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ABSTRACT
Strong gravitational lensing offers a compelling test of the cold dark matter paradigm, as it allows for subhaloes with masses
of ∼ 109 M� and below to be detected. We test commonly-used techniques for detecting subhaloes superposed in images of
strongly lensed galaxies. For the lens we take a simulated galaxy in a ∼ 1013 M� halo grown in a high-resolution cosmological
hydrodynamical simulation, which we view from two different directions. Though the resolution is high, we note the simulated
galaxy still has an artificial core which adds additional complexity to the baryon dominated region. To remove particle noise,
we represent the projected galaxy mass distribution by a series of Gaussian profiles which precisely capture the features of the
projected galaxy. We first model the lens mass as a (broken) power-law density profile and then search for small haloes. Of the
two projections, one has a regular elliptical shape, while the other has distinct deviations from an elliptical shape. For the former,
the broken power-law model gives no false positives and correctly recovers the mass of the superposed small halo, but for the
latter we find false positives and the inferred halo mass is overestimated by ∼ 4 − 5 times. We then use a more complex model
in which the lens mass is decomposed into stellar and dark matter components. In this case, we show that we can capture the
simulated galaxy’s complex projected structures and correctly infer the input small halo.

Key words: dark matter – gravitational lensing: strong

1 INTRODUCTION

The cold dark matter (CDM) model predicts the existence of a vast
population of dark matter haloes, from the scale of galaxy clusters
down to Earthmasses and below. Theirmass function is characterised
by a simple power law with an exponential cutoff at the very high
mass end (Frenk &White 2012; Wang et al. 2020). For large masses
these predictions have been verified by large sky surveys (Frenk et al.
1990; Rozo et al. 2010). At lower masses, where dark matter haloes
are too small to host a luminous galaxy (Efstathiou 1992;Benson et al.
2002; Benitez-Llambay & Frenk 2020), it remains unclear whether
the prediction still holds true. Alternative dark matter models predict
a cut off of the halo mass function. For example, warm dark matter
(WDM)with a darkmatter particle mass of around a few keV predicts
a cut off in the range 106 − 109 M� . Pushing constraints on the
halo mass function towards this smaller mass range can distinguish
different dark matter models.
Strong gravitational lensing serves as a promising tool to probe

the existence of small invisible dark matter haloes. These “dark”
haloes perturb the images of lensed galaxies when they fall along
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the path of light from the source to the observer (Koopmans 2005;
Vegetti &Koopmans 2009a,b). One can statistically study the lensing
perturbation of ensembles of small dark haloes, and directly put
constraints on the halo mass function (Gilman et al. 2019; He et al.
2022). Gilman et al. (2020a) constrained the “half mode mass”1 to be
below 107.8 M� by analysing flux ratio anomalies in eight strongly
lensed quasar systems.

Individual subhaloes can be detected by analyzing luminous strong
lensing arcs (Vegetti & Koopmans 2009b). Li et al. (2016b) has
shown that with ∼ 50 high quality strong lensing images, one can
put stringent constraints on the cut-off mass and rule out CDM if no
subhalo is detected. More recent work by Li et al. (2017) shows that
the existence of line-of-sight haloes can boost the number of detection
by a factor of several which improves the constraining power on the
identity of dark matter (see also Despali & Vegetti 2017; He et al.
2021; Amorisco et al. 2022).

1 This is a characteristic mass related to the :-mode where the dark matter
power-spectrum has an amplitude half the size expected with CDM. It can
be considered as a “cut-off” mass, below which the halo mass function is
strongly suppressed with respect to CDM.
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Three such detections of dark haloes with pseudo-Jaffe2 masses
below 1010 M� have been made so far. The first was made by Vegetti
et al. (2010), who detected a 3.51 ± 0.15 × 109 M� subhalo using
Hubble Space Telescope (HST) imaging. The second was made by
Vegetti et al. (2012) via Keck Adaptive Optics, with an inferred
mass of 1.9 ± 0.1 × 108 M� . Finally, Hezaveh et al. (2016) found a
9.1±2.5×108 M� subhalo usingALMA interferometer observations.
Attempts to detect dark haloes through gravitational imaging have

beenmade in approximately 30 lenses (Vegetti &Vogelsberger 2014;
Ritondale et al. 2019), however no other clean detections have been
made. Due to the small number of detections, constraints on the halo
mass function are somewhat loose, constraining the mass function
cut off to be below ∼ 1010.9 M� (Enzi et al. 2021). This constraint
is not yet competitive with other probes, owing to the limited data
quality and sample size. Over the next decade, high-quality strong
lensing observations from space telescopes such as the James Webb
Space Telescope (JWST), Euclid Space Telescope (EST) and China
Space Station Telescope (CSST) will allow these constraints to push
to much lower cut-off masses on much larger lens samples (Collett
2015).
Substructure detection places stringent requirements on the model

of the lens galaxy’s mass distribution. The subhalo mass is usually
less than 0.1% that of the lens galaxy, necessitating percent level
accuracy of the main lens’s mass. Inaccuracies in the lens mass
model may create “false-positive” detections, where the subhalo
“fills-in” for the mass model’s missing complexity. Previous stud-
ies have discussed false-positive subhalo detections (Vegetti et al.
2010; Ritondale et al. 2019), where they apply strict criteria to en-
sure all subhalo detections are genuine. This includes requiring a
high enough increase of Bayesian evidence that tests on mock data
demonstrate the signal cannot be due to an inaccurate mass model
(Vegetti et al. 2012) and verifying that a consistent subhalo detec-
tion is made when pixelised corrections to the gravitational potential
are applied (Koopmans 2005; Vegetti & Koopmans 2009a; Vegetti
et al. 2010, 2012). In certain lenses these potential corrections clearly
account for missing complexity in the lens galaxy’s mass, thereby
correctly flagging a candidate subhalo detection as a false positive.
Mass model complexity is not the only contributor to false positives
(Vegetti & Vogelsberger 2014).
This motivates the investigation of more complex lens models,

which could improve the subhalo inference by accounting for this
missing complexity in the lens galaxy’s mass. The subhalo detec-
tions listed previously assume a simple parametric model for the
lens’s mass, the elliptical power-law (Tessore & Metcalf 2015) with
an external shear (Hezaveh et al. (2016) also included a fourth-order
multipole term). However, recent studies have highlighted deficien-
cies with this model. In a companion paper of this work, Cao et al.
(2021) fitted this model to strong lenses simulated usingmassmodels
derived from dynamical models of nearby SDSS-IVMaNGA (Bundy
et al. 2015) early type galaxies and showed this can bias the measure-
ment of the local density slopes around the Einstein ring by 13%.
Gomer & Williams (2021) and Van de Vyvere et al. (2021) discuss
how departures from ellipticity symmetry may affect H0 inference
in lensed quasars. Nightingale et al. (2019) have also showed that
departures from ellipticital symmetry are observed in the luminous
emission of three strong lenses.
In this work, we therefore use a hydrodynamic simulation to test

2 The masses reported are masses of pseudo-Jaffe profiles (Muñoz et al.
2001). If modelled by an NFW, the virial mass obtained is usually 0.5 ∼ 1.0
dex higher than the pseudo-Jaffe mass (Despali & Vegetti 2017).

the robustness of different parametric lens mass models, focusing
on their efficacy for the task of detecting individual subhaloes. By
using a simulation, we can compare the lens galaxy’s true complex
mass distribution to the lens model we fit and if it fails understand
why. We perform two tests: (i) we do not add a subhalo to the lens
galaxy when generating the mock data and investigate whether a lens
model with a subhalo produces a false-positive signal; (ii) we include
a subhalo when creating the mock data and test how accurately its
mass and position are recovered. We first apply an extension of the
commonly used power law profile to fit the main lens (O’Riordan
et al. 2019, 2020, 2021), followed by a “decomposed” model which
models the lens mass as a combination of stars and dark matter (Dye
& Warren 2005; Nightingale et al. 2019). Our goal is to understand
whether modelling the lens mass as a power law profile is sufficient
for detecting subhaloes, and if not, whether there is a better model
that can provide a correct inference.

Hydrodynamic simulations have previously been used to simulate
galaxy-galaxy strong lensing images (Metcalf & Petkova 2014; Xu
et al. 2017; Mukherjee et al. 2018; Despali et al. 2020; Enzi et al.
2020; Mukherjee et al. 2021; Ding et al. 2021). Converting particle
data into a corresponding deflection angle field (necessary for lens-
ing) is non-trivial. A common problem is that the mass profiles of
galaxies found in hydrodynamic simulations have a sub-kpc core in
their centre. The strong lens imaging then produces a bright central
image feature, which is not observed in real strong lenses (Bolton
et al. 2012; Shu et al. 2016). These cores are believed to be due to the
limited resolution of the simulations, with previous works assuming
a particle resolution of ∼ 105 M� . Our simulation, which has a par-
ticle resolution ∼ 10 times that of Illustris-1, still forms a core and
central image. We incorporate this feature into our lens modeling
such that we can still investigate dark matter subhalo detection. We
also mitigate systematic effects related to particle noise in the sim-
ulation (Xu et al. 2009) and truncation effects which introduce an
artificial shear (Van de Vyvere et al. 2020; Ding et al. 2021).

Testing with galaxies from the Illustris simulation (Vogelsberger
et al. 2014), Xu et al. (2017) demonstrated that deviations of sim-
ulated galaxies from a simple elliptical power-law profile affect in-
ference on the Hubble constant. More recently, Enzi et al. (2020)
used 10 galaxies from the Illustris-1 simulation to test the power-law
lens assumption for substructure lensing, and showed no degeneracy
between the complexity of the true mass distribution of their mock
lenses and the inferred substructure abundance. However, their work
focused on the statistical properties of subhaloes’ signals and did not
test individual subhalo detection. To fully understand how the use
of simple parametric lens models affects the detection of individual
substructure, testing with mock lenses extracted from simulations is
necessary.

