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Simulating anti‑skyrmions 
on a lattice
Juan C. Criado1*, Sebastian Schenk1, Michael Spannowsky1, Peter D. Hatton2 & 
L. A. Turnbull2

Magnetic skyrmions are meta‑stable spin structures that naturally emerge in magnetic materials. 
While a vast amount of effort has gone into the study of their properties, their counterpart of opposite 
topological charge, the anti‑skyrmion, has not received as much attention. We aim to close this gap by 
deploying Monte Carlo simulations of spin‑lattice systems in order to investigate which interactions 
support anti‑skyrmions, as well as skyrmions of Bloch and Néel type. We find that the combination 
of ferromagnetic exchange and Dzyaloshinskii–Moriya (DM) interactions is able to stabilize each of 
the three types, depending on the specific structure of the DM interactions. Considering a three‑
dimensional spin lattice model, we provide a finite‑temperature phase diagram featuring a stable 
anti‑skyrmion lattice phase for a large range of temperatures. In addition, we also shed light on the 
creation and annihilation processes of these anti‑skyrmion tubes and study the effects of the DM 
interaction strength on their typical size.

Magnetic materials with chiral Dzyaloshinskii–Moriya (DM)  interactions1,2 have been shown to support the 
emergence of particle-like spin textures that enjoy a partial topological protection, known as  skyrmions3,4. In 
general, skyrmions are characterized by their non-zero topological charge, Q.

The experimental discovery of magnetic skyrmions represents an exceptional opportunity to study topologi-
cal solitons that are realized in  nature5. For instance, the magnetic material MnSi has been found to exhibit a 
thermodynamical phase featuring a hexagonal lattice of stable skyrmion  tubes6. This phase has also been estab-
lished in a range of other  materials7–10. These systems are, therefore, promising candidates for investigating the 
fundamental nature of magnetic skyrmions. In addition, the development of techniques for their manipulation 
may even allow for applications in the field of spintronics, including racetrack  memory11,12, artificial synapses 
for neuromorphic  computing13, reservoir  computing14, and reshuffling for signal decorrelation in probabilistic 
 computing15.

Theoretical advances have further supplemented the rapid experimental developments. The latter have focused 
on understanding the mechanism by which magnetic skyrmions may be formed or rendered stable (see, e.g.16–18). 
In particular, Monte Carlo (MC) simulations have been proved to be a powerful tool in this  endeavor7,19; more 
generally, MC simulations have been successfully used to study topological solitons in quantum field  theories20,21. 
For the example of chiral magnets, MC techniques enabled demonstrating that the combination of ferromag-
netic exchange and DM interactions is sufficient to reproduce the experimentally-determined finite-temperature 
phase diagram, featuring a stable skyrmion  pocket22. These findings immediately pose the question whether the 
stabilization of other topological solitons is possible in similar magnetic materials. In particular, in this context, 
the counterpart of magnetic skyrmions of opposite topological charge, known as anti-skyrmions, have been paid 
little attention to, with a few notable  exceptions23–30. While their theoretical description appears to be reasonably 
close to ordinary skyrmions, they have eluded any experimental evidence in magnetic materials in which DM 
interactions are dominant. Nevertheless, they have been observed in systems that also support skyrmions and 
(topologically trivial) magnetic  bubbles31, indicating the presence of interactions other than DM. In addition, 
both skyrmions and anti-skyrmions are also supported in frustrated  magnets32–34. In practice, potential applica-
tions of anti-skyrmions may even go beyond those of skyrmions. For example, they are expected to feature an 
anisotropic Hall angle, in theory providing for greater control over their manipulation in  spintronics26.

Our work is supposed to close this gap by shedding light on the stabilization of magnetic anti-skyrmions in 
chiral magnetic materials, exclusively featuring DM interactions. Using MC simulations of a simple spin-lattice 
system describing the local interactions of a chiral magnet, we explore the thermodynamical phases of the mate-
rial. We show that anti-skyrmions are indeed stabilized in a large region of the parameter space, given a suitable 
DM interaction strength. Along these lines, we also shed light on their creation and annihilation processes. We 
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also confirm the existence of magnetic skyrmions of Bloch and Néel type, depending on the precise form of the 
DM interaction (Table 1). We hope that this survey will provide crucial guidance for future experiments in the 
search for anti-skyrmions in magnetic materials.

