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A B S T R A C T 

Strong gravitational lensing offers a compelling test of the cold dark matter paradigm, as it allows for subhaloes with masses 
of ∼10 

9 M � and below to be detected. We test commonly used techniques for detecting subhaloes superposed in images of 
strongly lensed galaxies. For the lens we take a simulated galaxy in a ∼10 

13 M � halo grown in a high-resolution cosmological 
hydrodynamical simulation, which we view from two different directions. Though the resolution is high, we note the simulated 

galaxy still has an artificial core which adds additional complexity to the baryon dominated region. To remove particle noise, 
we represent the projected galaxy mass distribution by a series of Gaussian profiles which precisely capture the features of the 
projected galaxy. We first model the lens mass as a (broken) power-law density profile and then search for small haloes. Of the 
two projections, one has a regular elliptical shape, while the other has distinct deviations from an elliptical shape. For the former, 
the broken power-law model gives no false positives and correctly reco v ers the mass of the superposed small halo; ho we ver, for 
the latter we find false positives and the inferred halo mass is o v erestimated by ∼4–5 times. We then use a more complex model 
in which the lens mass is decomposed into stellar and dark matter components. In this case, we show that we can capture the 
simulated galaxy’s complex projected structures and correctly infer the input small halo. 

Key w ords: (cosmolo gy:) dark matter – gravitational lensing: strong. 
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 I N T RO D U C T I O N  

he cold dark matter (CDM) model predicts the existence of a vast
opulation of dark matter haloes, from the scale of galaxy clusters
own to Earth masses and below. Their mass function is characterized
y a simple power law with an exponential cutoff at the very high
ass end (Frenk & White 2012 ; Wang et al. 2020 ). For large masses

hese predictions have been verified by large sky surveys (Frenk et al.
990 ; Rozo et al. 2010 ). At lower masses, where dark matter haloes
re too small to host a luminous galaxy (Efstathiou 1992 ; Benson
t al. 2002 ; Benitez-Llambay & Frenk 2020 ), it remains unclear
hether the prediction still holds true. Alternative dark matter models
redict a cutoff of the halo mass function. For example, warm dark
atter (WDM) with a dark matter particle mass of around a few keV

redicts a cutoff in the range 10 6 −10 9 M �. Pushing constraints on the
alo mass function towards this smaller mass range can distinguish
ifferent dark matter models. 
Strong gravitational lensing serves as a promising tool to probe

he existence of small invisible dark matter haloes. These ‘dark’
aloes perturb the images of lensed galaxies when they fall along
 E-mail: qiuhan.he@durham.ac.uk 
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he path of light from the source to the observer (Koopmans 2005 ;
egetti & Koopmans 2009a , b ). One can statistically study the lensing
erturbation of ensembles of small dark haloes, and directly put
onstraints on the halo mass function (Gilman et al. 2019 ; He et al.
022 ). Gilman et al. ( 2020a ) constrained the ‘half mode mass’ 1 to be
elow 10 7.8 M � by analysing flux ratio anomalies in eight strongly
ensed quasar systems. 

Individual subhaloes can be detected by analysing luminous strong
ensing arcs (Vegetti & Koopmans 2009b ). Li et al. ( 2016b ) has
hown that with ∼50 high-quality strong lensing images, one can
ut stringent constraints on the cutoff mass and rule out CDM if
o subhalo is detected. More recent work by Li et al. ( 2017 ) shows
hat the existence of line-of-sight haloes can boost the number of
etection by a factor of several which improves the constraining
ower on the identity of dark matter (see also Despali & Vegetti
017 ; Amorisco et al. 2022 ; He et al. 2022 ). 
 This is a characteristic mass related to the k -mode where the dark matter 
ower spectrum has an amplitude half the size expected with CDM. It can be 
onsidered as a ‘cutof f’ mass, belo w which the halo mass function is strongly 
uppressed with respect to CDM. 
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Three such detections of dark haloes with pseudo-Jaffe 2 masses 
elow 10 10 M � have been made so far. The first was made by Vegetti
t al. ( 2010 ), who detected a 3.51 ± 0.15 × 10 9 M � subhalo using
ubble Space Telescope ( HST ) imaging. The second was made by
egetti et al. ( 2012 ) via K eck adapti ve optics, with an inferred mass
f 1.9 ± 0.1 × 10 8 M �. Finally, Hezaveh et al. ( 2016 ) found
 9.1 ± 2.5 × 10 8 M � subhalo using Atacama Large Millime- 
er/submillimeter Array (ALMA) interferometer observations. 

Attempts to detect dark haloes through gravitational imaging have 
een made in approximately 30 lenses (Vegetti & Vogelsberger 2014 ; 
itondale et al. 2019 ); ho we ver, no other clean detections have been
ade. Due to the small number of detections, constraints on the halo
ass function are somewhat loose, constraining the mass function 

utoff to be below ∼10 10.9 M � (Enzi et al. 2021 ). This constraint
s not yet competitive with other probes, owing to the limited data
uality and sample size. Over the next decade, high-quality strong 
ensing observations from space telescopes such as the James Webb 
pace Telescope , Euclid Space Telescope , and China Space Station 
elescope will allow these constraints to push to much lower cutoff 
asses on much larger lens samples (Collett 2015 ). 
Substructure detection places stringent requirements on the model 

f the lens galaxy’s mass distribution. The subhalo mass is usually 
ess than 0 . 1 per cent that of the lens galaxy, necessitating per cent
ev el accurac y of the main lens’s mass. Inaccuracies in the lens

ass model may create ‘false-positive’ detections, where the subhalo 
fills-in’ for the mass model’s missing complexity. Previous studies 
ave discussed false-positive subhalo detections (Vegetti et al. 2010 ; 
itondale et al. 2019 ), where they apply strict criteria to ensure all

ubhalo detections are genuine. This includes requiring a high enough 
ncrease of Bayesian evidence that tests on mock data demonstrate 
hat the signal cannot be due to an inaccurate mass model (Vegetti
t al. 2012 ) and verifying that a consistent subhalo detection is made
hen pixelized corrections to the gravitational potential are applied 

Koopmans 2005 ; Vegetti & Koopmans 2009a ; Vegetti et al. 2010 ,
012 ). In certain lenses these potential corrections clearly account 
or missing complexity in the lens galaxy’s mass, thereby correctly 
agging a candidate subhalo detection as a false positive. Mass model 
omplexity is not the only contributor to false positives (Vegetti & 

ogelsberger 2014 ). 
This moti v ates the investigation of more complex lens models, 

hich could impro v e the subhalo inference by accounting for this
issing complexity in the lens galaxy’s mass. The subhalo detections 

isted previously assume a simple parametric model for the lens’s 
ass, the elliptical power law (Tessore & Metcalf 2015 ) with 

n external shear [Hezaveh et al. ( 2016 ) also included a fourth-
rder multipole term]. Ho we v er, recent studies hav e highlighted
eficiencies with this model. In a companion paper of this work, 
ao et al. ( 2021 ) fitted this model to strong lenses simulated using
ass models derived from dynamical models of nearby SDSS-IV 

aNGA (Bundy et al. 2015 ) early-type galaxies and showed this can
ias the measurement of the local density slopes around the Einstein
ing by 13 per cent. Gomer & Williams ( 2021 ) and Van de Vyvere
t al. ( 2022 ) discuss how departures from ellipticity symmetry may
ffect H 0 inference in lensed quasars. Nightingale et al. ( 2019 ) have
lso showed that departures from elliptical symmetry are observed 
n the luminous emission of three strong lenses. 
 The masses reported are masses of pseudo-Jaffe profiles (Mu ̃ noz, 
ochanek & Keeton 2001 ). If modelled by an NFW, the virial mass obtained 

s usually 0.5 ∼1.0 dex higher than the pseudo-Jaffe mass (Despali & Vegetti 
017 ). 

r  

a

3

u

In this work, we therefore use a hydrodynamic simulation to test
he robustness of different parametric lens mass models, focusing on 
heir efficacy for the task of detecting individual subhaloes. By using
 simulation, we can compare the lens galaxy’s true complex mass
istribution to the lens model we fit and if it fails understand why.
e perform two tests: (i) We do not add a subhalo to the lens galaxy
hen generating the mock data and investigate whether a lens model
ith a subhalo produces a false-positive signal and (ii) we include
 subhalo when creating the mock data and test how accurately its
ass and position are reco v ered. We first apply an extension of the

ommonly used power-law profile to fit the main lens (O’Riordan, 
arren & Mortlock 2019 , 2020 , 2021 ), followed by a ‘decomposed’
odel which models the lens mass as a combination of stars and dark
atter (Dye & Warren 2005 ; Nightingale et al. 2019 ). Our goal is to

nderstand whether modelling the lens mass as a power-law profile 
s sufficient for detecting subhaloes, and if not, whether there is a
etter model that can provide a correct inference. 
Hydrodynamic simulations have previously been used to simulate 

 alaxy-g alaxy strong lensing images (Metcalf & Petkova 2014 ; Xu
t al. 2017 ; Mukherjee et al. 2018 , 2021 ; Despali et al. 2020 ;
nzi et al. 2020 ; Ding et al. 2021 ). Converting particle data into
 corresponding deflection angle field (necessary for lensing) is non- 
rivial. A common problem is that the mass profiles of galaxies
ound in hydrodynamic simulations have a sub-kpc core in their 
entre. The strong lens imaging then produces a bright central image
eature, which is not observed in real strong lenses (Bolton et al.
012 ; Shu et al. 2016 ). These cores are believed to be due to the
imited resolution of the simulations, with previous works assuming 
 particle resolution of ∼10 5 M �. Our simulation, which has a particle
esolution ∼10 times that of Illustris-1, still forms a core and central
mage. We incorporate this feature into our lens modelling such 
hat we can still investigate dark matter subhalo detection. We also

itigate systematic effects related to particle noise in the simulation 
Xu et al. 2009 ) and truncation effects which introduce an artificial
hear (Van de Vyvere et al. 2020 ; Ding et al. 2021 ). 

