
ALMOST POSITIVE CURVATURE

ON THE GROMOLL-MEYER SPHERE

J.-H. ESCHENBURG AND M. KERIN

Abstract. Gromoll and Meyer have represented a certain exotic 7-sphere Σ7

as a biquotient of the Lie group G = Sp(2). We show for a 2-parameter family
of left invariant metrics on G that the induced metric on Σ7 has strictly positive
sectional curvature at all points outside four subvarieties of codimension ≥ 1
which we describe explicitly.

1. Introduction

Let G = Sp(2) be the Lie group of unitary quaternionic 2×2-matrices. Consider
the subgroup U ⊂ G×G,

U = {(( q 1 ), ( q q )) ; q ∈ Sp(1)}, (1.1)

which acts on G by left and right translations. D. Gromoll and W. Meyer [5] have
shown that this action is free and that the orbit space M = G/U is a smooth
manifold which is an exotic 7-sphere (homeomorphic but not diffeomorphic to the
standard 7-sphere). If G is equipped with a Riemannian metric of nonnegative
sectional curvature whose isometry group contains U , then by O’Neill’s formula [1]
the orbit space M = G/U inherits a Riemannian metric of nonnegative sectional
curvature. Thus starting with the bi-invariant metric on G, Gromoll and Meyer
constructed a metric of nonnegative sectional curvature on the exotic sphere M .
In fact the curvature is strictly positive on some nonempty open subset of M .
However, as was observed by F. Wilhelm [7], there is also an open subset with zero
curvature planes in the tangent space of each of its points. But Wilhelm constructed
another U -invariant metric on Sp(2) (neither left nor right invariant) for which the
curvature of M is strictly positive outside a subset of measure zero in M (“almost
positive curvature”). In [4] the same fact was claimed for a much simpler and left
invariant metric on Sp(2); however, as was pointed out by the second author, the
proof contains a serious mistake (see Remark 3 at the end of the present paper).
The purpose of our paper is to correct this error. In fact we prove the following
result, some ideas of which go back to [3] (see Theorem 4.6 for details):

Theorem 1.1. There is a left invariant and U -invariant metric on G = Sp(2)
such that the induced metric on M = G/U has strictly positive curvature outside a
finite union of subvarieties of codimension ≥ 1. The zero curvature set Z ⊂M can
be explicitly determined.
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2. Cheeger metrics on Lie groups

On each Riemannian manifold, let us denote

κ(X,Y ) = 〈R(X,Y )Y,X〉,
sec(X,Y ) = κ(X,Y )/|X ∧ Y |2 (2.1)

for any two tangent vectors X,Y ; the second expression is the sectional curvature
of the plane σ spanned by X,Y .

Let G be a Lie group with a left invariant metric 〈 , 〉 of nonnegative sectional
curvature. Suppose that the metric is also right invariant with respect to a compact
subgroupK ⊂ G, hence the induced metric onK is bi-invariant. The Lie algebras of
G and K will be denoted g and k. We may contract the metric on G in the direction
of the K-cosets by viewing G as the homogeneous space (G × K)/∆K (where
∆K = {(k, k); k ∈ K}) and choosing the metric induced from the Riemannian
product metric on G × sK (Cheeger contraction, cf. [2], [1]) where sK is K with
metric scaled by s > 0. A vector (X,X ′) ∈ g× k is perpendicular to the ∆K-orbit
(“horizontal”) iff X + sX ′ ⊥ k, i.e. X ′ = −s−1Xk where Xk is the k-projection of
X . Using the Riemannian submersion G × K → G, (g, k) 7→ gk−1, a horizontal
vector (X,−s−1Xk) ∈ g × k is mapped onto X + s−1Xk = X⊥ + (1 + s−1)Xk ∈ g
where X⊥ = X −Xk ∈ k⊥. Vice versa, the horizontal lift of X = X⊥ + Xk ∈ g is
the horizontal vector

X̂ = (X̃,−s−1X̃k), where

X̃ = X⊥ +
s

s+ 1
Xk. (2.2)

Thus the new (left invariant) metric is

〈X,Y 〉1 = 〈X̂, Ŷ 〉
= 〈X̃, Ỹ 〉+ s 〈s−1X̃k, s

−1Ỹk〉
= 〈X̃, Ỹ 〉+ s−1〈X̃k, Ỹk〉
= 〈X̃⊥, Ỹ⊥〉+ s−1(s+ 1)〈X̃k, Ỹk〉
= 〈X⊥, Y⊥〉+ s(s+ 1)−1〈Xk, Yk〉
= 〈X̃, Y 〉. (2.3)