From the continuum to the lattice model
In this work, we are interested in the stabilization of skyrmion phases in three-dimensional bulk chiral magnets. 
As a simple description, we evolve our discussion around a coarse-grained Hamiltonian where we describe the 
local magnetization as a continuous vector field M with constant norm, M = |M| . Our model of a chiral magnet, 
therefore, takes the  form35

where the coefficients J and K of the ferromagnetic exchange and DM interaction are free parameters of the 
model. Furthermore, B denotes an external magnetic field, which we choose to point in the z-direction, B = Bẑ . 
From first principles, we are agnostic about the precise form of the DM interaction. In practice, it will depend 
on the symmetries of the system or, equivalently, on the crystal structure of the material in the microscopic 
description. In fact, all possibilities of the latter can be classified, as illustrated in Table 1. Here, we define three 
types of DM interaction (which we label A, B and C) and provide the corresponding point group of the crystal. 
For an overview and discussion of the possible DM interactions, see, e.g.36.

We note that, in the above Hamiltonian, we have neglected other types of (possibly long-ranged) interactions 
that may be present, such as dipolar or uniaxial couplings (see, e.g.37,38). However, it has been demonstrated in 
lattice simulations that the purely local Hamiltonian (Eq. 1) with a DM interaction of type A is able to stabilize 
magnetic Bloch  skyrmions22. We will show that Néel skyrmions and anti-skyrmions can also be stabilized using 
this Hamiltonian, with DM interactions of type B and C, respectively. Indeed, in our setup, there is a family of 
skyrmion configurations related to each other by global rotations around the z-axis. Besides their topological 
charge, skyrmions are also characterized by the local magnetization in the xy-plane. For instance, the configura-
tion where the latter always points in the radial direction of the topological defect is known as a Néel skyrmion. 
In contrast, for a Bloch skyrmion the in-plane magnetization is perpendicular to the radial direction. While non-
DM interactions might have large effects on these  configurations39, our findings show that the presence of such 
interactions in a given material is not necessary for stabilizing them. Our simulations thus apply to materials in 
which the coefficients of the non-DM interaction terms in the Hamiltonian are relatively small.

In general, topologically non-trivial configurations of the magnetization field can be characterized by means 
of their topological charge. Although the latter is not always conserved, it can still be useful in systems with 
translation symmetry along a particular direction. In the present case, choosing the translation-invariant direc-
tion to be the z-axis, we define Q as (see, e.g.40)

In our example, field configurations with Q = −1 are called skyrmions, while those with Q = +1 are anti-
skyrmions. In principle, chiral magnets can host topological solitons of arbitrary  charge41–43. Intuitively, for a 
given configuration of unit charge, the local magnetization points into every possible direction at least once. In 
other words, Q may also be coined the anti-skyrmion number (i.e. the number of anti-skyrmions inside a given 
volume). Continuous deformations of the magnetization field localized in some regions cannot change the value 
of Q, as long as the field’s value around this region is kept fixed. This means that configurations with different Q 
are topologically protected from continuously evolving into each other, and in particular from unwinding into 
the trivial one, Q = 0 . However, carefully note that, in general, topological stability does not necessarily imply 
energetic stability. For instance, topological sectors of different charges are often separated by barriers of finite 
 energy16. Nevertheless, the total charge Q can count the number of (anti-)skyrmions inside a given lattice volume, 
thereby proving useful for characterizing the topological phases of magnetic materials.

(1)H =
∫

d3r

[

J

2
(∇M)2 + KDM(M)− B ·M

]

,

(2)Q = 1

4πM3

∫

dxdyM ·
(

∂xM× ∂yM
)

.

Table 1.  Possible DM interactions parametrized in a continuum (DM) or lattice (DMd ) Hamiltonian 
formulation. The different point groups correspond to different crystal symmetries, thereby allowing for a 
distinct DM interaction. In reality, these are given by the crystal structure of the magnetic material.

