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For a connected graph G = (V , E), a matching M ⊆ E is a matching cut of G if G − M
is disconnected. It is known that for an integer d, the corresponding decision problem
Matching Cut is polynomial-time solvable for graphs of diameter at most d if d ≤ 2
and NP-complete if d ≥ 3. We prove the same dichotomy for graphs of bounded radius. 
For a graph H , a graph is H-free if it does not contain H as an induced subgraph. As 
a consequence of our result, we can solve Matching Cut in polynomial time for P6-
free graphs, extending a recent result of Feghali for P5-free graphs. We then extend our 
result to hold even for (sP3 + P6)-free graphs for every s ≥ 0 and initiate a complexity 
classification of Matching Cut for H-free graphs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G = (V , E) be an (undirected) connected graph. A subset of edges M ⊆ E is a matching if no two edges in M have 
a common end-vertex, whilst M is an edge cut if V can be partitioned into sets B and R , such that M consists of all the 
edges with one end-vertex in B and the other one in R . We say that M is a matching cut if M is a matching that is also 
an edge cut; see Fig. 1 for an example. Matching cuts have applications in number theory [12], graph drawing [20], graph 
homomorphisms [11], edge labellings [1] and ILFI networks [9]. The corresponding decision problem is defined as follows:

Matching Cut

Input: a connected graph G .
Question: does G have a matching cut?

Chvátal [8] proved that Matching Cut is NP-complete. This led to an extensive study on the computational complexity 
of the problem restricted to special graph classes [4,5,7,10,14–16,19]. We discuss some relevant results in this section 
and in Section 7; see [7] for a more detailed overview of known algorithmic results, including exact and parameterized 
algorithms [2,3,13,14].

Let G be a connected graph. The distance between two vertices u and v in G is the length (number of edges) of a shortest 
path between u and v in G . The eccentricity of a vertex u is the maximum distance between u and any other vertex of 
G . The diameter of G is the maximum eccentricity over all vertices of G . Borowiecki and Jesse-Józefczyk [5] proved that
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Fig. 1. Left: an example of a matching cut, as indicated by the thick red edges. Right: the corresponding valid red-blue colouring, an equivalent definition 
given in Section 2. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Matching Cut is polynomial-time solvable for graphs of diameter 2. Le and Le [15] gave a faster polynomial-time algorithm 
for graphs of diameter 2 and proved the following dichotomy.

Theorem 1 ([15]). For an integer d, Matching Cut for graphs of diameter at most d is polynomial-time solvable if d ≤ 2 and NP-
complete if d ≥ 3.

Le and Le [15] also proved that Matching Cut for bipartite graphs of diameter at most d is polynomial-time solvable 
if d ≤ 3 and NP-complete for d ≥ 4. Another recent dichotomy is due to Chen et al. [7], who extended results of Le and 
Randerath [16] and proved that Matching Cut for graphs of minimum degree δ is polynomial-time solvable if δ = 1 and
NP-complete if δ ≥ 2 (note that the problem is trivial if δ = 1).

The radius of a connected graph G is closely related to the diameter; it is defined as the minimum eccentricity over all 
vertices of G . It is readily seen that for every connected graph G ,

radius(G) ≤ diameter(G) ≤ 2 · radius(G).

Complexity dichotomies for graphs of bounded radius have been studied in the literature; for example, Mertzios and Spi-
rakis [18] showed that 3-Colouring is NP-complete for graphs of diameter 3 and radius 2, whilst 3-Colouring is trivial for 
graphs of radius 1.

1.1. Our results

We will prove the following dichotomy for general graphs of bounded radius, which strengthens the polynomial part of 
Theorem 1 (in order to see this, consider for example an arbitrary star and subdivide each of its edges once; the new graph 
has radius 2 but its diameter is 4).

Theorem 2. For an integer r, Matching Cut for graphs of radius at most r is polynomial-time solvable if r ≤ 2 and NP-complete if 
r ≥ 3.

We prove Theorem 2 in Section 4 after giving some more terminology in Section 2. In Section 3 we present some known 
results that we need as lemmas for proving Theorem 2. In particular, we will use the reduction rules of Le and Le [15], 
which they used in their polynomial-time algorithms for graphs of diameter 2 and bipartite graphs of diameter 3.