Testing with galaxies from the Illustris simulation (Vogelsberger 
t al. 2014 ), Xu et al. ( 2017 ) demonstrated that deviations of
imulated galaxies from a simple elliptical power-law profile affect 
nference on the Hubble constant. More recently, Enzi et al. ( 2020 )
sed 10 galaxies from the Illustris-1 simulation to test the power-law
ens assumption for substructure lensing, and showed no de generac y 
etween the complexity of the true mass distribution of their mock
enses and the inferred substructure abundance. Ho we ver, their work
ocused on the statistical properties of subhaloes’ signals and did not
est individual subhalo detection. To fully understand how the use 
f simple parametric lens models affects the detection of individual 
ubstructure, testing with mock lenses extracted from simulations is 
ecessary. 
This paper is structured as follows: In Section 2 , we introduce

ur simulation data and the way we simulate strong lensing images
rom particle data. In Section 3 , we introduce how we model the
ensing images and search for subhaloes. In Section 4 , we show the
ower-law fitting results. In Section 5 , we introduce a more complex
ens model where we model the lens’ stellar and dark components
eparately and then we show how it behaves for our tests. In Section 6 ,
e discuss our results. Finally, in Section 7 , we summarize our

esults. All the computations, if not specified, are done by the state-of-
rt open-source strong lensing software PYAUTOLENS 3 (Nightingale, 
MNRAS 518, 220–239 (2023) 

 The PyAutoLens software is open source and available from https://gith 
b.com/Jammy2211/PyAutoLens . 

https://github.com/Jammy2211/PyAutoLens
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M

Figur e 1. Conver gence of different components of the simulated galaxy. 
Yellow, blue, and red represent the stars, dark matter, and total matter 
respectively, assuming the lens at z = 0.2 and source at z = 2.5. At the 
redshift of the lens z = 0.2, 1 arcsec corresponds to 3.3 kpc in angular size. 
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that remo v ed the data in the central region altogether. Ho we ver, we found that 
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ye & Massey 2018 ; Nightingale et al. 2021b ). Throughout the
aper, we adopt the Planck cosmology (Planck Collaboration XIII
016 ), of which H 0 = 67 . 7 km s −1 Mpc −1 , �m 

= 0 . 307, and �� 

=
 . 693. 

 M O C K  LEN SIN G  IMAG ES  

.1 Particle data 

e create our lens galaxy by using data from a cosmological
ydrodynamical zoom-in simulation of a ∼10 13 M � galaxy group
Richings et al. 2021 ). The simulated galaxy is selected from the
AGLE 100 Mpc box-size simulation (Schaye et al. 2015 ) and
as first identified by Despali & Vegetti ( 2017 ) as having similar
roperties to lenses from the Sloan Lens A CS (SLA CS) surv e y
Bolton et al. 2006 ). The friends-of-friends ID of the halo is 129.
o resolve dark matter haloes with masses down to ∼10 6 M �,

his zoom-in simulation applies a no v el technique whereby there
re many more dark matter particles than gas particles. Unlike
he common construction of initial conditions in hydrodynamic
imulations, where each dark matter particle in a dark-matter-only
imulation is split into a pair of dark matter and gas particles, the
imulation we use initializes seven dark matter particles per gas
article, resulting in dark matter and gas particle mass of 8.3 × 10 4 

nd 10.7 × 10 4 M �, respectively. At z = 0, the dark matter halo of the
oom-in simulation’s galaxy group has a mass of m 200 = 10 13.14 M �
nd size of r 200 = 506 kpc. 4 The Plummer-equi v alent gravitational
oftening length is 0.05 kpc. 

In Fig. 1 , we show the convergence profile (projected density
ivided by a constant lensing critical density) of different components
f the simulated galaxy assuming the lens and source galaxy to be
t z = 0.2 and 2.5, respectively. Inside the central ∼0.7 arcsec, the
aryonic mass is larger than the dark matter mass, and the central
ensity of stellar mass is around 4 times higher than that of the dark
atter. A constant-density core with a size of ∼0.1 arcsec exists in

he central region, which is a result of the finite resolution of the
NRAS 518, 220–239 (2023) 

 m 200 is the mass enclosed within a radius of r 200 , where r 200 is determined 
s the radius at which the mean enclosed density is 200 times the critical 
ensity of the universe. 
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imulations. This phenomenon has been seen in several other studies
hat simulate strong lens images from simulation data (Mukherjee
t al. 2018 ; Enzi et al. 2020 ; Ding et al. 2021 ), and it can produce a dim
entral image in simulated strong lensing images that is rarely seen in
eal observations (Winn, Rusin & Kochanek 2004 ; Quinn et al. 2016 ).
he core feature introduces additional comple xity be yond realistic
assive ellipticals and thus might lead to an overestimation on the

aryonic effects in our tests. Fortunately, for the lens configurations
onsidered in this work, the central image is sufficiently dim and
mall that one can mask it out without it impacting the lens modelling
nd subhalo inference, an approach also followed by Enzi et al.
 2020 ). To do this, we artificially increase the assumed error on the
ux in the region containing the central image to such high values that

hey are ef fecti vely removed from the goodness-of-fit measurement. 5 

.2 Simulating strong lensing images 

.2.1 Mock lenses 

o simulate images that are strongly lensed by the particle distribu-
ion from a hydrodynamical simulation one needs a method which
an determine the corresponding deflection angle map. There are two
ommon ways of approaching this: (i) Derive the projected density
istribution of the particle data and solve for its potential via a fast
ourier transform (FFT) or (ii) assume analytic profiles representing
ach particle enabling deflection angles to be easily computed, such
hat the o v erall deflection field is the sum o v er all particles. For the
atter method, the computational cost can be greatly reduced by using
 k -d tree algorithm (Bentley 1975 ), making it faster than the FFT
ethod at comparable resolution (Metcalf & Petkova 2014 ; Petkova,
etcalf & Giocoli 2014 ). Ho we ver, none of these methods offers a
ell-posed way of quantifying particle noise in the deflection angles,
hich can closely resemble the deflection angles of a dark matter

ubhalo in a strong lens (Xu et al. 2009 ). Besides the particle noise,
hese abo v e methods also face the boundary truncation effect, which
s that when truncating the particle data in an improper way (e.g. a
quare boundary applied to an elliptically shaped galaxy), an artificial
hear component is introduced (Van de Vyvere et al. 2020 ). The shear
agnitude depends on the galaxy’s profile, the truncation area size,

nd the truncation scheme used, and an improper truncation on the
article mass data can induce several per cent bias to H 0 inference
Van de Vyvere et al. 2020 ; Ding et al. 2021 ). 

To a v oid particle noise and the boundary truncation effect, we
herefore instead fit analytic profiles to the simulated galaxy’s particle
ata and use these profiles to compute our lens galaxy’s deflection
ngle field. We approximate the projected mass distribution of the
imulated galaxy using the multiple Gaussian expansion (MGE)
ethod, which is widely used for modelling galaxy surface bright-

ess profiles in studies of galaxy stellar dynamics (e.g. Cappellari
008 ; Li et al. 2016a , 2019 ; He et al. 2020 ). Li et al. ( 2016a ) applied
he expansion method to both galaxies and dark matter haloes in
llustris simulation, showing that it has flexibility to capture irregular
nd asymmetric features in a galaxy’s light or mass distribution.
he deflection angles (and other lensing quantities) of an elliptical
his introduced systematics due to edge effects associated with the source- 
lane pix elization. Pix els at the edge of the mask (which hav e non-ne gligible 
ux due to the central image) were not appropriately regularized because 

heir neighbours were not traced to the source plane (see Nightingale et al. 
018 ). 

art/stac2779_f1.eps
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Figure 2. Isodensity contours of the projected stellar mass distribution of 
our simulated galaxy. The contours measured directly from the particle data 
using GLAMER (Metcalf & Petk ova 2014 ; Petk ova et al. 2014 ) are shown 
in black, while those for the best-fitting MGE are in red. The contours are 
evenly log-spaced in projected density. From inside to outside, each contour 
decreases by 0.4 order. Note that only very inner part (within 5 arcsec) of 
this image is observable and the reason we plot it on a much larger region 
is to show that the MGEs represent the lens’ stellar mass well to a very 
large range. For clarity, later plots are all zoomed in to the region around the 
Einstein radius. 
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aussian profile can be easily computed (Shajib 2019 ), making lens 
imulations convenient and fast. 

We compute the deflection angles of the simulated galaxy sepa- 
ately for its stellar and dark matter components, and then add them
ogether to get the total deflection angles. The gas component is
mitted because its contribution to the total mass in the galaxy’s 
entral region is negligible. We will add subhaloes to the deflection 
ngle map via an analytic mass profile and therefore must ensure no
ubhaloes in the particle data are included in our simulation process.
e therefore only use particles belonging to the main halo identified 

y the SUBFIND algorithm (Springel et al. 2001 ). 
We set the lens galaxy to be at redshift z = 0.2, and the

ource galaxy at z = 2.5. We first use GLAMER (Metcalf &
etk ova 2014 ; Petk ova et al. 2014 ) to generate convergence maps,
here each particle is represented by a smoothed b-spline in three- 
imension (3D). For each star particle the smoothing length is the 
istance to its eighth nearest (stellar) neighbour and for each dark 
atter particles it is the distance to its 64th nearest (dark matter)

eighbour. We then use the MGE code of Cappellari ( 2002 ) to
ecompose the convergence maps into multiple Gaussian profiles, 
here the Gaussian components share the same centre but are 

ree to have different amplitudes, sizes, position angles, and axis 
atios. As an example, Fig. 2 shows contours tracing the particle 
ata input (dark lines) and best-fitting MGE (red lines) of the 
imulation’s projected stellar mass distribution. The MGE-fitting 
ode decomposes the stellar component into 13 individual Gaussian 
rofiles and Fig. 2 shows asymmetric features such as the twist
n ellipticity are well captured by the MGEs. The relative errors
etween the input profile and best-fitting MGEs are smaller than 
5 per cent . We apply the same routine to the simulation’s dark 
atter particles and then add the best-fitting Gaussian profiles 

ogether to represent the simulated galaxy’s total projected mass 
istribution. 
In the top-left panel of Fig. 3 , we show the convergence (i.e. the
rojected density divided by the critical surface density for lensing) 
f the MGE representation of the simulated galaxy, where a pointy
American football-like’ shape can be seen. To investigate how lens 

odel fits change depending on the shape of the convergence, we
otate the same galaxy to view it along a different line of sight,
ntentionally choosing a viewing angle that produces a rounder 
onvergence map, which is shown on the bottom-left panel of 
ig. 3 . Following equation (43) of Shajib ( 2019 ), we compute MGE
eflection angles for both projections, which are then used to simulate 
trong lensing images. For an accurate computation of each image 
ixel’s flux, we treat every pixel with a 4 × 4 subgrid so that for
ach image pixel 16 light rays are traced to the source plane, with
he pixel flux set to their mean value. 