Label Point group DM(M) DMd(S)

A T or O M · (∇ ×M) Sr ·
(

Sr+x̂ × x̂ + Sr+ŷ × ŷ + Sr+ẑ × ẑ
)

B Cnv M · ∇M3 −M3∇ ·M
(Sr)1

[

(Sr+ẑ)2 − (Sr+ŷ)3
]

+(Sr)2
[

(Sr+x̂)3 − (Sr+ẑ)1
]

+(Sr)3
[

(Sr+ŷ)1 − (Sr+x̂)2
]

C D2d M · (∂xM× x̂ − ∂yM× ŷ) (Sr)2(Sr+ŷ)3 − (Sr)3(Sr+ŷ)2
−(Sr)3(Sr+x̂)1 + (Sr)1(Sr+x̂)3



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19179  | https://doi.org/10.1038/s41598-022-22043-0

www.nature.com/scientificreports/

The lattice Hamiltonian of interacting spins
Let us now turn to the Hamiltonian formulation of the chiral magnet in more detail. To systematically explore the 
thermodynamical phases of this system via MC simulations, we discretize it by considering a lattice of interacting 
spins. The associated Hamiltonian of the theory on a simple cubic lattice with uniform lattice spacing a reads

where we have defined the lattice couplings J̃ = JM2a , K̃ = KM2a2 and B̃ = BMa3 , as well as the classical spin 
variable S = M/M . The discretized counterpart of each type of DM interaction on the lattice is displayed in 
the rightmost column of Table 1. As the degrees of freedom are now given in terms of (normalized) classical 
spins, the system is suitable to be studied using MC techniques. For convenience, we also define the (discrete) 
topological charge on the spin-lattice,

Although, strictly speaking, the topological arguments we presented in the continuum case cannot be applied 
to the discrete one, Qd approximates Q very accurately in the limit of small lattice spacing. In this regime, Qd 
captures all essential properties of the topological charge reasonably well. We use Eq. (4) to compute the topologi-
cal charge of the final configurations obtained in our simulations. Since such configurations exhibit a symmetry 
under translations in the z direction, we find the same value of Qd for all horizontal slices obtained by fixing z 
at different values.

Before we continue, we also remark that the discretization of the field degrees of freedom on a finite lat-
tice generically introduces inaccuracies. For instance, in practice, for finite, non-zero lattice spacing, spurious 
anisotropies may  appear22. These are further deteriorated due to the finite volume of the spin-lattice. Closely 
 following22, here, we aim to correct for these by introducing counter terms associated with next-to-nearest-
neighbour couplings. The latter can lead to a partial cancellation of the anisotropies, as seen in momentum space. 
Let H ′

d be the next-to-nearest neighbor Hamiltonian, its interactions being the ferromagnetic exchange and DM 
terms, with coefficients J̃ ′ and K̃ ′ , respectively. In momentum space, the coefficient of the ferromagnetic exchange 
interaction of the total Hamiltonian, Hd +H ′

d , is given by

Thus, examining the series expansion in the lattice spacing, higher-order terms in a contain powers of the 
momentum |q| greater than two. At the same time, the only contribution to the continuum interaction is |q|2 , 
because of the two derivatives. We therefore set J̃ ′ = −J̃/16 in order to cancel the first non-trivial correction, 
corresponding to the |q|4 term. A similar procedure can be applied to the DM interaction term. In this case, the 
continuum interaction is proportional to the linear contribution |q| , and we use K̃ ′ = −K̃/8 to cancel its first 
correction proportional to |q|3.

Thermodynamical phases from Monte Carlo simulations
To explore the thermodynamical phases of the magnetic material, the main object of interest is the thermal 
expectation value of the local magnetization. In the previous section, we have already identified the correspond-
ing degrees of freedom with a lattice of interacting classical spins. Therefore, finding the thermal expectation 
value of the magnetization requires us to investigate the possible spin configurations at any given temperature, 
as can be seen from the path integral,