This paper is structured as follows: in Section 2, we introduce
our simulation data and the way we simulate strong lensing images
from particle data. In Section 3, we introduce how we model the
lensing images and search for subhaloes. In Section 4, we show the
power law fitting results. In Section 5, we introduce a more com-
plex lens model where we model the lens’ stellar and dark compo-
nents separately and then we show how it behaves for our tests. In
Section 6, we discuss our results. Finally, in Section 7, we summa-
rize our results. All the computations, if not specified, are done by
the state-of-art open source strong lensing software PyAutoLens3

(Nightingale et al. 2018, 2021b). Throughout the paper we adopt

3 The PyAutoLens software is open-source and available from https://
github.com/Jammy2211/PyAutoLens.
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Subhalo strong lensing tests 3

the Planck cosmology (Planck Collaboration et al. 2016), of which
H0 = 67.7 km s−1 Mpc−1, Ωm = 0.307 and ΩΛ = 0.693.

2 MOCK LENSING IMAGES

2.1 Particle data

Wecreate our lens galaxy by using data froma cosmological hydrody-
namical zoom-in simulation of a ∼ 1013 M� galaxy group (Richings
et al. 2021). The simulated galaxy is selected from the EAGLE 100
Mpc box-size simulation (Schaye et al. 2015) and was first identified
by Despali & Vegetti (2017) as having similar properties to lenses
from the Sloan Lens ACS (SLACS) survey (Bolton et al. 2006).
The friends-of-friends (FOF) ID of the halo is 129. To resolve dark
matter haloes with masses down to ∼ 106 M� , this zoom-in simu-
lation applies a novel technique whereby there are many more dark
matter particles than gas particles. Unlike the common construction
of initial conditions in hydrodynamic simulations, where each dark
matter particle in a dark-matter-only simulation is split into a pair
of dark matter and gas particles, the simulation we use initializes 7
dark matter particles per gas particle, resulting in dark matter and
gas particle mass of 8.3×104 M� and 10.7×104 M� , respectively. At
I = 0, the dark matter halo of the zoom-in simulation’s galaxy group
has a mass of <200 = 1013.14 M� and size of A200 = 506 kpc.4 The
Plummer-equivalent gravitational softening length is 0.05 kpc.
In Fig. 1, we show the convergence profile (projected density

divided by a constant lensing critical density) of different components
of the simulated galaxy assuming the lens and source galaxy to be at
I = 0.2 and 2.5, respectively. Inside the central ∼ 0.7 arcsec, the
baryonic mass is larger than the dark matter mass, and the central
density of stellar mass is around 4 times higher than that of the dark
matter. A constant-density core with a size of ∼ 0.1 arcsec exists
in the central region, which is a result of the finite resolution of the
simulations. This phenomenon has been seen in several other studies
that simulate strong lens images from simulation data (Mukherjee
et al. 2018; Enzi et al. 2020; Ding et al. 2021), and it can produce a
dim central image in simulated strong lensing images that is rarely
seen in real observations (Winn et al. 2004; Quinn et al. 2016).
The core feature introduces additional complexity beyond realistic
massive ellipticals and thus might lead to an overestimation on the
baryonic effects in our tests. Fortunately, for the lens configurations
considered in thiswork, the central image is sufficiently dim and small
that one can mask it out without it impacting the lens modelling and
subhalo inference, an approach also followed by Enzi et al. (2020).
To do this, we artificially increase the assumed error on the flux in
the region containing the central image to such high values that they
are effectively removed from the goodness-of-fit measurement.5

4 <200 is the mass enclosed within a radius of A200, where A200 is determined
as the radius at which the mean enclosed density is 200 times the critical
density of the universe.
5 We previously attempted to remove the central image by applying a mask
that removed the data in the central region altogether. However, we found that
this introduced systematics due to edge effects associated with the source-
plane pixelisation. Pixels at the edge of the mask (which have non-negligible
flux due to the central image) were not appropriately regularized because
their neighbours were not traced to the source plane (see Nightingale et al.
2018).

Figure 1. Convergence of different components of the simulated galaxy. Yel-
low, blue and red represents the stars, darkmatter and totalmatter respectively,
assuming the lens at z = 0.2 and source at z = 2.5. At the redshit of the lens
I = 0.2, 1 arcsec corresponds to 3.3 kpc in angular size.

2.2 Simulating strong lensing images

2.2.1 Mock lenses

To simulate images that are strongly lensed by the particle distribution
from a hydrodynamical simulation one needs a method which can
determine the corresponding deflection angle map. There are two
common ways of approaching this: (i) derive the projected density
distribution of the particle data and solve for its potential via a Fast
Fourier Transform (FFT) or; (ii) assume analytic profiles representing
each particle enabling deflection angles to be easily computed, such
that the overall deflection field is the sum over all particles. For
the latter method, the computational cost can be greatly reduced
by using a :-d tree algorithm (Bentley 1975), making it faster than
the FFT method at comparable resolution (Metcalf & Petkova 2014;
Petkova et al. 2014). However, neither method offers a well posed
way of quantifying particle noise in the deflection angles, which
can closely resemble the deflection angles of a dark metter subhalo
in a strong lens (Xu et al. 2009). Besides the particle noise, these
above methods also face the boundary truncation effect, which is that
when truncating the particle data in an improper way (e.g. a square
boundary applied to an elliptically shaped galaxy), an artificial shear
component is introduced (Van de Vyvere et al. 2020). The shear
magnitude depends on the galaxy’s profile, the truncation area size
and the truncation scheme used, and an improper truncation on the
particle mass data can induce several percent bias to H0 inference
(Van de Vyvere et al. 2020; Ding et al. 2021).

To avoid particle noise and the boundary truncation effect, we
therefore instead fit analytic profiles to the simulated galaxy’s parti-
cle data and use these profiles to compute our lens galaxy’s deflec-
tion angle field. We approximate the projected mass distribution of
the simulated galaxy using the multiple Gaussian expansion (MGE)
method, which is widely used for modelling galaxy surface bright-
ness profiles in studies of galaxy stellar dynamics (e.g. Cappellari
2008; Li et al. 2016a, 2019; He et al. 2020). Li et al. (2016a) applied
the expansion method to both galaxies and dark matter haloes in
Illustris simulation, showing that it has flexibility to capture irregu-
lar and asymmetric features in a galaxy’s light or mass distribution.
The deflection angles (and other lensing quantities) of an elliptical
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Figure 2. Iso-density contours of the projected stellar mass distribution of
our simulated galaxy. The contours measured directly from the particle data
using GLAMER (Metcalf & Petkova 2014; Petkova et al. 2014) are shown in
black, while those for the best-fitMGE are in red. The contours are evenly log-
spaced in projected density. From inside to outside, each contour decreases
by 0.4 order. Note that only very inner part (within 5 arcsec) of this image
is observable and the reason we plot it on a much larger region is to show
that the MGEs represent the lens’ stellar mass well to a very large range. For
clarity, later plots are all zoomed in to the region around the Einstein radius.

Gaussian profile can be easily computed (Shajib 2019), making lens
simulations convenient and fast.
We compute the deflection angles of the simulated galaxy sepa-

rately for its stellar and dark matter components, and then add them
together to get the total deflection angles. The gas component is
omitted because its contribution to the total mass in the galaxy’s
central region is negligible. We will add subhaloes to the deflection
angle map via an analytic mass profile and therefore must ensure no
subhaloes in the particle data are included in our simulation process.
We therefore only use particles belonging to the main halo identified
by the SUBFIND algorithm (Springel et al. 2001).
We set the lens galaxy to be at redshift I = 0.2, and the source

galaxy at I = 2.5. We first use GLAMER (Metcalf & Petkova 2014;
Petkova et al. 2014) to generate convergence maps, where each par-
ticle is represented by a smoothed b-spline in 3D. For each star
particle the smoothing length is the distance to its 8th nearest (stel-
lar) neighbour and for each dark matter particles it is the distance to
its 64th nearest (dark matter) neighbour. We then use the MGE code
of Cappellari (2002) to decompose the convergence maps into mul-
tiple Gaussian profiles, where the Gaussian components share the
same centre but are free to have different amplitudes, sizes, position
angles and axis ratios. As an example, Fig. 2 shows contours tracing
the particle data input (dark lines) and MGE best-fit (red lines) of
the simulation’s projected stellar mass distribution. The MGE-fitting
code decomposes the stellar component into 13 individual Gaussian
profiles and Fig. 2 shows asymmetric features such as the twist in el-
lipticity are well captured by the MGEs. The relative errors between
the input profile and best-fit MGEs are smaller than ∼ 5%. We apply
the same routine to the simulation’s dark matter particles and then

add the best-fit Gaussian profiles together to represent the simulated
galaxy’s total projected mass distribution.

In the top-left panel of Fig. 3, we show the convergence (i.e. the
projected density divided by the critical surface density for lensing)
of the MGE representation of the simulated galaxy, where a pointy
“American football-like” shape can be seen. To investigate how lens
model fits change depending on the shape of the convergence, we
rotate the same galaxy to view it along a different line of sight,
intentionally choosing a viewing angle that produces a rounder con-
vergence map, which is shown on the bottom left panel of Fig. 3.
Following equation (43) of Shajib (2019), we compute MGE de-
flection angles for both projections, which are then used to simulate
strong lensing images. For an accurate computation of each image
pixel’s flux, we treat every pixel with a 4× 4 subgrid so that for each
image pixel 16 light rays are traced to the source plane, with the pixel
flux set to their mean value.