.2.2 Mock sources 

e simulate source galaxies using the cored S ́ersic profile (Trujillo
t al. 2004 ): 

 ( r) = I 
′ 
exp 

[ 

−b n 

(
r 2 + r 2 c 

r 2 e 

)1 / (2 n ) 
] 

, (1) 

here I 
′ 

is the scale density, r c is the core size, r e is the ef fecti ve
adius, n is the S ́ersic index, and b n is a dimensionless parameter fully
etermined by n (Graham & Driver 2005 ). Our input sources are a
ingle elliptical cored S ́ersic profile (the ellipticity is introduced using 
 = 

√ 

( x/q ) 2 + y 2 ), which is simple compared to observed lenses 
here source galaxies are more complex and show features such 

s multiple star-forming clumps, spiral structures, and extremely 
ompact centres. Our choice to assume a simple source profile is
o make it straight forward to test the effects of using different lens

ass models. Our lens modelling procedure uses pixelized source 
econstructions which are able to fit the more complex sources seen
n real data (Nightingale et al. 2019 ). 

.2.3 Subhaloes 

ome of our mock lensed images include a dark matter subhalo in
he lens galaxy near one of the arcs. We represent subhaloes using the
pherical Navarro–Frenk–White (NFW) profile (Navarro, Frenk & 

hite 1996 ): 

( r ) = 

M 0 

4 πr ( r s + r ) 2 
, (2) 

here M 0 is the scale mass and r s is the scale radius. Following
quation (A.18) of Baltz, Marshall & Oguri ( 2009 ), we analytically
ompute its deflection angles and add it to that inferred via the
GE fit to the stellar and dark components. We assume the NFW

alo follows the mass–concentration relation given by Ludlow et al. 
 2016 ), allowing us to parametrize it with only its mass, m 200 (and its
osition). Mock lenses are generated with an input subhalo of two
ifferent masses, m 200 = 5 × 10 8 M � or m 200 = 5 × 10 9 M �. 

.2.4 Data quality 

e simulate mock images similar to observations of the 
ST /Advanced Camera for Surv e ys Wide Field Camera, with a pixel

ize of 0.05 arcsec and a Gaussian point spread function (PSF) with
MNRAS 518, 220–239 (2023) 
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Figure 3. Input stellar (left-hand column) and dark matter (middle column) convergence maps of our simulated galaxy along two different lines of sight (the 
two rows). The corresponding strong lensing images are shown in the right-hand column. The top row is for the line of sight that produces pointy shaped 
iso-convergence contours, and the bottom row shows the projection with a rounder convergence field. The red crosses on the mock images mark the positions 
where we will later place subhaloes. 
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Table 1. Parameters used to simulate the mock lensing images. 

Projection 1 Projection 2 

Input lenses 

Stellar MGE number 13 11 
Dark MGE number 5 5 
Redshift 0.2 

Input sources Cored S ́ersic 

Centre (x, y) [(arcsec, arcsec)] (0.08, −0.03) 
Axial ratio 0.55 
Position angle ( ◦) 30 
I 

′ 
(e − pix −1 s −1 ) 2.0 

r e (arcsec) 0.11 
n 2.0 
r c (arcsec) 0.01 
Redshift 2.5 

Input subhaloes (if added) Spherical NFW profile 

Centre (x, y) [(arcsec, arcsec)] (0.81, 0.12) (0.32, −0.71) 
m 200 (M �) 5 × 10 8 or 5 × 10 9 

Mass-concentration relation Ludlow et al. ( 2016 ) 
Redshift 0.2 

Image settings 
Pixel size (arcsec) 0.05 
PSF σ (arcsec) 0.05 
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 standard deviation of 0.05 arcsec. 6 We set the normalization of
he source’s surface brightness to give a signal-to-noise ratio (S/N)
f ∼80 in the brightest pixel of the lensed source’s image, whilst
djusting the background noise level to closely match that expected
rom a few HST orbits. For our mocks, the background sky noise is
.1 e − pixel −1 s −1 . This S/N represents observations that are around
ouble the highest S/N sources observed currently with Hubble,
.g. the SLACS sample. Using such high S/N data is a choice we
ade to ensure our tests of deficiencies in the lens mass model

re easier to distinguish from noise in the mock data. The right-
and column of Fig. 3 shows the two mock images, where a source
alaxy is lensed by the two different line-of-sight projections (the
orresponding projected densities are shown on the left hand). For
ock data sets which include a subhalo, the positions marked by red

rosses show the locations of the subhalo that we add. In Table 1 , we
ummarize the rele v ant parameters used to simulate these images. 

 M E T H O D  

.1 Mass models 

.1.1 Broken power law 

he simulated lens galaxy has an artificial ∼0.1 kpc constant density
ore, which forms a spurious central, demagnified image. We mask
his central image by manually decreasing the contribution of central
NRAS 518, 220–239 (2023) 

 The actual PSF σ for HST/ Advanced Camera for Surv e ys is ∼0.034 arcsec 
nd the pixel size is 0.04 arcsec, so our tests are slightly worse than real HST 
bservations in terms of resolution. However, in terms of the PSF modelling, 
e assume we have perfect knowledge of the PSF, which goes in the other 
irection of being optimistic. 

Background noise level 
(e − pix −1 s −1 ) 

0.1 

Exposure time (s) 8000 
Maximum pixel S/N ∼80 
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mage pixels to the likelihood calculation; ho we ver, we must also
nsure that our mass model parametrization is able to represent 
he cored density, to a v oid biasing our reconstruction of the lensed
ource’s arcs (Enzi et al. 2020 ). We therefore assume the elliptical
roken power-law (eBPL) profile (O’Riordan et al. 2019 , 2020 , 2021 )
ith convergence 

( r ) = 

{
κb ( r b /r ) 

t 1 , r ≤ r b 
κb ( r b /r ) 

t 2 , r > r b 
, (3) 

here r b is the break radius, κb is the convergence at the break radius,
 1 is the inner slope, and t 2 is the outside slope. When r b = 0, the
BPL reduces to the standard power-law profile with 3D density 
( r ) ∝ r −γ , as used in many lens studies. We introduce ellipticity by
etting r = 

√ 

qx 2 + y 2 /q , where q is the axial ratio. In practice, we
arametrize a model’s axial ratio and position angle, θ , in terms of
wo components of ellipticity: 

 1 = 

1 − q 

1 + q 
sin 2 θ, e 2 = 

1 − q 

1 + q 
cos 2 θ. (4) 

ith the additional two parameters describing the profile’s centre, the 
BPL model has eight free parameters. Degeneracies between certain 
arameters in the eBPL profile, e.g. the two different slopes, make 
t challenging to fit efficiently and a v oid inferring local maxima. We
herefore assume priors that lessen these degeneracies and simplify 
arameter space, where we constrain r b ≤ 0.4 arcsec, t 1 ≤ 0.5, and 
 2 > 0.5. For some cases, we further limit the Einstein radius to be
arger than 0.5 arcsec. All eBPL models are fitted with an additional
xternal shear in the lens model, which provides further flexibility 
n stretching and squeezing of the mass profile that can capture 
symmetric features in the lens’s convergence (Cao et al. 2021 ). 
imilar to the ellipticity parametrization, the external shear is also 
arametrized with two components γ 1ext and γ 2ext , where the shear’s 
agnitude, γ ext , and position angle, θ ext , can be reco v ered as 

ext = 

√ 

γ 2 
1ext + γ 2 

2ext , tan 2 θext = 

γ2ext 

γ1ext 
. (5) 

or modelling of a subhalo, we take the same NFW form we use to
imulate the image. 

.1.2 Sour ce r econstruction 

he final lens model of our analysis – from which all results in
he main content of this paper are taken – reconstructs the source 
alaxy using a pixelization that adapts to the source’s surface 
rightness distribution (see Nightingale et al. 2018 , for a discussion of
ystematics this approach remo v es compared to other pixelizations). 
o we ver, before using this pixelized source, a number of initial fits

s performed which estimates the parameters of the lens mass model 
fficiently (for details see the next subsection). These fits assume 
ither a parametric source which is modelled using the S ́ersic profile
 r c = 0 in equation 1 ) or a pixelized source where the density of
ixels adapts to the magnification, leading to smaller pixels in more 
agnified areas of the source plane. In Appendix A , we also show

hat we reproduce our main conclusions assuming a parametric cored 
 ́ersic source model. 

.2 Fitting pr ocedur e 

e use PyAutoLens (Nightingale et al. 2021b ) to model the 
imulated lens data sets, which is described in Nightingale et al. 
 2018 , hereafter N18 ) and builds on the works of Warren &
ye ( 2003 ), Suyu et al. ( 2006 ), and Nightingale & Dye ( 2015 ).
yAutoLens uses a technique called ‘non-linear search chaining’ 
o compose pipelines which break the lens modelling procedure into 
 series of simpler model fits. This allows us to begin modelling
ur data with a simple lens model (e.g. an isothermal mass profile
nd a S ́ersic source) and via a sequence of non-linear searches
radually increase the model complexity, so as to eventually fit 
he desired more complex lens model (in this work, mass models
hich include a dark matter subhalo and with a source reconstructed
n the brightness-based pixelization). Non-linear search chaining is 
mplemented in PyAutoLens via the probabilistic programming 
anguage PyAutoFit 7 (Nightingale, Hayes & Griffiths 2021a ). We 
se the nested sampling algorithm dynesty to perform all model 
ts. 
We employ the Source, Light and Mass (SLaM) pipelines that 

re distributed with PyAutoLens . 8 The SLaM pipelines were used 
n the work of Cao et al. ( 2021 ) and Etherington et al. ( 2022 ) and
ur analysis closely follows theirs, albeit we end with an additional
ipeline that determines whether including a subhalo in the lens 
odel increases the Bayesian e vidence relati ve to the model without
 subhalo. Like in Cao et al. ( 2021 ), we do not need to model the lens
ight; and therefore, we employ a model fitting procedure consisting 
f four distinct pipelines each one of which focuses on fitting a
pecific aspect of the model. These pipelines are, in order: (i) the
arametric source pipeline; (ii) the pixelized source pipeline; (iii) 
he lens mass pipeline; and (iv) the subhalo pipeline. Each pipeline
onsists of one or more non-linear searches that fit a unique lens
odel parametrization, which Fig. 4 shows a flow chart of, which
e will now explain in detail. 