A graph H is an induced subgraph of G if H can be obtained from G after removing all vertices of V (G) \ V (H). A graph G
is H-free if G does not contain an induced subgraph isomorphic to H . We let Pr denote the path on r vertices. Feghali [10]
recently proved that Matching Cut is polynomial-time solvable for P5-free graphs and that there exists an integer r, such 
that Matching Cut is NP-complete for Pr -free graphs. In a recent paper [17], we showed that the constant r in [10] is equal 
to 27. In the same paper [17] we proved that Matching Cut is NP-complete even for (4P5, P19)-free graphs (by a slight 
modification of the construction from [10]).

As a consequence of the polynomial part of Theorem 2 we can show the following result.

Corollary 1. Matching Cut is polynomial-time solvable for P6-free graphs.

We prove Corollary 1 in Section 4 as well. In Section 5 we prove that if Matching Cut is polynomial-time solvable on a 
class of H-free graphs, then it is so on the class of (P3 + H)-free graphs (here, the graph P3 + H denotes the disjoint union 
of the graphs P3 and H). This means in particular that Matching Cut is polynomial-time solvable even for (sP3 + P6)-free 
graphs for every s ≥ 0.

In Section 6 we show some new hardness results of Matching Cut for H-free graphs. In the same section, we also 
combine all our new results with known results to give a state-of-the-art summary of Matching Cut for H-free graphs. We 
finish our paper with a number of open problems in Section 7.
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2. Preliminaries

Let G = (V , E) be a graph. For a vertex u, we let N(u) = {v | uv ∈ E} denote the neighbourhood of u in G . Let S ⊆ V . The 
neighbourhood of S in G is the set N(S) = ⋃

u∈S N(u) \ S . We let G[S] denote the subgraph of G induced by S , that is, G[S]
can be obtained from G after deleting the vertices of S . Moreover, S is a dominating set of G if every vertex of V \ S has at 
least one neighbour in S . In that case we also say that G[S] dominates G . The domination number of a graph G is the size of 
a smallest dominating set of G .

Recall that we denote the path on r vertices by Pr . We let Cs denote the cycle on s vertices. A bipartite graph with 
non-empty partition classes V 1 and V 2 is complete if there exists an edge between every vertex of V 1 and every vertex of 
V 2. We let Kn1,n2 denote the complete bipartite graph with partition classes of size n1 and n2, respectively. The graph K1,n2

denotes the star on n2 + 1 vertices.
We denote the disjoint union of two graphs G1 and G2 by G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We denote the 

disjoint union of s copies of a graph G by sG .
When constructing matching cuts we will often use an equivalent definition in terms of vertex colourings (see also [7,8,

10]). Let G = (V , E) be a connected graph. A red-blue colouring of G colours every vertex of G either red or blue. A red-blue 
colouring of G is valid if every blue vertex has at most one red neighbour; every red vertex has at most one blue neighbour; 
and both colours red and blue are used at least once. We refer to Fig. 1 for an example.

For a red-blue colouring, we let R and B denote the sets that consist of all vertices coloured red or blue, respectively (so 
V = R ∪ B). We call R the red set and B the blue set of the red-blue colouring. We let R ′ consist of all vertices in R that 
have a (unique) blue neighbour, and similarly, we let B ′ consist of all vertices of B that have a (unique) red neighbour. We 
call R ′ the red interface and B ′ the blue interface of the red-blue colouring.

From a matching cut M of a connected graph G we can construct a valid red-blue colouring by colouring the vertices 
of one connected component of G − M red and all other vertices of G blue. Similarly, from a valid red-blue colouring we 
can construct a matching cut by taking all edges with one end-vertex in the red interface and one end-vertex in the blue 
interface. Hence, we can make the following observation, which as mentioned is well known.

Observation 1. A connected graph G has a matching cut if and only if G admits a valid red-blue colouring.

3. Auxiliary results

In the remainder of our paper, we use Observation 1 and mainly search for valid red-blue colourings. We need the 
following lemma, which has been used (implicitly) to prove other results for Matching Cut as well, such as the result for 
P5-free graphs [10]. We include a short proof for completeness.

Lemma 1. For every integer g, it is possible to find in O (2gng+2) time a valid red-blue colouring (if it exists) of an n-vertex graph with 
domination number g.