For the curvature terms we have

κ(X̂, Ŷ ) = κ(X̃, Ỹ ) + s−3κ(X̃k, Ỹk). (2.4)

Since all terms are nonnegative, the left hand side vanishes if and only if both
summands on the right are zero. Thus a plane σ spanned by X,Y ∈ g has zero
curvature in the new metric, sec1(σ) = 0, if and only if sec(σ̃) = 0 and [Xk, Yk] = 0.1

Example 1. Suppose that the initial metric 〈 , 〉 on G is bi-invariant. Let g = k+p
be the orthogonal decomposition. Consider the above metric

〈X,Y 〉1 = 〈Xp, Yp〉+ s̃〈Xk, Yk〉 (2.5)

with s̃ = s
s+1 . Then sec(σ̃) = 0 ⇐⇒ [X̃, Ỹ ] = 0, and hence sec1(σ) = 0 ⇐⇒

[X̃, Ỹ ] = 0, [Xk, Yk] = 0.

1The “if” statement is not obvious because of the nonnegative O’Neill term. However, in all
our examples starting with a bi-invariant metric on some Lie group, the vanishing of the curvature
implies that the O’Neill term also vanishes, see [3], p. 29f, Equations (1) - (4) or [8], [6]
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If (G,K) is a symmetric pair, i.e. the orthogonal complement p ⊂ g satisfies

[p, p] ⊂ k, then |X̃, Ỹ ]k = [X̃k, Ỹk] + [X̃p, Ỹp] and |X̃, Ỹ ]p = [X̃k, Ỹp] + [X̃p, Ỹk], hence
sec1(σ̃) = 0 ⇐⇒

0 = [Xk, Yk] = [Xp, Yp] = [Xk, Yp] + [Xp, Yk] = [X,Y ]. (2.6)

Example 2. Let G ⊃ K ⊃ H a chain of subgroups and suppose that both (G,K)
and (K,H) are symmetric pairs. Let g = k + p and k = h + q be the corresponding
decompositions. Start with the metric 〈 , 〉1 defined by Example 1, depending on
a parameter s > 0, and define the metric 〈 , 〉2 by Cheeger contraction along H
(depending on a new parameter t > 0) as in (2.3) where K is replaced by H and
〈 , 〉1 takes the role of 〈 , 〉:

〈X,Y 〉2 = 〈Xp, Yp〉1 + 〈Xq, Yq〉1 + t̃〈Xh, Yh〉1
= 〈Xp, Yp〉+ s̃〈Xq, Yq〉+ s̃t̃〈Xh, Yh〉 (2.7)

with t̃ = t
t+1 . Then sec2(σ) = 0 ⇐⇒ sec1(σ̃) = 0 and [X̃h, Ỹh] = 0 ⇐⇒

0 = [X̃, Ỹ ] = [X̃k, Ỹk] = [Xp, Yp] = [Xq, Yq] = [Xh, Yh], (2.8)

where X̃ = Xp +Xq + t
t+1Xh and Ỹ = Yp + Yq + t

t+1Yh like in (2.2).

3. Zero curvature planes on Sp(2)

Let us consider the chain G ⊃ K ⊃ H for G = Sp(2), K = Sp(1) × Sp(1) and
H = ∆Sp(1) = {( q q ) ; q ∈ Sp(1)}. The pairs (G,K) and (K,H) are symmetric,
corresponding to the rank-one symmetric spaces S4 and S3. We start with the
bi-invariant trace metric 〈X,Y 〉 = Re trace X∗Y = Re

∑
xij yij on g = sp(2),

apply Cheeger contraction in the K-direction and Cheeger-contract again in the
H-direction, defining metrics 〈 , 〉1 and 〈 , 〉2 as in Example 2.

Since G/K = S4 as well as K/H = S3 and H = S3 have positive curvature,
the vanishing of the last three brackets in (2.8) means the linear dependence of the

factors. In particular we may assume Yp = 0, i.e. Ỹ = Ỹk =

(
y1

y2

)
.

Case 1. Xp = 0, i.e. X̃ = X̃k =

(
x1

x2

)
.