.2.1 Parametric source pipeline 

he parametric source pipeline aims to initialize a robust model for
he lens galaxy’s mass by fitting a source galaxy that has a smooth
nalytic form. The primary reason for this pipeline is that a robust
odel for the lens galaxy’s mass is necessary to a v oid pixelized

ource reconstructions inferring the unphysical solutions described 
y Maresca, Dye & Li ( 2021 ), where the reconstruction inferred
s a demagnified version of the lens data. This pipeline assumes a
ingular isothermal ellipsoid mass model [where in equation ( 3 ), r b 
s set to be 0 and t 2 is fixed to be 1.0] with an external shear and a
 ́ersic profile for the source surface brightness. 

.2.2 Pixelized source pipeline 

he pixelized source pipeline is composed of four search phases. 
he first search fits for parameters describing the resolution of the
agnification based pixelization and the regularization coefficient of 

he constant regularization scheme, with the lens mass model fixed 
o the result of the parametric source pipeline. The second search
e-fits the lens mass model using the pixelization and regularization 
nferred previously. The third search fits for parameters that derive 
he surface brightness based pixelization and the luminosity weighted 
egularization scheme, where the lens mass model is fixed to the best-
tting values inferred in the previous search. The fourth search again
e-optimizes the lens mass model now using the brightness based 
ix elization and re gularization and we finally re-fit the pixelization
nd regularization parameters again one last time, ensuring that the 
MNRAS 518, 220–239 (2023) 
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Figure 4. The fitting procedure we use to search for subhaloes. 
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ource reconstruction is tailored to the properties of the source it is
tting. 

.2.3 Mass pipeline 

his pipeline fits a more complex lens mass, either the eBPL model
lus an external shear or the decomposed model that separately
odels the stellar and dark components plus an external shear.
his pipeline consists of two searches. It first fits the new lens
ass model with fixed source pixelization parameters. The priors of

he (broken) power-law model’s centres, elliptical components, and
instein radius are updated using information of the previous best-
tting models. We set those priors to be Gaussian priors centring on
orresponding best-fitting values of previous models and their widths
re set manually using values which balance reducing the size of
arameter space to ensure an efficient fit whilst being broad enough
ot to remo v e physically plausible solutions. For other parameters
like the break radius, inner (outer) slopes, and external shear) we
ssume broad uniform priors that are not informed by the previous
ass model fits. Having now fitted this more complex mass model,
e again update the source pixelization and regularization parameters
sing the best-fitting lens mass model of the first step. This is the final
NRAS 518, 220–239 (2023) 
t which updates the pixelization and regularization parameters, with
ll remaining fits focusing on the lens (and subhalo) mass models. 

.2.4 Subhalo pipeline 

his pipeline performs Bayesian model comparison to determine
f a lens model with a subhalo is preferred o v er a lens model
ithout a subhalo. The pipeline begins by fitting the same lens mass
odel (with fixed source pixelization and regularization parameters)

nferred at the end of the mass pipeline, with all priors inherited from
his fit. This provides us with an estimate of the Bayesian evidence
f the lens model without a subhalo. We then fit lens models which
nclude an NFW subhalo. For the subhalo’s mass, we assume a
niform prior on log 10 ( m 200 /M �) between 6 and 11. 
Due to the complexity of our parameter space (which consists of

he mass models of both the main lens galaxy and a subhalo) we
ound it was common for the inferred posterior to correspond to a
ocal likelihood maximum (as opposed to the global maximum).
o mitigate this, we scan for subhaloes using a grid of non-

inear searches, where each search confines the ( x , y ) image-plane
oordinates of the subhalo to a small 2D square segment of the
mage-plane. We perform 25 independent model fits, corresponding
o a 5 × 5 grid, which divides the image region between −1.0 and
.0 arcsec into subregions with sizes of 0.4 arcsec × 0.4 arcsec. The
arameters of the main lens are fit for simultaneously along with the
ubhalo parameters in each of these 25 fits. 

To determine whether the lens model with a subhalo is fa v oured
y the data o v er the model without a subhalo, we must choose a
tatistical quantity with which to compare them. Obvious choices
re the Bayesian evidence or differences in maximum log likelihood
alues. We use the maximum log likelihood to compare models
hich do and do not include a subhalo. Ho we ver, the Bayesian

vidence is as an output of dynesty and we have verified that our
esults are unchanged using this quantity. We denote the difference
etween the two maximum log likelihoods as 
 L , such that if 
 L in
ertain cells of the subhalo search is large, it suggests the existence
f a subhalo within one of those certain grids. Instead, if all log
ikelihood differences are very small, then it indicates no subhaloes
f a sufficiently high mass to be detected are present in the image.
or this paper, we take the threshold as follows: If 
 L ≤ 5, we call

t a non-detection; if 5 < 
 L ≤ 10, we call it a plausible detection;
nd if 
 L > 10, we call it a detection. 

If the subhalo grid search has a plausible detection ( 
 L > 5)
he subhalo pipeline performs one more fit, which fits for both the

ain lens and subhalo parameters. The subhalo’s ( x , y ) position is no
onger confined to a square segment of the grid search and we instead
lace a Gaussian prior on the x and y positions. The 2D Gaussian
rior is centred at the maximum-likelihood subhalo position inferred
reviously using the grid search, with a relatively large standard
eviation of 0.5 arcsec. For the subhalo’s mass, we retain a prior
niform in log 10 M between 10 6 and 10 11 M �. 

 POWER-LAW  TESTS  

e first use our simulated lenses to test the broken power-law profile,
hich is commonly assumed in strong lensing studies to model the
ass distribution of the lens galaxy (Collett & Auger 2014 ; Vegetti &
ogelsberger 2014 ; Dye et al. 2015 ; Ene et al. 2018 ). Our tests are
ivided into two parts: (i) How do power-law fits behave for the
ase where no subhalo is present in the mock data and (ii) can the
ower-law correctly recover the subhalo’s properties when there is
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Figure 5. Left-hand column: The mock lensing images. Middle column: The best reco v ered images using an eBPL to model the lens mass. Right-hand column: 
The corresponding normalized residuals (residuals divided by the noises). The top row shows the case of Projection 1 and the bottom row shows the case of 
Projection 2. The colour bar unit for the left two column images is e − pix −1 s −1 . The units of the y and x axes are arcsec. 
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ne present in the mock data. For convenience, we call the tests
here no subhalo is added ‘smooth tests’, and tests where there is a

ubhalo added ‘subhalo tests’. 

.1 Smooth test results 

n Fig. 5 , we show the input and reco v ered images from the best-
tting smooth model when fitted to simulated images that do not 

nclude a subhalo (this corresponds to the first model fit in the subhalo
ipeline and will act as the model we compare to models including a
ubhalo in a moment). For visual clarity, we have removed the central
mage caused by the core of the simulated galaxy; ho we ver, note that
his region is included in the model-fit with high error values. For
oth projections, the reconstructed images in the middle panel are 
imilar to the input images shown on the left hand. The normalized
esiduals (residuals divided by the noises) shown in the right-hand 
anel confirm the good fit, showing no clear or obvious correlated 
esiduals. It is noted that the best-fitting eBPL model’s break radius
or Projection 1 and 2 are ∼0.2 and 0.1 arcsec, respectively, which
onfirms that the core is able to affect the lensing even though the
entral image has been masked out. Using an eBPL model is therefore
ecessary to account for the core. 
We now consider the results of the subhalo search. The left-hand 

olumn of Fig. 6 shows the results of the subhalo phase, using the
uantity 
 L (defined in Section 3.2.4 ) inferred in every cell of the
ubhalo-position grid. The upper and lower panels show the results 
f Projection 1 and 2, respectiv ely. F or Projection 1, where the input
alaxy has a pointy shaped convergence, grids around the top-left 
uminous arc have 
 L over 10, and the highest 
 L is ∼21.4 for the
eft-most grid cell of the third row from bottom. For the grid cell with
 L ∼ 21.4, a subhalo with m 200 of 10 9 . 8 
+ 0 . 4 
−0 . 5 M � is inferred around

hat re gion. Giv en that the simulated lens galaxy we fitted here does
ot contain a subhalo, this signal is a false-positi ve. Ho we ver, for
rojection 2 which has a rounder convergence, no grid has a 
 L
 5. Assuming our criteria of requiring 
 L > 5 the inclusion of

n additional subhalo model using the eBPL is therefore correctly 
ot fa v oured by the data and the eBPL gives the correct answer for
his projection. Ho we ver, it should be noted 
 L v alues of ∼3–4 are
till visible, indicating that at a very low level the subhalo is still
mproving the fit to the data. 