Here, T is the temperature, and kB is the Boltzmann constant. Furthermore, Z denotes the partition function 
of the theory, and DS exp(−Hd/(kBT)) is the Gibbs measure. The path integral is thus an integral over all con-
figurations of the field S . In the lattice formulation, this integral becomes finite-dimensional, and its measure 
can be written explicitly as

where dSr is the usual Lebesgue measure over the finite-dimensional set of values of the Sr vector.
To explore the spin configuration space of the theory, within our MC approach, we have to sample spin-

lattice configurations following the Boltzmann distribution exp (−Hd/(kBT))/Z . Formally, however, this con-
figuration space is infinite-dimensional, clearly obstructing the ad hoc generation of samples. That means it 
is computationally not feasible to randomly construct spin configurations and a posteriori determine their 
associated weight inside the path integral. Instead, we want to use a simulated annealing process through the 
well-known Metropolis–Hastings  algorithm44,45, which will robustly generate the desired distribution of spin 
samples as follows. First, we randomly initialize a lattice of arbitrary spins. Then, consecutively, each spin of the 
lattice is probed by replacing it randomly. While probing each spin, the change in energy, �Hd , is measured and 
the generated spin variable is accepted with probability exp (−�Hd/(kBT)) . In principle, the system will slowly 

(3)Hd = −
∑

r

[

J̃ Sr ·
(

Sr+x̂ + Sr+ŷ + Sr+ẑ

)

+ K̃DMd(Sr)+ B̃ · (Sr)z
]

,

(4)Qd = 1

4π

∑

r

Sr · (Sr+x̂ × Sr+ŷ).

(5)α
(

q
)

= J̃ cos
(

a
∣

∣q
∣

∣

)

+ J̃ ′ cos
(

2a
∣

∣q
∣

∣

)

.

(6)�S� = 1

Z

∫

DS S exp

(

− Hd

kBT

)

.

(7)DS =
∏

r

dSr ,
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converge towards a spin configuration of lower and lower energy, in turn dominating the thermal expectation 
value of the local magnetization.

The convergence of this process towards the spin configurations of minimal energy crucially depends on the 
system’s temperature. Ideally, to remove any bias from initial conditions, we, therefore, initialize the procedure 
in the high-temperature regime, T → ∞ , where virtually any spin replacement is accepted. We then cautiously 
cool down the system by slowly lowering T to the desired value that we want to probe. This step is coined the 
thermalization process, where the system adjusts to the new temperature. At any given temperature, we can 
then record the desired number of sample spin configurations and take their average to obtain 〈S〉 . The precise 
way in which we lower the temperature, we will call a schedule. Quite remarkably, here, the temperature is a 
physical parameter that, at the same time, controls the thermal fluctuations of the theory when moving through 
configuration space.

It is also worth noting that the path integral, and therefore our MC simulations, remain invariant if both the 
Hamiltonian Hd of the theory and the temperature T are multiplied by a numerical factor. Thus, a simultaneous 
rescaling of J̃ , K̃ , B̃ and T will leave any observable unchanged. We, therefore, normalize the latter with respect 
to the kinetic term by defining the ratios

The above dimensionless quantities represent the only free parameters of the simulation. Therefore, for the rest 
of this work, we give our results in terms of these. In practice, we set J̃ = 1 without loss of generality.

Let us now demonstrate how to utilize MC techniques to explore the emergence of magnetic (anti)skyrmions 
in a chiral magnet, featuring the Hamiltonian (Eq. 3). Our simulation primarily uses a lattice of 30× 30× 30 
spins with periodic boundary conditions. From a technical point of view, to drastically speed up the algorithm, 
we also divide the spin-lattice into non-interacting domains. That is, in practice, following the approach pre-
sented  in46, the lattice is divided into three sublattices in a checkerboard pattern so that any given spin, its nearest 
neighbours as well as its next-to-nearest neighbours are each contained in a different sublattice. This allows us to 
use a Metropolis–Hastings algorithm in which all spins belonging to the same sublattice are updated in parallel, 
which we implement in a GPU. We achieve a simulation speed of about 109 spin updates per second on a Tesla 
V100 GPU with this setup. Then, after an annealing schedule to find the thermal ground state, we average over 
2000 configurations, with 50 lattice sweeps (i.e. each spin of the lattice is probed 50 times) of separation between 
each other, to determine 〈S〉.

