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ABSTRACT

The distribution of dark and luminous matter can be mappeds/around galaxies that
gravitationally lens background objects into arcs or Einstein rings. New surveys will
soon observe hundreds of thousands of galaxy lenses, and current, labour-intensive
analysis methods will not scale up to this challengemWe develop an automatic, Bayesian
method which we use to fit a sample of 59 lenses imaged by the Hubble Space Telescope.
We set out to leave no lens behind and focushon ways in which automated fits fail
in a small handful of lenses, describing/adjustmeénts to the pipeline that ultimately
allows us to infer accurate lens models for all 59 lenses. A high success rate is key to
avoid catastrophic outliers that would bias large samples with small statistical errors.
We establish the two most difficultisteps to be subtracting foreground lens light and
initialising a first, approximatelens meodel. After that, increasing model complexity is
straightforward. We put forwardia likelihood cap method to avoid the underestimation
of errors due to pixel diseretization noise inherent to pixel-based methods. With this
new approach to error‘estimation, we find a mean ~ 1% fractional uncertainty on
the Einstein radius measurement which does not degrade with redshift up to at least
z = 0.7. This is in'stark)contrast to measurables from other techniques, like stellar
dynamics, and.demonstrates the power of lensing for studies of galaxy evolution. Our
PyAutoLens.software is open source, and is installed in the Science Data Centres of
the ESA Euclid mission.

Key words: gravitational lensing — strong; software: data analysis; dark matter; galaxies:
fundamental’parameters

1 INTRODUCTION

Galaxy-scale strong lensing is'the distortion of light rays from
a background source intormultiple images, by the gravita-
tional field of a foreground galaxy along the same line of sight.
From the apparent pesition, shape and flux of those multiple
images, it is possible to infer both the intrinsic morphology
of the background galaxy at magnified resolution, and the
distribution of (all gravitating) mass in the foreground lens.

In.combination with kinematic measurements, lensing
methods have inferred the mean total density profile of mas-
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sive elliptical galaxies and how that evolves with redshift
(Gavazzi et al. 2007; Koopmans et al. 2009; Auger et al. 2010;
Sonnenfeld et al. 2013a; Bolton et al. 2012), and put con-
straints on their dark matter content, stellar mass-to-light
ratio, and inner structure (Sonnenfeld et al. 2012; Oldham &
Auger 2018; Nightingale et al. 2019; Shu et al. 2015, 2016a). If
the background source is variable and the mass model known,
measurements of time delays between multiple images can
constrain the value of the Hubble constant (Suyu et al. 2017;
Wong et al. 2019). If the lens galaxy contains small substruc-
tures, they also perturb the multiple images, and provide a
clean test of the nature of dark matter (Vegetti et al. 2010; Li
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et al. 2016, 2017; Hezaveh et al. 2016; Ritondale et al. 2019;
Despali et al. 2019; Amorisco et al. 2022; He et al. 2021).

Currently, a couple of hundred strong lensing systems
have been observed, by dedicated surveys such as the Sloan
Lens ACS (SLACS) (Bolton et al. 2006; Auger et al. 2010),
BOSS Emission Line Lens (BELLS) (Brownstein et al. 2012),
Strong Lensing Legacy (SL2S) (Gavazzi et al. 2012) surveys,
BELLS GALaxy-Lya EmitteR sYstems (BELLS GALLERY)
(Shu et al. 2016¢,b), the SLACS Survey for the Masses
(S4TM) Survey (Shu et al. 2017), LEnSed laeS in the EBOSS
suRvey (LESSER) (Cao et al. 2020), and the Spectroscopic
Identification of Lensing Objects (Talbot et al. 2018, 2021).

During the next decade, a couple of hundred thousand
strong lenses will be discovered by wide-field surveys in-
cluding Euclid, LSST, and SKA (Collett 2015). Such large
samples of strong lenses will contain rare ‘golden’ systems
such as double or triple source plane systems (Collett &
Auger 2014; Collett & Bacon 2016; Collett & Smith 2020),
and unlock considerable scientific potential through vastly
improved statistics (e.g. Birrer et al. 2020; Sonnenfeld & Cau-
tun 2021; Sonnenfeld 2021; Cao et al. 2020; Orban De Xivry
& Marshall 2009). To tackle the forthcoming thousand-fold
increase in data volume, model inference must be automated,
and made robust without human intervention.

Convolutional Neural Networks (CNNs) are a fast ap-
proach that have recently been shown to be successful at
lens modelling. Hezaveh et al. (2017) and Levasseur et al.
(2017) modelled nine lens systems observed by the Hubble
Space Telescope (HST). However, this approach requires a
large, and significantly varied and unbiased training set of
mock lenses to learn from. These are requirements that can
be difficult to guarantee, which could be problematic for
source galaxies with irregular morphologies. Using a different
method, Shajib et al. (2021) used the DOLPHIN software to
model 23 lenses from an initial sample of 50 SLACS lenses.

We use the PyAutoLens software (Nightingale & Dye
2015, hereafter N15; Nightingale et al. 2018, hereafter N18),
an open-source Bayesian forward-modelling project designed
specifically with automation in mind. We develop an auto-
mated data analysis pipeline that models the distribution
of foreground light and mass as a sum of smooth analytic
functions, and the background light as either another sum
of analytic functions (e.g. Tessore et al. 2016)or=as a pixel-
lated image (Warren & Dye 2003; Suyu et ak _2006; Dye &
Warren 2005; Vegetti & Koopmans 2009; Joseph et al. 2019;
Galan et al. 2021). By fitting a mock samplé of ~ 500 lenses
we further show that previouseversions of PyAutoLens (like
many lens fitting algorithms) underestimated the statistical
uncertainty of lens model parameters. A major component
of this is a discretization effeet inherent to pixel-based source
reconstructions — for which we provide a solution.

We apply our automated lens modelling pipeline to a
uniform sample.of 59 SEACS and BELLS GALLERY lenses
that were observed with the Hubble Space Telescope. Our
goal is tolmodel eyery single lens and therefore leave no lens
behindsxif we were analysing ~ 100,000 lenses, even a low
rate‘of (unflagged) failures would require unfeasible human
intervention, and would bias the increasingly tight statistical
precision of subsequent scientific analysis. Our first, ‘blind’
analysis achieves a promising success rate of 85%. We then
emphasise trying to understand why some lenses are not well
fit, and improve our pipeline until they are. This mirrors the

kind of methodology that will be possible with future large
samples: a fairly fixed initial framework, that is adapted after
early results. In this paper we are trying to establish that
first fixed framework.

With the full sample modelled, we investigate the ac-
curacy to which the Einstein radius is recovered. Cao et al.
(2020) recently demonstrated the robustness of the measure-
ment by comparing the Einstein radii of power-law fits to
mock lenses with complex mass distributions, inferred from
SDSS-MaNGA stellar dynamics data, to their true values.
They showed that the Einstein radius was recovered to 0.1%
accuracy, taking into account both systematic and statistical
sources of uncertainty. We examine how this compares to
the statistical uncertainties we infer for the Einstein radii
of the SLACS and GALLERY sample. Further, we compare
to previous literature measurements (Bolton et &1:42008a;
Shu et al. 2016b) to verify our results and quantifyyhowythe
uncertainty varies due to different methods and assumptions.
Our work therefore provides an outlook on.the accuracy to
which we can anticipate measuring the Einstein radius in
upcoming large samples of tens of thousands_of lenses.

This paper is structured as follows In Section 2 we give
a brief overview of lensing theory and provide the mass and
light profile parameterisations we adopt. Section 3 describes
the sample selection and data reduction procedure for the
data images of the SI/ACS"and GALLERY samples. The
method is then explained in detail in Section 4 and applied
to a sample of mock,data,in Section 5 to investigate prob-
lems associated with pixelised source reconstructions. The
results of applying thé automated procedure to the SLACS
and GALLERY samples are then presented in Section 6. Fi-
nally wesdiscussrthe implications for the future of automated
analyses in Section 7 and summarise in Section 8. Through-
out this work we assume a Planck 2015 cosmological model
Adé e, al. (2016). The results of every fit to the SLACS
andyGALLERY datasets can be found at the following link
https://zenodo.org/record/6104823.

2 LENS MODELLING THEORY

The aim of this study is to investigate the practicalities of
automated extended source modelling to infer the mass distri-
butions of a large sample of lenses. We give a brief overview
of relevant theory for this analysis in Section 2.1, and de-
scribe our choice of mass and light profile parameterisations
in Sections 2.2 and 2.3, respectively.

2.1 Lensing theory

Strong lensing occurs in and around regions where the surface
mass density of the lens 3 (R) exceeds the critical surface
mass density for lensing,

c? Dy 1
47 G D]Dls ’ ( )
where Dy, Ds, and D)s are respectively the angular diameter
distances to the lens, to the source, and from the lens to
the source, and c is the speed of light. Hence, assuming a
cosmological model it is possible to fix the 3D geometry of the

lens system using the observed redshifts of the foreground lens
and background source galaxies. An extended distribution of

Ecrit =
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Figure 1. Lens subtracted data images (left) and their corresponding’pixel-grid‘reconstructions (right) for the “Gold” sample of lens galaxies
(see Section 6.1 for a description of our classification process). Lénses are in order of Right Ascension, with SLACS lenses appearing first,
followed by GALLERY lenses. The full model fits for these lenses;iplotted with an indication of scale, are available in Appendix C.

matter can be described by its convergence, a dimensionless,
2D projected surface mass density defined as

() = 2 @)

crit

The lensing properties of a galaxy with #(z,y) are char-
acterised by the projected gravitational potential ¢ that
satisfies the Poisson equation: V?¢ = 2x. The lens galaxy
deflects light rays from thérsource galaxy by an amount de-
scribed by the deflection angle field, &« = V¢. The goal of
lens modelling, then, is te_solve the lens equation,

B=0—a8), ®3)

which relatés thedobserved image positions 6 = (61, 62) of
deflected(light rays in the image plane, from a source at
positien %= (B1,32) in the source plane. Given a lensed
image and (a'model of) the distribution of foreground mass,
onecanyinvert Equation 3 to recover the distribution of light
in the source plane. In Figure 1 the pixelised source plane
reconstructions of the lenses fitted in this work are shown
next to their lensed data image.

Gravitational lensing magnifies the background source,

including an (infinitely thin) region of infinite magnification
in the lens plane known as the tangential critical curve.
Axisymmetric lenses have a circular critical curve known as
the Einstein radius, Rgin. The mean surface mass density
inside REgin is equal to the critical surface mass density Ycrit
of the lens (Equation (1)). The Einstein radius and enclosed
Einstein mass

Mgin = 7R St (4)

are thus uniquely defined in the axisymmetric case, quantify-
ing the size and efficiency of the lens.

For asymmetric, irregular and realistic lenses, the defi-
nition of Einstein radius must be generalised. Several con-
ventions are possible (see Meneghetti et al. 2013 for a good
overview) but we choose to use the effective Einstein radius

A
REin,eff = ; ) (5)
where A is the area enclosed by the tangential critical curve.
This definition is self-consistent across different mass density
profiles, and clearly recovers the definition of Rgi, in the
case of a circular critical curve. To calculate this in practice,
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we first obtain the set of points that defines the tangential
critical curve contour from our lensing maps, using a march-
ing squares algorithm, then compute the enclosed area using
Green’s theorem

A://da:dy:fxdy. (6)

2.2 Mass profile parameterisation

We model the distribution of mass in the lens galaxy as a
Power-Law Ellipsoidal Mass Distribution (PLEMD), assum-
ing that this is able to capture the combined mass distribution
of both baryonic and dark matter. The convergence is

_ X(x,y)  3—n b vt
k(z,y) = S 1+q( /:c2+y2/q2> (7)

(Suyu 2012), where ~ is the logarithmic slope of the mass
distribution in 3D, 1 > ¢ > 0 is the projected minor to major
axis ratio of the elliptical isodensity contours, and b > 0 is the
angular scale length of the profile (referred to in some papers
as the Einstein radius, but distinct from the more robust
effective Einstein radius in Equation 5). The profile has addi-
tional free parameters for the central coordinates (zc, yc) and
position angle ¢, measured counterclockwise from the posi-
tive z-axis, and external shear. When varying the ellipticity,
we actually sample from and adjust free parameters

:1+Z :1+Zcos2¢. (8)
because these are defined continuously in —1 < & < 1,
eliminating the periodic boundaries associated with angle ¢
and the discontinuity at ¢ = 0. We similarly parameterise the
external lensing shear as components viext and 7yzext. The
external shear magnitude Yext and angle ¢ext are recovered
from these parameters by

Vext = \/ ’Y%ext + fYQZext ’ tan Qd)ext = % . (9)

The special case v = 2 recovers the Singular Isothermal
Ellipse (SIE) mass distribution, in which the steadysstate
motions of particles have constant 1D velocity dispersion ogix,
when projected along any line of sight. For this distribution
of mass, the critical curve is the ellipse at x = _1/2. Our
definition of effective Einstein radius (Equation5) means
that the ellipse is REin,cr = qu + y2/q, and_the velocity
dispersion is

REinDs
=y ERTs 1
ISIE = N\ o DiDre (10)

2.3 Light profile parameterisation

sin2¢ , €2

€1

We model the foreground galaxy’s light distribution as the
sum of two Sérsic profiles with different ellipticities but a com-
mon centre./This replicates the bulge and disc components
that constitute an Early-type Galaxy (ETG) (Oh et al. 2017;
Vika et aly,2014)] and significantly increased the Bayesian
evidénce compared to a single Sérsic model, in a precursor
study ‘of three SLACS galaxies (Nightingale et al. 2019). The
Sérsi¢ profile is

\/q:c2+y2/q>’l‘_1 )

I(z,y) = Ig exp { —kes < Ror

where I is the surface brightness at the effective radius Res,
defined here in the intermediate axis normalisation’, n is the
Sérsic index, and kog is a normalisation constant related to n
such that Reg encloses half of the total light from the model
(Graham & Driver 2005). The axis ratio and position angle of
each component are parameterized during the fitting process,
using elliptical components as in Equation (8). Aside from
the two components’ common centre, all free parameters are
fitted independently of each other to allow for more complex
light distributions. For example, the flux ratio of the two
Sérsics is unconstrained, and the profiles may be elongated by
different amounts and rotationally offset from one another.
We model the distribution of light in the source galaxy.
as either a single Sefsic profile or using a pixelated souree
reconstruction depending on the phase of the automated
procedure, described in Section 4.3. The source, galaxy is
ultimately reconstructed on an adaptive Voronoi meshy for
which the procedure is described in detail indSection 4:2.