.2 Subhalo test results 

aving shown the performance of using an eBPL to fit images
ithout a subhalo present, we now test whether the same pipeline can

orrectly reco v er a subhalo’s properties when a subhalo is included
hen generating the mock data. For both projections, we add an
FW-like subhalo of m 200 = 5 × 10 8 M � or 5 × 10 9 M � at the
ositions marked by the red crosses in Fig. 3 . 
Similar to our earlier analysis, we first check the 
 L maps. The
iddle column of Fig. 6 shows 
 L maps for the cases where a
 × 10 8 M � subhalo is added and the right-hand panels show the
esults for a 5 × 10 9 M � subhalo. The upper and lower panels show
he results of Projection 1 and 2, respectiv ely. F or Projection 1, grid
ells near the subhalo’s true input location (marked as white triangles
n the image) show clear increases in 
 L . For the 5 × 10 8 M � subhalo
ase, the maximum 
 L is ∼24.0 (for the rightmost cell on the fourth
ow from bottom) and for the 5 × 10 9 M � case, the maximum 
 L
s ∼81.4 (also for the rightmost cell on the fourth row from bottom).
MNRAS 518, 220–239 (2023) 
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Figure 6. When modelling the lens mass distribution with an eBPL, substructures are (too) easily detected. Colours indicate the increase in maximum log 
likelihood, 
 L , when a subhalo is included inside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 
5 × 10 8 M � (middle panel), or a subhalo of mass 5 × 10 9 M � (right-hand panel). Top and bottom rows show the results for Projection 1 and 2 (with different 
colour scales). White triangles mark the true locations of the subhaloes. Note the false-positive detections in the left-hand panels; the best-fitting subhalo masses 
in the other panels are also o v erestimated by a factor 4–5. 
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Figure 7. Posterior probability distribution of the subhalo model parameters, 
after the subhalo refining phase, when modelling the Projection 1 lens mass 
with an eBPL. Red and blue correspond to the cases of a 5 × 10 8 and 
5 × 10 9 M � input subhalo, respectiv ely. The 2D contours co v er the 68 and 
99 per cent credible re gions. F or 1D posteriors, the vertical dashed lines mark 
the true input values. 
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ote that the colour bar saturates (for cells with 
 L > 40) in the
op-right panel. 

Based on the detections shown in the 
 L maps, we continue
he subhalo pipeline and fit a model where we no longer confine
he subhalo within a particular square cell, and instead use a 2D
aussian prior on the subhalo position, centred on the best-fitting
osition from the ‘grid-search’ phase, with a standard deviation of
.5 arcsec. In Fig. 7 , we show the posterior of the subhalo parameters
or both the case with a 5 × 10 8 M � subhalo (red) and a 5 × 10 9 M �
ubhalo (blue). The true input values are marked by the dashed
ines. As shown, for both cases, the subhalo’s mass is significantly
 v erestimated and the true input subhalo masses are excluded by
9 per cent confidence regions. When the input subhalo has a mass
f 5 × 10 8 M �, the reco v ered subhalo mass is o v erestimated by

5 times with a value of 10 9 . 4 
+ 0 . 4 
−0 . 4 M � inferred, whereas for the input

ubhalo with 5 × 10 9 M �, the reco v ered mass is o v erestimated by

round 4 times and has a value of 10 10 . 3 + 0 . 2 −0 . 2 M �. 
For Projection 2, with an input subhalo of 5 × 10 8 M �, the
aximum 
 L is only 3.4, therefore no subhalo is detected and
e do not analyse the posterior on the subhalo properties. When

he input subhalo mass is 5 × 10 9 M �, the maximum 
 L is 9.7
roviding us with a plausible detection. We take this plausible
etection and refine the fit, with the resulting posterior for the subhalo
arameters plotted in Fig. 8 . For Projection 2, the subhalo’s mass is

eco v ered to be 10 10 . 1 + 0 . 5 −1 . 2 M � where the errors mark the 99 per cent
onfidence regions. It is noted that in Fig. 8 , although the subhalo’s
rue parameters are reco v ered within 99 per cent confidence regions
the light blue regions), the best-fitting m 200 and y coordinate are
NRAS 518, 220–239 (2023) 
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Figure 8. Subhalo parameters’ posteriors of the subhalo refining phase, 
when modelling the Projection 2 lens mass with an eBPL. Only the case of a 
5 × 10 9 M � input subhalo is shown (the case of a 5 × 10 8 M � subhalo does 
not lead to a clear detection). The 2D contours co v er the 68 and 99 per cent 
confidence re gions. F or 1D posteriors, the v ertical dashed lines mark the true 
input values. 
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learly offset from the true input and in a case of smaller errors
higher S/N images), the true inputs might be ruled out. 

.3 Parametric source 

o verify that our conclusions are not a result of a systematic
ssociated with our pixelized source model, in Appendix A we re-
erform all of the abo v e fits assuming a cored S ́ersic profile for the
ource. For Projection 1, we see nearly identical behaviour in terms
f false positives and the subhalo inference; however, the 
 L values
re much larger (of order ∼250 compared to the values of ∼25 seen
or the pixelized source). This is expected, as the greater flexibility of
he pixelized source reduces our sensitivity to a subhalo and therefore 
lso false positives (Gilman, Birrer & Treu 2020b ). For Projection 
, fits to the smooth data now infer a false positive with 
 L = 18.1.
his does not contradict the results using a pixelized source above, 

nstead the values of 
 L = ∼3–4 shown in Fig. 6 have simply been
oosted abo v e our threshold value of 
 L = 5 because fitting a cored
 ́ersic increases our sensitivity to subhaloes (and false positives). 
hus, the eBPL does still produce false-positive detections when it 
ts Projection 2; ho we ver, to see these using a pixelized source one
 ould lik ely require much higher S/N data. 

.4 Summary 

or Projection 1, we saw false-positive detections and an inability to 
eco v er an input subhalo’s mass correctly. In contrast, for Projection
, we did not infer a false-positive detection (when assuming a 
ixelized source) and the subhalo’s true mass is covered by the 
osterior. Taking into account the different convergence shapes of 
he two projections (see Fig. 3 ), we speculate that the inaccurate
nferences on subhaloes for Projection 1 are caused by the clear 
ismatch in the shape of the eBPL and the more elliptical input
rofile. We also speculate that the better performance seen for 
rojection 2 is because its rounder convergence is easier for the
BPL to model. Ho we ver, due to the limited number of projections
vailable, we cannot generalize these conclusions any further. We 
nly saw the eBPL produced false positives in Projection 1 and there
s a possibility that it is a different property of the lens driving this
esult. When analysing real lens systems we will look to see whether
epartures from ellipticity in the lens galaxy’s light (Nightingale et al. 
022 ) are correlated with subhalo detections, possibility indicating a 
alse-positive signal. 

 A  DECOMPOSED  M O D E L  

oti v ated by the inability of the eBPL to provide a robust subhalo
nference, we now consider the decomposed model, which models 
 galaxy’s stellar and dark matter mass separately. This includes 
ufficient freedom to capture complex features such as a pointy 
onvergence profile, or other departures from elliptical symmetry. 

.1 Model introduction 

n most strong lens images, we observe not only the lensed source’s
ight, but also the light emitted from the lens galaxy, which should ap-
roximately trace its stellar mass distribution. For example, through 
nspection of the lens galaxy’s light profile, we can estimate the
osition angle and axial ratio of the lens’s stellar mass profile. More
etailed light profile fits can provide us with a more detailed model
f the stellar mass distribution. We now explore the potential of
tilizing this information and if it can allow us to correctly reco v er
he subhalo information hidden in the source’s lensed images. We 
t the lens’s mass using a decomposed model which treats the lens
alaxy’s stellar mass and its dark matter mass separately. This type
f model has been fitted in many previous studies (Dye & Warren
005 ; Suyu et al. 2014 ; Wong et al. 2017 ) and Nightingale et al.
 2019 ) showed using HST imaging of three SLACS lenses that such
odels capture variations in ellipticity and position angle within a 

alaxy that are indicative of pointy mass distributions. 
For the stellar mass, we assume it exactly traces the stellar light,

hich allows us to directly transform between the two by multiplying
y a constant mass-to-light ratio (M/L) parameter, which can be 
escribed as 

( r ) = � · I ( r) , (6) 

here I ( r ) corresponds to the light profile and � is its ‘M/L’. For
implicity, we directly take the input stellar mass of the simulation’s
article data as our lens light and therefore do not consider a more
ealistic galaxy light simulation process. In that sense, the ‘ I ( r )’
s equi v alent to the convergence profile and thus � becomes a
imensionless quantity and is set to be 1.0. 
To utilize the ‘lens light’ information, we model the ‘lens light‘

ith three cored S ́ersic profiles as described by equation ( 1 ). We
pt for the cored S ́ersic because of the simulated galaxy’s core; for
eal lenses we anticipate that the regular non-cored S ́ersic profile
ill suffice. We impose that the 3 cored S ́ersic profiles share the

ame centre; ho we ver, allo w for them to have different position
ngles and axis ratios. We use three profiles because fits using two
rofiles do not fully capture the features of the ‘lens light’ (e.g.
lear spatially correlated normalized residuals are seen when the 
est-fitting 2 cored S ́ersic model is subtracted from the true stellar
ass distribution). In Fig. 9 , we show the input lens light (left-hand

olumn), best-fitting 3 cored S ́ersic profiles (middle column), and 
MNRAS 518, 220–239 (2023) 
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M

Figure 9. Left-hand column: The mock lens light images. Middle column: The best reco v ered images using 3 cored S ́ersics to model the lens light. Right 
column: The corresponding normalized residuals. The top ro w sho ws the case of Projection 1 and the bottom row shows the case of Projection 2. The units of 
the y and x axes are arcsec. 
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orresponding normalized residuals (right-hand column). For both
rojections (upper row corresponds to the Projection 1 and the lower
ne is for the Projection 2) the light is well fit by 3 cored S ́ersics. Later,
n our lens mass modelling, we fix the stellar mass distribution to be
xactly the same as the best-fitting 3 cored S ́ersic profiles obtained
rom fitting the lens light, except for a free � which changes the
 v erall normalization of the projected stellar mass distribution. 
In addition to the stellar mass, we include an elliptical NFW profile

nto the lens model (to account for the dark matter). This has six free
arameters: a scale radius, r s , and scale convergence, κNFW 

; two
llipticity components; and the 2D coordinates of the halo centre. As
n the eBPL case, we include an external shear in the decomposed
ens model. 