Proof. Let g ≥ 1 be an integer, and let G be a graph with domination number at most g . Hence, G has a dominating set 
D of size at most g . We consider all options of colouring the vertices of D red or blue; note that this number is 2|D| ≤ 2g . 
For every red vertex of D with no blue neighbour, we consider all O (n) options of colouring at most one of its neighbours 
blue (and thus all of its other neighbours will be coloured red). Similarly, for every blue vertex of D with no red neighbour, 
we consider all O (n) options of colouring at most one of its neighbours red (and thus all of its other neighbours will be 
coloured blue). Finally, for every red vertex in D with already one blue neighbour in D , we colour all its yet uncoloured 
neighbours red. Similarly, for every blue vertex in D with already one red neighbour in D , we colour all its yet uncoloured 
neighbours blue.

As D is a dominating set, the above means that we guessed a red-blue colouring of the whole graph G . We can check 
in O (n2) time if a red-blue colouring is valid. Moreover, the total number of red-blue colourings that we must consider is 
O (2gng). �

Consider a red-blue colouring of a graph G = (V , E). A subset S ⊆ V is monochromatic if every vertex of S has the same 
colour. We need the following known lemma (see e.g. [10] which uses it implicitly); again we added a short proof for 
completeness.

Lemma 2. Let D be a dominating set of a connected graph G. It is possible to check in polynomial time if G has a valid red-blue 
colouring in which D is monochromatic.

Proof. Consider a valid red-blue colouring of G , in which D is monochromatic. Assume without loss of generality that every 
vertex of D is coloured red. Let C be a connected component of G − D . If C is not monochromatic, then C has an edge 
uv where u is red and v is blue. However, now v has at least two red neighbours, namely u and a neighbour in D (such 
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Fig. 2. An example of a graph G with a valid red-blue (S, T , X, Y )-colouring.

Fig. 3. An example of an application of rules R1–R3 that results in a 4-tuple (S, T , X, Y ). The set S ′ consists of the thick red vertex and the set T ′ consists of 
the thick blue vertex. Note that S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y , and that every valid red-blue (S ′, T ′, S ′, T ′)-colouring is a valid red-blue (S, T , X, Y )-colouring.

a neighbour exists, as D is a dominating set of G). This is a contradiction. Hence, the vertex set of every connected com-
ponent is monochromatic. Moreover, we may assume without loss of generality that the vertices of exactly one connected 
component of G − D are coloured blue (else we can safely recolour the vertices of some connected component from blue to 
red). Hence, we can check all O (n) options of choosing this unique blue connected component. For each option we check 
in polynomial time if the obtained red-blue colouring is valid. �

Let G = (V , E) be a connected graph and S, T , X, Y ⊆ V be four non-empty sets with S ⊆ X , T ⊆ Y and X ∩ Y = ∅. 
A red-blue (S, T , X, Y )-colouring of G is a red-blue colouring with a red set containing X ; a blue set containing Y ; a red 
interface containing S and a blue interface containing T . Note that V \ (X ∪ Y ) might be non-empty. Moreover, the red and 
blue interfaces may also contain vertices not in S and T , respectively. We refer to Fig. 2 for an example.

Now, let S ′ and T ′ be two non-empty subsets of V with S ′ ∩ T ′ = ∅ such that every vertex of S ′ is adjacent to exactly 
one vertex of T ′ , and vice versa. We call (S ′, T ′) a starting pair of G .

For a starting pair, Le and Le [15] define five propagation rules that we give below – in our terminology – as rules R1–R3. 
The goal of these rules is to extend S ′ and T ′ by finding as many vertices as possible whose colour must be either red or 
blue in any valid red-blue colouring with a red interface containing S ′ and a blue interface containing T ′ . We will place 
any newly found red vertices in a set X that already contains S ′ and any newly found blue vertices in a set Y that already 
contains T ′ . We let S be the subset of X consisting of red vertices with a blue neighbour in Y , and we let T be the subset 
of Y consisting of blue vertices with a red neighbour in X . So it holds that S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y . The vertices of S
will belong to the red interface and the vertices of T will belong to the blue interface of the valid red-blue colouring that 
we are trying to construct. Note that the vertices of X \ S and Y \ T may or may not belong to the red or blue interface (as 
this depends on the colour of the uncoloured vertices in V \ (X ∪ Y ), which we still have to determine).

We now state the propagation rules R1–R3. Initially we set X := S := S ′ and Y := T := T ′ . As mentioned, R1–R3 try to 
put vertices of Z = V \ (X ∪ Y ) into one of the sets S , X \ S , T or Y \ T . They are defined as follows (see Fig. 3 for an 
example):

R1. Return no (that is, G has no valid red-blue (S ′, T ′, S ′, T ′)-colouring) if a vertex v ∈ Z is
• adjacent to a vertex in S and to a vertex in T , or
• adjacent to a vertex in S and to two vertices in Y \ T , or
• adjacent to a vertex in T and to two vertices in X \ S , or
• adjacent to two vertices in X \ S and to two vertices in Y \ T .