As a very first example, we find that a simple schedule with constant temperature T̂ = 0.80 , magnetic field 
B̂ = 0.15 and DM interaction strength K̂ = tan (2π/10) , for 105 lattice sweeps (i.e. each spin of the lattice is 
probed 105 times by the MC algorithm) is able to generate skyrmions as well as anti-skyrmions. The precise type 
depends on the form of the DM interaction, as shown in Table 1. Here, type A corresponds to Bloch skyrmions, 
type B corresponds to Néel skyrmions, and type C corresponds to anti-skyrmions. Our choice of K̂ follows that 
of Ref.22, which uses interactions of type A and finds that 9 Bloch skyrmions fit in a lattice with 30× 30 nodes in 
the xy plane. We study different choices of K̂ in the Supplementary Material. Slices of the average spin configura-
tion obtained in each case are shown in Fig. 1. Furthermore, Fig. 2 illustrates three-dimensional representations 
of the magnetic anti-skyrmion configuration. As pointed out in the previous section, we can count the number 
of (anti-)skyrmions inside the lattice volume by their topological charge. Although the latter is not a topological 
invariant in the present case, we still find that these examples exhibit a total charge of Qd ≈ ±9 . In general, the 
number of (anti-)skyrmions contained in the lattice depends on the K̂ parameter and on the size of the lattice. 
For a constant K̂  , this number will be approximately proportional to the number of nodes in the xy plane of 
the lattice. However, for small lattice sizes, the fact that this number must be an integer will spoil this relation. 
Thus, in order to study the dependence on the number of skyrmions of K̂ , we use a larger lattice of dimensions 
60× 60× 30 in the Supplementary Information.

The anti‑skyrmion lattice phase
In contrast to the previous section, we will exclusively focus on C-type materials, supporting anti-skyrmions. 
To examine the thermodynamical phases of the chiral magnet, we use a more realistic annealing schedule. In 
particular, we choose a schedule that mimics the most common experimental technique. That is, we implement 
a zero-field cooling (ZFC) procedure by starting at a high temperature of T̂ = 2 and vanishing magnetic field, 
B̂ = 0 . We then exponentially decrease the temperature down to the desired one in 20 steps, as

where Ti and Tf  are the initial and final temperatures, while n is the step number, ranging from 0 to 19. At each 
step, we let the system thermalize for 10,000 lattice sweeps. We then increase the magnetic field linearly, and at 
each value, we average over 2000 configurations, with 50 sweeps of separation between each contiguous pair, to 
compute the thermal expectation value of the spin configuration, 〈S〉 . The DM interaction coefficient is fixed to 
the value K̂ = tan(2π/10) throughout all simulations.

(8)B̂ = B̃

J̃
, K̂ = K̃

J̃
, T̂ = kB

T̃

J̃
.

(9)T̂ = Ti

(

Tf

Ti

)n/19

,
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The finite‑temperature phase diagram
The thermodynamical phases we obtain via our MC algorithm are summarized in Fig. 3. The colour-coding 
illustrates the total anti-skyrmion number, Q. Therefore, in the red region, the average configuration is a hex-
agonal lattice of anti-skyrmion tubes with cylindrical symmetry, clearly identifying the anti-skyrmion phase of 
the material (see also Fig. 2). Indeed, this arrangement is correspondingly similar to what has been observed for 
skyrmions in materials with DM interactions of the other two  types47,48. A lighter red to yellow colouring is used 
for points that contain anti-skyrmions without such a compact packing. For illustration, we use these colours for 
any point for which there is at least one anti-skyrmion tube present, Q ≥ 1 . We notice an extended yet clearly 
bounded region in which a hexagonal lattice of anti-skyrmion tubes is rendered stable. For the points with Q < 1 , 
we compute the Fourier transform of the spin configuration and count the number of intensity peaks. Regions 
with one peak correspond to the ferromagnetic phase and are displayed in light grey. The other region, shown 
in blue, belongs to the helical phase.