Neither cored S ́ersic nor elliptical NFW profiles have analytical
ormulae for their deflection angles. For fast computation, we follow
hajib ( 2019 ) and use a sum of 2D Gaussian profiles to approximate

he cored S ́ersic and elliptical NFW profiles. The resulting deflection
ngles are simply a sum of the deflection angles of the individual
aussian profiles, which can be efficiently computed using analytical

ormulae. To be specific, in our work, in most cases we approximate
 cored S ́ersic profile by 30 Gaussian profiles with their standard
eviations uniformly distributed in the log 10 space between 0.01
nd 50 r e , where r e is the ef fecti ve radius of the cored S ́ersic.
imilarly, for an elliptical NFW profile, we also approximate it with
0 Gaussians and the standard deviations of those Gaussians are
niformly distributed in the log 10 space between 0.0005 and 30 r s .
e noticed that one of the best-fitting cored S ́ersic components

o the ‘lens light’ of Projection 2 has a S ́ersic index of 0.51 and
or that profile the decomposition formula (equation 5 of Shajib
019 ) becomes numerically unstable. For that one particular case, we
nstead decompose the S ́ersic profile into a sum of Gaussians using
appellari ( 2002 )’s method, which optimizes the standard deviations
NRAS 518, 220–239 (2023) 
nd amplitudes of those Gaussians at the same time. We have tested
ur choices of the parameters of the Gaussian decomposition method
cross a large variety of cored S ́ersics and elliptical NFW profiles to
nsure that errors of approximating the deflection angles are much
maller than the perturbation of a subhalo of interest. In Table 2 , we
ummarize our lens model parameters. 

The approach we follow cannot be straightforwardly translated
o real data. For example, we have modelled the lens’s light in the
bsence of the source light and ignored potential complications such
s a radial gradient in the M/L. The goal of this work is not to present
 method that can be directly transferred to the fitting of real data,
ut simply to show that when sufficient complexity is added to the
ens mass model one’s inference on subhalo properties impro v es.
evertheless, Nightingale et al. ( 2019 ) have already sho wn ho w
yAutoLens can fit this type of model to real data and we expand
n this further in Section 6.3 . 

.2 Results 

e now present results using the decomposed model, following the
ame structure we used for the eBPL results, whereby we begin with
he smooth test results (where no subhalo is present in the simulated
ata) followed by results where the simulated data include a 
ubhalo. 

In Fig. 10 , we compare the input and best-fitting model images
or smooth cases. As shown by the normalized residuals in the third
olumn, no clear correlated residuals exist, which indicates an o v erall
ood fit with the decomposed model. Comparing the results with the
qui v alent BPL results in Fig. 5 , we see that the BPL results are
ndistinguishable from the decomposed model results in terms of
he residuals, which confirms again that ‘subhalo-like’ perturbations
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Table 2. Parameters and priors for the decomposed model. Parameters with 
v alues sho wn in ‘()’ or ‘ {} ’ are fixed during the modelling. Parameters with 
values shown as ‘[a, b]’ are fit for, with a uniform prior between a and b. 

Projection 1 Projection 2 

Stellar mass 3 Core S ́ersics 

Centre (x, y) [(arcsec, arcsec)] (0.008, −0.036) (0.003, 0.022) 
I 

′ { 0.44, 0.60, 0.31 } { 0.32, 0.50, 1.06 } 
r e (arcsec) { 0.65, 0.02, 4.42 } { 0.11, 0.18, 2.39 } 
r c (arcsec) { 0.14, 0.27, 0.25 } { 0.35, 0.13, 0.02 } 
n { 1.44, 4.36, 4.91 } { 2.64, 0.51, 2.31 } 
Position angle ( ◦) { −62, −59, −45 } { −27, 69, −73 } 
Axial ratio { 0.33, 0.82, 0.82 } { 0.90, 0.89, 0.90 } 
� [0.8, 1.2] 
Redshift 0.2 
MGE { n , r min , r max } { 30, 0.01 r e , 50 r e } 

Dark matter mass NFW 

Centre ( x , y ) (arcsec, arcsec) [ −0.1, 0.1] 
log 10 κNFW 

[ −2, 0.3] 
r s (arcsec) [10, 50] 
e 1 [ −1.0, 1.0] 
e 2 [ −1.0, 1.0] 
Redshift 0.2 
MGE { n , r min , r max } { 30, 0.0005 r s , 30 r s } 

External shear 

γ 1ext [ −0.2, 0.2] 
γ 2ext [ −0.2, 0.2] 

Subhalo Spherical NFW 

Centre ( x , y ) [(arcsec, arcsec)] ([ −1.0, 1.0], [ −1.0, 1.0]) 
log 10 m 200 (M �) [6, 11] 
Mass-concentration relation Ludlow et al. ( 2016 ) 
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annot be detected visually from the residual maps and we have 
o rely on careful statistical comparisons to make inferences about 
ubhaloes. 

In the left-hand column of Fig. 11 , we first show the maximum
og likelihood difference maps when modelling the smooth image 
ith the decomposed model described abo v e. F or both projections

he decomposed model fits the image accurately with a maximum 

 L v alue belo w 5, correctly indicating that no subhalo exists in the
ens galaxy. Unlike the eBPL, the decomposed model does not give 
alse-positive signals in our ‘smooth tests’. 

In the middle and right-hand columns of Fig. 11 , we show the
 L maps when a 5 × 10 8 or 5 × 10 9 M � subhalo is added to

he lens galaxy at the positions marked by the white triangles. For
rojection 1 (upper panels), the region where we detect the maximum 

 L is consistent with the position of each input subhalo. For an
nput subhalo of 5 × 10 8 M �, the result shows a plausible detection
here the maximum 
 L is 9.3, whereas for an input subhalo of
ass 5 × 10 9 M �, the detection is even clearer with a maximum
 L of 36.0. Having successfully detected the subhalo in each case,
e continue on to the subhalo refining fit, with Fig. 12 showing

he inferred posteriors of the subhalo parameters. For both cases, 
he subhalo parameters are correctly reco v ered within 99 per cent
redible re gions. F or a 5 × 10 8 M � subhalo, the reco v ered value is

0 8 . 9 
+ 0 . 8 
−2 . 6 M �, and for a 5 × 10 9 M � subhalo, the reco v ered value is

0 9 . 5 
+ 0 . 5 
−0 . 4 M �. 

For Projection 2, we only get a detection when the true subhalo
ass is 5 × 10 9 M �, with a maximum 
 L of 15.8 (in the middle

ell of the bottom row). With a 5 × 10 8 M � subhalo, all subhalo-
osition cells have 
 L < 5, corresponding to no detection. In Fig. 13 ,
e show the subhalo posteriors obtained from the subhalo refining 
hase for the 5 × 10 9 M � case. We reco v er the input subhalo mass,

ith a 99 per cent credible region on m 200 of 10 9 . 5 
+ 0 . 4 
−0 . 7 M �. For the

on-detection of the 5 × 10 8 M � subhalo, we do not believe this is a
ailure of the decomposed model, but instead a limitation of the data
uality. In fact, if we check the inferred subhalo parameters for the
ub grid cell which contains the input subhalo, the inferred subhalo’s

ass is 10 8 . 7 
+ 0 . 7 
−2 . 5 M �, which is still consistent with the true input

ass. Thus, our inference on the subhalo’s parameters is consistent 
ith the truth; ho we v er, we hav e insufficient S/N for the model to be

a v oured in terms of 
 L . 
We note that in Figs 12 and 13 , the posterior distributions are not

mooth, and having a ‘patchy’ appearance in the 2D marginalized 
osteriors and ‘wiggles’ in the 1D posteriors. These arise due to
he pixelized source plane. The source-plane pixelization is created 
rom a Voronoi tessellation of generating points, where the generating 
oints are first placed in the image plane and then mapped into the
ource plane. Changes to the mass model change the mapping from
mage plane back to the source plane, such that the positions and
hapes of the source-plane pixels vary as the lens mass model is
hanged. Certain locations for pixel boundaries may be more or 
ess able to reproduce the observed data, leading to small changes
o the mass model parameters capable of macroscopic changes 
o the likelihood. This phenomenon is more significant for more 
omplex mass models which have more parameters and freedom to 
llocate those source pixel grids on the source plane. As a result,
e get unsmooth posteriors for our decomposed model. The work of
therington et al. ( 2022 ) discusses this further and presents a solution
sing a cap on the log likelihood of the model-fit. 

.3 Parametric source 

n Appendix A , we again verify that our conclusions hold when we
ssume a cored S ́ersic profile for the source. For both projections, the
ecomposed model does not give a false positive; with the highest
alue of 
 L = 2.5. Note that, for a cored S ́ersic source, false positives
ere detected for both projections. Given that fits assuming a cored
 ́ersic for the source give a much higher sensitivity to subhaloes
nd false positives, this further strengthens our conclusion that by 
dding the right type of complexity to the decomposed mass model
emo v es the presence of false positives. As a result of this increased
ensitivity, the 5 × 10 8 M � subhalo is also detected successfully in
rojection 2, which is not the case for the pixelized source. 

.4 Offset true positi v e detections 

n the right-hand panels of Fig. 11 , we note increases of 
 L =
10–15 away from the true location of the m 200 = 5 × 10 9 M �

ubhalo for both projections. These are solutions where an offset 
ark matter subhalo closely mimics the perturbing effects of the 
ctual subhalo in the data. Ho we ver, it is not a perfect representation
f the actual subhalo, which is why fits at the true location infer
igher o v erall log likelihood values. We do not consider these as
alse-positive detections because they are caused by the true presence 
f a detectable subhalo in the data. Should this behaviour be seen
n real data we therefore should not discount the signal as a false
ositive. In fact, a candidate subhalo detection should be made and
ollowed up with a second subhalo search which includes the first
ubhalo in the model, so as to validate the detection. 
MNRAS 518, 220–239 (2023) 
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Figure 10. Left-hand column: The mock lensing images. Middle column: The best reco v ered images using the decomposed model to fit the lens mass. 
Right-hand column: The corresponding normalized residuals (residuals divided by the noise). The top row shows the case of Projection 1 and the bottom row 

shows the case of Projection 2. The colour bars for the left two columns are in units of e − pix −1 s −1 . 

Figure 11. Modelling the lens with a decomposed stellar + dark matter model remo v es false-positiv e detections, and yields correct subhalo masses. Colours 
indicate the increase in maximum log likelihood, 
 L , when a subhalo is included in the fit to a lens that: has no subhaloes (left-hand panel), has a subhalo of mass 
5 × 10 8 M � (middle panel), or has a subhalo of mass 5 × 10 9 M � (right-hand panel). The position of the subhalo in the fit is free to vary within squares of side 
0.4 arcsec. The top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles mark the true locations of the subhaloes. 
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Figure 12. The posteriors on the subhalo parameters from the subhalo 
refining phase, fitting the decomposed model to mock data generated using 
Projection 1. Red and blue colours show the cases with an input subhalo mass 
of 5 × 10 8 and 5 × 10 9 M �, respectively. The 2D contours co v er the 68 and 
99 per cent confidence re gions. F or 1D posteriors, the v ertical dashed lines 
mark the true input values. 