R2. Assume v ∈ Z and R1 does not apply. If v is adjacent to a vertex in S or to two vertices of X \ S , then move v from Z
to X . If moreover v is adjacent to a (unique) vertex w in Y , then also add v to S and w to T .

R3. Assume v ∈ Z and R1 does not apply. If v is adjacent to a vertex in T or to two vertices of Y \ T , then move v from Z
to Y . If moreover v is adjacent to a (unique) vertex w in X , then also add v to T and w to S .

Le and Le [15] proved the following two lemmas. The first lemma shows that rules R1–R3 are safe and is not difficult to 
verify, whereas the second lemma is proven by a reduction to 2-Satisfiability. We slightly changed the formulation of their 
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lemma so that it can be applied to the case where the graph G may also have a valid red-blue colouring in which not every 
connected component of G − (X ∪ Y ) is monochromatic.

Lemma 3 ([15]). Let G be a graph with a starting pair (S ′, T ′). Assume that exhaustively applying rules R1–R3 did not lead to a 
no-answer but to a 4-tuple (S, T , X, Y ). The following holds:

(i) S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′, T ′, S ′, T ′)-colouring if and only if G has a valid red-blue (S, T , X, Y )-colouring (note that the backward 

implication holds by definition), and
(iii) every vertex in V \ (X ∪ Y ) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in Y \ T .

Moreover, the 4-tuple (S, T , X, Y ) can be obtained in polynomial time.

Lemma 4 ([15]). Let G be a graph with a starting pair (S ′, T ′). Assume that exhaustively applying rules R1–R3 did not lead to a no-
answer but to a 4-tuple (S, T , X, Y ). It can be decided in O (mn) time if G has a valid red-blue (S, T , X, Y )-colouring (or equivalently, 
a valid red-blue (S ′, T ′, S ′, T ′)-colouring) in which every connected component of G − (X ∪ Y ) is monochromatic.

Finally, we need one more result from the literature (which has been strengthened in [6]).

Theorem 3 ([21]). A graph G = (V , E) on n vertices is P6-free if and only if each connected induced subgraph of G contains a dominat-
ing induced C6 or a dominating (not necessarily induced) complete bipartite graph. Moreover, we can find such a dominating subgraph 
of G in O (n3) time.

4. The proofs of Theorem 2 and Corollary 1

We first prove Theorem 2, which we restate below.

Theorem 2 (restated). For an integer r, Matching Cut is polynomial-time solvable for graphs of radius at most r if r ≤ 2 and NP-
complete for graphs of radius at most r if r ≥ 3.

Proof. The case where r ≥ 3 follows from Theorem 1 after observing that the class of graphs of diameter at most 3 is 
contained in the class of graphs of radius at most 3. So assume now that r ≤ 2. Let G be a graph of radius at most r. If 
r = 1, then G has a vertex that is adjacent to all other vertices. In this case G has a matching cut if and only if G has a 
vertex of degree 1; we can check the latter condition in polynomial time. From now on, assume that r = 2. Then G has a 
dominating star H , say H has centre u and leaves v1, . . . , vs for some s ≥ 1. By Observation 1 it suffices to check if G has a 
valid red-blue colouring.

We first check if G has a valid red-blue colouring in which V (H) is monochromatic. By Lemma 2 this can be done 
in polynomial time. Suppose we find no such red-blue colouring. Then we may assume without loss of generality that a 
valid red-blue colouring of G (if it exists) colours u red and exactly one of v1, . . . , vs blue. That is, G has a valid red-blue 
colouring if and only if G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring for some i ∈ {1, . . . , s}. We consider all O (n)

options of choosing which vi is coloured blue.
For each option we do as follows. Let vi be the vertex of v1, . . . , vs that we coloured blue. We define the starting pair 

(S ′, T ′) with S ′ = {u} and T ′ = {vi} and apply rules R1–R3 exhaustively. The latter takes polynomial time by Lemma 3. If 
this exhaustive application leads to a no-answer, then by Lemma 3 we may discard the option. Suppose we obtain a 4-tuple 
(S, T , X, Y ). By again applying Lemma 3, we find that G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring if and only if G
has a valid red-blue (S, T , X, Y )-colouring. By R2 and the fact that u ∈ S ′ ⊆ S we find that {v1, . . . , vs} \ {vi} belongs to X .

