong lensing methods that
causes the statistical uncertainty on model parameters to be underes-
timated. This is fundamentally due to noise in likelihood evaluations,
caused by discretization effects in pixelized reconstructions of the
source galaxy. We implemented an empirical correction that ‘caps’
the likelihood value to suppress noise. This significantly improves
the measurement of the synthetic lens parameters, and leads to error
estimates on different noise realizations of identical data sets that
are more consistent with one another. On the real data, we found
this empirical correction (using the likelihood cap) gave a five fold
average increase in the inferred uncertainties on model parameters.
Comparing to previous literature results, we suggested this bias may
be leading to uncertainty under estimation in other studies that use
similar methods. Given the incoming samples of tens of thousands
of strong gravitational lenses, we believe more detailed study of such
systematics on larger mock samples is key.

Accurately knowing the systematic uncertainty on measurements
of Einstein radius (total galaxy mass) will become vitally important
for large samples of lenses, which beat down statistical uncertainty.
Previous studies often assume a constant uncertainty of 2—3 per cent.
We find substantial variation between lenses with a mean of 1 per cent
and 57/59 lenses with <3 per cent, but 2/59 lenses with >5 per cent.
Future analysis of large samples, where careful control of systematics
is paramount, must therefore adopt more rigorous errors. Our
Einstein radii measurements assumed only a single type of parametric
mass model and we do not investigate the degree of uncertainty that
results from making different mass model assumptions.

Notably, the uncertainty on our measurements of Einstein radii
(and those of the lens models in general) do not increase with redshift.
That is, we learn as much about the strong lenses at redshift ~0.7
as those at redshift ~0.1. This is in stark contrast to other astro-
physical probes of a galaxy’s structure (e.g. dynamics, morphology),
where cosmological dimming effects and beam smearing degrade
measurements of distant galaxies. Nor does uncertainty on Einstein
radii depend strongly upon the signal-to-noise ratio of our data.
This makes strong lensing a compelling technique to study galaxy
evolution: once high redshift strong lenses are found, it should be
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straight forward to measure their properties. Of course, the technique
has its own challenges, for example complicated selection effects,
but it should nevertheless provide an invaluable tool for studies of
galaxy evolution over the next decade.
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Table B4. Light model parameters for the first five SLACS lenses in
order of Right Ascension.
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APPENDIX A: WITHOUT LENS LIGHT
PIPELINE

The pipelines that make up the uniform analysis for modelling
a lensed image that does not contain the lens galaxy’s light are
presented in Table A1l. This pipeline was used to analyse the mock
data in this work. As well as this, a variation on this analysis that also
includes external shear in the mass model, was used to fit the four
lenses that required lens subtracted data to arrive at successful model
fits. The initial model fit priors, and those used when we choose not
to inform priors with prior passing, are given in Table A2.
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Table A2. The initial priors on every parameter of every light and mass
profile fitted in this work. Column 1 gives the model component name.
Column 2 gives the parameter. Column 3 gives the prior, where U(a, b) is a
uniform prior between a and b, and N (i, o) is a Gaussian prior with mean
s and variance 2. Note that due to prior passing (see Section 4), the final
priors used to fit a model, corresponding to the results given in this work, will
be updated from the above values. The priors of every fit can be found at the
following link https://zenodo.org/record/6104823.

Model Parameter Prior
Elliptical b (arcsec) U@, 8)
Power-Law (PL) y U(1.5,3)
€1 N(0,0.3)
& N(0,0.3)
X (arcsec) N(0,0.05)
Y. (arcsec) N(0, 0.05)
Sersic Regr (arcsec) U(0, 30)
n Uu.5,5)
U6, 6)
logio Iy (e's™)
&1 N(0,0.5)
& N(0,0.5)
X (arcsec) N(0,0.1)
. (arcsec) N(0,0.1)
Shear Vlext Uu-0.2,0.2)
Vaew U(-0.2,0.2)

Table Al. Pipeline model components for the analysis which fits to a lensed image which does not contain emission from the lens galaxy.

Pipeline Phase  Galaxy component  Model  Varied Priorinfo Phase description
Source SP! Lens mass SIE v - Fit the lens mass model and source light profile, comparing the lensed source
parametric model to mock image.

Source light Sérsic v -
Source sr! Lens mass SIE SP? Fix lens mass parameters to those from the source parametric pipeline and fit
inversion pixelization and regularization parameters on magnification adaptive

pixel-grid.

Source light MPR v -

SI? Lens mass SIE v SP? Refine the lens mass model parameters, keeping source-grid parameters fixed
to those from previous phase.

Source light MPR SI!

SP Lens mass SIE Sp? Fit BPR pixelization and regularization parameters, using the lensed source
image from SI? to determine the source galaxy pixel centres. Lens mass
parameters are fixed to those from previous phase.