3 DATA
3.1 Lens sample selection

We analyse strong gravitatienal lenses around massive ellipti-
cal galaxies drawn from the SLACS (Bolton et al. 2008b) and
BELLS GALLERY samples (Shu et al. 2016b). The SLACS
sample were identifiedsas lenses using SDSS spectroscopy to
find higher redshift enission lines after subtracting a prin-
ciple component, model of the foreground galaxy spectrum
(Bolton et@1%,2006).” This technique was modified for the
GALLERY survey, to specifically select even higher redshift
Lya-emitting (LAE) source galaxies (Shu et al. 2016b). Spec-
troscopic redshifts of the lens and source are known, and
follow-up’high resolution imaging has been carried out for
all systems.

To keep the data quality reasonably uniform (as it would
be for a large future survey), we restrict the SLACS sample
to the 43 lenses imaged to at least 1-orbit depth in the HST
Advanced Camera for Surveys (ACS) F814W band. We add
the 17 grade-A confirmed LAE lenses from GALLERY, all of
which have been observed to 1-orbit depth in the HST Wide
Field Camera 3 (WFC3) F606W band. Several systems have
second or third foreground lenses of low mass. However, for
this first attempt at automation in which we shall try to fit
only a single main lens, we have not considered GALLERY
lens J0918+-4518, which has two equally bright lens galaxies.
We end up with a set of 59 lenses.

3.2 Data reduction

HST imaging of both the SLACS and GALLERY samples was
reduced using custom pipelines. The procedure for the SLACS
sample is described in Bolton et al. (2008a) and produces
images with 0.05"pixels; the procedure for GALLERY is
described in Brownstein et al. (2012) and Shu et al. (2016¢),
and produces images with 0.04”pixels. The point spread
function (PSF) was determined for both samples using the

1 This definition keeps the area enclosed within a given isophote
constant as ¢ is varied, and is distinct from ‘major axis normalisa-
tion’ where the term (ga? + y2/q) would instead be (22 + y2/¢?).
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Tiny Tim software Krist (1993). The aforementioned papers
also describe an optional method to subtract the lens galaxy’s
light by fitting it with a b-spline. Our pipeline benefits from
fitting the lens light simultaneously with its mass, so we shall
generally not use the b-spline data. However, our pipeline
struggles to automatically deblend the lens and source light
of three systems, so we shall try the b-spline data there.

4 METHOD
4.1 Overview

Our strong lens analysis is carried out using the software
PyAutoLens?, which is described in N18, building on the
works of Warren & Dye (2003, hereafter WDO03), Suyu et al.
(2006, hereafter S06) and N15.

To fit a lens model to an image, PyAutoLens first as-
sumes a parameterisation for the distribution of light and
mass in the lens, and the distribution of light in the source,
using the parametric profiles described in Sections 2.2 and 2.3.
The parameterised intensity I of the lens light is evaluated
at the centre of every image pixel, convolved with the instru-
mental PSF, and subtracted from the observed image. The
mass model is then used to ray-trace image-pixels from their
image-plane positions 6 to source-plane positions 3 (via the
lens Equation 3). The source analysis finally follows, which
PyAutoLens performs using one of two approaches: (i) para-
metric profiles in the source-plane (e.g. the Sérsic profile) are
used to simply evaluate I at every value of 3; (ii) a pixelized
source reconstruction is performed on an adaptive Voronoi
mesh, where the values of 8 are used to pair image-pixels to
the Voronoi source pixels which reconstruct the source (see
WDO03, S06, N15 and N18 for a full description of lensing
analyses with pixelized source reconstructions).

The following link (https://github.com/Jammy2211/
autolens_likelihood_function) contains Jupyter note-
books that provide a visual step-by-step guide of the PyAtu=
toLens likelihood function used in this work. We have re-
ceived feedback from readers of other papers using\PyAu-~
toLens (who are less familiar with strong lens anodelling)
that they were unclear on the exact procedure that translates
a strong lens model to a likelihood value. The notebooks aims
to clarify this and provides links to all previousliterature
describing the PyAutoLens likelihood functiony alongside an
explanation of the technical aspectsiof the linear algebra
and Bayesian inference. We provide a brief description of
the PyAutoLens likelihood funetion below, but we recom-
mend these notebooks to the interestéd reader if anything is
unclear.

4.2 Source Reconstruction

After subtracting the’foreground lens emission and ray-
tracing coordinates to the source-plane via the mass model,
the sourceis reconstructed in the source-plane using an adap-
tive Voronoi‘mesh which accounts for irregular or asymmetric
source,morphologies (see Figure 1). Our results use the PyAu-
toLens pixelisation VoronoiBrightnessImage, which adapts

2 The PyAutoLens software is open source and available from
https://github.com/Jammy2211/PyAutoLens
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the centres of the Voronoi pixels to the reconstructed source
morphology, such that more resolution is dedicated to its
brighter central regions (Nightingale et al. 2018).

The reconstruction computes the linear superposition of
PSF-smeared source pixel images which best fits the observed
image. This uses the matrix fi;, which maps the jth pixel
of each lensed image to each source pixel i. Following the
formalism of (Warren & Dye 2003, WDO03 hereafter), we
define the vector D; = Zj]:1 fij(d;j —b;)/o7 and curvature
matrix Fi, = Zj]:l fijfrj/o?, where d; are the observed
image flux values with statistical uncertainties o; and b;
are the model lens light values. The source pixel surface
brightnesses values are given by s = F~'D which are solved
via a linear inversion that minimizes

J I
N (12)
j=1 97
The term Zfil s; fij maps the reconstructed source back to
the image-plane for comparison with the obseryed data.
This matrix inversion is ill-posed, ‘therefore to avoid
over-fitting noise the solution isaegularized using a linear
regularization matrix H (see WD03)sRegularization acts as a
prior on the source reconstruction, penalizing solutions where
the difference in reconstructed\flux of these two neighboring
Voronoi source pixels is\large”Our results uses the PyAu-
toLens regularization scheme AdaptiveBrightness, which
adapts the degree of smoothing to the reconstructed source’s
luminous emission, (Nightingale et al. 2018). This has three
hyper parameters, the inner regularization coefficient, outer
regularizationncoefficient and a parameter which controls how
the outertand inner regions of the source plane are defined
for tegularization. The degree of smoothing is chosen objec-
tively using the Bayesian formalism introduced by Suyu et al.
(2006)» The likelihood function used in this work is taken
from”(Dye et al. 2008) and is given by

—2Ine = x’+s" Hs+In [det(F + H)] — In [det(H)]

J
+Zln [27r(aj)2] . (13)

4.3 Automated Procedure
4.3.1 PyAutoLens

PyAutoLens is designed to approach lens modelling in a fully
automated way (N18, Nightingale et al. 2021b). This uses
a technique we term ‘non-linear search chaining’, which se-
quentially fits lens models of gradually increasing complexity.
By initially fitting simpler lens models one can ensure that
their corresponding non-linear parameter spaces are sampled
in an efficient and robust manner that prevents local max-
ima being inferred. The resulting lens models then act as
initialisation in subsequent model-fits which add more com-
plexity to the lens model, guiding the non-linear search on
where to look in parameter space for the highest likelihood
lens models, ensuring the global maximum model has the
highest chance of being inferred. Non-linear search chaining
is performed using the probabilistic programming language
PyAutoFit (https://github.com/rhayes777/PyAutoFit), a
spin off project of PyAutoLens which generalises the statis-
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Pipeline Phase  Galaxy Component Model

Varied Prior info Phase Description

Sp! Lens light Sérsic + Exp

- Fit only the lens light model and subtract it
from the data image.

Lens mass SIE + shear - Fit the lens mass model and source light
Source SP2 profile, comparing the lensed source model to
Parametric Source light Sérsic _ the lens light subtracted image from SP!.
Lens light Sérsic + Exp -
Refit the lens light model with default priors
Sp3 Lens mass SIE + shear Sp2 and fit the mass and source models with priors
informed from SP2.
Source light Sérsic SP2
Lens light Sérsic + Exp SP? Fix lens light and mass parameters to those
g1t ] 3 from the source parametric pipeline and fit
Lens mass SIE + shear SP pixelization and regularisation parameters on
magnification adaptive pixel-grid.
Source light MPR -
Lens light Sérsic + Exp SP3
Refine the lens mass model parameters,
S12 Lens mass SIE + shear Sp3 keeping lens light and ‘seurce-grid parameters
fixed to those from previous phases.
Source Source light MPR SIt
Inversion
Lens light Sérsic + Exp Sp3 Fit BPR/pixelization and regularisation
parameters, ‘using the lensed source image from
S13 Lens mass SIE + shear sp3 SI? to,determine the source galaxy pixel
centresy Lens light and mass parameters are
Source light BPR - fixed to/those from previous phases.
Lens light Sérsic + Exp Sp3
Refine lens mass model parameters on the
S14 Lens mass SIE + shear SI2 BPR grid, keeping lens light and source-grid
parameters fixed to those from previous phases.
Source light BPR )
Lens light Sérsic + Sérsic -
Light Fit lens light parameters, with lens mass and
Parametric LP! Lens mass SIE + shear ST4 source parameters fixed to the result of the
source inversion pipeline.
Source light BPR SI3
Lens light Sérsic % Sérsic LP! Fit the lens mass parameters, now with the
slope of the density profile free to vary within
MT! Lens mass PLEMD + shear ST4 the uniform prior [1.5-3.0], all other mass priors
are informed from SI%. The lens and source
Mass Source light BPR SI3 light are fixed to those from the LP! pipeline.
Total
Lens light Sérsic + Sérsic LP! An extension of the MT! phase to ensure
robust error inference on parameters. The lens
MT,,, Lens mass PLEMD + shear MT! mass parameters are re-fitted, capping
likelihood evaluations to a fixed value (See
Source light BPR MT! Section 5 for details.)

Table 1. Compéositionyof the pipelines that make up our uniform analysis. Where prior info is not passed from previous pipelines see

Table A2 for/the specific priors used on each model parameter.

ticalymethods used to model strong lenses into a general
purpose, statistics library.

To ‘perform model-fitting PyAutoLens uses the nested
sampling algorithm dynesty (Speagle 2020a), which obtains
the posterior probability distributions for a given lens model’s
parameters. Nested sampling’s ability to robustly sample

from low dimensional (e.g. fewer than ~ 30 parameters),
complex parameter space distributions makes it well suited to
lens modelling. We use dynesty’s random walk sampling for
every model-fit performed in this work, which we found gave
a significant improvement over other sampling techniques
owing to its better accounting of the covariance between lens
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model parameters. Since nested sampling starts by randomly
sampling from the prior, the size and choice of priors directly
impact the expected number of nested sampling iterations
alongside how likely it is that a local maximum is incorrectly
inferred. As such, using more informative priors will reduce
the amount of time needed to integrate over the posterior
and guide towards sampling the highest likelihood global
maxima solutions.

Non-linear search chaining allows us to construct infor-
mative priors from the results of one dynesty search and
pass them to subsequent model-fits, thereby guiding them
on where to sample parameter space. This uses a technique
called prior passing (see N18), which sets the prior of each
parameter as a Gaussian whose mean is that parameter’s pre-
viously inferred median PDF (probability density function)
value and its width is a customisable value specific to every
lens model and parameter. The specific order of prior passing
used in this study is given in Table 1. The prior widths have
been carefully chosen to ensure they are broad enough not
to omit valid lens model solutions, but sufficiently narrow
to ensure the lens model does not inadvertently infer local
maxima. More quantitatively, the prior widths are typically
greater than ~ 10 times the errors we ultimately infer on
each parameter, meaning it has negligible impact on the
posterior (see Section 5).

4.3.2  User Setup

In this work, we use the standardised Source Light and Mass
(SLaM) pipelines that are available, and fully customisable,
in PyAutoLens. From these, we construct a pipeline that
chains together a total of 11 dynesty searches which we
apply to every lens in our sample, which we describe in detail
in Section 4.3.3. Before we run the SLaM pipelines a few
brief pre-processing steps must be carried out; we describe
those here, as well as our chosen pipeline settings.

We define a circular mask centred on the lens galaxy
that defines the image pixels we fit to. For the SLACS-and
GALLERY lenses we use a standard size of 3.5" and 3.0”
radius, respectively. This is increased to 4.0” for the' SLACS
lenses J09124-0029 and J0216-0813, and for the GALLERY
lens JO755+3445. All image pixels outside this mask are
completely omitted from the analysis, meaning they are
not traced to the source plane and includedsin the source
reconstruction procedure.

We create scalable noise maps, unique.to each lens, that
define any regions inside the mask that we do not wish to
fit (e.g. unrelated astronomical seurces projected by chance
along adjacent lines of sight)s.In these regions the image
values are scaled to near zero and the noise-map values to
large values such that the likelihood calculation effectively
ignores them. Such“areas of high flux would otherwise be
indistinguishable from)the source flux to the fitting proce-
dure. We adopt this noise map approach, over the complete
removal of such regions, since image-pixels are still traced to
the source-plane and included in the source reconstruction
procedure. This avoids creating discontinuities or ‘holes’ in
thewsource pixelisation which can degrade the quality of the
overall reconstruction. The maps are produced in a graphical
user/interface (GUI) available in PyAutoLens, designed to
reduce the human time necessary for creating each unique
map (~1 minute per lens). We acknowledge this task is
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overly time-intensive when considering the incoming samples
of tens of thousands of lenses and provide a discussion of
possible routes to automation of this pre-processing step in
Section 7.1.