Figure 13. The same as Fig. 12 , but for Projection 2. Only the case with a 
5 × 10 9 M � subhalo is shown (a 5 × 10 8 M � subhalo is not clearly detected). 
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.5 Summary 

or both projections the decomposed model is a success. When 
e do not include a subhalo in the input lens galaxy, it returns no
etections. When a subhalo is included in the mock data, it is able
o correctly infer the existence of the subhalo through an increase in
 L (at least for three out of the four cases we tried). Furthermore, it
eco v ers the masses and positions of the subhaloes within 99 per cent
redible regions. By utilizing (idealized) ‘lens light’ information, the 
ecomposed model therefore successfully captures complexity in 
he mass profile (e.g. the non-elliptical shape) that the eBPL could
ot. The success of the decomposed model confirms that for subhalo
etection, it is vital to model the lens galaxy’s mass accurately. 

 DI SCUSSI ON  

.1 Implications for strong lensing subhalo detection 

ur results confirm that if a dark matter subhalo is located near the
mission of a strongly lensed source galaxy, its perturbing effects 
ean that its presence can be inferred. For gravitational imaging, 9 

ur work demonstrates this for first time by simulating the lens
alaxy using a mass distribution derived from the particle data of a
osmological simulation, which therefore does not make idealized 
ssumptions like a single axis of ellipticity. Ho we ver, we also showed
hat assuming an o v erly simplistic mass model for the lens galaxy
hich lacks certain complexity compared to the true underlying mass 
istribution has two ne gativ e effects on the subhalo inference: (i) It
ay lead to false-positive detections of a dark matter subhalo even

hough a subhalo is not present in the data and (ii) when a subhalo
s truly present in the data it may lead to systematic biases on the
nferred subhalo mass by a factor of 4–5. 

The notion that a mismatch in mass profile shape could lead to
alse-positive subhalo detections supports the analysis of Ritondale 
t al. ( 2019 ), who noted several false-positive signals found in real
ensing systems in the BELLS-GALLERY sample. For example, 
hey noted an increase in log Bayesian evidence of 72 in the lens
DSSJ0755 + 3445, but demonstrated – using a potential correction 

echnique (Koopmans 2005 ; Vegetti & Koopmans 2009b ) – that the
ass model could be impro v ed by small corrections o v er a large

ngular scale, as opposed to a localised correction reminiscent of 
 subhalo. This indicates that the subhalo-like signal is probably 
ue to the mismatch in the macro models, as we saw in our tests.
 alse positiv es are also partly the reason why Ve getti & Vogelsberger
 2014 ) and Vegetti et al. ( 2018 ) require Bayesian evidence increases
f 50 and 100 to claim a dark matter detection; values below this
hreshold may be false positives (the authors also require validation 
ia potential corrections). Whilst the false positives in this work 
id not create Bayesian evidence increases abo v e 30, the o v erall
ize of the increase depends on the properties of the strong lens
nd sources simulated, the S/N of the data and model used to fit
he data. In Appendix A , false positives with evidence increases
bo v e 200 are inferred. Therefore, ‘our results do not indicate that
revious detections of dark matter subhaloes in strong lenses are false
ositiv es’. Instead, the y show the importance of techniques like the
otential corrections and we provide insight on why these methods 
re able to distinguish a subhalo detection from missing complexity 
n the mass model. 

.2 Is our simulated lens galaxy realistic? 

t is important to consider how realistic the simulated galaxy used
n this work is. As discussed previously, the galaxy was selected
o be similar to lens galaxies from the SLACS surv e y. It has a
ypical halo mass for a SLACS lens and its stellar mass and size (i.e.
MNRAS 518, 220–239 (2023) 
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he half-light radius) follow recent observations of massive galaxies
Huang et al. 2018 ). The central galaxy has a complex shape, with
sophotes that change shape when viewed from different directions,
nd where the shapes of the isophotes can vary with radius for a fixed
iewing direction. We speculated that this departure from elliptical
ymmetry dro v e the false positiv es, because the y are only seen for the
rojection where the mass distribution is highly elliptical. A varying
sophotal shape with radius is commonly seen in observations of

assive elliptical galaxies with comparable mass to SLACS strong
enses. F or e xample, o v er one-third of galaxies with stellar masses
bo v e 10 11.5 M � taken from the MASSIVE surv e y show isophotal
osition-angle rotations (Goullaud et al. 2018 ), known as ‘isophotal
wists’ (see Oh, Greene & Lackner 2017 for similar results in lower

ass early-type galaxies). Similar features are also reported in three
trong lenses by Nightingale et al. ( 2019 ). We therefore believe this
spect of our simulation is representative of real strong lenses and is
 plausible cause of some of the false positives in the SLACS and
ELLS-GALLERY lenses discussed previously. 
The simulated galaxy also has a sub-kpc core, which generates a

entral image in our mock lens images. This phenomenon is seen
n other works which simulate strong lenses from cosmological
imulations (Mukherjee et al. 2018 ; Despali et al. 2020 ; Ding et al.
021 ), with the core due to insufficient simulation resolution. Central
mages of this brightness are not seen in real observations of strong
enses, therefore such a large core is unrealistic. To ensure it does not
mpact our tests, the mass model parametrizations fitted in this work
ll included cores. We masked the central image so as to ensure the
ass models did not utilize additional information that is not present

n real images of strong lenses. Whilst this aspect of the simulated
ens is therefore not realistic, the mass modelling performed in this
ork ensures that we can generalize our conclusions to the analysis
f real data. 

.3 Application to real data 

ur next step is applying the decomposed model to real data. We
xpect that we will be able to fit mass models which omit parameters
hat account for a core, given that the core feature is a consequence
f the inadequate simulation resolution. For the decomposed model,
e will likely fit regular S ́ersic functions instead of the cored S ́ersics
tted in this work. 
The decomposed model verified that if a mass model can ac-

urately capture the lens galaxy’s complexity, it will impro v e the
ubhalo inference. This work used information from the simulation
hat is not available when analysing real data, e.g. we utilized our
rue knowledge of the lens’s stellar mass distribution. Nevertheless,
e believe these models can be translated to real data, where the

ight emitted from the lens galaxy acts as a tracer for the stellar
ass, information which is often omitted when modelling a strong

ens (e.g. by assuming a power-law mass model). This approach
o lens modelling was explored in Nightingale et al. ( 2019 ), who
tted a decomposed stellar plus dark matter to three strong lenses.
he authors showed that all three lenses showed isophotal twists in

heir stellar emission and that when this was modelled using two
tellar components with different ellipticities and position angles it
mpro v ed the mass model compared to a model assuming a single
lliptical geometry. We are now investigating whether these lens
ystems produce subhalo detections, which would be indicative of a
alse positive. 

The decomposed model must also make assumptions in converting
ight to mass. For example, whether the S ́ersic profiles representing
ach stellar component share the same M/L or whether each ratio is
NRAS 518, 220–239 (2023) 
 free parameter in the model. For each component, one must also
hoose whether the lens model accounts for a radially varying M/L
Napolitano et al. 2005 ; Tortora et al. 2011 ; Ge et al. 2021 ). The
ssumption of an elliptical NFW profile to describe the dark matter
oses another possible mismatch. The main concern on small scales
s whether the central slope, which in simulations is affected by the
resence of baryons, is equal to the NFW one. To take this into
ccount when modelling real data, we could model the dark matter
s a profile with a free central slope, e.g. a generalized NFW profile
Zhao 1996 ), or explicitly model the way baryons are expected to
lter the dark matter distribution (Callingham et al. 2020 ; Cautun
t al. 2020 ). We do not expect this to be a significant issue since
or g alaxy-g alaxy strong lensing, the dark matter mass is typically
ubdominant in the region of interest (e.g. Li et al. 2016a , 2019 ).
n future work, we will seek to understand the importance of all
hese different assumptions with a view to improving the dark matter
ubhalo inference. 

.4 Subhalo sensitivity 

f the decomposed model can be successfully fitted to real data,
t also has implications for how sensitive strong lensing is to low

ass dark matter subhaloes. Firstly, if the method is able to reduce
r remo v e the Bayesian evidence thresholds applied by w orks lik e
egetti & Vogelsberger ( 2014 ) to remo v e false positives, this will
ake us sensitive to lower mass subhaloes (which produce smaller

vidence increases). Furthermore, because the decomposed model
ses the stellar light as additional information which constrains the
ass model, this may further boost one’s sensitivity to subhaloes

y reducing the de generac y between the lens galaxy’s mass model
nd subhalo. This will require that sensitivity mapping of a strong
ens, which quantifies what mass subhaloes one will detect if truly
resent in the data (Despali et al. 2020 ; Amorisco et al. 2022 ; He
t al. 2022 ), is performed using the decomposed model, as opposed
o the power-law model assumed in previous studies. The same level
f care will be necessary in understanding how robust assumptions
ssociated with the M/L and dark matter are. 

.5 Other lensing studies 

 mass model mismatch has also been discussed in the analysis of
trongly lensed quasars. Hsueh et al. ( 2017 ) showed that the flux
atio anomalies observed in lens system CLASS B0712 + 472 can be
argely resolved by additionally adding a disk profile to the lensing

odel. The works of Gomer & Williams ( 2020 , 2021 ), Cao et al.
 2021 ), and Van de Vyvere et al. ( 2022 ) show that such mismatches
an impact on the inference of the Hubble constant via time-delay
osmology. 