Suppose that G has a valid red-blue (S, T , X, Y )-colouring c such that G − (X ∪ Y ) has a connected component D that is 
not monochromatic. Then D must contain an edge uv , where u is coloured red and v is coloured blue. Note that v cannot 
be adjacent to vi , as otherwise v would have been in Y by R3 (since vi ∈ T ′ ⊆ T ). As H is dominating, this means that 
v must be adjacent to a vertex w ∈ V (H) \ {vi} = {u, v1, . . . , vs} \ {vi}. As u ∈ S ′ ⊆ S ⊆ X and {v1, . . . , vs} \ {vi} ⊆ X , we 
find that w ∈ X by R2 and thus will be coloured red. However, now v being coloured blue is adjacent to two red vertices 
(namely u and w), contradicting the validity of c.

From the above we conclude that for any valid (S, T , X, Y )-colouring (if it exists), every connected component G −
(X, Y ) is monochromatic. Hence, we can apply Lemma 4 to find in polynomial time whether or not G has a valid red-blue 
(S, T , X, Y )-colouring, or equivalently, if G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring.

The correctness of our algorithm follows from the above arguments. As we branch O (n) times and each branch takes 
polynomial time to process, the total running time of our algorithm is polynomial. �

We now prove Corollary 1, which we restate below.
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Fig. 4. Left: an example of a generalized starting pair (S ′, T ′) with core (S ′′, T ′′), where S ′ consists of the two red vertices, S ′′ consists of the thick red 
vertex, T ′ consists of the two blue vertices and T ′′ consists of the thick blue vertex. Right: the application of rules R1-R3 on (S ′, T ′). Note that the resulting 
four tuple (S, T , X, Y ) immediately results in a valid red-blue colouring. Hence, having some vertices in S ′ \ S ′′ and T ′ \ T , which are adjacent to a vertex 
with an opposite colour, can help significantly.

Corollary 1 (restated). Matching Cut is polynomial-time solvable for P6-free graphs.

Proof. Let G be a connected P6-free graph. By Theorem 3, we find that G has a dominating induced C6 or a dominating (not 
necessarily induced) complete bipartite graph Kr,s . By Observation 1 it suffices to check if G has a valid red-blue colouring.

If G has a dominating induced C6, then G has domination number at most 6. In that case we apply Lemma 1 to find 
in polynomial time if G has a valid red-blue colouring. Suppose that G has a dominating complete bipartite graph H with 
partition classes {u1, . . . , ur} and {v1, . . . , vs}. We may assume without loss of generality that r ≤ s.

If r ≥ 2 and s ≥ 3, then it is readily seen that applying rules R1–R3 on any starting pair ({ui}, {v j}) yields a no-answer. 
Hence, V (H) is monochromatic for any valid red-blue colouring of G . This means that we can check in polynomial time by 
Lemma 2 if G has a valid red-blue colouring.

Now assume that r = 1 or s ≤ 2. In the first case, G has a (not necessarily induced) dominating star and thus G has 
radius 2, and we apply Theorem 2. In the second case, r ≤ s ≤ 2, and thus G has domination number at most 4, and we 
apply Lemma 1. Hence, in both cases, we find in polynomial time whether or not G has a valid red-blue colouring. �
5. Extending Corollary 1

In this section we slightly generalize the framework of Le and Le [15] in order to obtain new algorithms for Matching 
Cut on H-free graphs.

First we slightly generalize the definition of a starting pair (S ′, T ′) of a graph G . We still let S ′ and T ′ be two non-empty 
subsets of V with S ′ ∩ T ′ = ∅. However, now we only require that every vertex of S ′ is adjacent to at most one vertex of T ′ , 
and vice versa, whilst at least one vertex of S ′ must be adjacent to a vertex of T ′ . We let S ′′ ⊆ S ′ consists of those vertices 
of S ′ that have exactly one neighbour in T ′ . Similarly, we let T ′′ consists of those vertices of T ′ that have exactly one 
neighbour in S ′ . We call (S ′, T ′) a generalized starting pair of G with core (S ′′, T ′′). Note that by definition, |S ′′| = |T ′′| ≥ 1. 
See Fig. 4 for an example.