From [X̃k, Ỹk] = 0 we obtain that the imaginary quaternions x1, y1 as well as x2, y2

are linearly dependent. Moreover, from [Xq, Yq] = [Xh, Yh] = 0 we see that also
x1 ± x2 and y1 ± y2 are linearly dependent. Putting y = y1, we may assume

Ỹ =

(
y

0

)
, X̃ =

(
0

y

)
. (3.1)

Case 2. Xp 6= 0, i.e. X =

(
x1 −x̄
x x2

)
with x 6= 0:

Then 0 = [X̃, Ỹ ]p = [Xp, Ỹ ] ⇐⇒ y2 = xyx−1 for y := y1,

and 0 = [X̃, Ỹ ]k = [X̃k, Ỹk] ⇐⇒ x1 = αy1, x2 = βy2 for real numbers α, β, hence

Ỹ =

(
y

xyx−1

)
, X̃ =

(
αy −x̄
x −αxyx−1

)
(3.2)
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where x, y ∈ H, y imaginary and α ∈ R; we have β = −α since we require 〈X̃, Ỹ 〉 =
0.

Case 2a. α = 0, hence

Ỹ =

(
y

xyx−1

)
, X̃ =

(
−x̄

x

)
. (3.3)

Case 2b. α 6= 0, hence (without loss of generality) α = 1.

Then [Xh, Yh] = 0 iff y + xyx−1 and y − xyx−1 are proportional which means
xyx−1 = βy. Comparing the norms on both sides we get

xyx−1 = ± y, (3.4)

and

Ỹ = Y± =

(
y
±y

)
, X̃ = X± =

(
y −x̄
x ∓y

)
. (3.5)

Lemma 3.1. The zero curvature planes in g = TeG for G = Sp(2) and the metric

〈 , 〉2 are spanned by X,Y ∈ g with X̃, Ỹ given by either (3.1) or (3.3) or (3.5).

4. The Gromoll-Meyer sphere

The metric 〈 , 〉2 on G = Sp(2) is invariant under the action of U (cf. (1.1)) and
hence it induces a metric on the orbit space M = G/U . Consider any

g =

(
a b
c d

)
∈ G. (4.1)

Since g is unitary, the rows and columns are unit vectors, in particular

|a|2 + |b|2 = 1. (4.2)

The vertical space at g of the submersion π : G → G/U is Tg(U.g) = gVg with
Vg = {vg ; v ∈ Im H} where

vg = g−1

(
v 0
0 0

)
g −

(
v 0
0 v

)
=

(
āva− v āvb
b̄va b̄vb− v

)
(4.3)

Thus according to (2.3), a vector gX ∈ TgG is horizontal for π iff

0 = 〈X, vg〉2 = 〈X̃, vg〉1 (4.4)

for all v ∈ Im H. Note that 〈X̃, vg〉1 is just a multiple of 〈X̃, vg〉 if one of the

components of X̃ = X̃p + X̃k are zero. Now we discuss which of the zero curvature
planes in G = Sp(2) (see Lemma 3.1) can be horizontal at any g ∈ G. By a slight

abuse of language, a plane σ̃ spanned by X̃, Ỹ ∈ g will be called horizontal at g if

〈X̃, vg〉1 = 〈Ỹ , vg〉1 = 0 (4.5)

for all v ∈ Im H.

Case 1.

Lemma 4.1. A plane of type (3.1) is nowhere horizontal.

Proof. 〈Ỹ , vg〉 = 〈y, āva − v〉 = 〈ayā − y, v〉 vanishes for all v ∈ Im H iff y = ayā,

and likewise 〈X̃, vg〉 vanishes for all v iff y = byb̄. But this implies |a| = |b| = 1 in
contradiction to (4.2). �
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Case 2a.