2.2.2 Mock sources

We simulate source galaxies using the cored Sérsic profile (Trujillo
et al. 2004),

� (A) = �
′
exp

−1=
(
A2 + A2

c
A2
e

)1/(2=)  , (1)

where �
′
is the scale density, Ac is the core size, Ae is the effective

radius, = is the Sérsic index and 1= is a dimensionless parameter
fully determined by = (Graham & Driver 2005). Our input sources
are a single elliptical cored Sérsic profile (the ellipticity is introduced

using A =
√
(G/@)2 + H2), which is simple compared to observed

lenses where source galaxies are more complex and show features
such as multiple star forming clumps, spiral structures and extremely
compact centres. Our choice to assume a simple source profile is
to make it straight forward to test the effects of using different lens
mass models. Our lens modelling procedure uses pixelised source
reconstructions which are able to fit the more complex sources seen
in real data (Nightingale et al. 2019).

2.2.3 Subhaloes

Some of our mock lensed images include a dark matter subhalo in
the lens galaxy near one of the arcs. We represent subhaloes using
the spherical NFW profile (Navarro et al. 1996)

d(A) = "0

4cA (As + A)2
, (2)

where "0 is the scale mass and As is the scale radius. Following
equation (A.18) of Baltz et al. (2009), we analytically compute its
deflection angles and add it to that inferred via the MGE fit to the
stellar and dark components. We assume the NFW halo follows the
mass-concentration relation given by Ludlow et al. (2016), allowing
us to parameterize it with only its mass,<200 (and its position).Mock
lenses are generated with an input subhalo of two different masses,
<200 = 5 × 108 M� or <200 = 5 × 109 M� .

2.2.4 Data Quality

We simulate mock images similar to observations of the Hubble
Space Telescope/Advanced Camera for Surveys (HST/ACS) Wide
Field Camera, with a pixel size of 0.05′′and a Gaussian point spread
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Figure 3. Input stellar (left column) and dark matter (middle column) convergence maps of our simulated galaxy along two different lines of sight (the two
rows). The corresponding strong lensing images are shown in the right column. The top row is for the line of sight that produces pointy shaped iso-convergence
contours, and the bottom row shows the projection with a rounder convergence field. The red crosses on the mock images mark the positions where we will later
place subhaloes.

function (PSF) with a standard deviation of 0.05′′6. We set the nor-
malisation of the source’s surface brightness to give a signal-to-noise
ratio (S/N) of ∼ 80 in the brightest pixel of the lensed source’s im-
age, whilst adjusting the background noise level to closely match
that expected from a few HST orbits. For our mocks, the background
sky noise is 0.1 e−pixel−1s−1. This S/N represents observations that
are around double the highest S/N sources observed currently with
Hubble, for example the SLACS sample. Using such high S/N data
is a choice we made to ensure our tests of deficiencies in the lens
mass model are easier to distinguish from noise in the mock data.
The right column of Fig. 3 shows the two mock images, where a
source galaxy is lensed by the two different line-of-sight projections
(the corresponding projected densities are shown on the left). For
mock datasets which include a subhalo, the positions marked by red
crosses showing the locations of the subhalo that we add. In Table 1,
we summarize the relevant parameters used to simulate these images.

3 METHOD

3.1 Mass Models

3.1.1 Broken Power Law

The simulated lens galaxy has an artificial ∼ 0.1 kpc constant density
core, which forms a spurious central, demagnified image. We mask
this central image by manually decreasing the contribution of central

6 The actual PSF f for HST/ACS is ∼0.034′′and the pixel size is 0.04′′, so
our tests are slightly worse than real HST observations in terms of resolu-
tion. However, in terms of the PSF modelling, we assume we have perfect
knowledge of the PSF, which goes in the other direction of being optimistic.

image pixels to the likelihood calculation, but must also ensure our
mass model parameterization is able to represent the cored density,
to avoid biasing our reconstruction of the lensed source’s arcs (Enzi
et al. 2020). We therefore assume the elliptical broken power law
(eBPL) profile (O’Riordan et al. 2019, 2020, 2021) with convergence

^(A) =
{
^b (Ab/A)C1 , A ≤ Ab
^b (Ab/A)C2 , A > Ab

, (3)

where Ab is the break radius, ^b is the convergence at the break
radius, C1 is the inner slope and C2 is the outside slope. When Ab = 0,
the eBPL reduces to the standard power law profile with 3D density
d(A) ∝ A−W , as used in many lens studies. We introduce ellipticity
by setting A =

√
@G2 + H2/@, where @ is the axis ratio. In practice, we

parameterize a model’s axis ratio and position angle, \, in terms of
two components of ellipticity:

41 =
1 − @
1 + @ sin 2\ , 42 =

1 − @
1 + @ cos 2\ . (4)

With an additional two parameters describing the profile’s centre, the
eBPLmodel has 8 free parameters. Degeneracies between certain pa-
rameters in the eBPL profile, for example the two different slopes,
make it challenging to fit efficiently and avoid inferring local max-
ima. We therefore assume priors that lessen these degeneracies and
simplify parameter space, where we constrain Ab ≤ 0.4′′, C1 ≤ 0.5
and C2 > 0.5. For some cases, we further limit the Einstein radius to
be larger than 0.5′′. All eBPL models are fitted with an additional
external shear in the lens model, which provides further flexibility in
stretching and squeezing of the mass profile that can capture asym-
metric features in the lens’s convergence (Cao et al. 2021). Similar
to the ellipticity parameterization, the external shear is also param-
eterized with two components W1ext and W2ext, where the shear’s
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Projection 1 Projection 2

Input Lenses

Stellar MGE number 13 11

Dark MGE number 5 5

redshift 0.2

Input Sources Cored Sérsic

centre(x, y) [(′′, ′′)] (0.08, -0.03)

axis ratio 0.55

position angle [◦] 30

�
′ [e− pix−1 s−1] 2.0

Ae [′′] 0.11

= 2.0

Ac [′′] 0.01

redshift 2.5

Input Subhaloes (if added) Spherical NFW profile

centre(x, y) [(′′, ′′)] (0.81, 0.12) (0.32, -0.71)

<200 [M�] 5 × 108 or 5 × 109

mass-concentration relation Ludlow et al. (2016)

redshift 0.2

Image Settings

pixel size [′′] 0.05

PSF f [′′] 0.05

background noise level [e− pix−1 s−1] 0.1

exposure time [s] 8000

maximum pixel S/N ∼ 80

Table 1. Parameters used to simulate the mock lensing images.

magnitude, Wext, and position angle, \ext, can be recovered as

Wext =
√
W2
1ext + W

2
2ext , tan 2\ext =

W2ext
W1ext

. (5)

For modelling of a subhalo, we take the same NFW form we use to
simulate the image.

3.1.2 Source reconstruction

The final lens models of our analysis – from which all results in
the main content of this paper are taken – reconstructs the source
galaxy using a pixelisation that adapts to the source’s surface bright-
ness distribution (see Nightingale et al. 2018, for a discussion of
systematics this approach removes compared to other pixelisations).
However, before using this pixelised source, a number of initial fits
are performed which estimate the parameters of the lens mass model
efficiently (for details see the next subsection). These fits assume
either a parametric source which is modelled using the Sérsic profile
(Ac = 0 in Eq. 1) or a pixelised source where the density of pixels

adapts to the magnification, leading to smaller pixels in more mag-
nified areas of the source plane. In appendix A we also show that we
reproduce our main conclusions assuming a parametric cored-Sérsic
source model.

3.2 Fitting procedure

We use PyAutoLens (Nightingale et al. 2021b) to model the sim-
ulated lens datasets, which is described in Nightingale et al. (2018,
N18 hereafter) and builds on the works of Warren & Dye (2003);
Suyu et al. (2006); Nightingale & Dye (2015). PyAutoLens uses a
technique called “non-linear search chaining” to compose pipelines
which break the lens modelling procedure into a series of simpler
model fits. This allows us to begin modelling our data with a simple
lens model (e.g. an isothermal mass profile and a Sérsic source) and
via a sequence of non-linear searches gradually increase the model
complexity, so as to eventually fit the desired more complex lens
model (in this work, mass models which include a dark matter sub-
halo and with a source reconstructed on the brightness-based pixeli-
sation). Non-linear search chaining is implemented in PyAutoLens
via the probabilistic programming language PyAutoFit7 (Nightin-
gale et al. 2021a). We use the nested sampling algorithm dynesty
to perform all model fits.

We employ the Source, Light and Mass (SLaM) pipelines that
are distributed with PyAutoLens 8. The SLaM pipelines were used
in the work of Cao et al. (2021) and Etherington et al. (2022) and
our analysis closely follows theirs, albeit we end with an additional
pipeline that determines whether including a subhalo in the lens
model increases the Bayesian evidence relative to the model without
a subhalo. Like in Cao et al. (2021), we do not need to model the lens
light and therefore employ a model fitting procedure consisting of
four distinct pipelines which each focuses on fitting a specific aspect
of the model. These pipelines are, in order: (i) the parametric source
pipeline; (ii) the pixelised source pipeline; (iii) the lens mass pipeline
and; (iv) the subhalo pipeline. Each pipeline consists of one or more
non-linear searches that fit a unique lens model parameterization,
which Fig. 4 shows a flow chart of, which we will now explain in
detail.