We also note that the system is subject to strong hysteresis effects. To study these, we use two alternative 
annealing schedules for our simulation, corresponding to high-field cooling (HFC) and constant-field cooling 
(FC), respectively. For the HFC schedule, we follow a similar procedure as for the ZFC one, with the only dif-
ference being that the magnetic field is initialized at a relatively high value, B̂ = 0.5 , and decreased linearly in 
20 steps down to the desired value between the cooling and the averaging stages. In the FC schedule, we fix the 
target magnetic field from the beginning and perform the exponential cooling in 20 steps from T̂ = 2 for each 
point. Both possibilities are shown in Fig. 3. The finite-temperature phase diagram exhibits strong hysteresis 
effects, manifest as deformations of the regions corresponding to each phase in (T̂ , B̂) space. For instance, the 
thermodynamical state of points with a higher magnetic field survives to even lower values in the HFC procedure. 
A similar effect can be seen for the temperature in the FC schedule. This may indicate that the MC algorithm is 
stuck in a metastable state. This is also commonly observed in experiments, where a skyrmion lattice phase will 

Figure 1.  Skyrmion structures with varying topological charge, Q, and helicity. (a–c) Schematics of the 
magnetization configuration of a Bloch skyrmion, Néel skyrmion and anti-skyrmion. The colors denote the 
z-component of the spins, where Sz = 1 is shown in blue, while Sz = −1 is shown in red. (d–f) Corresponding 
stereographic projections of the skyrmion configurations onto the unit sphere. (g–i) Slices of the thermal 
expectation value of the spin lattice, 〈S〉 , at T̂ = 0.80 and B̂ = 0.15 for DM interactions of type A, B and C, 
corresponding to Bloch skyrmions, Néel skyrmions and anti-skyrmions.
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persist metastably to low temperatures if FC is  used49,50. However, in all schedules, an anti-skyrmion phase around 
the T̂ = 0.9 , B̂ = 0.15 benchmark point is consistently present, strongly supporting the stability of a hexagonal 
lattice of magnetic anti-skyrmion tubes in this region.

Experimentally, the anti-skyrmion lattice phase may be identified by tracking phase transitions in certain 
measurements of observables, such as the magnetization or magnetic entropy differences. In our scenario, we 
translate both into their dimensionless counterparts S̄z and �Sm , respectively. We define the former as the aver-
age of the thermal expectation value of Sz over the entire lattice volume. In addition, the latter can be formally 
written as

We illustrate both observables in Fig. 3 as a function of the temperature (and also magnetic field). In practice, to 
obtain the results shown here, we performed a ZFC schedule to drive the system into a helical state at a tempera-
ture of T̂ = 0.1 , and some target value of the magnetic field. We then increased T̂ in steps of 0.1, while keeping B̂ 
fixed. We let the system thermalize over 105 lattice sweeps at each step and finally average over 2000 configura-
tions, with 50 sweeps in between consecutive samples. From this procedure, S̄z can be obtained immediately, 
while �Sm can be computed through a finite-differences approximation,

We observe that with increasing temperature, all observables exhibit a sharply localized rise at a certain critical 
temperature. This critical temperature characterizes the phase transition into the stable hexagonal anti-skyrmion 

(10)�Sm(T ,B) =
∫ B

0
dB′

∂ S̄z

∂T

∣

∣

∣

∣

B′
.

(11)�Sm ≈
B

∑

B′=0

�B′
S̄z(T +�T ,B′)− S̄z(T ,B

′)

�T
.

Figure 2.  Three-dimensional representations of the average spin lattice configuration corresponding to 
anti-skyrmions. (a) Spin lattice configuration at T̂ = 0.80 and B̂ = 0.15 for DM interactions of type C. In 
the top panel, the colors denote the z-component of the spins. (b) The corresponding contour surfaces of the 
z-component.
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lattice phase. In practice, the steep rise may help to experimentally identify the phase boundaries of the latter 
to good precision.

Let us close our discussion with a few words of caution. Using an MC algorithm to evaluate the thermal expec-
tation value of the spin configuration introduces errors. Inevitably, these lead to uncertainties in the observables 
we have presented in this section. For instance, formally, the error associated with the MC evaluation of the 
thermal expectation value 〈S〉 will be of the form (see, e.g.51)

where N is the number of MC samples and S2 has to be understood component-wise. For simplicity, the contri-
bution 1/

√
N  is indicated in Fig. 3. However, let us remark that this form of error estimate likely underestimates 

the total uncertainty associated with our approach. Most importantly, the discretization of the system on a finite 
lattice volume and the hysteresis effects are probably introducing even larger uncertainties. While this does not 
pose a conceptual problem, the quantitative estimates we present in this section have to be taken with some 
caution. Still, the qualitative agreements between our simulations (and those of Ref.22) and the experimental 
observation of  Bloch7,8,52,53 and  Neel48 skyrmions in materials with interactions of type A and B and are striking 
and strongly support our approach’s validity.