Lemma 4.2. If a plane of type (3.3) is horizontal at g then either a = 0 or b = 0
or

det(I −Ad(a−1)−Ad(b−1)) = 0. (4.6)

Proof. The matrix X̃ is horizontal at g if and only if

0 = 〈X̃, vg〉 = 2〈x, b̄va〉 = 2〈bxā, v〉 (4.7)

for all v ∈ Im H. This is equivalent to bxā ∈ R. Hence, either a = 0 or b = 0 or
bx = ra for some non-zero r ∈ R. In the latter case we have, in particular

Ad(bx) = Ad(a), (4.8)

Ad(x) = Ad(b−1) Ad(a), (4.9)

provided that b 6= 0. On the other hand, the matrix Ỹ is horizontal at g if and only
if

0 = 〈Ỹ , vg〉 = 〈|a|2 Ad(a)y − y + |b|2 Ad(bx)y −Ad(x)y, v〉 (4.10)

for all v ∈ Im H. Since y ∈ Im H, this means

0 = |a|2 Ad(a)y + |b|2 Ad(bx)y − y −Ad(x)y (4.11)

(4.8)
= Ad(a)y − y −Ad(x)y

(4.9)
= Ad(a)y − y −Ad(b−1) Ad(a)y

where we have also used |a|2 + |b|2 = 1 (4.2). If a 6= 0, we obtain from the last
equality

Ad(a)y ∈ ker(I −Ad(a−1)−Ad(b−1))

and in particular

det(I −Ad(a−1)−Ad(b−1) = 0. (4.6)

�

Lemma 4.3. There exists a plane of type (3.3) which is horizontal at g if and only
if either (4.6) holds or

a = 0, | Im b | ≥ 1

2
or b = 0, | Im a | ≥ 1

2
. (4.12)

Proof. Suppose first a, b 6= 0. If (4.6) is satisfied, there is a non-zero w ∈ ker(I −
Ad(a−1) − Ad(b−1)). Then defining y = Ad(a−1)w and x = b−1a, we obtain a
horizontal plane of type (3.3) at g. The converse conclusion was done before.

Now suppose b = 0. Then |a| = 1 and Equation (4.11) becomes

Ad(a)y − y = Ad(x)y. (4.13)

Geometrically, this equality means that Ad(a) rotates y by the angle π
3 (the three

vectors Ad(a)y, y, Ad(x)y form the sides of an equilateral triangle). Hence (4.13)
has a solution (x, y) if and only if the rotation angle of the rotation Ad(a) is
≥ π

3 . This in turn is equivalent to ^(a, 1) ≥ π
6 , i.e. | Im a| ≥ 1

2 . Inserting the
solution (x, y) into (3.3) defines a horizontal plane of type (3.3). The case a = 0 is
similar. �



6 J.-H. ESCHENBURG AND M. KERIN

Case 2b.

Lemma 4.4. If a plane of type (3.5) is horizontal at g, then

|a| = |b| = 1/
√

2 (4.14)

and w := Im a−1b satisfies

〈w − 2a−1wa,w〉 = 0. (4.15)

Proof.

〈vg , Y+〉 = 〈āva+ b̄vb− 2v, y〉 = 〈v, ayā+ byb̄− 2y〉 (4.16)

〈vg , Y−〉 = 〈āva− b̄vb, y〉 = 〈v, ayā− byb̄〉 (4.17)

Thus 〈Ỹ , Vg〉 = 0 iff one of the following equations holds:

ayā+ byb̄ = 2y,
ayā− byb̄ = 0.

The first of these equations is impossible by the triangle inequality together with
(4.2):

|ayā+ byb̄| ≤ |ayā|+ |byb̄| ≤ (|a|2 + |b|2)|y| = |y| < |2y|.
Thus we are left with the second equation,

ayā = byb̄, (4.18)

which implies |a| = |b|.
Note that we have also shown that Y+ cannot be horizontal. Thus we need only

consider X̃ = X− and Ỹ = Y− in (3.5), and

xyx−1 = −y (4.19)

which means that x is imaginary and nonzero with x ⊥ y.
Now let X̃, Ỹ be as above spanning σ̃. By the preceding remark we have

Ỹ =

(
y
−y

)
, X̃ =

(
y x
x y

)
(4.20)

with y ⊥ x ∈ Im H. Thus according to (2.5) we get for all v ∈ Im H

0 = 〈X̃, vg〉1 = 2〈x, b̄va〉 + s̃〈y, āva+ b̄vb− 2v〉
= 2〈bxā, v〉+ s̃〈ayā+ byb̄− 2y, v〉
= 〈bxa−1 + s̃(aya−1 − 2y), v〉, (4.21)

where we have used 2ā = a−1 and ayā = byb̄ = 1
2aya

−1 from (4.14) and (4.18).