3.2.1 Parametric source pipeline

The parametric source pipeline aims to initialize a robust model for
the lens galaxy’s mass by fitting a source galaxy that has a smooth
analytic form. The primary reason for this pipeline is that a robust
model for the lens galaxy’s mass is necessary to avoid pixelised
source reconstructions inferring the unphysical solutions described
by Maresca et al. (2021), where the reconstruction inferred is a
demagnified version of the lens data. This pipeline assumes a singluar
isothermal ellipsoid (SIE) mass model (where in Eq. (3) Ab is set to
be 0 and C2 is fixed to be 1.0) with an external shear and a Sérsic
profile for the source surface brightness.

3.2.2 Pixelised source pipeline

The pixelised source pipeline is composed of four search phases.
The first search fits for parameters describing the resolution of the
magnification based pixelisation and the regularization coefficient of
the constant regularization scheme, with the lens mass model fixed

7 https://github.com/rhayes777/PyAutoFit
8 https://github.com/Jammy2211/autolens_workspace
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Subhalo strong lensing tests 7

Figure 4. The fitting procedure we use to search for subhaloes.

to the result of the parametric source pipeline. The second search
re-fits the lens mass model using the pixelisation and regularization
inferred previously. The third search fits for parameters that derive
the surface brightness based pixelisation and the luminosity weighted
regularization scheme, where the lensmassmodel is fixed to the best-
fit values inferred in the previous search. The fourth search again
re-optimizes the lens mass model now using the brightness based
pixelisation and regularization and we finally re-fit the pixelisation
and regularization parameters again one last time, ensuring that the
source reconstruction is tailored to the properties of the source it is
fitting.

3.2.3 Mass pipeline

This pipeline fits a more complex lens mass, either the eBPL model
plus an external shear or the decomposed model that separately mod-
els the stellar and dark components plus an external shear. This
pipeline consists of two searches. It first fits the new lens mass model
with fixed source pixelisation parameters. The priors of the (broken)
power law model’s centres, elliptical components, Einstein radius
are updated using information of the previous best-fit models. We

set those priors to be Gaussian priors centering on corresponding
best-fit values of previous models and their widths are set manually
using values which balance reducing the size of parameter space to
ensure an efficient fit whilst being broad enough not to remove physi-
cally plausible solutions. For other parameters (like the break radius,
inner (outer) slopes, and external shear) we assume broad uniform
priors that are not informed by the previous mass model fits. Hav-
ing now fitted this more complex mass model, we again update the
source pixelisation and regularization parameters using the best-fit
lens mass model of the first step. This is the final fit which updates
the pixelisation and regularization parameters, with all remaining fits
focusing on the lens (and subhalo) mass models.

3.2.4 Subhalo pipeline

This pipeline performs Bayesian model comparison to determine if
a lens model with a subhalo is preferred over a lens model with-
out a subhalo. The pipeline begins by fitting the same lens mass
model (with fixed source pixelisation and regularization parameters)
inferred at the end of the mass pipeline, with all priors inherited from
this fit. This provides us with an estimate of the Bayesian evidence of
the lens model without a subhalo. We then fit lens models which in-
clude an NFW subhalo. For the subhalo’s mass, we assume a uniform
prior on log10 (<200/M�) between 6 and 11.
Due to the complexity of our parameter space (which consists of

the mass models of both the main lens galaxy and a subhalo) we
found it was common for the inferred posterior to correspond to
a local likelihood maximum (as opposed to the global maximum).
To mitigate this, we scan for subhaloes using a grid of non-linear
searches, where each search confines the (G, H) image-plane coordi-
nates of the subhalo to a small 2D square segment of the image-plane.
We perform 25 independent model fits, corresponding to a 5×5 grid,
which divides the image region between −1.0′′ and 1.0′′ into sub
regions with sizes of 0.4′′ × 0.4′′. The parameters of the main lens
are fit for simultaneously along with the subhalo parameters in each
of these 25 fits.

To determine whether the lens model with a subhalo is favoured
by the data over the model without a subhalo, we must choose a
statistical quantity with which to compare them. Obvious choices
are the Bayesian evidence or differences in maximum log likelihood
values.Weuse themaximum log likelihood to comparemodelswhich
do and do not include a subhalo. However, the Bayesian evidence is
as an output of dynesty and we have verified that our results are
unchanged using this quantity. We denote the difference between
the two maximum log likelihoods to be Δ!, such that if Δ! in
certain cells of the subhalo search are large it suggests the existence
of a subhalo within one of those certain grids. Instead, if all log
likelihood differences are very small, then it indicates no subhaloes
of a sufficiently high mass to be detected are present in the image.
For this paper, we take the threshold as follows: if Δ! ≤ 5, we call it
a non-detection; if 5 < Δ! ≤ 10, we call it a plausible detection; if
Δ! > 10, we call it a detection.
If the subhalo grid search has a plausible detection (Δ! > 5)

the subhalo pipeline performs one more fit, which fits for both the
main lens and subhalo parameters. The subhalo’s (G, H) position is no
longer confined to a square segment of the grid search and we instead
place a Gaussian prior on the G and H positions. The 2D Gaussian
prior is centred at the maximum-likelihood subhalo position inferred
previously using the grid search, with a relatively large standard
deviation of 0.5′′. For the subhalo’s mass, we retain a prior uniform
in log10" between 106 M� and 1011 M� .
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8 Q. He et al.

Figure 5. Left column: the mock lensing images. Middle column: the best recovered images using an eBPL to model the lens mass. Right column: the
corresponding normalized residuals (residuals divided by the noises). The top row show the case of Projection 1 and the bottom row show the case of Projection
2. The color bar unit for the left two column images is e− pix−1 s−1. The units of the y and x axes are arcsec.

4 POWER LAW TESTS

We first use our simulated lenses to test the broken power law profile,
which is commonly assumed in strong lensing studies to model the
mass distribution of the lens galaxy (Vegetti & Vogelsberger 2014;
Collett & Auger 2014; Dye et al. 2015; Ene et al. 2018). Our tests are
divided into two parts: (i) how do power-law fits behave for the case
where no subhalo is present in the mock data; (ii) can the power-law
correctly recover the subhalo’s properties when there is one present in
the mock data. For convenience, we call the tests where no subhalo
is added “smooth tests”, and tests where there is a subhalo added
“subhalo tests”.

4.1 Smooth test results

In Fig. 5, we show the input and recovered images from the best-fit
smooth model when fitted to simulated images that do not include a
subhalo (this corresponds to the first model fit in the subhalo pipeline
and will act as the model we compare to models including a subhalo
in a moment). For visual clarity, we have removed the central image
caused by the core of the simulated galaxy, however note that this
region is included in the model-fit with high error values. For both
projections, the reconstructed images in the middle panel are similar
to the input images shown on the left. The normalized residuals
(residuals divided by the noises) shown in the right panel confirm
the good fit, showing no clear or obvious correlated residuals. It is
noted that the best-fit eBPL model’s break radius for projection 1
and 2 are ∼ 0.2′′and 0.1′′respectively, which confirms that the core
is able to affect the lensing even though the central image has been

masked out. Using an eBPL model is therefore necessary to account
for the core.

We now consider the results of the subhalo search. The left col-
umn of Fig. 6 shows the results of the subhalo phase, using the
quantity Δ! (defined in Section 3.2.4) inferred in every cell of the
subhalo-position grid. The upper and lower panels show the results
of Projection 1 and 2 respectively. For Projection 1, where the input
galaxy has a pointy shaped convergence, grids around the top-left
luminous arc have Δ! over 10, and the highest Δ! is ∼ 21.4 for the
left most grid cell of the third row from bottom. For the grid cell
with Δ! ∼ 21.4, a subhalo with <200 of 109.8+0.4−0.5 M� is inferred
around that region. Given that the simulated lens galaxy we fitted
here does not contain a subhalo, this signal is a false-positive. How-
ever, for Projection 2 which has a rounder convergence, no grid has
a Δ! > 5. Assuming our criteria of requiring Δ! > 5 the inclusion
of an additional subhalo model using the eBPL is therefore correctly
not favoured by the data and the eBPL gives the correct answer for
this projection. However, it should be noted Δ! values of ∼ 3 − 4
are still visible, indicating that at a very low level the subhalo is still
improving the fit to the data.

4.2 Subhalo test results

Having shown the performance of using an eBPL to fit images with-
out a subhalo present, we now test whether the same pipeline can
correctly recover a subhalo’s properties when a subhalo is included
when generating the mock data. For both projections, we add an
NFW-like subhalo of <200 = 5 × 108 M� or 5 × 109 M� at the
positions marked by the red crosses in Fig. 3.
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Subhalo strong lensing tests 9

Figure 6. When modelling the lens mass distribution with an eBPL, substructures are (too) easily detected. Colours indicate the increase in maximum log
likelihood, Δ!, when a subhalo is included inside 0.4′′ × 0.4′′ squares during a fit to a lens that has: no subhaloes (left), a subhalo of mass 5× 108 M� (middle),
or a subhalo of mass 5 × 109 M� (right). Top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles mark the
true locations of the subhaloes. Note the false-positive detections in the left panels; the best-fit subhalo masses in the other panels are also overestimated by a
factor four to five.

Figure 7. Posterior probability distribution of the subhalo model parameters,
after the subhalo refining phase, when modelling the Projection 1 lens mass
with an eBPL.Red and blue correspond to the cases of a 5×108 and 5×109 M�
input subhalo respectively. The 2D contours cover the 68% and 99% credible
regions. For 1Dposteriors, the vertical dashed linesmark the true input values.