In summary, our MC algorithm is well suited to explore the thermodynamical phases of a chiral magnet 
efficiently. In particular, for materials with a C-type DM interaction (cf. Table 1), we find that a hexagonal lattice 
of anti-skyrmion tubes is stabilized for a large region of parameter space, embedded between a helical and fer-
romagnetic phase. All schedules agree in a core region of phase space, strongly indicating the existence of stable 
magnetic anti-skyrmions in the model system.

(12)σ =

√

〈

S2
〉

− �S�2
N

,

Figure 3.  Finite-temperature phase diagrams for different annealing schedules and experimentally observable 
anti-skyrmion system quantities. (a) Finite-temperature phase diagram containing anti-skyrmions for a 
zero-field cooling (ZFC) schedule. The schedule is schematically shown in the figure. Red regions illustrate 
stable anti-skyrmion tubes. Here, the DM interaction coefficient is fixed to K̂ = tan (2π/10) . The color-coding 
illustrates the total anti-skyrmion number, Q. (b) Finite-temperature phase diagram for high-field cooling 
(HFC) and (c) constant-field cooling (FC) annealing schedules. Both display relatively strong hysteresis effects 
as we explain in the main text. (d,e) Dimensionless average magnetization S̄z as a function of the temperature 
T̂ and magnetic field B̂ . (f) Magnetic entropy differences �Sm as function of T̂ . The colors in the right panel 
coincide with the ones in the center panel. The error bars in the center panel indicate the uncertainties 
introduced by the MC algorithm and may likely underestimate the total uncertainty (see main text).
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Creation and annihilation of anti‑skyrmions
In addition to establishing the thermodynamical state of the system at each point in phase space, our approach 
also sheds some light on the creation and annihilation of anti-skyrmions. Even though this is a dynamical process, 
we can gain some insights by adjusting the annealing schedule appropriately.

In a first step, we can more closely explore the boundaries of the hexagonal anti-skyrmion lattice phase, where 
we find a mixture of different states. As a particular example, in Fig. 4a,b, we show the thermal expectation value 
of the spins for fixed magnetic field, B̂ = 0.2 , and two temperatures, T̂ = 0.45 and T̂ = 0.60 , obtained through a 
ZFC schedule. These can be understood as snapshots of the system close to the anti-skyrmion phase boundary. 
We find that in these configurations, the anti-skyrmion tubes are partially merged into wall structures when 
crossing the phase boundary, eventually unwinding into the helical phase. The translational symmetry along the 
z-direction is preserved throughout this process.

In addition, we can gain even more insight into the creation and annihilation of anti-skyrmions when varying 
the rate at which the temperature is changed throughout the annealing schedule. Naively, if the cooling rate is 
too high, the system may get stuck in a metastable vacuum which does not correspond to the thermal ground 
state. In this way, we can force the MC algorithm to “freeze” a specific state while crossing a phase boundary. 
This allows us to obtain a snapshot of the dynamics of the process. Physically, this metastable state has a finite 
lifetime, in turn depending on the temperature. To illustrate the dynamics, we, therefore, fix the magnetic field to 
its target value and perform a fast cooling from initially T̂ = 2 to the target temperature, in three steps with only 
200 thermalization sweeps each. We average over 200 configurations only (separated by 50 sweeps) to capture 
an intermediate state of the quickly changing system before it stabilizes.