Putting p = a−1b/s̃, we obtain

Im apxa−1 = 2y − aya−1. (4.22)

From aya−1 = byb−1 we see yp = py, thus p ∈ Cy := R + Ry and thus the left
multiplication with p preserves Cy and C⊥y . By (4.19) we have x ∈ C⊥y and therefore

px ∈ C⊥y . Conjugating (4.22) by a−1 we obtain

2a−1ya− y = Im (px) ⊥ y, (4.23)

〈2a−1ya− y, y〉 = 0. (4.24)

Since w = Im s̃p ∈ Cy is a multiple of y, we may replace y by w in Equation (4.24)
and obtain (4.15). �
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Remark 1.

−1

y

2a  ya

0

Geometrically, (4.24) means that the angle between y and a−1ya is π/3 = 60o.
Thus the rotation angle of Ad(a−1) (and of Ad(b−1), see (4.18)) must be ≥ π/3,
hence ^(1, a) ≥ π/6, or in other words,

| Im a|
|a| ≥ 1

2
. (4.25)

Lemma 4.5. Suppose that a, b ∈ H satisfy (4.14), (4.15) and (4.25). Then there
exists a horizontal plane of type (3.5) at g = ( a bc d ).

Proof. First suppose that p̃ = a−1b = s̃p is real which in view of (4.14) means
a = ±b. By (4.25), the rotation angle of Ad(a−1) is ≥ π/3, hence there exists a
nonzero y ∈ Im H which is rotated precisely by the angle π/3 and thus satisfies

(4.24). Put x = 2a−1ya− y ⊥ y and define X̃, Ỹ as in (4.20). This matrix pair is
of type (3.5), and it is perpendicular to Vg by (4.17) and (4.21).

Now suppose that w = Im p̃ 6= 0; in this case (4.15) implies (4.25). Then we
choose y = w and x = Im

(
p−1(2a−1wa− w)

)
, compare (4.23). Since w−2a−1wa ∈

C⊥y (it is imaginary and perpendicular to w = y), we also have p−1(w− 2a−1wa) ∈
C⊥y , hence x ⊥ y and thus xyx−1 = −y. Defining matrices X̃, Ỹ using (4.20), these
are of type (3.5) and perpendicular to Vg by (4.17) and (4.21). �

Remark 2. Clearly, the relations (4.6), (4.12), (4.14), (4.15) and (4.25) must be
invariant under the action of U . In fact, if u = (( q 1 ), ( q q )), we have u.g = g̃ =(
ã b̃
c̃ d̃

)
with ã = qaq−1 and b̃ = qbq−1.

Now we have proved the following

Theorem 4.6. Let G = Sp(2) with the left invariant metric (2.7) and U ⊂ G×G
defined by (1.1). The orbit space M = G/U inherits a Riemannian metric such
that the canonical projection π : G→M is a Riemannian submersion. Let

Z = {p ∈M ; ∃σ ⊂ TpM : sec(σ) = 0}.
Then Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4 where

π−1Z1 = {
(
a b
c d

)
; a, b 6= 0, det(I −Ad(a−1)−Ad(b−1)) = 0},

π−1Z2 = {
(
a b
c d

)
; |a| = |b|, w := Im a−1b ⊥ w − 2a−1wa, | Im a| ≥ |a|/2},

π−1Z3 = {
(
a b
c d

)
; b = c = 0, | Im a| ≥ 1/2},

π−1Z4 = {
(
a b
c d

)
; a = d = 0, | Im b| ≥ 1/2},

where all matrices
(
a b
c d

)
are supposed to belong to Sp(2). �

Remark 3. The mistake in [4] is in the third line of the proof of the Theorem,
page 1166. The computation of 〈vg , X〉 holds only for X ∈ k, but X may have a
nonzero p-component as well. Thus the matrix X in (4), p. 1166, is too special and
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must be replaced with the more general X =
(
ry −x̄
x −rxyx−1

)
for arbitrary r ∈ R, and

instead of (5) Im (bxā) = 0 we obtain (5′) Im (bxā) = r(y − ayā), while Equation
(6) (ayā − y + bxyx−1b̄ − xyx−1 = 0) remains unchanged. We have 15 variables,
(a, b) ∈ S7, x ∈ H, y ∈ Im (H), r ∈ R, with two arbitrary real constants (the lengths
of x and y), and 6 constraint equations (5′) and (6) which reduce the number of free
variables to 7. Thus the solution set is likely to project onto a subset with positive
measure in the (a, b)-space S7; this would imply that the metric considered in [4]
fails to have almost positive curvature.
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