Finally, we store an array containing the coordinates
of the pixels containing the peak surface brightness of each
multiple image of the source galaxy, again selected by the
user via a GUIL These coordinates are used to remove local
maxima from the parameter spaces explored throughout the
pipeline. In practise, this is done by discarding any models
where the ray-traced points in the source plane are not within
a positions threshold value of each other. This value is initially
set to 0.7”"%. Both the threshold and the positions themselves
are then iteratively updated throughout the SLaM pipeline,
by solving the lens equation using the maximum likelthood
mass model estimated in a previous fit. For each. iteration,
the value is set to three times the separation of the'positions
found after solving the lens equation or a/value of“0.2",
whichever is largest. This ensures that, as-we progress from
parametric to pixelised source reconstructions, we avoid the
under and over-magnified solutions ghat ean bé problematic
for these methods Maresca et al. (2020).

4.8.8  Uniform Analysis

The uniform analysis ultimately aims to constrain the param-
eters describing the \mass and light distributions. The lens
galaxy’s mass ig{parameterized as a PLEMD (Equation 7),
while the lens light is"modelled as a double Sefsic profile,
which is a‘sumeof two Sérsic profiles (Equation 11) with a
common centre, This is achieved by reconstructing the source
galaxy’s light distribution on an adaptive Brightness-based
Pixelisation and Regularisation (BPR) grid. The uniform
analysis)is constructed from multiple pipelines that each
foeus on fitting a specific aspect of the lens model which
we describe below. For an overview of the composition of
the overall method see Table 1. A scaled down version of
this pipeline was used by Cao et al. (2020) to model fifty
simulated strong lenses.

We begin with the Source Parametric (SP) pipeline that
fits the foreground lens galaxy’s light profile, alongside a
robust initialisation of less complex models for the mass
distribution of the lens and light distribution of the source
galaxy. The lens mass is modelled as an SIE (Equation 7
with v = 2) plus external shear. The lens light is modelled by
the sum of a Sérsic and Exponential (Equation 11 with n=1)
profile. The source galaxy’s light is described by a single
Sérsic profile; this is key to the initialisation of the model
using the SP pipeline, as it allows us to compute an initial
estimate of the mass profile without dynesty getting stuck
in a local maximum (as methods with a pixelised source
frequently do; N18, Maresca et al. 2020).

The Source Inversion (SI) pipeline then refines the lens

L This choice of arcsecond value reflects a low threshold for what
we consider a plausible lens model, removing only extremely un-
physical mass models. For example, without it the mass model
could choose to be close to zero by fitting a source to only one
multiple image with its centre aligned directly behind that image.
‘We note this means we do not require the locations of the multiple
images to be extremely accurate.
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galaxy’s mass distribution by modelling the source galaxy
using an adaptive pixelisation. This allows more realistic
morphologies of the source galaxy to be recognised, which
in turn improves the model for the lens galaxy’s mass. The
pixelisation and it’s pixel-to-pixel regularisation are described
by a set of hyper-parameters (see Section 4.2 for more details),
that are fitted for as free parameters in the fit, these are
first initialised using a Magnification based Pixelisation and
Regularisation (MPR) grid. The source model from this
fit is then used to inform the the BPR pixelisation that
adapts to the surface brightness of the source galaxy, thereby
reconstructing areas of high flux with higher resolution and
lower regularisation relative to areas of low flux.

The Light Parametric (LP) pipeline re-fits the lens
galaxy’s light profile. This produces a more accurate es-
timate of the lens galaxy’s light than previously, because
the lensed source galaxy’s light is now reconstructed using
the Voronoi pixelisation, thereby reducing residuals which
otherwise impact the lens light model fit. The lens light
model is now composed of two Sérsic profiles (the second
component now has a free Sérsic index). This fit is performed
using broad uninformative priors and thus does not use any
information about the lens galaxy’s light profile estimated
by the previous pipelines.

Finally, the Mass Total (MT) pipeline extends the com-
plexity of the model of the lens galaxy’s mass to that of
the PLEMD (Equation 7), whereby the slope of the density
profile (v) is now a free parameter in the model. A uniform
prior between 1.5 and 3 is assumed on the slope. To ensure
robust error inference on the parameters of our final model,
the MT phase is extended by re-running the same model
with a ‘likelihood cap’ applied (see Section 5 for details). The
term ‘Mass Total’ is used to distinguish this pipeline from
the ‘Mass Light Dark’ SLaM pipeline which is not used in
this work. Instead of fitting a mass model that represents the
total mass distribution this pipeline fits one that separately
models the light and dark mater (Nightingale et al. 2019).

4.8.4 Results Database

Upon completion of a uniform pipeline theresare dynesty
samples of 11 different model-fits, alongside additional’meta-
data describing quantities such as each parameter’s‘estimate,
their errors and the PyAutoLens settings. Across our sample
of 59 strong lenses this creates over 500 lens modelling re-
sults, necessitating tools to automate their processing and
inspection. PyAutoFit output§, all modelling results to a
queryable SQLite database (Hippy2020) such that they can
be easily loaded into a Jupyter,notebook or Python script
post-analysis. By adopting PyAutoFit, all PyAutoLens re-
sults support this SQLite database which is the primary tool
we use for analysing‘lens modelling results.

5 DEALING.WITH NOISE IN LIKELIHOOD
EVALUATIONS

N15,demonstrated that pixelised source reconstructions can
be subjeéct to a discretization bias that ultimately leads to
the underestimation of errors calculated by a typical non-
linear search (N15). This is a result of discrete jumps in the
likelihood as the lens model parameters are smoothly varied,

which hinders convergence and parameter marginalisation.
N15 suggests this may be a common problem for methods
that employ pixelised sources. Here, we investigate the effects
of the bias further using a large sample of mock observations.

5.1 Mock data sample

We create 59 synthetic lenses similar to our SLACS and
GALLERY lenses, to approximately resemble the real data
but with known truths. The mass distribution of each syn-
thetic lens is a PLEMD; we set the radius b and ellipticity
parameters €1 and €2 to those of the SIE lens model mea-
sured in previous lensing analyses (see Table 5 of Boltén
et al. (2008b) and Table 2 of Shu et al. (2016¢) for SLACS
and GALLERY parameters, respectively). We set the/slope
of the density profiles to the lensing and dynamie§ measure-
ments of Auger et al. (2010) (SLACS) and Shuset aliy(2016¢)
(GALLERY). Where the slope of the density, profile’is not
available, we instead use the values inferred by'preliminary
runs of our own strong lensing-only analysis.;The surface
brightness of each source galaxy is simulated-as an elliptical
Sérsic, the parameters of which“are set) to those inferred
during preliminary runs of out Source*Parametric Pipeline
(see Section 4 for more detail)%, The redshifts of the lens
and source are set to those known for the corresponding real
strong lens.

For every synthetic lems configuration, we create six
mock observations, each with different realisations of obser-
vational noise. Toymimic the HST observations the lensed
image of th@wsource is generated with a pixel scale of 0.05”
(SLACS) and“0.04” (GALLERY) and convolved with the
instrumental point spread function (PSF) modelled from the
actual image of the strong lens we are simulating. The syn-
thetic images include a flat sky background of 37.5 (SLACS)
and 3125 electrons per second (GALLERY) and six different
realisations of Poisson noise. We choose not to simulate light
from the lens galaxy since this has the potential to introduce
systematic effects that we are not interested in investigating
with this sample (see Section 5). Across the resulting suite of
354 synthetic observations, the S/N of the brightest pixel in
each image ranges from 4 to 68. Figure 2 compares a subset
of simulated mock lenses with their real data counterparts.

5.2 The origin of discretization bias and error
underestimation

First, we investigate how discretization bias manifests in
PyAutoLens, whose source pixelisation differs in its imple-
mentation from N15 and N18. This is illustrated in Figure 3,
which plots the variation of the log likelihood of a lens model
when changing only the slope parameter ~ of the mass distri-
bution (fixing all other parameters to their true values). The
parametric source model produces a smooth likelihood curve.
The BPR pixelisation methods produce a higher likelihood,

I The Sérsic source parameters were optimised for an SIE mass
profile but simulated with a PLEMD, leading to a difference in
magnification of the source galaxy in the mock data. As a result,
some lensed sources were simulated with lower signal-to-noise ratio
(S/N) values than observed. In these cases we manually adjust
their intensity value to give a peak S/N23.
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J2303+1422

Figure 2. We create a sample of mock lenses that closely resemble each of the 59 SLACS and GALLERY lenses in our observed data
sample, which we use for testing for data discretization bias. We show eight of these mock images (right panel) alongside the real data
image they were simulated to represent (left panel with lens name). The mock images are simulated without light from the lens galaxysas
such we compare to the data images where the lens galaxy’s (double Sefsic) light profile has been subtracted.
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Figure 3. Comparison of the log likelihood as a function of den-
sity profile slope when using a parametric source (pink curve)
or Brightness-based pixelisation and Regularisation (BPR) pix-
elisations to fit to mock data. All model parameters other than
the slope are fixed to their true values. The yellow line reveals
the full level of noise in the likelihood due to the particularssof
the source plane pixelisation, by using a new random seed for
the k-means algorithm that pixelates the source planesfor every
likelihood evaluation. The other three colours use fixed k-means
seeds, as is done throughout the rest of this paper:

but one that is subject to seemingly,random’ noise. These
‘spikes’ in log likelihood occur over smallytanges in the slope
parameter; at least an order offmagnitude smaller than the
errors one infers for v when fittingithis’lens with a parametric
source. This confuses the nested sampler, which converges
to positive spikes in likelihogd that are tiny volumes of the
multi-dimensional parameter space, and thus significantly
underestimate the total statistical uncertainty.

To perform a‘source reconstruction using a pixelised
source, one/mustfirst define a procedure that determines
the shapé and locations of the source-plane pixels, its dis-
cretizationy For example, in the case of PyAutoLens, one
can‘alter the random seed that determines the centres of
thewVoronoi source pixels. This element of choice makes the
likelihood ill-determined, as is demonstrated in Figure 3 by
the three different realisations of noise that are uncovered
for the differently seeded grids (the only difference between
the fits that produces the blue, orange, and purple likelihood

2.07

surface is the choice of k-means seed that determines’the
source-pixel centres). If we choose to pass a random k<means
seed to each individual fit (the yellow curve in Figure 3) the
full scale of the noise due to different source discretizations
is revealed, likelihood evaluations of almest identical lens
models can yield very different likelthood values when the
source pixelisation changes. Sampling the parameter space
when using a random k-means seed is therefore prohibitively
slow, ultimately leading.to thé.non-linear search becoming
stuck and being unable to,converge.

In fact, repeat likelihood evaluations of an identical lens
model also yield'different ‘likelihood values if the source pix-
elisation’s discretization changes. Figure 4 shows the result of
doing exactly, this, where log likelihood values are computed
using an_identical lens model 500 times (we use the best
fit lens model parameters from our fitting procedure to do
this), ‘with/each computation using only a different Voronoi
mesh to feconstruct the source. The three different coloured
histograms show the results of this procedure for three of the
six noise realisation images of a lens, that arrive at three dif-
ferent best fit lens models. In all cases, the histograms of log
likelihood values show that changes in log likelihood of order
~ 50 are possible by just changing the source pixelisation.
To perform parameter estimation, changes in log likelihood
of order ~ 10 define how precisely a parameter is estimated
at ~ 3o confidence. Thus, if our log likelihoods can fluctuate
by of order ~ 50 in a seemingly arbitrary way, this will be
detrimental to parameter and error estimation.

Why does the log likelihood vary when we change the
source pixelisation? For a given lens model, there are certain
source pixelisations where the centres of their Voronoi source
pixels line up with the locations of the traced image-pixels
mapped from the image data in a ‘preferable’ way. Their
alignment allows the source pixels to reconstruct the image
data more accurately, in a way that is penalised less by reg-
ularisation (see S06). This produces what we consider an
artificial ‘boost’ in likelihood. Conversely, other pixelisations
have a less fortuitous alignment, such that their reconstruc-
tion of the image data is worse and they are more heavily
penalised by regularisation, producing an artificial ‘drop’ in
log likelihood. Figure 4 shows that the distribution of log-
likelihoods appears to be Gaussian, a property we will use
when we put forward a solution to this problem.

We are now in a position to explain the spiky likeli-
hood surface shown for the fixed seed BPR pixelisations
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Figure 4. Histogram of log-likelihood values from re-fitting the
best-fit model with a new k-means seed 500 times, while keeping
the model parameters fixed. The dashed line is the fitted Gaussian
curve to these values. The vertical line shows the maximum likeli-
hood value of the best-fit parameters found without a likelihood
cap, which is always boosted by noise to extremely high likelihood.
For clarity we show three of the six distributions from different
noise realisation images of the mock lens, the same behaviour is
evident in the three distributions not shown here.

in Figure 3. Let us first consider in more detail the BPR
pixelisation implemented in PyAutoLens. To construct the
source-pixel centres, the BPR pixelisation applies a weighted
k-means algorithm in the image plane to determine a set of
coordinates that are adapted to the lensed source’s surface
brightness. This k-means algorithm is seeded such that the
same image-plane coordinates are inferred if the procedure
(using the same inputs) is run multiple times (thus the com-
pletely random changes to the source pixelisation used to
construct the histograms shown in Figure 4 cannot explain
these likelihood spikes). These image-plane coordinates are
then ray-traced via the mass model to the source-plane and
are used as the centres of the source pixels of the Voronei
mesh. To produce the blue, orange, and purple curves shown
in Figure 3, the coordinates that construct the sourte pix-
elisation are therefore fixed in the image-plane,//but vary
smoothly with the mass model in the source plane:The spiky
likelihood surface can therefore be explained by how the
continuous change in the positions of the/source:pixels gen-
erating the Voronoi pixelisation produces discrete changes in
the Voronoi mesh (either creating new cells\or’changing the
value of flux across cell boundaries - these changes may occur
less frequently with interpolation of the source pixel grid).
The reconstruction then receives, boosts and drops in log
likelihood as for certain massumodels (values of v) since the
positions of the source{pixels align more or less favourably
with the data.

5.3 Testingfor error underestimation in lens modelling

In the context of a full non-linear search which varies every
lens moedel'parameter, we expect that likelihood spikes due
to this preferable alignment of the source pixelisation with
thendata will be present, negatively impacting our inference
on each’ parameter’s PDF. To investigate this, we fit the
full sample of 354 mock images (see section 5.1) with a
uniform pipeline constructed from the SLaM pipelines in
PyAutoLens. The pipeline is the equivalent of that described

in Section 4.3.3 but created for fitting images without the
lens galaxy’s light distribution (see Appendix Al for an
overview of the pipeline). The pipeline, then, infers the mass
parameters of the lens galaxy described by a PLEMD, while
reconstructing the source galaxy on a BPR pixelisation. We
choose not to fit for an external shear (which is not present
in the lens models of the simulated data) in order to simplify
our investigation of likelihood boosts. Our main goal, here,
is to determine if the error estimates inferred by the non-
linear search are being underestimated as a result of the data
discretization bias.