Similar to our earlier analysis, we first check the Δ! maps. The
middle column of Fig. 6 shows Δ! maps for the cases where a
5×108 M� subhalo is added and the right panels show the results for
a 5 × 109 M� subhalo. The upper and lower panels show the results
of Projection 1 and 2 respectively. For Projection 1, grid cells near
the subhalo’s true input location (marked as white triangles in the
image) show clear increases in Δ!. For the 5×108 M� subhalo case,
the maximum Δ! is ∼ 24.0 (for the rightmost cell on the fourth row
from bottom) and for the 5 × 109 M� case, the maximum Δ! is ∼
81.4 (also for the rightmost cell on the fourth row from bottom). Note
that the colourbar saturates (for cells with Δ! > 40) in the top-right
panel.

Based on the detections shown in the Δ! maps, we continue the
subhalo pipeline and fit a model where we no longer confine the
subhalo within a particular square cell, and instead use a 2DGaussian
prior on the subhalo position, centered on the best-fit position from
the “grid-search” phase, with a standard deviation of 0.5′′. In Fig. 7,
we show the posterior of the subhalo parameters for both the casewith
a 5×108 M� subhalo (red) and a 5×109 M� subhalo (blue). The true
input values aremarked by the dashed lines. As shown, for both cases,
the subhalo’s mass is significantly overestimated and the true input
subhalo masses are excluded by 99% confidence regions. When the
input subhalo has a mass of 5× 108 M� , the recovered subhalo mass
is overestimated by ∼ 5 times with a value of 109.4+0.4−0.4 M� inferred,
whereas for the input subhalo with 5 × 109 M� , the recovered mass
is overestimated by around 4 times and has a value of 1010.3+0.2−0.2 M� .

For Projection 2, with an input subhalo of 5 × 108 M� , the max-
imum Δ! is only 3.4, therefore no subhalo is detected and we do
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10 Q. He et al.

Figure 8. Subhalo parameters’ posteriors of the subhalo refining phase, when
modelling the Projection 2 lens mass with an eBPL. Only the case of a
5 × 109 M� input subhalo is shown (the case of a 5 × 108 M� subhalo does
not lead to a clear detection). The 2D contours cover the 68% and 99%
confidence regions. For 1D posteriors, the vertical dashed lines mark the true
input values.

not analyse the posterior on the subhalo properties. When the input
subhalo mass is 5 × 109 M� , the maximum Δ! is 9.7 providing us
with a plausible detection. We take this plausible detection and refine
the fit, with the resulting posterior for the subhalo parameters plotted
in Fig. 8 . For Projection 2, the subhalo’s mass is recovered to be
1010.1+0.5−1.2 M� where the errors mark the 99% confidence regions.
It is noted that in Fig. 8, although the subhalo’s true parameters are
recovered within 99% confidence regions (the light blue regions), the
best-fit <200 and y coordinate are clearly offset from the true input
and in a case of smaller errors (higher S/N images), the true inputs
might be ruled out.

4.3 Parametric Source

To verify that our conclusions are not a result of a systematic associ-
ated with our pixelised source model, in appendix A we re-perform
all of the above fits assuming a cored Sérsic profile for the source.
For Projection 1 we see nearly identical behaviour in terms of false
positives and the subhalo inference, however the Δ! values are much
larger; of order ∼ 250 compared to the values of ∼ 25 seen for the
pixelised source. This is expected, as the greater flexibility of the
pixelised source reduces our sensitivity to a subhalo and therefore
also false positives (Gilman et al. 2020b). For Projection 2, fits to the
smooth data now infer a false positive with Δ! = 18.1. This does
not contradict the results using a pixelised source above, instead the
values of Δ! =∼ 3 − 4 shown in Fig. 6 have simply been boosted
above our threshold value of Δ! = 5 because fitting a cored Sérsic
increases our sensitivity to subhaloes (and false positives). Thus, the
eBPL does still produce false positive detections when it fits Projec-
tion 2, however to see these using a pixelised source one would likely
require much higher S/N data.

4.4 Summary

For Projection 1, we saw false positive detections and an inability
to recover an input subhalo’s mass correctly. In contrast, for Projec-
tion 2, we did not infer a false positive detection (when assuming a
pixelised source) and the subhalo’s true mass is covered by the pos-
terior. Taking into account the different convergence shapes of the
two projections (see figure 3), we speculate the inaccurate inferences
on subhaloes for Projection 1 are caused by the clear mismatch in
the shape of the eBPL and the more elliptical input profile. We also
speculate the better performance seen for Projection 2 is because its
rounder convergence is easier for the eBPL to model. However, due
to the limited number of projections available, we cannot generalize
these conclusions any further. We only saw the eBPL produced false
positives in Projection 1 and there is a possibility that it is a different
property of the lens driving this result. When analysing real lens
systems we will look to see whether departures from ellipticity in the
lens galaxy’s light (Nightingale et al. 2022, in prep.) are correlated
with subhalo detections, possibility indicating a false positive signal.

5 A DECOMPOSED MODEL

Motivated by the inability of the eBPL to provide a robust subhalo
inference, we now consider the decomposed model, which models
a galaxy’s stellar and dark matter mass separately. This includes
sufficient freedom to capture complex features such as a pointy con-
vergence profile, or other departures from elliptical symmetry.

5.1 Model introduction

In most strong lens images, we observe not only the lensed source’s
light, but also the light emitted from the lens galaxy, which should ap-
proximately trace its stellar mass distribution. For example, through
inspection of the lens galaxy’s light profile, we can estimate the po-
sition angle and axis ratio of the lens’s stellar mass profile. More
detailed light profile fits can provide us with a more detailed model
of the stellar mass distribution. We now explore the potential of uti-
lizing this information and if it can allow us to correctly recover the
subhalo information hidden in the source’s lensed images. We fit the
lens’s mass using a decomposed model which treats the lens galaxy’s
stellar mass and its dark matter mass separately. This type of model
has been fitted in many previous studies (Dye & Warren 2005; Suyu
et al. 2014; Wong et al. 2017) and Nightingale et al. (2019) showed
using HST imaging of three SLACS lenses that such models capture
variations in ellipticity and position angle within a galaxy that are
indicative of pointy mass distributions.

For the stellar mass, we assume it exactly traces the stellar light,
which allows us to directly transform between the two by multiplying
by a constant mass-to-light ratio (M/L) parameter, which can be
described as

^(A) = Ψ · � (A) , (6)

where � (A) corresponds to the light profile and Ψ is its “mass-to-
light ratio”. For simplicity, we directly take the input stellar mass
of the simulation’s particle data as our lens light and therefore do
not consider a more realistic galaxy light simulation process. In that
sense, the “� (A)” is equivalent to the convergence profile and thus Ψ
becomes a dimensionless quantity and is set to be 1.0.

To utilize the “lens light” information, we model the “lens light“
with three cored Sérsic profiles as described by Eq. 1. We opt for the
cored Sérsic because of the simulated galaxy’s core; for real lenses
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Figure 9. Left column: the mock lens light images.Middle column: the best recovered images using three cored Sérsics to model the lens light.Right column:
the corresponding normalized residuals. The top row show the case of Projection 1 and the bottom row show the case of Projection 2. The units of the y and x
axes are arcsec.

we anticipate that the regular non-cored Sérsic profile will suffice.
We impose that the 3 cored Sérsic profiles share the same centre,
but allow for them to have different position angles and axis ratios.
We use three profiles because fits using two profiles do not fully
capture the features of the “lens light” (e.g. clear spatially-correlated
normalised residuals are seen when the best-fit two cored Sérsic
model is subtracted from the true stellar mass distribution). In Fig. 9,
we show the input lens light (left column), best-fit 3 cored Sérsic
profiles (middle column) and corresponding normalised residuals
(right column). For both projections (upper row corresponds to the
Projection 1 and the lower one is for the Projection 2) the light is
well fit by three cored Sérsics. Later, in our lens mass modelling, we
fix the stellar mass distribution to be exactly the same as the best-fit
three cored Sérsic profiles obtained from fitting the lens light, except
for a free Ψ which changes the overall normalisation of the projected
stellar mass distribution.
In addition to the stellar mass, we include an elliptical NFWprofile

into the lens model (to account for the dark matter). This has six free
parameters: a scale radius, As, and scale convergence, ^NFW; two
ellipticity components; and the 2D coordinates of the halo centre. As
in the eBPL case, we include an external shear in the decomposed
lens model.
Neither cored Sérsic nor elliptical NFW profiles have analytical

formulae for their deflection angles. For fast computation we follow
Shajib (2019) and use a sum of 2D Gaussian profiles to approximate
the cored Sérsic and elliptical NFW profiles. The resulting deflec-
tion angles are simply a sum of the deflection angles of the individual
Gaussian profiles, which can be efficiently computed using analytical
formulae. To be specific, in our work, in most cases we approximate
a cored Sérsic profile by 30 Gaussian profiles with their standard

deviations uniformly distributed in the log10 space between 0.01Ae
and 50Ae, where Ae is the effective radius of the cored Sérsic. Sim-
ilarly, for an elliptical NFW profile, we also approximate it with 30
Gaussians and the standard deviations of those Gaussians are uni-
formly distributed in the log10 space between 0.0005As and 30As. We
noticed that one of the best-fit cored Sérsic components to the “lens
light” of Projection 2 has a Sérsic index of 0.51 and for that profile
the decomposition formula (Eq. 5 of Shajib (2019)) becomes numer-
ically unstable. For that one particular case, we instead decompose
the Sérsic profile into a sum of Gaussians using Cappellari (2002)’s
method, which optimizes the standard deviations and amplitudes of
those Gaussians at the same time. We have tested our choices of
the parameters of the Gaussian decomposition method across a large
variety of cored Sérsics and elliptical NFW profles to ensure that
errors of approximating the deflection angles are much smaller than
the perturbation of a subhalo of interest. In Table 2, we summarize
our lens model parameters.