Source light BPR v -
SI* Lens mass SIE v SP? Refine lens mass model parameters on the BPR grid, keeping lens light and
source-grid parameters fixed to those from previous phases.
Source light BPR SP
Mass total MT! Lens mass PLEMD v SI Fit the lens mass parameters, now with the slope of the density profile free to
vary within the uniform prior [1.5-3.0], all other mass priors are informed
from ST*.
Source light BPR SB

MNRAS 517, 3275-3302 (2022)
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APPENDIX B: INFERRED MODEL

PARAMETERS

We present the best fit model parameters for all SLACS and
GALLERY lenses. The PLEMD + ext mass model parameters are
given in Tables B1 (SLACS) and B2 (GALLERY). The double
Sérsic light model parameters for the Gold sample are presented

in Tables B4 (SLACS) and B3 (GALLERY). We present the
light parameters only for the ‘Gold’ sample since the ‘Silver’
and ‘Bronze’ samples either do not fit the lens light or provide
models we do not trust. All errors quoted are those derived
from the 68 percent credible region of the PDF output from
dynesty.

Table B1. Mass distribution model fit parameters for the first ten SLACS lenses. The full table is available online.

Class Lens name b (arcsec) 1% &1 & Viext V2ext X (arcsec) ¥ (arcsec)
Gold  J0008-0004  1.178%)%! 2.08%)%8 0.1670.928 0.01439931 —0.0067001  —0.023: )3 —0.015%097  0.034% 917
J0029-0055  0.971%0926 2.323013 0.089*Y95  0.089%0962  0.00509%  0.0127000  —0.019%9014  —0.0174 9
J0157-0056  0.999%) 0% 223308 —0.198% 0% —0.1997050 —0.0773 0 —0.165 095 —0.137FF° 0.031300%
J0216-0813  1.188%0%3 1.99%058 0.056°)%  —0.097% % 0.001%5%  0.009%7'¢  0.009% )8 0.011775%
1025240039 1.02175%% 1.927908 —0.0413000  —0.045709  —0.02:0%5  —0.013F09  0.0°08°  —0.0057
J0330-0020 1113705 215092 —0.017: %2 011959082 0.039%0%8 001355 —0.0513)0% ] —0.02109
1072843835 1.274%5%) 1.99%9,12 0.145:00%  —0.122300%27  0.05619°  —0.037%07  —0.006%7  0.004%55
J0737+3216  0.9821) 22809 —0.017RGY —0.0728 0% 0.03855y  0.103357  —0.008%05  —0.006%7
1082242652 1.235%0 9% 2.179% 0.147° 008 026450050 0,057 0% —0.082705)]  —0.014% 5% —0.1031 %2
J0841+3824  1.005%)\55 227797 —0.149%08%  —0.104% )15 0118308 —0.083% %5 —0.25700  —0.204100%
Table B2. GALLERY mass distribution model fit parameters.
Class Lens name b (arcsec) y £1 &) Viext Vext X (arcsec) Y (arcsec)
Gold ~ J0029+2544  1.395°00%  2.05%012  —0.203% %0 001470045 —0.025%4)%,  —0.049%09%  0.0970% 0.036109%3
JO113+0250  1.293%2%%7 1777015 —0.006' 0% 0.068700L3 0.0417%013 0.1470012 0.031709% 0.00870909
J020143228 17270092 2.09%000  —0.114%0926  —0.027001) 0.06° 091 —0.039%916  0.002:)918 0.026918
J0237-0641  0.615% 00 Lo 01179098 0.02670073 0.006° 0951 —0.015%0068  0.146% 0933 0.02130933
J0742+3341  1.684700 2217086 0.5067)053 0.001)9%! 0.107: 0918 —0.217%0026  0.136° 098 —0.06210018
J0755+3445 2.0%0071 L7798 01567001 0.13130918 0.2010908 0.268*9907 0.0691 090+ —0.159*0.004
J0856+2010  LISTAOSTN 223308 0474° 0070 —0.15108 —0.02170%7  —0.01430%7  0.17170%  —0.063% )93
J0918+5105  1.642700%5 238006 —0.024% 007 —0.08170923  —0.2467002  —0.122:0%97  —0.019°09%2]  0.004: 002
JI110+2808  0.90270029  2.03%0%  0.0413093  —0.045%0056  0.1141 0982 —0.09°0%5  —0.10670%,  —0.141105
JI110+3649 11887 20LL 2237007 —0,0243099  —0.016'228  0.01970503 0.12979907 —0.0%089%  —0.009%993
JIL16+0915  1.24730188 000006 007130097 —0.393%009  0.01670%%  —0.6531 0% —0.03430%T  0.0867 00
J1141+2216 138170097 2137009 0.243%0958 0.009*0%72 0.042/0932 —0.117799%2  0.088%0%,  —0.035% 0%
J1201+4743 122130930 2.74%0%  —0.09570%  0.007° )% 0.0697080,  —0.01670%%  —0.046: 080! 0.025703!
J1226+5457  1.38500008 2248007 —0.074% 000 0.1273001 —0.139%08L  —0.01130%  0.0237050¢ 0.00670004
J2228+1205  1.33870072 2200014 —0.262: 089 0.04870070  —0.196'0%%  —0.198:093  —0.05770926  —0.00570%
12342-0120 13133098 234007 —0.298% 9%, —0.129%0%8  —0.019%00F 025409 0.05130913 0.0270013
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Automated strong lensing 3299

Table B3. Light model parameters for the first five GALLERY lenses in order of Right Ascension. The full table is available online.