Figure 5 shows the posterior PDFs obtained for individ-
ual runs of three lenses in our mock sample. For each lens, six
realisations of the image data with different noise maps were
simulated and fitted, which correspond to the six individual
PDF's shown on each panel of Figure 5. Not only do’the PDF
contours rarely contain the true parameter (represented by
the grey dashed lines) they also rarely overlap with”each
other. To verify this is due to data discretization bias, for
each of the 354 synthetic images we now produce 500 new
likelihood evaluations — fixing all lens and source model pa-
rameters to the best-fit values, but randomising the k-means
seed used to pixelate the source plane. For 94.6% of these
177,000 calculations, the new likelihood is lower than the
best-fit model likelihood, indicating*that the likelihood values
inferred by dynesty were Systematically boosted relative to
the majority of possible source pixelisations. Figure 4 shows
this for three example cases, where the solid lines show the
maximum log likelihood model inferred via dynesty com-
pared to a histogram,of these 500 models draw using random
k-means seeds.

Thenlikelihood boosted solutions inferred by dynesty
occupy a tiny volume of parameter space, such that parameter
marginalisation significantly underestimates the width of the
posterior PDF. For each of the lens model parameters we
caleulate the percentage of the 354 model fits that recover
the true parameter within their 1D marginalised 68.7%, 95%,
and 99% credible regions (blue bars in Figure 6). On average
for all lens model parameters the truth is recovered only 30%
or 50% of the time at the 68.7% and 95% credible regions,
these coverage probabilities are significantly smaller than the
percentage credible regions they were calculated for — the
reported uncertainties are too small.

5.4 Likelihood Cap for improving sample statistics

We now investigate the efficacy of placing a ‘log likelihood cap’
on the non-linear search, where this cap is estimated in a way
that seeks to smooth out likelihood spikes in parameter space.
The cap is computed by taking the maximum likelihood
lens model of the non-linear search inferred by the MT&
search in the SLaM pipeline and computing 500 likelihood
evaluations using this model but each with a different k-
means seed. This process produces the histograms shown
in figure 4, which are fitted with a Gaussian whose mean
then acts as the log likelihood cap. We then repeat the
final MT" search of the pipeline (with identical parameters,
hyper-parameters, k-means seed, etc.), but any log likelihood
evaluation now returns no more than this value. If a log
likelihood is computed above this cap, it is rounded down
to the cap’s value before it is returned to dynesty, we note
that this assumes that dynesty has not converged on a local
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Figure 5. For threeltypical synthetic lenses, the posterior PDF
of modeldparameters inferred from mock observations. With a
likelihoed cap (yellow), these PDFs have sufficient width to include
the ttue value (crossed lines). Without a likelihood cap, the PDFs
from mock data with different realisations of observational noise
(six other colours) are too narrow because of noise in the likelihood
evaluations. Fitted parameters shown are the mass-density slope
(¥)7mass normalisation (R,)), and two components of ellipticity
(e1, €2); all other free parameters are marginalised over.
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Figure 6. Coverage probabilities of the lens model parameters with
(pink) and without (blue) a likelihood cap applied to_the non-linéar
search. The thin bars give the coverage probabilities of individual
lens model parameters as labelled, and the wider bars represent
the average of these values.

maxima in MT'. The yellow shaded cotitours in Figure 5
show the PDFs inferred by MT.,; using this log likelihood
cap, which now appear larger, smoother, and do not have
undesirable properties”such as“islands and discontinuities
that are seen for the,PDFs\inferred without this cap.

When performed on ‘our 354 synthetic images, the final
parameter estimation\now converges more consistently for
different realisations-of noise (for the sake of visual clarity,
Figure 5 only, shows one PDF, but all six PDFs do now
overlap for, each”dataset). The coverage probabilities for the
1D marginalised 68.7% or 95% and 99% credible regions have
increased significantly for all lens model parameters with the
us€ of the likelihood cap (see Figure 6 for the comparison with
and)without the likelihood cap). On average the true lens
model parameters are recovered 61% and 80% of the time at
the 68.7% or 95% credible regions, respectively. Although we
do not obtain full coverage, this is a significant improvement
in error estimation compared to not including the likelihood
capped phase. Furthermore, for each lens model parameter
we compare the mean of the best fit values of the six noise
realisations, and find that these are recovered 74% of the time
at the 68.7% credible region on average for all parameters.
This suggests that the likelihood cap is producing errors
that are consistent with the uncertainty due to random
noise in the image, and that our posteriors recover the true
values slightly less frequently than hoped due to systematic
biases in particular lens configurations that offset the inferred
parameters from the truth.

Further testing is necessary to understand the system-
atics that result from the source discretization bias as well
as any systematic offsets in inferred lens parameters in par-
ticular lens configurations. This would require a larger set
of mocks than was simulated for this study (see Section 7.4
for more discussion) and is beyond the scope of this work.
At present, it appears that the likelihood cap is effective
at improving the coverage probability of the 68.7% credible
region (only 7% shy of achieving coverage for lens models
parameters on average). Since the mock data was simulated
to be representative of the observed data, we assume this will
be true of the errors on the data adopting the same approach.
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As such, all errors quoted in this work are those at the 68.7%
credible region of the PDF's inferred by the likelihood capped
MT.,; phase.

6 RESULTS
6.1 Automation

We now inspect the results of our automated modelling
procedure on the SLACS and BELLS GALLERY samples
and quantify what fraction of lenses were fitted with a reliable
lens model without human intervention. To facilitate this, we
visually inspect every lens model, first after the SP pipeline
and then again on completion of the uniform procedure. We
label the final model of every lens in one of four categories:

e Gold (54/59): The fit represents a physically plausible model
of the lens and source.

e Silver (4/59): The fit represents a physically plausible model
of the lens and source. However, achieving this required
changes to data pre-processing that may not be easy to
automate (e.g. masking, lens light subtraction), and may
degrade the quality of the inferred lens model.

e Bronze (1/59): The fit represents a physically plausible
model of the lens (with the correct number of multiple im-
ages), but other features in the data (e.g. residuals from lens
light subtraction) visibly degrade the quality of the source
model.

o Failure (0/59): The fit produces a physically implausible lens
model (e.g. with an incorrect number of multiple images).

After a first blind run, we find 9 galaxies outside the
“Gold” sample. In 8/9 cases, they went wrong during the first
SP pipeline. We determine what went wrong, describe simple
interventions, and rerun the pipeline. Our interventions suc-
cessfully move all of these lenses into the “Bronze”, “Silver”
or “Gold” categories. Through this process, we suggest ways
to reduce the failure rate in analyses of future large samples
of lenses. For future analysis of large lens samples, oné can
anticipate undergoing this process on a subset of lenses hefore
modelling the full sample.

If a lens ends up in the “Gold”, “Silver’ orBronze”
categories, we consider its effective Einstein Radius Rgin,cr
to be measured accurately. If a lens is in the “Gold” or “Silver”
categories, we also consider more detailed \quamtities of the
mass model (e.g. the slope 7) to be reliable. Indeed, we shall
find our best-fit models broadly consistent with those from
previous literature, in Sections 7.2 and 7.3.

6.1.1 PFully automated success

We immediately place 50/59 lenses (85%) in the “Gold” sam-
ple after the first;iblind.run of our uniform pipeline. These
models show low_levels of residuals and physically plausi-
ble source galaxy morphologies. Best-fit model parameters
are listedin TPables 2 (SLACS) and 3 (GALLERY), and
reconstructions are shown in Appendix C.

6.1.2) Semi-automated success

Fits to 4/59 lens systems converge to models with the wrong
number of lensed images. In all four cases, the fits incorrectly

converge to a highly elliptical mass distribution early in the
SP pipeline, and could not recover the better solution in the
SI or subsequent pipelines. The model of J1451—0239 fits 4
images to what is (by eye) a 2 image system (Figure 7). Fits
to J0237—0239 and J0856+42010 converge to single-image
models, each missing a central counter-image that is close
to the centre of the lens galaxy and therefore difficult to
disentangle from the lens galaxy’s light (Figure 8). The model
of J0841+3824 is multiply imaged, but its very faint counter
image is in the wrong location (Figure 9).

We fixed this by rerunning the pipeline for these lenses,
but restricting the SP? phase to more circular mass models,
via a uniform prior ¢; €[—0.2, 0.2], instead of a Gaussian with
o = 0.3. To better find the global maximum likelihood solu-
tion for lenses J0237—0239, J0841+3824, and J085642010,
we also increased the number of dynesty live pointsite’ 600
from 200 in SP? (this was not necessary for J1451-0239, where
a change has no consequences other than incréased runtime).
With these settings, the automated modelling procedure is a
success and the models (also shown in Figure 1)’are moved
into the “Gold” sample.

These fits can be easily fixed by'aanore restrictive (or an
all-round better) early initialisation, Our/solution of forcing
fairly circular models works svell, for early-type galaxy lenses,
but would need to be rethought ifsthe sample could include
late-type galaxies with“{eédge=on) discs. Since spectroscopic
lens detection techniques also identify the lens galaxy type,
a different prior could bewsed for each.

For now, we'conclude that the biggest challenge of scal-
ing up lens.modelling to large samples is fitting an initial,
physically plausible lens model. Once a simple lens model
is correetly initialised, nothing prevents subsequent conver-
gence of increasingly complex distributions of source light
and lens mass. We shall discuss this further in Section 7.1.

6.1:3 Success with human intervention

Fits to 3/59 lens systems converge to a model in which
imperfect lens light subtraction has left a spurious, residual
ring of lens light that becomes considered part of the source.
This again happens during the early SP pipeline, after which
the Sérsic model of the source is too large (Figure 10a).
Subsequent pixelised source models also include the residual
lens light. Unlike the previous failure modes, we could not
find small changes to the automated pipeline that fix these
model fits.

For lenses J1153+4612, J1016+4-3859, and J0959+4416,
we instead use the b-spline subtracted data (Section 3.2).
These versions pre-subtract the lens galaxy’s light more
cleanly than our double Sérsic fit. Even then, we mask
small remaining residuals near the centre of J1153+4612
and J1016+3859. We finally refit all three lenses using the
version of the pipeline (which was also for the mock data)
that does not fit the lens light. This results in successful mod-
els, as assessed by our visual inspection criteria (Figure 10b).
Although we arrive at successful model fits, we categorise
these lenses in the “Silver” sample, because the lens light was
not fitted in a Bayesian manner.

The fit to 1/59 lens systems includes a counter-image
that reproduces a residual knot of lens light emission instead
of the adjacent but fainter true counter-image (Figure 11). It
can be fixed by masking the knot of lens light and rerunning
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Class Lens Name REin eff ~ q ¢ yoxt poxt
J0008-0004  1.1570097  2.08F68%  0.7270-03 42731 0.02370:91% 96733
J0029-0055  0.9347599%  2.32%613 0787005 22793 0.01379:519  11+%2
J0157-0056  0.91275-013 2237008 5670-0T 112728 18270021 102730
J0216-0813  1.18375011 1997008 gT0-01 75182 0.00979-012  o*+37
J0252+40039  1.0247000%  1.92709%  0.89F0 0% 111780 0.02470005 11775
J0330-0020  1.08879-99% 2151592 79007 gqt1l 0.04175:821 54712
J07284-3835  1.24479012  1.99%012  6870-08  g5t3-4 0.068T5-015 61755
J0737+3216  0.97670:09% 2287007 0.86100% 96133 0.10975-897  10F17
J08224+2652  1.1207501L 217608 0547002 7512 0.175:824 72788
J0841+3824  0.95675:9%5  2.27%02 . 0.697015 11773 0.14470037 117763
J09034+4116  1.26175-90% 2237005 88002 5oT12, 0.06273:0%, 63155
J09124-0029  1.39375-01L 2147585 0797008 2771 0.0337051%  12673%
J09364-0913  1.08179:99% 2137068 0797005 134749 0.0617091% 105786
J094641006  1.40975-99t  2.061593 09730 68715 0.0910:602 681020
J0956+5100  1.3147000% 2057002 079700 143710 0.06670003 53808,
J095940410  0.98579-01% 2081007 527007 59133 0.03879:921 « ‘6015
J10204+1122 106575000 2151970 0.547007 131732 015070322 1g1¥E2
J10234+4230  1.41175908  1.957016  0.9270-0%  177H17 0.02373:050 W 68153

Gold J10294+0420  0.9477581 1437885 0.627002 111734 oA52RG02s 100733
J1032+5322  1.03T000L 2117002 0.697007 143735 40.039%%09 167715
J114241001  0.9087982% 2037501 0.4970%: 144737 \0217002 148759
J1143-0144 16117001 2.15700% 0737007 116778, 00038001 16673
J120544910  1.21879-998  1.92%007  .7470-08 149 TEE " 0.01970-018  99T33
J121346708  1.32270018 2. 8t007  (.go 00T 3T 0.04579-018  g*+15
J1218+0830  1.21770°05. 2357007 0.3570:03  A44Tl-3 0.35370011 140733,
J125040523 114470008 1.84T000 00100 120772 0.0247001  132757%
J14024+6321  1.34975-905  2.00%0 18N, 0.72%907  6375L 0.03073:019  1H34
J142046019  1.07575:902  1.94%0:0%  0m37002 1117585 011870959 11071
J143044105 148175902 20279019 0.9170-01 120728 0.08870-052 227051
J143246317  1.2847500 A 1091806 0.8870-05 102712 0.0997091¢ 115738
J1451-0239  0.96700TN/2.20751 0.547095 303 T 0.19373:022  o7+36
J152543327  1.297000%  {.021006 0597004 q17+28 0147001 g7t
J1627-0053  A217E80020 2081098 847003 g+26 0.01979-005 6168
J1630+4520¢, 1.79179°096 1967509 0.8310:01 70727 0.02375-80¢ 59779
J2238-0754 126875001 2.071057  0.83700%  137F3E 0.00470057 37152
J230040022 1.21975-908 2551007 0.6270-0% 74758 0.09473-012  g*+2.9
J2803+1422  1.62875007  2.00705%  0.5370:95  3471-¢ 0.002F73:997  171%5%
J234140000  1.33875:909 2127066 gT0-08 g 18T 0.02773:999 16718,
J095944416  0.97275:928 257019 07014 836 0.02713:557  88+57

ey Y 71016-+3859 1.00478:926 2231015 0567013 g2til 0.21773:%%, 113753
J115344612  1.02079:897 1721098 0617003 104F18 01817508 101739
J141645136  1.2467991% 207001 o73T0-1L 103770 015270925 108757

Bronze J1103+5322 1.06575007  1.797581  0.5370-0% 497 % 0.10370:00s 032

13

Table, 2. Best-fit physical parameters for SLACS lenses. These are derived quantities, obtained from the varied parameters of the lens mass
model (Table B1). Lens light model parameters are presented in (Table B4).