The approach we follow cannot be straightforwardly translated
to real data. For example, we have modelled the lens’s light in the
absence of the source light and ignored potential complications such
as a radial gradient in the mass-to-light ratio. The goal of this work is
not to present a method that can be directly transferred to the fitting
of real data, but simply to show that when sufficient complexity is
added to the lens mass model one’s inference on subhalo properties
improves. Nevertheless, Nightingale et al. (2019) have already shown
how PyAutoLens can fit this type ofmodel to real data andwe expand
on this further in section 6.3.
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Figure 10. Left column: the mock lensing images.Middle column: the best recovered images using the decomposed model to fit the lens mass. Right column:
the corresponding normalized residuals (residuals divided by the noise). The top row show the case of Projection 1 and the bottom row show the case of
Projection 2. The colour bars for the left two columns are in units of e− pix−1 s−1.

5.2 Results

We now present results using the decomposed model, following the
same structure we used for the eBPL results, whereby we begin with
the smooth test results (where no subhalo is present in the simulated
data) followed by results where the simulated data includes a subhalo.
In Fig. 10, we compare the input and best-fit model images for

smooth cases. As shown by the normalized residuals in the third
column, no clear correlated residuals exist, which indicates an overall
good fit with the decomposed model. Comparing the results with the
equivalent BPL results in Fig. 5, we see that the BPL results are
indistinguishable from the decomposed model results in terms of
the residuals, which confirms again that “subhalo-like” perturbations
cannot be detected visually from the residual maps and we have
to rely on careful statistical comparisons to make inferences about
subhaloes.
In the left column of Fig. 11, we first show the maximum log

likelihood difference maps when modelling the smooth image with
the decomposed model described above. For both projections the
decomposed model fits the image accurately with a maximum Δ!

value below 5, correctly indicating that no subhalo exists in the lens
galaxy. Unlike the eBPL, the decomposed model does not give false-
positive signals in our “smooth tests”.
In the middle and right columns of Fig. 11, we show the Δ! maps

when a 5 × 108 M� or 5 × 109 M� subhalo is added to the lens
galaxy at the positions marked by the white triangles. For Projection
1 (upper panels), the regions where we detect the maximum Δ!

is consistent with the position of each input subhalo. For an input
subhalo of 5× 108 M� , the result shows a plausible detection where
the maximum Δ! is 9.3, whereas for an input subhalo of mass

5×109 M� , the detection is even clearer with amaximumΔ! of 36.0.
Having successfully detected the subhalo in each case, we continue
on to the subhalo refining fit, with Fig. 12 showing the inferred
posteriors of the subhalo parameters. For both cases, the subhalo
parameters are correctly recovered within 99% credible regions. For
a 5 × 108 M� subhalo, the recovered value is 108.9+0.8−2.6 M� , and for
a 5 × 109 M� subhalo, the recovered value is 109.5+0.5−0.4 M� .

For Projection 2, we only get a detection when the true subhalo
mass is 5× 109 M� , with a maximum Δ! of 15.8 (in the middle cell
of the bottom row). With a 5× 108 M� subhalo, all subhalo-position
cells haveΔ! < 5, corresponding to no detection. In Fig. 13, we show
the subhalo posteriors obtained from the subhalo refining phase for
the 5×109 M� case. We recover the input subhalo mass, with a 99%
credible region on <200 of 109.5+0.4−0.7 M� . For the non-detection of
the 5 × 108 M� subhalo, we do not believe this is a failure of the
decomposed model, but instead a limitation of the data quality. In
fact, if we check the inferred subhalo parameters for the sub grid
cell which contains the input subhalo, the inferred subhalo’s mass
is 108.7+0.7−2.5 M� , which is still consistent with the true input mass.
Thus, our inference on the subhalo’s parameters is consistent with
the truth, but we have insufficient S/N for the model to be favoured
in terms of Δ!.
We note that in Fig. 12 and 13, the posterior distributions are not

smooth, having a “patchy” appearance in the 2D marginalised pos-
teriors and “wiggles” in the 1D posteriors. These arise due to the
pixelised source plane. The source plane pixelisation is created from
a Voronoi tessellation of generating points, where the generating
points are first placed in the image plane and then mapped into the
source plane. Changes to the mass model change the mapping from
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Subhalo strong lensing tests 13

Figure 11. Modelling the lens with a decomposed stellar + dark matter model removes false-positive detections, and yields correct subhalo masses. Colours
indicate the increase in maximum log likelihood, Δ!, when a subhalo is included in the fit to a lens that: has no subhaloes (left), has a subhalo of mass 5×108 M�
(middle), or has a subhalo of mass 5 × 109 M� (right). The position of the subhalo in the fit is free to vary within squares of side 0.4′′. The top and bottom rows
show the results for Projection 1 and 2 (with different colour scales). White triangles mark the true locations of the subhaloes.

Figure 12.The posteriors on the subhalo parameters from the subhalo refining
phase, fitting the decomposed model to mock data generated using Projection
1. Red and blue colours show the cases with an input subhalo mass of 5× 108

and 5 × 109 M� respectively. The 2D contours cover the 68% and 99%
confidence regions. For 1D posteriors, the vertical dashed lines mark the true
input values.

image plane back to the source plane, such that the positions and
shapes of the source-plane pixels varies as the lens mass model is
changed. Certain locations for pixel boundaries may be more or less
able to reproduce the observed data, leading to small changes to the
mass model parameters capable of macroscopic changes to the like-
lihood. This phenomenon is more significant for more complex mass
models which have more parameters and freedom to allocate those
source pixel grids on the source plane. As a result, we get unsmooth
posteriors for our decomposed model. The work of Etherington et al.
(2022) discusses this further and presents a solution using a cap on
the log likelihood of the model-fit.

5.3 Parametric Source

In appendix A, we again verify that our conclusions hold when we
assume a cored Sérsic profile for the source. For both projections, the
decomposed model does not give a false positive; with the highest
value ofΔ! = 2.5. Note that, for a cored Sérsic source, false positives
were detected for both projections. Given that fits assuming a cored
Sérsic for the source give a much higher sensitivity to subhaloes
and false positives, this further strengthens our conclusion that by
adding the right type of complexity to the decomposed mass model
removes the presence of false positives. As a result of this increased
sensitivity, the 5 × 108 M� subhalo is also detected successfully in
Projection 2, which is not the case for the pixelised source.
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Projection 1 Projection 2

Stellar Mass 3 Core Sersics

centre(x, y) [(′′, ′′)] (0.008, -0.036) (0.003, 0.022)

�
′ {0.44, 0.60, 0.31} {0.32, 0.50, 1.06}

Ae [′′] {0.65, 0.02, 4.42} {0.11, 0.18, 2.39}

Ac [′′] {0.14, 0.27, 0.25} {0.35, 0.13, 0.02}

= {1.44, 4.36, 4.91} {2.64, 0.51, 2.31}

position angle [◦] {-62, -59, -45} {-27, 69, -73}

axis ratio {0.33, 0.82, 0.82} {0.90, 0.89, 0.90}

Ψ [0.8, 1.2]

redshift 0.2

MGE {n, rmin, rmax} {30, 0.01Ae, 50Ae}

Dark Matter Mass NFW

centre(G, H) [(′′, ′′)] [-0.1, 0.1]

log10 ^NFW [-2, 0.3]

As [′′] [10, 50]

41 [-1.0, 1.0]

42 [-1.0, 1.0]

redshift 0.2

MGE {n, rmin, rmax} {30, 0.0005As, 30As}

External Shear

W1ext [-0.2, 0.2]

W2ext [-0.2, 0.2]

Subhalo Spherical NFW

centre(G, H) [(′′, ′′)] ([-1.0, 1.0], [-1.0, 1.0])

log10 <200 [M�] [6, 11]

mass-concentration relation Ludlow et al. (2016)

Table 2. Parameters and priors for the decomposed model. Parameters with
values shown in “()” or “{}” are fixed during the modelling. Parameters with
values shown as “[a, b]” are fit for, with a uniform prior between a and b.

5.4 Offset True Positive Detections

In the right panels of Fig. 11we note increases ofΔ! =∼ 10−15 away
from the true location of the <200 = 5 × 109 M� subhalo for both
projections. These are solutions where an offset dark matter subhalo
closely mimics the perturbing effects of the actual subhalo in the
data. However, it is not a perfect representation of the actual subhalo,
which iswhy fits at the true location infer higher overall log likelihood
values. We do not consider these as false-positive detections because
they are caused by the true presence of a detectable subhalo in the
data. Should this behaviour be seen in real data we therefore should
not discount the signal as a false positive. In fact, a candidate subhalo
detection should be made and followed up with a second subhalo
search which includes the first subhalo in the model, so as to validate
the detection.

Figure 13. The same as Fig. 12, but for Projection 2. Only the case with a
5× 109 M� subhalo is shown (a 5× 108 M� subhalo is not clearly detected).

5.5 Summary

For both projections the decomposedmodel is a success.Whenwe do
not include a subhalo in the input lens galaxy, it returns no detections.
When a subhalo is included in the mock data, it is able to correctly
infer the existence of the subhalo through an increase in Δ! (at least
for three out of the four cases we tried). Furthermore, it recovers the
masses and positions of the subhaloes within 99% credible regions.
By utilizing (idealized) “lens light” information, the decomposed
model therefore successfully captures complexity in the mass profile
(e.g. the non-elliptical shape) that the eBPL could not. The success
of the decomposed model confirms that for subhalo detection, it is
vital to model the lens galaxy’s mass accurately.