Xe(x Ye(X
lens noise Sérsic  Refr (arcsec) n Ip(x 1073) ¢ q £l & 1073 arcsec) 1073 arcsec)
J0029+2544 0.113 0L I 1684938 391038 0047001 o5t 03300 00400 0500 04908 —0.71305)

o 05900 35000 170934060 —43% 0823090 —0.1709  0.01700)
JO113+0250  0.00032709012 1 24319082 1008 1503 1 0350% —0.20%006 —0.38%0%  s.0%d 2034108
o L7290 3932 2155 -3 0540 —0.0408 0207
370 0.59 0.19 1.47 2 0.02 0.01 0.01 0.63 0.63
J0201+3228 160738 I 2128099 140 165ty —472 0797092 —0.128091 —0.01700!  0.68108 3.2408
il 1097998 494086 9034075 -85t 0.91°09L  —0.01%09 —0.04%00}
J0237-0641 14413 I 1062538 3543 015708 3 06403 00302 02202 04801 —2.23%07)
0.11 0. 1.71 20 0.02 0.0 0.01
I 0.9174, 4804 69245 80516 0.9850s  0.0%g  —0.01%,
J0742+3341 11738 I 1031585 314238 0.2473% 27 0.53° %1 02500 018 0% —0.197938  1.3570%
0.25 0.16 1.38 1 0.01 0.01 0.02
I l'043).11 4'61.0423 9'12:*—2.27 625 0'711.0418 0'141.0401 _0'11.0401
Table B4. Light model parameters for the first five SLACS lenses in order of Right Ascension. The full table is available online.

Xe (X Ye(x
lens noise Sérsic  Refr (arcsec) n Iy (x 1073) ] q £1 &) 1073 arcsec) 1073 arcsec)
J0008-0004  1500*2% I 27254853, 2228 001700 467 0.637%L 023103 —0.020%  —3.2580%  4.0570%

il 1697080 431028 2793100 26%} 0908 0.04991  0.03:%9
J0029-0055  470%\29 I 0.331092 28704 905.32%5% 2270 0.9%09 0.04309  0.04%00 557 0% 1.9230
I 3.0 ettt 49.408 274 0793090 0.098001  0.07: 03!
J0157-0056 1204539 I 1867036 0.80% 7.3100 =587 0.72:095 01500 —0.0770%  —5.09%00,  1.65%0%
0.02 0.04 0.01 0 0.0 0.0 0.0
I Lo 002 4,900 66777081 687 0.6700 013090 —0.14%08
J0216-0813 850%¢ I 1549053 3.9%032 11598700 857 0.81%0)  0.02700 011700 =735 376709
2.4 0.2 0.0 3 0.0 0.14 0.04
I 375754 0.8 169610, 50% 0.66%57 0.2%55  —0.04%5;
J0252+0039  210%7 I 0.94395 099995 12589000 —65%1 077700 0.0 0,000 —6.6970%  —1.61300,
0.0. 0.06 0.0 20 0.0 0.0 0.0
I 0.6235 7 4.9, 132341540, 5435 0.99 %501 0.0%% —0.0%,

APPENDIX C: MODEL FITS

In this study, we categorized the model fits into ‘Gold’, ‘Silver’, and
‘Bronze’ depending on the quality of the model fit. The ‘Gold’ fits are

presented in Fig. C2 for SLACS lenses and Fig. C1 for GALLERY
lenses. The ‘Silver’ lenses are then presented in Fig. C3 and the
‘Bronze’ lens in Fig. C4.
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Data Image Model Image[1] Resiudals Noise Map Subtracted Image Model Image[2] Reconstruction
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0.00 0.02 0.04 . .02 . 0.00 0.02

Figure C1. Model fits for the first five GALLERY lenses in order of Right Ascension. Model fits for the full sample of lenses are available online. Residuals
are the normalized residuals.
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Data Image Model Image[1] Residuals Noise Map Subtracted Image Model Image[2] Reconstruction
J0O008-0004

0.0 . K . . K 500 25 50 100 0.0 0.2

Figure C2. Model fits for the first five SLACS lenses in the ‘Gold’ sample in order of Right Ascension. Model fits for the full sample of lenses are available
online. Residuals are the normalized residuals.
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Figure C3. SLACS ‘Silver’ model fits. Residuals are the normalized residuals.

Data Image Model Image[1] Resiudals Noise Map Subtracted Image ~ Model Image[2]
J1103+5322
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Figure C4. SLACS ‘Bronze’ model fit. Residuals are the normalized residuals.

This paper has been typeset from a TgX/IATgX file prepared by the author.
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