When we apply rules R1–R3, we first initiate by setting S := S ′′; X := S ′; T := T ′′; and Y := T ′; see also Fig. 4. The 
following two lemmas can be readily checked by mimicking the proofs of Lemmas 3 and 4 given in [15].

Lemma 5. Let G be a graph with a generalized starting pair (S ′, T ′) with core (S ′′, T ′′). Assume that exhaustively applying rules R1–R3 
did not lead to a no-answer but to a 4-tuple (S, T , X, Y ). The following holds:

(i) S ′′ ⊆ S ⊆ X; S ′ ⊆ X; T ′′ ⊆ T ⊆ Y ; T ′ ⊆ Y ; and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring if and only if G has a valid red-blue (S, T , X, Y )-colouring, and

(iii) every vertex in V \ (X ∪ Y ) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in Y \ T .

Moreover, the 4-tuple (S, T , X, Y ) can be obtained in polynomial time.

Lemma 6. Let G be a graph with a generalized starting pair (S ′, T ′) with core (S ′′, T ′′). Assume that exhaustively applying rules R1–R3 
did not lead to a no-answer but to a 4-tuple (S, T , X, Y ). It can be decided in O (mn) time if G has a valid red-blue (S, T , X, Y )-
colouring (or equivalently, a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring) in which every connected component of G − (X ∪ Y ) is 
monochromatic.

We are now ready to prove the main result of this section.

Theorem 4. Let H be a graph. If Matching Cut is polynomial-time solvable for H-free graphs, then it is so for (H + P3)-free graphs.

Proof. Assume that Matching Cut is polynomial-time solvable for H-free graphs. Let G be a connected (H + P3)-free graph 
with n vertices and m edges. We first check if G has a matching cut of size at most 2. We can do this in polynomial time 
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by considering all O (m2) options of choosing two edges. From now on we assume that G has no matching cut of size at 
most 2; in particular this implies that G has no vertex of degree 1.

We may also assume that G has an induced subgraph G ′ that is isomorphic to H ; else we are done by our assumption. 
Let G∗ be the graph obtained from G after removing every vertex of V (G ′) ∪ N(V (G ′)). As G ′ is isomorphic to H and G is 
(H + P3)-free, G∗ is P3-free.

We continue as follows. We first consider all O (m) options of choosing an edge from E(G), one of whose end-vertices 
we colour red and the other one blue. Afterwards, for each (uncoloured) vertex in G ′ we consider all options of colouring it 
either red or blue. As G ′ is isomorphic to H , there are 2|V (H)| options of doing this. As H is a fixed graph, this is a constant 
number. Now, for every red vertex u of G ′ with no blue neighbour, we consider all O (n) options of colouring at most one 
of its neighbours blue (and thus all other not yet coloured neighbours of u will be coloured red). Similarly, for every blue 
vertex v of G ′ with no red neighbour, we consider all O (n) options of colouring at most one of its neighbours red (and thus 
all other neighbours of v will be coloured blue). Note that afterwards each vertex of V (G ′) ∪ N(V (G ′)) is either coloured 
red or blue.

There are O (m2|V (H)|n|V (H)|) options in total of colouring the end-vertices of an edge in G and the vertices of G ′ . In each 
option, we have at least one red vertex and at least one blue vertex. We now consider the options one by one.

Consider an option as described above. In particular, let e = uv be the chosen edge whose end-vertices we coloured 
differently, say we coloured u red and v blue. We first check in polynomial time if every red vertex in this option has at 
most one blue neighbour and if every blue vertex has at most one red neighbour. If one of these two conditions does not 
hold, we discard the option. Now let S ′ consist of u and all red vertices of V (G ′) ∪ N(V (G ′)), and let T ′ consists of v and 
all blue vertices of V (G ′) ∪ N(V (G ′)). We let S ′′ ⊆ S ′ consist of all red vertices that have (exactly) one blue neighbour, and 
we let T ′′ ⊆ T ′ consist of all blue vertices that have (exactly) one red neighbour. By construction (recall that we started 
with picking an edge whose end-vertices we coloured differently), |S ′′| = |T ′′| ≥ 1. Hence, we can consider (S ′, T ′) as a 
generalized starting pair with core (S ′′, T ′′).