6 DISCUSSION

6.1 Implications for strong lensing subhalo detection

Our results confirm that if a dark matter subhalo is located near the
emission of a strongly lensed source galaxy, its perturbing effects
mean that its presence can be inferred. For gravitational imaging9,
our work demonstrates this for first time by simulating the lens galaxy
using a mass distribution derived from the particle data of a cosmo-
logical simulation, which therefore does not make idealized assump-
tions like a single axis of ellipticity. However, we also showed that
assuming an overly simplistic mass model for the lens galaxy which
lacks certain complexity compared to the true underlying mass dis-
tribution has two negative effects on the subhalo inference: (i) it may
lead to false-positive detections of a dark matter subhalo even though
a subhalo is not present in the data and; (ii) when a subhalo is truly

9 Similar tests on flux ratios have previously been explored by Hsueh et al.
(2018).
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Subhalo strong lensing tests 15

present in the data it may lead to systematic biases on the inferred
subhalo mass by a factor of 4 − 5.

The notion that a mismatch in mass profile shape could lead to
false-positive subhalo detections supports the analysis of Ritondale
et al. (2019), who noted several false-positive signals found in real
lensing systems in the BELLS-GALLERY sample. For example,
they noted an increase in log Bayesian evidence of 72 in the lens
SDSSJ0755+3445, but demonstrated – using a potential correction
technique (Koopmans 2005; Vegetti & Koopmans 2009b) – that the
mass model could be improved by small corrections over a large
angular scale, as opposed to a localised correction reminiscent of
a subhalo. This indicates that the subhalo-like signal is probably
due to the mismatch in the macro models, as we saw in our tests.
False positives are also partly the reason why Vegetti & Vogelsberger
(2014) and Vegetti et al. (2018) require Bayesian evidence increases
of 50 and 100 to claim a dark matter detection; values below this
threshold may be false positives (the authors also require validation
via potential corrections). Whilst the false positives in this work did
not create Bayesian evidence increases above 30, the overall size
of the increase depends on the properties of the strong lens and
sources simulated, the S/N of the data and model used to fit the data.
In appendix A false positives with evidence increases above 200
are inferred. Therefore, our results do not indicate that previous
detections of dark matter subhaloes in strong lenses are false
positives. Instead, they show the importance of techniques like the
potential corrections and we provide insight on why these methods
are able to distinguish a subhalo detection from missing complexity
in the mass model.

6.2 Is our simulated lens galaxy realistic?

It is important to consider how realistic the simulated galaxy used in
this work is. As discussed previously, the galaxy was selected to be
similar to lens galaxies from the SLACS survey. It has a typical halo
mass for a SLACS lens and its stellar mass and size (i.e. the half-light
radius) follow recent observations of massive galaxies (Huang et al.
2018). The central galaxy has a complex shape, with isophotes that
change shape when viewed from different directions, and where the
shapes of the isophotes can vary with radius for a fixed viewing di-
rection. We speculated that this departure from elliptical symmetry
drove the false positives, because they are only seen for the projection
where the mass distribution is highly elliptical. A varying isophotal
shape with radius is commonly seen in observations of massive el-
liptical galaxies with comparable mass to SLACS strong lenses. For
example, over 1/3 of galaxies with stellar masses above 1011.5 M�
taken from the MASSIVE survey show isophotal position-angle ro-
tations (Goullaud et al. 2018), known as “isophotal twists” (see Oh
et al. (2017) for similar results in lower mass early-type galaxies).
Similar features are also reported in three strong lenses by Nightin-
gale et al. (2019). We therefore believe this aspect of our simulation
is representative of real strong lenses and is a plausible cause of some
of the false positives in the SLACS and BELLS-GALLERY lenses
discussed previously.
The simulated galaxy also has a sub-kpc core, which generates a

central image in our mock lens images. This phenomenon is seen in
other works which simulate strong lenses from cosmological simu-
lations (Mukherjee et al. 2018; Despali et al. 2020; Ding et al. 2021),
with the core due to insufficient simulation resolution. Central im-
ages of this brightness are not seen in real observations of strong
lenses, therefore such a large core is unrealistic. To ensure it does not
impact our tests, the mass model parameterizations fitted in this work
all included cores. We masked the central image so as to ensure the

mass models did not utilize additional information that is not present
in real images of strong lenses. Whilst this aspect of the simulated
lens is therefore not realistic, the mass modeling performed in this
work ensures we can generalize our conclusions to the analysis of
real data.

6.3 Application to real data

Our next step is applying the decomposed model to real data. We
expect that we will be able to fit mass models which omit parameters
that account for a core, given that the core feature is a consequence
of the inadequate simulation resolution. For the decomposed model,
we will likely fit regular Sérsic functions instead of the cored Sérsics
fitted in this work.

The decomposed model verified that if a mass model can ac-
curately capture the lens galaxy’s complexity, it will improve the
subhalo inference. This work used information from the simulation
that is not available when analysing real data, for example we utilized
our true knowledge of the lens’s stellar mass distribution. Neverthe-
less, we believe these models can be translated to real data, where the
light emitted from the lens galaxy acts as a tracer for the stellar mass,
information which is often omitted when modeling a strong lens
(e.g. by assuming a power-law mass model). This approach to lens
modeling was explored in Nightingale et al. (2019), who fitted a de-
composed stellar plus dark matter to three strong lenses. The authors
showed that all three lenses showed isophotal twists in their stellar
emission and that when this was modelled using two stellar compo-
nents with different ellipticities and position angles it improved the
mass model compared to a model assuming a single elliptical geom-
etry. We are now investigating whether these lens systems produce
subhalo detections, which would be indicative of a false positive.

The decomposedmodel must alsomake assumptions in converting
light to mass. For example, whether the Sérsic profiles representing
each stellar component share the same mass-to-light ratio or whether
each ratio is a free parameter in the model. For each component,
one must also choose whether the lens model accounts for a radially
varying M/L (Napolitano et al. 2005; Tortora et al. 2011; Ge et al.
2021). The assumption of an elliptical NFW profile to describe the
dark matter poses another possible mismatch. The main concern on
small scales is whether the central slope, which in simulations is
affected by the presence of baryons, is equal to the NFW one. To
take this into account when modelling real data, we could model the
dark matter as a profile with a free central slope, e.g. a generalized
NFW profile (Zhao 1996), or explicitly model the way baryons are
expected to alter the dark matter distribution (Cautun et al. 2020;
Callingham et al. 2020). We do not expect this to be a significant
issue since for galaxy-galaxy strong lensing, the dark matter mass is
typically sub-dominant in the region of interest (e.g. Li et al. 2016a,
2019). In future work we will seek to understand the importance of
all these different assumptions with a view to improving the dark
matter subhalo inference.

6.4 Subhalo Sensitivity

If the decomposed model can be successfully fitted to real data,
it also has implications for how sensitive strong lensing is to low
mass dark matter subhaloes. Firstly, if the method is able to reduce
or remove the Bayesian evidence thresholds applied by works like
Vegetti & Vogelsberger (2014) to remove false positives, this will
make us sensitive to lower mass subhaloes (which produce smaller
evidence increases). Furthermore, because the decomposed model
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uses the stellar light as additional information which constrains the
mass model, this may further boost one’s sensitivity to subhaloes by
reducing the degeneracy between the lens galaxy’s mass model and
subhalo. This will require that sensitivity mapping of a strong lens,
which quantifies what mass subhaloes one will detect if truly present
in the data (Despali et al. 2020; He et al. 2021; Amorisco et al. 2022),
is performed using the decomposed model, as opposed to the power
law model assumed in previous studies. The same level of care will
be necessary in understanding how robust assumptions associated
with the M/L and dark matter are.

6.5 Other Lensing Studies

A mass model mismatch has also been discussed in the analysis of
strongly lensed quasars. Hsueh et al. (2017) showed that the flux ratio
anomalies observed in lens systemCLASSB0712+472 can be largely
resolved by additionally adding a disk profile to the lensing model.
The works of Gomer & Williams (2020, 2021); Cao et al. (2021);
Van de Vyvere et al. (2021) show that such mismatches can impact
on the inference of the Hubble constant via time-delay cosmology.

7 CONCLUSIONS

With a large increase in the number of observed galaxy-galaxy strong
lenses expected within this decade, strong lensing could soon push
the constraints on the halo mass function to low enough masses
that it provides evidence in favour of or against warm dark matter
models. However, detecting dark matter subhaloes through strong
lensing is a challenging problem due to the complexity of the lens
galaxy’s mass distribution. In this work, we use a massive elliptical
galaxy extracted from a state-of-the-art hydrodynamic simulation to
create mock strong lens images. We represent the simulated galaxy’s
projected mass distribution as a sum of elliptical Gaussian profiles,
which shows departures from the idealized elliptically symmetric
mass models typically employed to analyse strong lenses (e.g. the
power law profile (Tessore & Metcalf 2015)). We project the same
simulated galaxy along two different line-of-sight directions, with
one projection producing a pointy “American football like”-shape
and the other one appearing rounder.
For each projection, we simulate three strong lens imaging

datasets. The first dataset does not include a dark matter sub-
halo, whereas the other two include a <200 = 5 × 108 M� and
<200 = 5 × 109 M� dark matter subhalo near the lensed source’s
light. To every dataset, we fit two lens mass models: (i) an elliptical
broken power law (eBPL) mass model (O’Riordan et al. 2019) which
represents the overall mass distribution of the lens galaxy (e.g. stars
and dark matter) and; (ii) a decomposed model that models the stellar
and dark matter mass separately (using the stellar particle data from
the simulation to constrain part of the stellar mass model). For both
models, we investigate fits which include a dark matter subhalo in the
lens mass model, and therefore quantify whether we can accurately
recover a dark matter subhalo when it is included in the simulation as
well as whether we incorrectly infer the presence of a subhalo when
it is not truly there; a false positive.
Our main results can be summarized as follows:

• When using an eBPL model to fit the lens mass to the pointy
projection without a dark matter subhalo, a false-positive detection
is inferred at over 3f confidence. For the same projection, when a
5× 108 M� or 5× 109 M� subhalo is added to the mock lens, the fit
correctly recovers the subhalo but overestimates its mass by a factor

of 4 − 5, with the true input mass outside the inferred 99% credible
regions. However, when modelling data from the projection with a
rounder convergence, the eBPL model does not give a false-positive
and recovers the input 5 × 109 M� subhalo’s mass accurately (the
5 × 108 M� subhalo is not detected due to insufficient data quality).
• When using the decomposed model to fit the lens mass, for

both projections, we get no false positives and correctly recover the
properties of an input subhalo when there is sufficient data quality to
detect it.