It should be noted that the Monte Carlo algorithm we use in this paper is designed to sample the thermal 
probability distribution in the space of the spin lattice configurations at a given temperature. Thus, it may seem 
it is not well-suited to study the anti-skyrmion formation dynamics. However, the fact that, when different 
schedules for T̂ and B̂ are used, one finds hysteresis effects that mimic those that are found experimentally, sug-
gests that the simulated system undergoes a similar process as the physical one. In particular, one may establish 
an analogy between the intermediate configurations of the latter and averages at constant T̂ and B̂ of the former. 
The spin configurations resulting from the rapid cooling schedule proposed here may be thus interpreted as the 
states generated in the physical system when an analogous procedure is applied to it. Some caution should still 
be applied because of the use of a methodology which is better suited for the study of stable states.

Intriguingly, in this particular example, we find that the phase transition towards the anti-skyrmion phase is 
mediated by topological defects, similar to what has been observed for  skyrmions18. These so-called Bloch points 
can be understood as emergent magnetic monopoles that unwind the anti-skyrmion tubes, thereby annihilating 

Figure 4.  Contours of the z-component of spin configurations close to the boundary of the anti-skyrmion 
lattice phase. (a,b) Obtained through a ZFC schedule. Here, we show two target temperatures, T̂ = 0.45 and 
T̂ = 0.60 , while fixing the magnetic field to B̂ = 0.2 . The simulations are done for a 60× 60× 30 lattice. 
(c,d) Snapshots of unstable spin configurations at the boundary of the anti-skyrmion lattice phase. These are 
obtained for short MC thermalization times after a fast cooling from an initial temperature of T̂ = 2 to the target 
parameters T̂ = 0.4 , B̂ = 0.2 and T̂ = 0.6 , B̂ = 0.15 . In panel (c) an anti-skyrmion tube ends abruptly, while in 
panel (d) several anti-skyrmion tubes are branching into each other. These can be identified with Bloch points 
that mediate the phase transition.
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them. We illustrate snapshots of this process in Fig. 4c,d. Here, we find a branching and an unwinding of the anti-
skyrmion tubes, which can be identified with an ending on Bloch  points18. Therefore, our simulation indicates the 
existence of topological defects that mediate the phase transition towards the stable anti-skyrmion lattice phase.

Conclusions
We have demonstrated that anti-skyrmions may indeed be found in bulk magnetic materials dominantly fea-
turing a DM interaction that corresponds to a D2d crystal structure. To study the existence of stable magnetic 
anti-skyrmions, we have used MC techniques utilizing a simulated annealing process that have been proven to 
correctly reproduce experimental results related to the formation of magnetic skyrmion  tubes22.

In particular, we have classified three different types of DM couplings, which, in combination with the ferro-
magnetic exchange interaction, give rise to Bloch skyrmions, Néel skyrmions and anti-skyrmions. For the latter 
case, we have presented, for the first time, a finite-temperature phase diagram. We find that a hexagonal lattice 
of anti-skyrmion tubes is stabilized in a large region of parameter space. At the same time, hysteresis effects 
can deform the anti-skyrmion phase as we change the annealing procedure of the simulation, consistent with 
experimental observations in other  materials49,50. Nevertheless, independent of the precise annealing schedule, 
we observe a stable anti-skyrmion pocket around the parameters T̂ = 0.9 and B̂ = 0.15 , strongly supporting the 
existence of magnetic anti-skyrmion tubes in the material.

In addition, for fixed magnetic field and temperature, the range of values of the DM interaction strength that 
supports anti-skyrmions is bounded from above and from below. In particular, increasing the magnetic field 
rises both the lower and the upper phase boundary. At the same time, at relatively low values of the magnetic 
field, the anti-skyrmion phase disappears completely, which sets an absolute lower bound on the DM interaction 
strength. The results presented in the Supplementary Information strongly suggest that this bound is approxi-
mately K̂ � 0.3 . Therefore, to experimentally study the formation and stability of anti-skyrmions in chiral mag-
nets, a D2d material with a sufficient DM interaction strength is necessary. In this context, our work can provide 
crucial experimental guidance in searching for stable anti-skyrmions in magnetic materials.

In the future, we hope that these simulations can also shed light into the dynamics of anti-skyrmion creation 
and annihilation as well as their interactions. As a proof of principle, we have indicated the existence of Bloch 
points mediating the phase transition towards a stable anti-skyrmion lattice phase. The dynamics of this process 
certainly merit further investigations.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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