 C O N C L U S I O N S  

ith a large increase in the number of observed g alaxy-g alaxy
trong lenses expected within this decade, strong lensing could
oon push the constraints on the halo mass function to low enough
asses that it provides evidence in fa v our of or against WDM
odels. Ho we ver, detecting dark matter subhaloes through strong

ensing is a challenging problem due to the complexity of the lens
alaxy’s mass distribution. In this work, we use a massive elliptical
alaxy extracted from a state-of-the-art hydrodynamic simulation to
reate mock strong lens images. We represent the simulated galaxy’s
rojected mass distribution as a sum of elliptical Gaussian profiles,
hich shows departures from the idealized elliptically symmetric
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ass models typically employed to analyse strong lenses [e.g. the 
ower-law profile (Tessore & Metcalf 2015 )]. We project the same 
imulated galaxy along two different line-of-sight directions, with 
ne projection producing a pointy ‘American football like’-shape 
nd the other one appearing rounder. 

For each projection, we simulate three strong lens imaging data 
ets. The first data set does not include a dark matter subhalo, whereas
he other two include a m 200 = 5 × 10 8 M � and m 200 = 5 × 10 9 M �
ark matter subhalo near the lensed source’s light. To every data set,
e fit two lens mass models: (i) an eBPL mass model (O’Riordan

t al. 2019 ) which represents the o v erall mass distribution of the
ens galaxy (e.g. stars and dark matter) and (ii) a decomposed model
hat models the stellar and dark matter mass separately (using the 
tellar particle data from the simulation to constrain part of the stellar
ass model). For both models, we investigate fits which include a 

ark matter subhalo in the lens mass model, and therefore quantify 
hether we can accurately reco v er a dark matter subhalo when it is

ncluded in the simulation as well as whether we incorrectly infer
he presence of a subhalo when it is not truly there; a false positive. 

Our main results can be summarized as follows: 

(i) When using an eBPL model to fit the lens mass to the pointy
rojection without a dark matter subhalo, a false-positive detection 
s inferred at o v er 3 σ confidence. F or the same projection, when a
 × 10 8 or 5 × 10 9 M � subhalo is added to the mock lens, the fit
orrectly reco v ers the subhalo but o v erestimates its mass by a factor
f 4–5, with the true input mass outside the inferred 99 per cent
redible regions. Ho we ver, when modelling data from the projection 
ith a rounder convergence, the eBPL model does not give a false
ositive and recovers the input 5 × 10 9 M � subhalo’s mass accurately 
the 5 × 10 8 M � subhalo is not detected due to insufficient data
uality). 
(ii) When using the decomposed model to fit the lens mass, for

oth projections, we get no false positives and correctly reco v er the
roperties of an input subhalo when there is sufficient data quality to
etect it. 

The eBPL total mass model therefore shows undesirable results, 
ncluding false positives and an inaccurate estimate of the subhalo 

ass, which the decomposed mass model does not. We speculate that 
his is because the eBPL parametrization does not capture aspects of
he simulated lens’s mass distribution. In particular, the eBPL does 
ot capture the varying ellipticity and orientation seen in the pointy 
rojection’s mass distribution. The decomposed mass model does 
ot assume a single elliptical mass distribution and can therefore 
ccount for this variation in ellipticity and orientation. Its impro v ed
odel of the lens galaxy’s mass therefore offers an impro v ed subhalo

nference which does not suffer false-positive detections. 
Our results do not imply that previous detections of dark matter 

ubhaloes in strong lenses are false positiv es (e.g. Ve getti & Vo-
elsberger 2014 ). These studies are fully aware of the false-positive 
henomena and they require a subhalo detection to pass stringent 
riteria to be considered a genuine dark matter subhalo. This includes 
 pixel-based correction to the gravitational potential (Koopmans 
005 ) which accounts for the types of deficiencies in the mass model
iscussed in this work. In fact, our work demonstrates that dark matter
ubstructures can be successfully detected in images of strong lenses, 
ven when the lens galaxy’s mass distribution is more complex than 
he mass model assumed to fit it. 

Our work highlights the benefits of using cosmological simula- 
ions to test strong lens modelling methodology. When the eBPL 

howed inaccurate results, we were able to compare directly to the 
imulation’s particle data in order to understand what complexity the 
A

odel is missing. This is not possible when analysing real images
f strong lenses. We are now looking to apply what we have learned
n this study to real data, and fit strong lenses from existing lens
amples with decomposed mass models which, crucially, relax the 
ssumption of a single axis of ellipticity. Applying the models to
eal data has challenges, e.g. instead of relying on the simulation’s
tellar particle data we will need to use the lens’s light to constrain
he stellar mass (Nightingale et al. 2019 ). Ho we ver, the payof f could
e huge, allowing us to more reliably detect lower mass dark matter
ubstructures, that could potentially push our sensitivity down to 
ivotal masses of m 200 = 5 × 10 8 M � where many viable alternatives
o the CDM model begin to make different, testable predictions. 
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Figure A2. Posteriors of detected subhalo parameters of eBPL + cored 
S ́ersic model. The red posteriors show the results for an input of a 5 × 10 9 M �
subhalo in Projection 1. The blue posteriors show the results for an input of 
a 5 × 10 9 M � subhalo in Projection 2. The 2D contours co v er the 68 and 
99 per cent confidence regions. The dashed lines in corresponding colours 
marked the true input values. 
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PPEN D IX  A :  PARAMETRIC  S O U R C E  

ESU LTS  

his work primarily focuses on the lens mass distribution. The effects 
f source modelling on the subhalo inference are seldom discussed. 
n this section, to give a brief idea on how our results would be
ffected by source modelling, we fit the same mock data with the
ame mass models discussed abo v e but with a parametric source
odel. To be specific, the source model we apply here has the same

orm used to simulate the data, which is an elliptical cored S ́ersic
rofile. When simulating mock data, we hav e fix ed its break radius
o be 0.01 arcsec; ho we ver, when using it as a source model, we set
ts break radius to be a free parameter. 

The increase in log likelihood for many model-fits including a 
ubhalo, 
 L , are higher when we assume that the source is an
lliptical cored S ́ersic profile as opposed to a pixelized source. This
s because the pixelized source models have a much higher level of
reedom in how they fit the data. If a mass model provides a good
but not perfect – fit, the pixelization can make small adjustments 

o the source pixel values to fit the data equally well (Gilman et al.
020b ). This is appropriately penalized using a Bayesian framework 
MNRAS 518, 220–239 (2023) 

igure A1. 
 L maps of using eBPL + cored S ́ersic source model. Colours indicate the increase in maximum log likelihood, 
 L , when a subhalo is included 
nside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 5 × 10 8 M � (middle panel), or a subhalo 
f mass 5 × 10 9 M � (right-hand panel). Top and bottom ro ws sho w the results for Projection 1 and 2 (with different colour scales). White triangles mark the 
rue locations of the subhaloes. 
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Figure A3. 
 L maps of using stellar + dark matter + cored S ́ersic source model. Colours indicate the increase in maximum log likelihood, 
 L , when a subhalo 
is included inside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 5 × 10 8 M � (middle panel), 
or a subhalo of mass 5 × 10 9 M � (right-hand panel). Top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles 
mark the true locations of the subhaloes. 

Figure A4. Posteriors of detected subhalo parameters of the stellar + dark 
matter + cored S ́ersic source model. The green, grey, red, and blue posteriors, 
respecti vely, sho w the results for: an input of a 5 × 10 8 M � subhalo in 
Projection 1; an input of a 5 × 10 9 M � subhalo in Projection 1; an input of 
a 5 × 10 8 M � subhalo in Projection 2; an input of a 5 × 10 9 M � subhalo 
in Projection 2. The 2D contours co v er the 68 and 99 per cent confidence 
regions. The dashed lines in corresponding colours marked the true input 
values. 
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see Suyu et al. 2006 and N18 ), but nevertheless produces smaller
ikelihood contrasts than fitting a parametric source model like the
ored S ́ersic profile, which has a lot less freedom in adjusting its
arameters in order to account for an inaccurate mass model. This is
lso dependent on the fact that the elliptical cored S ́ersic profile was
sed to both simulate and fit the mock strong lenses; had there been
 mismatch here parametric fits would likely not give such large 
 L
alues. 

In Fig. A1 , we show 
 L when fitting the data with an eBPL
rofile. For Projection 1, for both the smooth case and a 5 × 10 8 M �
ubhalo input case, the eBPL plus cored S ́ersic source model returns
imilar results, with a highest 
 L giving ∼250 at the middle-left

egion indicating the existence of a 10 10 . 1 + 0 . 2 −0 . 1 M � subhalo, which is
ot consistent with our input (e.g. it is a false positiv e). F or the case
f a 5 × 10 9 M � input subhalo, the highest 
 L is ∼600 around the
iddle-right region, which is consistent with our input. For this case,
e further model the subhalo by freeing its position and the posterior
e get is shown in colour red in Fig. A2 . We see that although the
osition is estimated around the true input, the subhalo’s mass is
 v erestimated by around 4 times, which is similar to our previous
ndings for a pixelized source. 
For projection 2, we see that for the smooth test case, false-

ositi ve signals sho w up in upper right regions with the highest
 L to be ∼18. Read from the grid of highest 
 L , the best-fitting

ubhalo’s mass is 10 9 . 3 
+ 0 . 4 
−0 . 5 M �. False positives were not detected for

his projection using a pix elized source. F or the case of an input
ubhalo of 5 × 10 8 M �, there are some plausible signals around the
iddle-right regions with the highest 
 L to be ∼8. The mass of the

lausible subhalo obtained in this case is 10 9 . 6 
+ 0 . 2 
−0 . 5 M �. For the third

ase where a 5 × 10 9 M � subhalo added, the 
 L map returns the
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orrect answer with the highest 
 L to be 120 at the place where
e input the subhalo. For this one, similarly, we further model the

ubhalo by freeing its position. The posterior is shown in colour blue
n Fig. A2 . We see that the input subhalo can be well reco v ered in
his case. 

In Fig. A3 , we show 
 L maps of modelling the data with the
ecomposed model plus a cored S ́ersic source. We see that the
esults are similar to the pixelization results: For smooth tests, no 
lear false-positive signals show up. For subhalo tests, the highest 
 L is consistent with the region of an input subhalo. In Fig. A4 ,
e further plot the posteriors obtained for the detected subhaloes. 
verall, input subhaloes can be recovered to a good level although

or the 5 × 10 9 M � subhalo cases, the reco v ered masses are slightly
ffset to the true value, albeit this is close enough that it could simply
e due to noise in the mock observation. 
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