Our algorithm will now check if G has a valid (S ′′, T ′′, S ′, T ′) red-blue colouring by applying rules R1–R3 exhaustively. 
If we find a no-answer, then we can discard the option by Lemma 5. Otherwise, we found in polynomial time, again by 
Lemma 5, a 4-tuple (S, T , X, Y ), for which the following holds:

(i) S ′′ ⊆ S ⊆ X ; S ′ ⊆ X ; T ′′ ⊆ T ⊆ Y ; T ′ ⊆ Y ; and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring if and only if G has valid red-blue (S, T , X, Y )-colouring, and

(iii) every vertex in V \ (X ∪ Y ) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in 
Y \ T .

We now prove the following claim.

Claim. All connected components of G − (X ∪ Y ) are monochromatic in every valid red-blue (S, T , X, Y )-colouring of G.

We prove the claim as follows. For a contradiction, assume G has a valid red-blue (S, T , X, Y )-colouring, for which at 
least one connected component F of G − (X ∪ Y ) is not monochromatic. As V (G ′) ∪ N(V (G ′)) ⊆ S ′ ∪ T ′ and S ′ ⊆ X and 
T ′ ⊆ Y , we find that V (F ) belongs to G∗ (recall that G∗ is the P3-free graph obtained from G after deleting the vertices of 
V (G ′) ∪ N(V (G ′))). Hence, F is P3-free and thus as F is connected, F must be a complete graph. If F consists of one vertex 
or at least three vertices, then F must be monochromatic. Hence, F consists of exactly two vertices x and y.

By statement (iii), both x and y have no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour 
in Y \ T . If x and y have a common neighbour, then F must be monochromatic. If one of them, say x, has a neighbour 
in both X \ S and a neighbour in Y \ T , then y must be coloured with the same colour as x and thus again F must be 
monochromatic. As G has minimum degree 2, this means that x and y each have exactly one neighbour in X ∪ Y , and these 
two vertices in X ∪ Y must be different.

Let x′ be the unique neighbour of x in X ∪ Y , and let y′ be the unique neighbour of y in X ∪ Y , so x′ �= y′ . However, 
now we find that G has a matching cut of size 2, namely the set {xx′, yy′}, a contradiction. This completes the proof of the 
claim. �
Due to the above claim, we can now check in polynomial time, by using Lemma 6, whether G has a valid red-blue 
(S, T , X, Y )-colouring in which every connected component in G − (X ∪ Y ) is monochromatic. If so, then we are done, 
and else we discard the option.

The correctness of our algorithm follows from its description. As the total number of branches is O (m2|V (H)|n|V (H)|) and 
we can process each branch in polynomial time, the total running time of our algorithm is polynomial. Hence, we have 
proven the theorem. �

Bonsma [4] proved that Matching Cut is polynomial-time solvable for the class of claw-free graphs, that is, K1,3-free 
graphs. By combining, respectively, Corollary 1 and Bonsma’s result with s applications of Theorem 4 we obtain the following 
result.
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Theorem 5. For every integer s ≥ 0, Matching Cut is polynomial-time solvable for (sP3 + P6)-free graphs and for (sP3 + K1,3)-free 
graphs.

6. A partial complexity classification for H-free graphs

The girth of a graph that is not a tree is the length of a shortest cycle in it. Bonsma [4] proved that Matching Cut is
NP-complete for planar graphs of girth 5, and thus for Cr -free graphs with r ∈ {3, 4}. Hence, Matching Cut is NP-complete 
for H-free graphs whenever H contains a C3 or C4. Le and Randerath [16] proved that Matching Cut is NP-complete for 
bipartite graphs of minimum degree 3 and maximum degree 4. Consequently, Matching Cut is NP-complete for H-free 
graphs whenever H contains an odd cycle. We use a result of Moshi [19] to prove the same for the case where H has a not 
necessarily odd cycle.

Let uv be an edge in a graph G . We replace the edge by two new vertices w1 and w2 and edges uw1, uw2, v w1 and 
v w2. We call this operation a K2,2-replacement and denote the resulting graph by Guv ; see also Fig. 5. We can now state 
the following lemma.

Lemma 7 ([19]). For any edge uv of a graph G, the graph G has a matching cut if and only if Guv has a matching cut.

We can show the following result.

Lemma 8. For every graph H that is not a forest, Matching Cut is NP-complete for H-free graphs.

Proof. Let H be a graph that is not a forest. Then H has a cycle C� . As C�-free graphs form a subclass of H-free graphs, 
we only need to prove the lemma for C�-free graphs. As Matching Cut is NP-complete for bipartite graphs (of diameter at 
most 4) due to the aforementioned result of Le and Le [15], we may assume that � is even, say � = 2r for some r ≥ 2.