The eBPL total mass model therefore shows undesirable results,
including false positives and an inaccurate estimate of the subhalo
mass, which the decomposedmass model does not.We speculate that
this is because the eBPL parameterization does not capture aspects
of the simulated lens’s mass distribution. In particular, the eBPL does
not capture the varying ellipticity and orientation seen in the pointy
projection’s mass distribution. The decomposed mass model does
not assume a single elliptical mass distribution and can therefore
account for this variation in ellipticity and orientation. Its improved
model of the lens galaxy’s mass therefore offers an improved subhalo
inference which does not suffer false-positive detections.

Our results do not imply that previous detections of dark mat-
ter subhaloes in strong lenses are false positives (e.g. Vegetti &
Vogelsberger (2014)). These studies are fully aware of the false pos-
itive phenomena and they require a subhalo detection to pass strin-
gent criteria to be considered a genuine dark matter subhalo. This
includes a pixel-based correction to the gravitational potential (Koop-
mans 2005) which accounts for the types of deficiencies in the mass
model discussed in this work. In fact, our work demonstrates that
dark matter substructures can be successfully detected in images of
strong lenses, even when the lens galaxy’s mass distribution is more
complex than the mass model assumed to fit it.

Our work highlights the benefits of using cosmological simula-
tions to test strong lens modeling methodology. When the eBPL
showed inaccurate results, we were able to compare directly to the
simulation’s particle data in order to understand what complexity
the model is missing. This is not possible when analysing real im-
ages of strong lenses. We are now looking to apply what we have
learned in this study to real data, and fit strong lenses from existing
lens samples with decomposed mass models which, crucially, relax
the assumption of a single axis of ellipticity. Applying the models
to real data has challenges, for example instead of relying on the
simulation’s stellar particle data we will need to use the lens’s light
to constrain the stellar mass (Nightingale et al. 2019). However, the
pay-off could be huge, allowing us to more reliably detect lower mass
dark matter substructures, that could potentially push our sensitivity
down to pivotal masses of <200 = 5 × 108 M� where many viable
alternatives to the cold dark matter model begin to make different,
testable predictions.

SOFTWARE CITATIONS

This work uses the following software packages:

• Astropy (Astropy Collaboration et al. 2013; Price-Whelan et al.
2018)
• Colossus (Diemer 2018)
• Corner.py (Foreman-Mackey 2016)
• Dynesty (Speagle 2020)
• GLAMER (Metcalf & Petkova 2014; Petkova et al. 2014; Met-

calf et al. 2020)
• Matplotlib (Hunter 2007)
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• Numba (Lam et al. 2015)
• NumPy (van der Walt et al. 2011)
• PyAutoFit (Nightingale et al. 2021a)
• PyAutoLens (Nightingale & Dye 2015; Nightingale et al. 2018,

2021b)
• Pyquad (Kelly 2020)
• Python (Van Rossum & Drake 2009)
• Scikit-image (Van der Walt et al. 2014)
• Scikit-learn (Pedregosa et al. 2011)
• Scipy (Virtanen et al. 2020)
• SQLite (Hipp 2020)
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APPENDIX A: PARAMETRIC SOURCE RESULTS

This work primarily focuses on the lensmass distribution. The affects
of source modelling on the subhalo inference is seldom discussed. In

this section, to give a brief idea on how our results would be affected
by source modelling, we fit the same mock data with the same mass
models discussed above but with a parametric source model. To be
specific, the source model we apply here has the same form used to
simulated the data, which is an elliptical cored Sérsic profile. When
simulating mock data, we have fixed its break radius to be 0.01′′, but
when using it as a source model, we set its break radius to be a free
parameter.

The increase in log likelihood for many model-fits including a
subhalo, Δ!, are higher when we assume that the source is an el-
liptical cored Sérsic profile as opposed to a pixelised source. This
is because the pixelised source models have a much higher level of
freedom in how they fit the data. If a mass model provides a good
– but not perfect – fit, the pixelisation can make small adjustments
to the source pixel values to fit the data equally well (Gilman et al.
2020b). This is appropriately penalized using a Bayesian framework
(see Suyu et al. (2006) andNightingale et al. (2018)), but nevertheless
produces smaller likelihood contrasts than fitting a parametric source
model like the cored Sérsic profile, which has a lot less freedom in
adjusting its parameters in order to account for an inaccurate mass
model. This is also dependent on the fact that the elliptical cored Sér-
sic profile was used to both simulate and fit the mock strong lenses;
had there been a mismatch here parametric fits would likely not give
such large Δ! values.

In Fig. A1, we showΔ! when fitting the data with an eBPL profile.
For projection 1, for both the smooth case and a 5× 108 M� subhalo
input case, the eBPL plus cored Sérsic source model returns similar
results, with a highest Δ! giving ∼ 250 at the middle left region
indicating the existence of a 1010.1+0.2−0.1 M� subhalo, which is not
consistent with our input (e.g. it is a false positive). For the case of
a 5 × 109 M� input subhalo, the highest Δ! is ∼ 600 around the
middle right region, which is consistent with our input. For this case,
we further model the subhalo by freeing its position and the posterior
we get is shown in color red in Fig. A2. We see that although the
position is estimated around the true input, the subhalo’s mass is
overestimated by around 4 times, which is similar to our previous
findings for a pixelised source.

For projection 2, we see that for the smooth test case, false-positive
signals show up in upper right regions with the highest Δ! to be
∼ 18. Read from the grid of highest Δ!, the best-fit subhalo’s mass
is 109.3+0.4−0.5 M� . False positives were not detected for this projection
using a pixelised source. For the case of an input subhalo of 5 ×
108 M� , there are some plausible signals around the middle right
regions with the highest Δ! to be ∼ 8. The mass of the plausible
subhalo obtained in this case is 109.6+0.2−0.5 M� . For the third case
where a 5 × 109 M� subhalo added, the Δ! map returns the correct
answer with the highest Δ! to be 120 at the place where we input
the subhalo. For this one, similarly, we further model the subhalo by
freeing its position. The posterior is shown in color blue in Fig. A2.
We see that the input subhalo can be well recovered in this case.

In Fig. A3, we show Δ! maps of modelling the data with the
decomposed model plus a cored Sérsic source. We see that the re-
sults are similar to the pixelisation results: for smooth tests, no clear
false-positive signals show up. For subhalo tests, the highest Δ! is
consistent with the region of an input subhalo. In Fig. A4, we fur-
ther plot the posteriors obtained for the detected subhaloes. Overall,
input subhaloes can be recovered to a good level although for the
5 × 109 M� subhalo cases, the recovered masses are slightly offset
to the true value, albeit this is close enough that it could simply be
due to noise in the mock observation.
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Figure A1. Δ! maps of using eBPL + cored Sérsic source model. Colours indicate the increase in maximum log likelihood, Δ!, when a subhalo is included
inside 0.4′′ × 0.4′′ squares during a fit to a lens that has: no subhalos (left), a subhalo of mass 5 × 108 M� (middle), or a subhalo of mass 5 × 109 M� (right).
Top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles mark the true locations of the subhaloes

Figure A2. Posteriors of detected subhalo parameters of eBPL + cored Sérsic
model. The red posteriors show the results for an input of a 5 × 109 M�
subhalo in Projection 1. The blue posteriors show the results for an input of
a 5 × 109 M� subhalo in Projection 2. The 2D contours cover the 68% and
99% confidence regions. The dashed lines in corresponding colors marked
the true input values.
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20 Q. He et al.

Figure A3. Δ! maps of using stellar + dark matter + cored Sérsic source model. Colours indicate the increase in maximum log likelihood, Δ!, when a subhalo
is included inside 0.4′′ × 0.4′′ squares during a fit to a lens that has: no subhalos (left), a subhalo of mass 5× 108 M� (middle), or a subhalo of mass 5× 109 M�
(right). Top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles mark the true locations of the subhaloes.

Figure A4. Posteriors of detected subhalo parameters of the stellar + dark
matter + cored Sérsic source model. The green, gray, red and blue posteriors
respectively show the results for: an input of a 5×108 M� subhalo in Projection
1; an input of a 5× 109 M� subhalo in Projection 1; an input of a 5× 108 M�
subhalo in Projection 2; an input of a 5×109 M� subhalo in Projection 2. The
2D contours cover the 68% and 99% confidence regions. The dashed lines in
corresponding colors marked the true input values.
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