220Z 1890100 || U0 Jasn weyinq Jo Ausianiun Aq 1L.8€01 29/6E£9Z0BIS/SEIUW/ESE0 L 01 /10P/a[0IIB-80UBADPE/SEIUW/WOD dNoolWwapeoe//:sdiy woll papeojumoq



14 Etherington et al.

ext

Class Lens Name REin,efff ~y q ¢ ~ Pt

J0029+2544  1.34710 010 2057012 0.6510 00 128787 0.020700%% 149730
J0113+0250  1.329%0°008 1777015 0751005 178758 0.07970015  157%0

—0.11 —0.02
+0.011 +0.09 +0.03 +5.4 +0.016 +4.7
J0201+3228  1.71370:00 2.00759% 0787003 12575%  0.0637091S  53FET

J0237-0641  0.6197902.  1.917518 079012 131730 0.02778 031 TS
Jo742+3341 12417001, 2217998 02907001 56735 010778028 4478
JO75543445  2.07379:00%  1.7770-08 0531001 15T10 0.2478000 98t 1C
J0856+2010  0.95170:035  2.23%0-08 (361009 45159 0.15310023 93783
J091845105  1.64570:005  2.38%0-16 781004 95118 (.25910:084  19510.60
J1110+2808  0.90475:02T  2.03T59%  0.827008  7rtIE 0.1237503%  55T)
J1110+3649  1.15175:000  2.23T6-07 0777002 174711 0.025759%% 64738

Gold

—0.08 —0.02 —0.005
J1116+0915  0.811F002% 2227018 021%005 86733 0.393700%% 885G
J1141+2216  1.28310°0%7 2137007 0581009 57735 0.04370:035 38733

+0.004 +0.05 +0.06 +14 +0.004 +3.7

J12014+4743 117170008 2747598 0827006 130714 0.06970:00* 42737
+0.004 +0.07 +0.02 +6.6 +0.012 +0.76
J12264+5457  1.39870-00% 2241597 0867502 130785 0.18975012 1561578
+0.024 +0.14 +0.1 +5.7 +0.026 +5.7
J2228+1205  1.2119:924  92%014 51401 116757 0.20270-920 1435

+0.006 +0.07 +0.05 +3.6 +0.009 +4.4
J2342-0120  1.09170-006  2.34+0-0T 0.4470-0% 114736 01370099 coatdd

Table 3. Best-fit physical parameters for BELLS GALLERY lenses. These are derived quantities, obtairned, from jthe varied parameters of
the lens mass model (Table B2). Lens light model parameters are presented in (Table B3).

Subtracted Image Model Image Residuals Subtracted Image Model Image Residuals
J1451-0239

0.0

(a) Unsuccessful model fit in the Source Parametric pipeline. (b) Successful model fit on completion of the pipeline.

Figure 7. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the
mass distribution to ey €[—0.2, 0.2], the system is fitted suecessfully, and is classified as a “Gold” model.

Subtracted Image Model Image Residuals Subtracted Image Model Image Residuals

17
:—:I
0.00 0.01 0.02 0.00
:—:I
0.000m50.00 002 003 000 001 00 03 000 001 002 003000 00l 00 03
(a) Unsuccessful model fit in the Source Parametric pipeline. (b) Successful model fit on completion of the pipeline.

Figure 8. (a) Model fits for the systems that fail to fit the counter image in the Source Parametric phase. (b) After tightening the prior on

the elliptical components of the mass distribution to ey €[—0.2, 0.2], the systems are fitted successfully, and are classified as “Gold” models.
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Subtracted Image Model Image Residuals Subtracted Image Model Image Residuals

J0841+3824
i

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

(a) Unsuccessful model fit in the Source Parametric pipeline. (b) Successful model fit on completion of the pipeline.

Figure 9. (a) Model fits for the system that misses the counter image. (b) After tightening the prior on the elliptical components of the
mass distribution to ey €[—0.2, 0.2], the system is fitted successfully, and is classified as a “Gold” model.

Subtracted Image Model Image Residuals Subtracted Image Model Image Residuals

J0959+4416

J1016+3859

J1153+461

0.05 0.10 0.15 0.05  0.10 0.15 -3 -2-10 1 2 3

(a) Unsuccessful model fit in the Source Paramettic. pipeline. (b) Successful model fit on completion of the pipeline.

Figure 10. (a) Model fits for the lens systems that fail teyfit successful models in the Source Parametric pipeline as a result of bad lens
light subtractions. The model reproduces lensdight,emission that remains in the subtracted image and significant residuals can be seen
where the source emission is being ignored by, the.model. (b) For these systems we replace the data with b-spline subtracted data and use
custom masks to arrive at successful model fits,classified as “Silver” models.

Subtracted Image Model Image Residuals Subtracted Image Model Image Residuals

.Il4l6-§.¥6

0.0 0.1

(a) Unsugcessful model fit in the Source Parametric pipeline. (b) Successful model fit on completion of the pipeline.

Figure 11.7(a) Model fits for the lens system that misses the counter image, instead fitting a counter image to lens light residuals. (b) The
lens requires rerunning with our own double Sérsic subtracted data using the without lens light pipeline, as well as a custom mask, to
arrive at the successful “Silver” model fit.
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Model Mean Error Median Error
Parameter cap without cap cap without cap
b 0.036 0.010 0.027 0.005
ol 0.087 0.014 0.079 0.002
€1 0.039 0.010 0.028 0.005
€2 0.038 0.025 0.031 0.015
Vloxt 0.018 0.005 0.016 0.003
V2ext 0.019 0.009 0.017 0.004
Te 0.016 0.006 0.014 0.003
Ye 0.016 0.004 0.013 0.004

Table 4. Summary of the average 68% credible region errors inferred
for all mass model parameters with and without a likelihood cap
applied to the non-linear search.

the pipeline. However, this process would be difficult to auto-
mate with monochromatic imaging, so we place J1416+5136
in the “Silver” sample.

6.1.4 Remaining problematic lens

The lens J1103+5322 is the only system that is unable to pass
our visual inspection criteria on completion of the uniform
pipeline. In the SP pipeline the model fits an appropriate
model that fits the global lensed structure of the source, how-
ever significant residuals are present in the fit. The lens light
subtraction leaves a quadrupole-like feature in the centre
of the subtracted image as well as flux extending past the
Einstein-ring feature. The SP pipeline is able to fit a model
that fits solely to the source light, however continuation of
the pipeline leads to a final model that reconstructs the lens
light residual structure, which in Figure 12 can be seen to
extend far beyond the emission from the source. This feature
could impact the measurement of parameters which depend
on the gradient of the flux in the lensed source, like the slope
of the mass model. Replacing the data with the b-spline sub-
tracted data resulted in similar residual lens light emission
being reconstructed by the source galaxy. Nevertheless, we
believe that this model estimates Rgin et accurately, our1mea-
surement is within 5% of previous literature measuréments
(see Section 7.2 for a discussion on the expected uncertainty
between these methods). As a result, we place this lens in
our “Bronze” sample.

6.2 Statistical uncertainty on measutements
6.2.1 Effect of the Likelihood Cap

In Section 5 we demonstrated the necessity of a likelihood
capped phase (MTéxt) to increase the formal statistical errors
inferred by the non-linear search such that they better re-
covered the true parameters on mock data. We now quantify
the effect this phase has on the uncertainties inferred on
real data (seeFigure 13 for its affect on the density profile
slope errors). On¢average, we find that this approach has
increased  the inferred non-linear search errors by a factor
of ~ b5y as‘assessed by the median of individual factor in-
creases for all mass model parameters. We quote the median
inerease to avoid bias from 5 lenses whose errors increase
by a factor of over 1000 upon introduction of the log likeli-
hood/cap. On investigation, we found these lenses correspond
to those with the largest difference between the likelihood
inferred in MT! and the likelihood cap applied to MTL

(defined as the mean of 500 repeated likelihood evaluations
with the same mass model, but different data discretiza-
tions). Hence, these lenses are the ones that were in the
most “likelihood-boosted” regions of parameter space and as
a result significantly underestimated the error. In the most
extreme example, JO755+43445, the error inferred on the slope
parameter with a likelihood cap is 64453 times larger than
that inferred without a cap (see Ritondale et al. 2019, for a
discussion of this lens). This highlights the scale at which the
certainty of parameters can be incorrectly inferred without
consideration of the source discretization bias. Further quan-
tification of the average errors inferred at the 68% credible
region for each mass model parameter with and without,a
likelihood cap is given in Table 4.

Of all the mass model parameters, the likelihood eap has
the largest effect on the density profile slope. Thé median
factor increase in the error size before and after the'eap is.24.
The distribution of the 68% credible region errors with and
without the cap are plotted in the right paneliof Figure 13.
Notably there are two extreme outliers in the distribution of
errors inferred without a cap, that are‘the two/largest errors
inferred across both distributions. For the\lenses J1016+3859
and J0959+4416, both of which were replaced with b-spline
subtracted data as an intervention to)achieve model fits, the
error actually decreases when, therlikelihood cap is applied.
Although the uncertainty en=the slope measurement is in
general, as expected, significantly increased in MTg,, relative
to MT!, the distributionvef slopes inferred does not change
significantly (leftypanel of Figure 13). The mean increases
from 2.08 to.2.12y and‘the standard deviation increases from
0.21 to 0.24.

We=derive errors on the effective Einstein radius by cal-
culating a posterior PDF from all possible effective Einstein
radii given/the accepted non-linear search samples and their
weights. 'We find the inclusion of the likelihood cap increases
thetmiean 68% credible region error on the effective Einstein
radius from 0.3% to 1.1%, and does not affect the distribu-
tion of Rgin,es we infer (see Figure 14). This suggests that,
on average, the Einstein radius can be measured to ~ 1%
uncertainty, taking into account uncertainties in the noise
and source discretization. We note that this does not account
for any systematic error that would result from discrepancies
between the assumed mass model and the underlying mass
distribution. However, although the mean uncertainty on
Rgin,et is low, two lenses (J0841+3824 and J1116+0915)
have anomalously large uncertainties of 8.6% and 6.6% re-
spectively. Hence, for some lens configurations it appears the
Einstein radius can not be determined with such certainty.
This may be an indication that the underlying mass distribu-
tion for these lenses is more complex than the PLEMD that
we assume in our model fits. This seems reasonable for these
two lenses since J0841+43824 is one of the few disky galaxies
in the sample, with obvious extended spiral features in the
data, and J1116+4-0915 contains a visible mass clump to the
North of the lens that we do not fit for with our uniform
approach.

6.2.2 What drives the precision of a lens model?

To investigate what properties of the lens or data (if any)
drive the precision of the lens model, we measure correlation
coefficients between statistical uncertainty on the effective
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Subtracted Image
J1103+5322

Model Image Residuals Reconstruction

-
]

0.0 0.1 0.2

(a) Successful model fit in the Source Parametric pipeline.
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Subtracted Image

Model Image Residuals Reconstruction

(b) Unsuccessful model fit on completion of the pipeline.

Figure 12. (a) The single lens J1103+5322 is successful on completion of the Source Parametric pipeline, the parametric source avoids
fitting to lens light residuals that remain in the subtracted image. (b) However, on completion of the pipeline the pixelised source
reconstruction is unable to avoid fitting to these residuals, leading to this lens’s classification of “Bronze”.
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Figure 13. Comparison of the distribution of inferred slopes (left)
and their associated 1o credible region (right) with and without a
likelihood cap applied to the non-linear search.
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Figure 14. Comparison of the distribution oftinferred Einstein radii
(left) and their associated percemtage error at the lo credible
region (right), with and without ailikelihood cap applied to the
non-linear search.

Parameter Gradient Intercept
Rgin e (') —0.027 £ 0.007 0.044 + 0.008
REin, et (") [> 5% removed] —0.017 £ 0.004 0.029 + 0.004
peak sofirce S/N (0.04£1.0) x 107*  0.011 £ 0.004

Rpinett/ Rif (—6.444.0) x 10=%  0.015 4 0.004
Aens 0.0+0.01 0.010 £ 0.004
o (kms™1) (—3.443.7) x 1075 0.020 + 0.010

Table 5. Tinear fit results for the correlations with the uncertainty
on the Einstein radius. Errors quoted on the gradient and intercept
are the 1o confidence intervals.
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Figure 15. Inferred percentage errors on the Einstein radii at the
68% credible region as a function of observable properties of the
lens galaxy, and the S/N of the source. Parameters for linear fits
to these data are given in Table 5.

Einstein radius and observable properties of the lens galaxy:
including the Einstein radius itself, the ratio of the Einstein
radius to the effective radius, the lens redshift, the velocity
dispersion of the lens, and the peak S/N of the source (Fig-
ure 15). Linear fits show no clear trend with most of these
parameters. The only non-negligible correlation (defined as a
non-zero gradient with >3¢ significance) is with the Einstein
radius. The correlation remains when we repeat the linear fit
removing the two uncertainties that are larger than 5% that
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could bias the relation, although the effect size does reduce
by over a third (Table 5).