We prove by induction that Matching Cut is NP-complete for C2r -free graphs for every r ≥ 2. If r = 2, this follows 
immediately from the aforementioned NP-completeness result of Bonsma [4] for planar graphs of girth 5, which are C4-
free. Assume that r ≥ 3. We reduce from Matching Cut for Cr -free graphs, for which the problem is NP-complete: if r is 
odd this follows from the above; and if r is even this follows from the induction hypothesis. Let G be a Cr -free graph. Apply 
a K2,2-replacement on every edge of G . The resulting graph is C2r -free and by Lemma 7, it has a matching cut if and only 
if G has a matching cut. �

For two graphs G1 and G2 we write G1 ⊆i G2 if G1 is an induced subgraph of G2. Let H∗ be the “H”-graph, which is the 
graph with vertices a1, b1, c1, a2, b2, c2 and edges aibi , bici (i = 1, 2) and b1b2. We can now show the following summary 
theorem; see also Fig. 6.

Theorem 6. For a graph H, Matching Cut on H-free graphs is

– polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0, and
– NP-complete if H ⊇i Cr for some r ≥ 3, K1,4 , P19 , 4P5 or H∗ .

Proof. The polynomial-time solvable cases follow from Theorem 5. If H has a cycle, then we apply Lemma 8. Now suppose 
that H has no cycle so H is a forest. First suppose that H is a forest that contains a vertex of degree at least 4. Then H
contains an induced K1,4, and thus the class of H-free graphs contains the class of K1,4-free graphs. The result then follows 
from the aforementioned result of Chvátal [8], which in fact shows that Matching Cut is NP-complete even for K1,4-free 
graphs, as observed by Bonsma [4] and Kratch and Le [14]. The remaining three results are proven in [17]. �

Every forest that is Pr -free for some positive constant r and that has maximum degree at most 4 has a constant-bounded 
diameter, so has constant size. Hence, Theorem 6 has the following consequence.

Corollary 2. There only exists a finite number of connected graphs H for which the computational complexity of Matching Cut is 
open when restricted on H-free graphs.

7. Conclusions

We gave a complexity dichotomy for Matching Cut for graphs of bounded radius and proved a number of new results on 
the complexity of Matching Cut for H-free graphs. We summarized all the known results for H-free graphs in Theorem 6
and showed that although there still exists an infinite number of unresolved cases, the number of open cases where H is a 
connected graph is finite.
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Fig. 5. The K2,2-replacement applied on edge uv .

Fig. 6. The graphs P3 + P6 (left) and P3 + K1,3 (right).

We finish our paper with a number of open problems. Recall that Le and Le [15] showed that Matching Cut for bipartite 
graphs of diameter at most d is polynomial-time solvable if d ≤ 3 and NP-complete for d ≥ 4. Their hardness construction 
has radius 4, and we therefore pose the following open problem:

Open Problem 1. Determine the complexity of Matching Cut for bipartite graphs of radius 3.

A standard ingredient of determining the complexity of a problem for H-free graphs is to first consider classes of large 
girth. If a problem is NP-complete for graphs of girth at least g , for every fixed integer g ≥ 3, then it is NP-complete for 
H-free graphs whenever H has a cycle; just take g to be larger than the length of a largest cycle in H . However, to prove 
Lemma 8 we could only use the result of Bonsma [4] for (planar) graphs of girth 5 and had to rely on the construction of 
Moshi [19] to show hardness if H has a cycle of length at least 5. Hence, we believe the following open problem of Le and 
Le [15] is interesting.

Open Problem 2 ([15]). Determine for every g ≥ 6, the complexity of Matching Cut for graphs of girth g.

For K1,t -free graphs, the complexity of Matching Cut is fully determined (see Theorem 6) with the problem becoming
NP-complete for t ≥ 4. On the positive side, Kratsch and Le [14] proved that Matching Cut can be solved in polynomial 
time for K1,4-free graphs that in addition are also (K1,4 + e)-free, where K1,4 + e is the graph obtained from K1,4 by adding 
an edge between two of its leaves. We finish our paper with the following open problem, for which we identified some 
borderline cases; the chair is the graph obtained from the claw K1,3 after subdividing one of its edges exactly once.

Open Problem 3. Complete the classification of Matching Cut for H-free graphs; in particular what is the complexity of Matching 
Cut for chair-free graphs, 2P4-free graphs and P7-free graphs?
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