7 DISCUSSION
7.1 Can we truly leave no lens behind?

The success of our uniform pipeline makes us optimistic for
the future of automated strong lens analysis. We initially
fitted 50/59 (85%) lenses in a blind run. We increased this
to 54/59 (92%) “Gold” lenses after tweaking model priors,
58/59 (98%) “Gold” or “Silver” lenses with some pre-fitting
and masking of lens light, and 59/59 (100%) including one
successful model of the lens whose model of the source in-
cludes poorly-subtracted residuals of lens light. With just
one pipeline, we have inferred parameters for 59/59 lenses
that measure the lens galaxy’s Einstein radius and other
mass distribution parameters (of the power-law profile with
an external shear we assume) that depend on only the first
derivative of the potential of the lens galaxy. For 58/59 sys-
tems, we measure parameters describing their mass (including
the parameters that depend on the gradient of the source
flux such as 7). As well as this, we reconstruct a de-lensed
image of the source galaxy, enabling study of its morphology.
For 54/59 systems, we measure parameters describing their
mass distribution and light distribution (as a double Sérsic
profile) as well as reconstructing a de-lensed image of the
source galaxy.

The most challenging step in automating lens modelling
is in the initial estimation of a simple lens model (in this work,
we use an SIE plus shear). Notably, once our early SP phases
arrived at a successful fit to this model, the rest of our pipeline
always ran to completion, successfully increasing the model
complexity. We therefore recommend that effort to further
improve automation should focus on ‘lens model initialisation’
and find ways to avoid or flag the problematic solutions thak
occur at early stages of the analysis. Provided that-our
sample of lenses is representative of the larger population of
lenses that will be discovered by future surveys, this strategy
will lead to a high success rate for even complexymass, fits
and reduce the need for visual inspection of the\results. An
obvious starting point to improve lens modelinitialisation
by PyAutoLens would be to further simplify ‘the non-linear
parameter space of the SP pipeline, for, examplé by assuming
models for the lens and source light with.féewer parameters
(e.g. Massey & Refregier 2005;Birrer et al. 2015; Tagore &
Jackson 2016; Bergé et al. 2019).

Convolutional Neural Networks (CNNs) have also been
suggested as a fast method fer automated lens fitting (Heza-
veh et al. 2017; Levasseur et al. 2017; Morningstar et al.
2018). They provide,a particularly compelling solution to
the problem of\lens,model initialisation. For example, Pear-
son et al. (2021) ¢ombined a CNN with PyAutoLens, using
models from, the CNN to initialise the mass model priors
of a PyAutoLens model-fit. In the majority of cases tested
on mock data, the authors argued that a combination of
thetwo, methods outperformed either method individually.
Indeed, the strengths of a CNN (fast run-times, avoidance of
unphysical solutions) complement the weaknesses of Bayesian
inference approaches like PyAutoLens. It is conceivable that
a CNN could replace PyAutoLens’s initial lens model fits

altogether and allow the method to focus entirely on fitting
more complex lens models with well characterised errors: a
task better suited to PyAutoLens’s fully Bayesian approach
than a CNN. At least, a CNN might be able to identify and
isolate which lenses will eventually make the gold sample,
and reduce manual intervention Maresca et al. (2020). CNNs
will also have an as-yet unquantified fraction of failures. If the
lenses where a CNN fails are different to where traditional
model-fitting approaches fail, combining the two may be key
to maximising the success rate of lens model initialisation.

The second major challenge for automated lens mod-
elling is deblending the foreground lens light. Within our
sample, PyAutoLens could not deblend the lens and source
light in 3/59 systems, and required visual inspection to recog-
nise these bad fits. In these cases, we instead used b<spline
fits that were created via a time-consuming manual process.
This issue will be more prevalent in Euclid, owing to,its
lower spatial resolution than HST and lens samples with
smaller Einstein radii (Collett 2015) — beth of which move
the source’s light closer to that of the lens. Furthermore, our
analysis included pre-processing stepg'that,mantally removed
the light of foreground stars and interloper galaxies via a
GUI, a task which is overly time-intensive for an individual
scientist to perform on larger samples of lenses.

We propose two directions for'future work that could
improve automatic deblending» First, there are CNN ar-
chitectures dedicated to the task of image deblending and
segmentation (these architectures do not attempt to estimate
the lens model ‘parameters). These have been applied suc-
cessfully on galaxyicatalogues (Burke et al. 2019; Hausen
& Robertson2020) and in studies of strong lenses (Rojas
et al. 2021), with multi-wavelength imaging seen to improve
dehelending quality. Alternatively, this task seems well suited
to citizen science (Kiing et al. 2015; Marshall et al. 2016;
Morte et al. 2016), whereby members of the public could use a
GULto mark-out regions of the data they believe correspond
to the lens, source and other objects. The desired outputs
of either approach are pixel-level masks describing where
the source, lens and other objects are in the image data,
which could be used for the automated removal or masking
of contaminating light before lens modelling begins.

7.2 Einstein radius measurements and uncertainty

The statistical precision with which the Einstein radius can
be measured is promising for many possible scientific studies.
For example, Sonnenfeld & Cautun (2021)’s proposed method
to constrain the population-level parameters of lens galaxies
relies on being able to accurately measure the Einstein radii
of the sample of galaxies. Previous studies have attempted to
account for the very small formal statistical uncertainties on
model parameters (in particular those inferred with paramet-
ric source methods) and associated systematic uncertainties
by comparing the fractional difference of parameter estimates
using different approaches. Bolton et al. (2008b) and Son-
nenfeld et al. (2013b) reported a typical expected systematic
uncertainty on the Einstein radius of ~2-3%. This value of
uncertainty is often adopted over (or combined with) those
determined from the non-linear search. Furthermore, given
the Einstein radius is expected to be a model-independent
quantity (E. E. Falco, M. V. Gorenstein & I.I.Shapiro 1985;
Unruh et al. 2017; Cao et al. 2020), it is typically assumed
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Figure 16. The Einstein radii measured by PyAutoLens (Réf;]) are

generally consistent with those measured by previous analyses of
the SLACS (Bolton et al. 2008a) and GALLERY (Shu et al. 2016¢)
lenses (RIit ). This shows the fractional difference between new
and old measurements, as a function of PyAutoLens axis ratio,
gAL-

that this amount of uncertainty accounts for differences in
the assumed parameterisation of the mass model.

7.2.1 FEinstein radii compared to previous measurements

In a similar fashion to Bolton et al. (2008b) and Sonnenfeld
et al. (2013a) we now compare our measurements of Einstein
radii with those that exist in the literature (see Figurey16)
and estimate the uncertainty introduced as a result of the
different methods. The full SLACS and GALLERY safmples
have previously been modelled with SIE profilesstor measure
the Einstein radii for supplementing a’dynamical analysis
of the lenses (SIE models of SLACS“by Bolton et al. 2008a
and SIE or SIE+shear models of GALLERY by Shu et al.
2016¢). In this comparison, therefore, not only are the lens-
ing methods very different, but we have also assumed the
more complex PLEMD plus‘external shear (PL+ext) mass
distribution for the lens,galaxy. Compared to these previous
measurements, we find Einstein radii with root mean square
(RMS) fractional(difference of 7.4%. This is larger than the
(empirically metivated)y~ 2-3% uncertainty that is typically
assumed.

Several differences between the methods could lead to
variation between their inferred Einstein radii. Bolton et al.
(2008a),and Shu et al. (2016¢) model the background source
using either a single or multiple Sérsic ellipsoid components,
and both choose different approaches to the lens light sub-
traction procedure than the one we adopt. While Bolton et al.
(2008b) and Sonnenfeld et al. (2013a) investigated differences
like these, neither were concerned with differences in the
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assumed mass model. Indeed, for a subset of 14 lenses that
were also analysed by Shajib et al. (2021) assuming a PL+ext
model, the RMS fractional difference is only 1.6%, it may be
that the reduced uncertainty is a result of fitting the same
mass model. Although, this is not of concern if the Einstein
radius is indeed model-independent. For this Cao et al. (2020)
provide good evidence, showing that the assumption of the
PL+ext exhibits only 0.05 + 0.17% systematic error on the
Einstein radius relative to complex “MaNGA” mock data.

Notably, though, we find that five of the six lenses whose
Rgin differ by over 10% in the SLACS and GALLERY sam-
ples, are accompanied by extremely large values of external
shear magnitude (ranging from 0.16 to 0.39) when fitted with
our PL+ext models. If these high shear lenses are removed
from the comparison, the RMS fractional difference drops to
4.2%. Cao et al. (2020) also demonstrated that the’asymme-
try in complex mass distributions can lead to the inference
of spurious external shears. On average, they inferred an
external shear magnitude of 0.015, despite the mock data
being generated without external shear. In this” work, we
infer an average of 0.096 shear magnitudefor the SLACS and
GALLERY lenses. These large shear«values may be partly
a result of the additional complexity in/the asymmetry of
real lenses. Cao et al. (2020), required the Multiple Gaussian
Expansion components, that\represented the stellar mass,
to share a common axis ratioand position angle — this
may not be a realistic representation of the angular struc-
ture of real lenses (Nightingale et al. 2019). Given that it is
the lenses with'high external shears that differ most from
previous literature measurements of Rgin, we speculate that
the assumption ‘of a different mass model (in particular the
assumption of external shear) may drive the larger fractional
uncertainty, This would imply that the Einstein radius is less
model-indépendent than is often assumed. Further work to
test this hypothesis would be valuable.

7.2.2  Statistical uncertainty on FEinstein radii

We now consider the size of the errors we measure on the
Einstein radius, based entirely on our own PL+ext models.
Our likelihood cap method (Section 5) addressed the small
formal statistical uncertainties on the mass model parameters
and allows us to infer uncertainties that account for differ-
ences in possible noise realisations and the choice of data
discretization. Moreover, since pixel-grid methods have the
flexibility to reconstruct the source with as much complexity
as the data needs, they are not subject to the overfitting that
occurs in parametric source methods due to overly simplistic
source assumptions. With this approach, we measure a mean
uncertainty on the inferred Einstein radius of ~1%, albeit
with a wide range of outliers, and 2/59 lens configurations ex-
ceeding 5%. Adopting a uniform uncertainty could therefore
be problematic for some statistical inferences.

For example, determining the population level param-
eters of hundreds of thousands of lenses, as described by
Sonnenfeld & Cautun (2021); Sonnenfeld (2021); Sonnenfeld
et al. (2013a) might suffer from such inaccurate individual
posteriors as those with up to 5% uncertainty on the Einstein
radius. The increase in the width of the posteriors inferred as
a result of the likelihood cap approach demonstrated in this
work should avoid biases in the population level parameters
constrained in studies such as these. However, they will in
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Figure 17. The statistical uncertainty on a galaxy’s total mass,
when measured from its effective Einstein radius, does not degrade
with lens redshift z < 0.7 (top panel). This is in stark comparison
to most astrophysical observables. For example, the uncertainty
on a galaxy’s total mass when measured from stellar dynamics
(velocity dispersion) increases for more distant galaxies because of
cosmological dimming and beam smearing (bottom panel).

turn increase the amount of lenses required to be able to
make such a constraint. Moreover, the coverage probabili-
ties of the lens model parameters with a likelihood cap (see
Figure 6) did not quite reach the expected level, potentially
indicating an under confidence in the posterior. Under con-
fidence in the posterior could lead to biases in estimates of
the population parameters such as an overestimate in the
scatter of the population (Wagner-Carena et al. 2021). We
discuss the importance of further testing of the confidence of
the individual posteriors further in Section 7.4.

For comparison, Cao et al. (2020) inferred an average
of 0.01% statistical uncertainty on the Einstein radius when
fitting to mock data simulated using “MaNGA” galaxies
without the use of a likelihood cap. This order of magnitude
difference from the uncertainties inferred in this study is likely
a combination of the use of the likelihood cap increasing-the
errors in this work, and differences in the quality<of the
data. Cao et al. (2020)’s mock lensed sources aresimulated
with S/N of 50 and have visible extended arcs (omcomplete
Einstein rings) that the lenses with the largest errers on
REgin inferred in this work do not, often appearingicloser to
point-like. Furthermore, they do not include the lens galaxy’s
light, a component which we have shewn in this study can
hinder the lens model fitting procedure.

Based on the empirical relations we derived in Sec-
tion 6.2.2, the certainty to whichyone can measure the Ein-
stein radius is remarkably independent of a number of data
properties and galaxy“observables. For example, it might
be expected that a higher. S/N source galaxy image would
tighten the constraints, however this does not appear to be
the case for the Einstein‘radius measurement. This is encour-
aging for fufure surveys that will not achieve as high S/N as
the HST.«data used in this study.

The only parameter we investigate that exhibits a statis-
tically significant correlation with measurement uncertainty
om“the Einstein radius is the Einstein radius itself. Measure-
ments of the Einstein radius become less certain for small
Einstein radii, and therefore low mass galaxies. This could
also be relevant for surveys such as Euclid that are forecast
to detect samples of lenses with smaller Einstein radii (typi-

cally ~0.5"according to Collett 2015). Interpolating from our
empirical relationship, fitted to the sample excluding the two
with anomalously large uncertainty, a lens with this Einstein
radius should be measurable to ~ 2.1% accuracy. However,
since the pixel-scale and PSF of the Euclid VIS instrument
are roughly twice that of HST, this should be considered a
lower limit.

7.2.8 Implications for studies of galaxy evolution

Notably, there does not appear to be a correlation between
the lens redshift and measurement uncertainty on the Ein-
stein radius. This highlights the power of strong lensing as a
tool for investigations into galaxy evolution. If the lensing
measurements do not degrade with redshift, then inferences
of how galaxy properties evolve will be well constrainedieven
to high redshift. This is in contrast to e.g. stellar dynamics
data, where cosmological dimming effects reduce the.certainty
of the stellar velocity dispersion (and thereforeydynamical
mass) of distant galaxies. The increase!in fragtional uncer-
tainty of the velocity dispersion, gefr/gmwithin our SLACS
and GALLERY samples is shown in Figure 17. Within both
samples oerr /o increases withfedshift, (the difference in fibre
apertures used for SLACS and GALIERY means direct com-
parison of their errors is:mnot straightforward, albeit they still
highlight that in general higher redshift galaxy measurements
are lower S/N).

This creates an ‘interesting dichotomy between using
strong lensing to,study’galaxy evolution and other methods.
In lensing; provided we are able to find the lenses at the
highest redshifts (surveys such as Euclid and the Vera Rubin
Observatory will observe lenses at redshift of up to ~ 2
(Collett 2015)) we can anticipate that we will be able to
measure their properties as well as those at lower redshifts.
Issues/that plague comparisons between the properties of
low’and high redshift galaxies via a technique like stellar
dynamics, for example beam smearing Tiley et al. (2019),
will therefore be less problematic. However, whilst comparing
their properties may be more straightforward, strong lens
samples will have complicated selection effects Sonnenfeld
(2022) that a carefully constructed dynamics sample can
more easily mitigate. The reduced lensing efficiency of lower
mass galaxies may also restrict the high redshift samples to
only the most massive galaxies, albeit this is a limitation for
most observing techniques. A strength of lensing, therefore,
is that it offers a different means by which to study galaxy
evolution that complements the strengths and weaknesses of
other techniques.

7.3 Measurements of other lens model parameters

In addition to the total mass enclosed within the Einstein
radius, strong lensing information also constrains quantities
like gradients of the distribution of mass, and the amount of
external shear. This is captured in a model-dependent way
via the parameters of our PL+ext mass model (see Sonnen-
feld & Cautun 2021 for a model-independent expression of
this information). We shall now compare our measurements
of radial density gradient v and shear magnitude v***, to
measurements made using previous, independent analyses of
overlapping sets of lenses.
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Figure 18. Our measurements of the density profile slope (left)
and the magnitude of external shear (right) in SLACS lenses,
compared with previous, independent measurements by Shajib
et al. (2021).

Shajib et al. (2021) modelled 23 SLACS lenses, including
14 in our sample. Like us, they used a uniform pipeline that
simultaneously modelled the distribution of mass and light.
They too described the lens galaxy’s light as a double Sérsic
profile whose centres are aligned. However, unlike us, they
fixed the Sérsic index of each to values of n =1 and n =4
(the exponential and de Vaucouleurs profiles respectively)
and join the axis ratios of the two profiles. A major difference
in the two techniques lies in the source reconstruction; Shajib
et al. (2021) reconstructed the source using a Sérsic profile
and shapelet basis functions.

For all but one lens, Shajib et al. (2021) and our mea-
surements of v and v*** are consistent (Figure 18). For the
discrepant lens J2300+-0022, PyAutoLens infers v = 2.55 and
~*** = 0.08, compared to Shajib et al. (2021)’s v = 1.85-and
~¥* = 0.03. We believe this discrepancy could be afresult
of the different order of operations in a model fit: Shajib
et al. (2021) initialise their lens model assuming 95" = 0.0
and relax this assumption once other components)of the
model are fit. In contrast, the first mass modél*we'fit in our
analysis assumes priors on the shear parameters that allow
values up to v*** = 0.2. Indeed, for 4230040022 our search
yields a best-fit shear of v*** = 0.07. Disearding this lens, we
find a mean difference of —0.07 £ 0.07 between the slopes
inferred by the two methods, where the error is propagated
from the standard error on the means of the two samples.
On average, PyAutoLens measures slightly shallower slopes
than Shajib et al. (2021)although this is not a significant
difference — the meandiscrepancy for the sample is consistent
with zero at the currentuncertainty level. A larger sample of
measurements may be able to discern if there are systematic
differences introduced on the density slope as a result of the
lensingstechmique. We note that we measure a scatter of 0.17
between the/slope measurements suggesting there may be
systematic uncertainty between the two methods.

Ritondale et al. (2019) modelled 17 GALLERY lenses,
including 15 in our sample. Although they do not adopt a
uniform analysis pipeline, their lens modelling technique more
closely resembles ours, because they reconstruct the source
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Figure 19. Our measurements of the density”profile slope (left)
and the magnitude of external shear (right) in BELLS GALLERY
lenses, compared with previous, independent measurements by
Ritondale et al. (2019).
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Figure 20. The statistical uncertainty on measurements of the
radial gradient of the total lens mass, reported by PyAutoLens are
similar to those found by Shajib et al. (2021) for SLACS lenses
(left). However, the uncertainty reported by Ritondale et al. (2019)
for GALLERY lenses (right) is an order of magnitude smaller.
That method uses a pixelised source, and may be subject to the
source discretization bias that we discuss in Section 5.

galaxy using a pixelisation. On average, PyAutoLens measures
a 0.13 + 0.21 steeper density slope (Figure 19). The scatter
in this difference is comparable to the average uncertainty
that we infer for the GALLERY lenses (0.11) but an order
of magnitude larger than the average uncertainty inferred by
Ritondale et al. (2019) (left panel of Figure 20). In fact, the
uncertainties inferred by Ritondale et al. (2019) more closely
resemble those from PyAutoLens before we used a likelihood
cap to avoid source discretization bias (Section 5). This
suggests that discretization bias may also affect the pixelised-
source method of Ritondale et al. (2019). Conversely, the
uncertainties derived by Shajib et al. (2021), whose analytic
approach to source reconstruction can not be affected by
discretization bias, are similar to ours with the likelihood
cap (right panel of Figure 20).

It is reassuring that independent analyses yield results
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that are consistent in many ways. However, the relatively
small number of lens systems in common to multiple analyses
prevents much more detailed comparison between codes or
modelling assumptions. The inconsistencies in other aspects
of results highlights an urgent need for larger-scale tests.

7.4 Large-scale tests of lens modelling

A vital but unintended consequence of this paper, is a solu-
tion to, and better understanding of the source discretization
bias that previously caused parameter uncertainties to be
underestimated. This occurred in both synthetic and real
lenses, as a result of noise in the likelihood evaluations of
methods using a pixelised source reconstruction (due to par-
ticular alignments of source pixels being arbitrarily more or
less penalised by regularisation). Our likelihood cap solution
successfully reduced noise and smoothed posterior PDF's. It
increased the size of our uncertainties such that they had
roughly the expected level of coverage, and improved the
recovery of all parameters in our synthetic data. Although
the likelihood cap was determined in an empirical way, the
size of the inferred errors is inherently linked to this choice of
likelihood cap. It may be that a different choice of likelihood
cap could provide better coverage probabilities than the one
we adopted. Further investigation would be warranted to
understand at a deeper level what causes these spikes in like-
lihood in pixelised source reconstructions, as improvements
may be possible by changing the approach to pixelising the
source plane, or regularising the pixelised source.

Our work shows the importance of testing strong lens
modelling methods on larger samples than previously at-
tempted. Even our mock sample comprising 6 noise realisa-
tions of 59 lens configurations yields insufficient statistics to
determine whether the inferred central values and statistical
uncertainty on mass model parameters are consistent with
the expectations of drawing each measurement from a nor-
mal distribution. Equally, whilst there is evidence for small
systematic biases in the estimates of certain mass modél pa-
rameters, we do not have enough unique lens configtrations
to determine the primary causes. Given that welare just/a
few years away from modelling samples of tens‘of thousands
of lenses, tests of strong lens modelling methodology on syn-
thetic data with complex mass distributions\(e.g. Mukherjee
et al. 2018; Enzi et al. 2020; Cao et al. 2022; He et al. 2022)
must now scale up to ensure that error,estimates are robust
and systematic biases understood.

7.5 Computational Costs

Every SLACS and GALLERY lens modelled in this work
was analysed using ‘a single 2x Intel Xeon Gold 5120 x @
2.20GHz CPUs onitheyDistributed Research Utilising Ad-
vanced Computing (DiRAC) Data-Centric System on the
COSMAZT machine/at Durham University. Run times depend
primarily on the number of image pixels fitted after masking,
whieh due to the standard 3.5” circular mask used to fit
most lenses is fixed. The lower resolution of SLACS lenses
(0.05" pixel ') means they contain fewer image pixels than
GALLERY lenses (0.04” pixel™!) and the fits were therefore
faster. For SLACS lenses, the source parametric pipeline
takes between 10 — 24 hours, the source inversion pipeline

10 — 36 hours, the light pipeline 10 — 72 hours and mass
pipeline 6 — 48 hours. GALLERY lenses take longer on av-
erage, where the source parametric pipeline takes between
10 — 36 hours, the source inversion pipeline 10 — 48 hours, the
light pipeline 12 — 144 hours and mass pipeline 12 — 72 hours.
The scatter in run times is due to many factors: lens galaxy
S/N, source galaxy S/N, lens configuration, lens morphology,
source morphology, etc.

Based on the longest GALLERY run times, the upper
limit for the overall run time is 300 CPU hours. For 100 000
strong lenses this would require 30 000 000 CPU hours over
the 5 — 10 year lifetime of a survey like Fuclid, producing
an upper limit of ~ 6000000 CPU hours per year. For
the recent DiRAC resources allocation call, this ameunt
of CPU time is a ‘small’ project. We therefore antiCipate
that the analysis performed in this work will not be limited
by CPU resources in the near future. Based on‘profiling
of PyAutoLens, we anticipate the run time of a single lens
will reduce by a factor of four or above whenifitting lower
resolution wide-field imaging data (e.g. the resolution of
Euclid data is 0.1"” pixel ™!). The 3.5/ ¢ircular mfasks assumed
throughout this work are also unnegessatily large for many
lens systems, and reducing the mask size to 2.5” speeds up
the analysis by factors of threesand above.

8 SUMMARY

Tens of thousands of strong gravitational lenses will be im-
aged in the next few years, but current analysis techniques are
labour-intensive. We use open source software PyAutoLens to
develop arfully automated, Bayesian analysis of all 59 strong
galaxy-galaxy lenses that have been observed by the Hubble
Space Teléscope (HST) under certain conditions. Adopting
the open source software PyAutoLens provides an optimistic
outlook for the future of automated analysis: for 54/59 lenses
(92%) we achieved successful model fits (determined via vi-
sual classification) with no human intervention. We illustrate
why other fits initially went wrong, and present solutions
that allowed us to infer accurate models for all 59/59 lenses
(100%) and recommend steps necessary for analysing the
larger incoming samples. Notably, the difficulties primarily
happen at the beginning of the analysis when attempting to
determine an initial, approximate, lens model — and often
reflect confusion between light from the foreground lens and
background source. Once a simple model is initialised, our
pipeline worked flawlessly to automatically fit a sequence of
more complex models that measure more detailed properties
of the lens galaxy. We therefore discuss how combining a
Convolutional Neural Network with a Bayesian approach
like PyAutoLens could increase the automation success rate
whilst extracting maximum physical information from each
strong lens.

We also use synthetic observations of ~ 500 lenses to
explain and solve a problem common to pixel-based strong
lensing methods that causes the statistical uncertainty on
model parameters to be underestimated. This is fundamen-
tally due to noise in likelihood evaluations, caused by dis-
cretization effects in pixelised reconstructions of the source
galaxy. We implemented an empirical correction that ‘caps’
the likelihood value to suppress noise. This significantly im-
proves the measurement of the synthetic lens parameters,
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and leads to error estimates on different noise realisations of
identical datasets that are more consistent with one another.
On the real data we found this empirical correction (using
the likelihood cap) gave a five fold average increase in the
inferred uncertainties on model parameters. Comparing to
previous literature results, we suggested this bias may be
leading to uncertainty under estimation in other studies that
use similar methods. Given the incoming samples of tens
of thousands of strong gravitational lenses, we believe more
detailed study of such systematics on larger mock samples is
key.

Accurately knowing the systematic uncertainty on mea-
surements of Einstein radius (total galaxy mass) will become
vitally important for large samples of lenses, which beat
down statistical uncertainty. Previous studies often assume a
constant uncertainty of 2-3%. We find substantial variation
between lenses, with a mean of 1% and 57/59 lenses with
< 3%, but 2/59 lenses with > 5%. Future analysis of large
samples, where careful control of systematics is paramount,
must therefore adopt more rigorous errors. Our Einstein radii
measurements assumed only a single type of parametric mass
model and we do not investigate the degree of uncertainty
that results from making different mass model assumptions.

Notably, the uncertainty on our measurements of Ein-
stein radii (and those of the lens models in general) do not
increase with redshift. That is, we learn as much about the
strong lenses at redshift ~ 0.7 as those at redshift ~ 0.1. This
is in stark contrast to other astrophysical probes of a galaxy’s
structure (e.g. dynamics, morphology), where cosmological
dimming effects and beam smearing degrade measurements
of distant galaxies. Nor does uncertainty on Einstein radii
depend strongly upon the signal-to-noise ratio of our data.
This makes strong lensing a compelling technique to study
galaxy evolution: once high redshift strong lenses are found,
it should be straight forward to measure their properties. Of
course, the technique has its own challenges, for example
complicated selection effects, but it should nevertheless pro-
vide an invaluable tool for studies of galaxy evolution over
the next decade.

DATA AVAILABILITY

Text files and images of every model-fit, performed in this
work are available at https://zenodot org/xecord/6104823.
Full dynesty chains of every fit are available upon request.

SOFTWARE CITATIONS
This work uses the following\software packages:

e Astropy (Astropy Collaboration et al. 2013; Price-Whelan
et al. 2018)

Corner.py (Foreman-Mackey 2016)

Dynesty( (Speagle’ 2020b)

Matplotlib, (Hunter 2007)

Numba (Lam et al. 2015)

NumPy (van der Walt et al. 2011)

PyAutoFit (Nightingale et al. 2021a)

PyAutoLens (Nightingale & Dye 2015; Nightingale et al.
2018, 2021b)
e Python (Van Rossum & Drake 2009)
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Scikit-image (Van der Walt et al. 2014)
Scikit-learn (Pedregosa et al. 2011)
Scipy (Virtanen et al. 2020)

SQLite (Hipp 2020)
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APPENDIX A: WITHOUT LENS LIGHT PIPELINE

The pipelines that make up the uniform analysis for modelling
a lensed image that does not contain the lens galaxy’s light
are presented in Table A1l. This pipeline was used to analyse
the mock data in this work. As well as this, a variation on this
analysis, that also includes external shear in the mass model,
was used to fit the four lenses that required lens subtracted
data to arrive at successful model fits. The initial model fit
priors, and those used when we choose not to inform priors
with prior passing, are given in Table A2.

APPENDIX B: INFERRED MODEL PARAMETERS

We present the best fit model parameters for all SLACS and
GALLERY lenses. The PLEMD+ext mass model parameters
are given in Tables B1 (SLACS) and B2 (GALLERY). The
double Sérsic light model parameters for the Gold sample are
presented in Tables B4 (SLACS), and B3 (GALLERY). We
present the light parameters only for the “Gold” sample since
the “Silver” and “Bronze” samples either do not fit the lens
light or provide models we do not trust. All errors quoted
are those derived from the 68% credible region of the, PDF
output from dynesty.

APPENDIX C: MODEL FITS

In this study we categorised the model fits into “Gold”, “Sil-
ver”, and “Bronze” depending on the quality of the model fit.
The “Gold” fits are presented inFigure C2 for SLACS lenses
and Figure C1 for GALLERY Jlenses. The “Silver” lenses
are then presented in FiguresC3 and the “Bronze” lens in
Figure C4.
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Pipeline Phase Galaxy Component Model Varied Prior info Phase Description

Source spl Lens mass SIE v - Fit the lens mass model and source light profile,
Parametric S Lok Sérsi / comparing the lensed source model to mock image.
ource light érsic -
3 Fix lens mass parameters to those from the source
s1t Lens mass SIE Sp parametric pipeline and fit pixelization and
) regularisation parameters on magnification adaptive
Source light MPR v - pixel-grid.
Lens mass SIE v sp3 Refine the lens mass model parameters, keeping
SI? source-grid parameters fixed to those from previous
Source Source light MPR sIt phase.
Inversion 3 Fit BPR pixelization and regularisation parameters,
SI3 Lens mass SIE SP using the lensed source image from SI? to determine. the
) source galaxy pixel centres. Lens mass parameters are
Source light BPR v - fixed to those from previous phase.
Lens mass SIE v SI2 Refine lens mass model parameters on the’'BPR grid,
SI4 keeping lens light and source-grid parameters*fixed to
Source light BPR SI3 those from previous phases.
Mass Lens mass PLEMD v ST4 Fit the lens mass parameters, now withsthe slope of the
Total MT! density profile free to vary within"the uniform prior
Source light BPR SI3 [1.5-3.0], all other mass priors are informed from SI%.

Table Al. Pipeline model components for the analysis which fits to a lensed image which does not contain emission from the lens galaxy.

Model Parameter Prior |
Elliptical b (") U(0,8)
Power-Law (PL) | ~ U.5,3)

€1 N (050-3)

€2 A (0,0:3)

zc () N(0,0.05)

ye () N(0,0.05)
Sersic Reg (1) U(0, 30)

n U(0.5,5)

10g4g lo(e7s™") | U(—6,6)

G N(0,0.5)

€2 N(0,0.5)

/(") N(0,0.1)

Ye () N(0,0.1)
Shear Vloxt U(-0.2,0.2)

V2ext U(—0.2,0.2)

Table A2. The initial priors on every parameter of every light and mass profile fitted in this work. Column 1 gives the model component
name. Column 2 gives the parameter. Column*3 gives the prior, where U (a, b) is a uniform prior between a and b, and N'(u, o) is a Gaussian
prior with mean p and variance/g2. Note that due to prior passing (see Section 4) the final priors used to fit a model, corresponding
to the results given in this work, will be updated from the above values. The priors of every fit can be found at the following link
https://zenodo.org/record/6104823.
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Class Lens Name  b(”) 5 €1 €2 Vlext V2oxt zc (") ye (")
+0.021 +0.08 +0.028 +0.031 +0.011 +0.017 +0.012 +0.012
J0008-0004  1.17815%9%'  2.08%%%  0.1615,52 0.014+5:%3 —0.0065°08"  —0.0235%9%7  —0.0155%9%%  0.0345%9Y
+0.026 +0.13 +0.05 +0.062 +0.021 +0.019 +0.014 +0.014
J0029-0055 097145926 2.324°%1%  0.08915%%5 0.0891%9 0.00515%92 0.01215%5% —0.0195%3  —0.0175%5%
J0157-0056  0.99950:933 2237098 _0.1987%557  —0.1991%%*  —0.0774°%%%%  —0.1655%92%  —0.13755%9%¢  0.03115,92°
+0.013 +0.05 +0.034 +0.024 +0.02 +0.016 +0.008 +0.008
J0216-0813  1.188T5%9%%  1.997%%°  0.05670:%3 —0.09755924  0.0014502 0.0097%:9% 0.009H5:00 0.01175,09
+0.005 +0.08 +0.01 +0.01 +0.005 2+0.005 +0.006 +0.006

Golg | 70252+0039  LO2UGGGE  LO2GTT —0.041%0  —0.045%%0y  —0.027 3 —0.013145,995  0,04%,90 —0.00515,99

+0.022 +0.02 +0.052 +0.042 +0.018 +0.019 +0.017 +0.017
J0330-0020  1.1135%522  2.155%52  —0.0175%5%2  —0.1195%94%  0.03915%) —0.0135°98°  —0.0515%9L7  —0.0215%5%

+0.029 +0.12 +0.03 +0.027 +0.015 +0.012 +0.013 +0.013
J0728+3835 127415929 1.99%%'%  0.1455%53 —0.1225°%%27  0.0565°% —0.0375%%5%  —0.0065%95  0.00415%5%
J0737+3216  0.9825%:90%  2.28%%97  —0.0175%9Y  —0.0728%9%"  0.0385%9%7  0.103%°%0%°  —0.0081%%99%*  —0.0064°%:05!

+0.034 +0.08 +0.041 +0.039 +0.025 +0.017 +0.022 +0.022
J0822+2652 1235459934 214598 0.1471%5% —0.26415°%93%  0.0575°%%2 —0.0825°%%57  —0.014°%922  —0.1031%52
J0841+3824  1.0050%35°8 227502 —0.1497%5%0  —0.1047%570  —0.118%°0*  —0.08315%%57  —0.25T%55°  —0.204%5,%4°

Table B1. Mass distribution model fit parameters for the first ten SLACS lenses. The full table is available online.

Class Lens Name b (") v e1 €2 Vet V2ext zc (") Ye ()
J0020+2544  1.395T%57  2.055%1%  —0.2035%9%°  0.0145%98  —0.02555%3  —0.0497%52°  0.097%52% 0.036 58
J011340250  1.203%°%537  1.774%1%  —0.0061°%5%"  0.06871%9% 0.04171%9%3 0.141°%912 0.03145:9%° 0:0087%9%9
J02014+3228  1.72740:922 2094009 _0.114£%:026  _0.02£%97  0.061%9L7 —0.03910016  0.00210: 96" 0.0261%9%°

+0.117 +0.18 +0.033 +0.075 +0.051 +0.068 +0.033 +0.033
J0237-0641  0.6155°557 19144 01178592 0.0265%97°  0.0061%%° —0.01515%9%%  70.1461°%5 0.02115%%3
+0.134 +0.06 +0.053 +0.061 +0.018 +0.026 +0.018 +0.018
J0742+43341  1.68415%530  2.215%%°  0.5061°:95 0.00155,%8 0.107459% —0.217455%%2%,  0.1361 0% —0.0621°:9%
+0.071 +0.08 +0.016 +0.016 +0.008 +0.00% +0.004 +0.004
J07554-3445 204527 1774528 0.156 %0 0.1315%%% 0.20115%59 0.2681%% 010691%:99 —0.1591%52
+0.071 +0.08 +0.079 +0.069 +0.032 +0.027 +0.021 +0.021
J0856+2010  1.1575%971  2.237%98  0.47415,97 —0.15145989  —0.0215%%32  —0.014F%%2% 0.1714%%2 —0.06314,°:92
+0.035 +0.16 0.057 +0.023 +0.023 0.007 +0.027 +0.027

Gl 091845105 164257 2,380 —0.02435%7  —0.0815%52%  —0.2461%92%  w0.1227%%%7  —0.0195%9%7  0.00415%52

J1110+2808  0.9020°%%°  2.03%%%0  0.0414%25  —0.0453%23° 01143097« —0099%%  —0.106%%55  —0.1417%%32
+0.011 +0.07 +0.007 +0.013 +0.003 +0.007 +0.003 +0.003
J1110+3649 118850501 2.235%%7  —0.024%5%  —0.0165%9%%  0.0195%9% 0.12015,99 —0.01%:9% —0.00975,99
+0.188 +0.16 +0.097 +0.069 “4-0.034, +0.041 +0.047 +0.047
J111640915 12474188 2221016 0.071%%9 —0.3935°%95%  0.016%%%2 ~0.65315%%%  —0.03415%557  0.0861%54
J114142216  1.3815%97 2135099 0.2431°058  0.0095%972 00425933 —0.1175%93%  0.088%%5%% —0.0351%2%
J1201+4743 1221755923 2.747%9%  —0.005%55  0.0075%53° 0.069%°50, —0.01655%97  —0.046T%59"  0.0255%39*
J1226+45457  1.38550:908 224007 00747001 012710944 20.1891%9L  —0.011559%  0.023%°%9%*  0.00615,99¢
+0.072 +0.14 +0.049 +0.079 +0.03 +0.033 +0.026 +0.026
J2228+1205  1.3385%97%  2.21% —0.26215°31  0.04875%%" 20.1965°5%3  —0.1987%533  —0.0571%92%  —0.005%5:%2
+0.048 +0.07 +0.06 +0.036 +0.014 +0.015 +0.013 +0.013
J2342-0120 131345548 2341597 —0.2081%9%  —001205%935 —0.0194591%  —0.2541%0%  0.0515°0 0.0215%9%

Table B2. GALLERY mass distribution model fit parameterss

lens noise Sérsic  Reg (") n ) (><10’3) 19} q £1 g9 T (><10’3”) Ye (>< 10’3”)
+3.89 2 9 R0.58 +0.01 +4 +0.09 +0.07 +0.16 +0.63 +0.51
J0029+2544 0 11+(].11 I 16‘84—6.68 3‘9—0.50 0‘04—0.(12 72—4 0‘33—1).14 70‘04—0.(]7 0. -0.18 0‘49—1).8 70‘71—1.02
-0.045 1T 0.59+0:94 %t 17935000 433 0824000 —0.1%%° 0.0140:91
+0.82 +0.28 +0.36 +3 Qr+0.07 +0.06 +0.09 +1.41 o+1.76
J0113+0250 0 00032+O.0012 I 2‘43—()‘6 1'0—0.23 1‘5—(1.35 771—3 0‘35—0.08 70‘29—0.05 70‘38—009 5‘0—1.5 72‘03—1.55
~0-00018 - py 1.7240:24 3.95%520 215405 —3+0 0544000 _0.041%91  0.207%%
+0:59 +0.19 +1.47 +2 +0.02 +0.01 +0.01 ~q+0.63 +0.63
J0201+3228  160+370 I 2127 35 14os  T650 69 —4T5 07956y  —0125  —0.015;  0.684 56 3-20.61
-130 +0.08 +0.06 +0.75 +4 +0.01 +0.01 +0.01
11 109559 4.9%0:06 9 ,03+0.75 855t 09150900 —0.015%%"  —0.04%%9
$12.78 +1.3 10.45 126 F0.31 o t0.2 F0.12 0.7 F0.71
102370641 1415 I 106251278 35EL3 015100 342 0.643031  0.03%0:2 0.2210;1 0.48%07 —2.2350:7
M 09T asl oot st 0o oofl ool
+8.57 +1.28 +2.42 +7 +0.14 +0.09 +0.09 +0.58 +0.59
JoTa2a3al 11478 I 10315337 315528 024321 27t 0535011 0.25%0; 0.18%0.9 —0.195%5 135505
-1 —+0.25 —+0.16 +1.38 +1 +0.01 +0.01 +0.02
1T 1041025 4610510 9121413 62 0.714091  0.144%9 —0.15%9

Table B3. Light médel parameters for the first five GALLERY lenses in order of Right Ascension

. The full table is available online.
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lens noise Sérsic  Reg (") n Io (x1073) ¢ q €1 £2 @ (x10737)  ye (x10737)
J0008-0004 1500210 27.2%%9@7 22}29%: 040133-,;0 4@11;‘ ooﬁ%y 0.237}21%1 w.ozi‘)?dg“ —-3.2515%" 4.051%%
1.695%5 4.310%28 2793909 267 0.95%9 0.041% 0.035%
IT 3.04%2 L6t 49.45%% 277, 0.795%  0.09%%% 0.071%%
JOI57-0056 1207530 I 1.86%23%2 0.8_}21?5 7433‘?(13,001 —53535 072.1?326275 —041+5r_:5§d914 —0.07_}2@%“ -5.091%9 1.6515%%
11 1040 497094 66.7745%3 687 0.675%°  0.131% —0.145%
J0216-0813 850752 I 1.54%}2? 59::022;13 115.9%%_13)3 SSEZ 0481%2627 ooﬁf’i —0.11,}2@24 —7.131%9 3.760%9
11 3.750%48 0.840%527  16.96%9%  s0% 0.665%57  0.24%L —0.045%%
3025240039 21052 I 034.}26%2 09}2020 125.89_}33%1 7655(1)1 077_102031 70j[_)+0[§’£1 70.0%{_:??1 —6.691%:9 —~1.61109
IT 0.62.5°%% 4.9 132,345,900 541520 0.995%0"  0.015% —0.05%

Table B4. Light model parameters for the first five SLACS lenses in order of Right Ascension. The full table is available online.

Data Image Model Image[1] Resiudals Noise Map Subtracted Image Model Image[2] Reconstruction

Figure C1. Model fits for the first“five GALLERY lenses in order of Right Ascension. Model fits for the full sample of lenses are available
online. Residuals are the normalised xesiduals.
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Data Image Model Image[1] Residuals Noise Map
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Subtracted Image Model Image[2] Reconstruction

Figure C2. Model fits for the first five SLACS lenses in the “Gold” sample in
lenses are available online. Residuals are the normalised residuals.

order of Right Ascension. Model fits for the full sample of
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Data Image

J1103+5322

Data Image Model Image Residuals Noise Map Reconstruction
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Figure C3. SLACS “Silver” model fits. Residuals are the norialised residuals.

Model Image[1] Resiudals Noise Map Subtracted.Image  Model Image[2]

Figure C4. SLACS “Bronze”ymodel fit. Residuals are the normalised residuals.

Reconstruction
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