
Theoretical Computer Science 936 (2022) 33–42
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the complexity of matching cut for graphs of bounded

radius and H-free graphs

Felicia Lucke a, Daniël Paulusma b,∗, Bernard Ries a

a University of Fribourg, Department of Informatics, Fribourg, Switzerland
b Durham University, Durham, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2022
Accepted 15 September 2022
Available online 21 September 2022
Communicated by D.-Z. Du

Keywords:
Matching cut
Radius
Complexity dichotomy
H-free

For a connected graph G = (V , E), a matching M ⊆ E is a matching cut of G if G − M
is disconnected. It is known that for an integer d, the corresponding decision problem
Matching Cut is polynomial-time solvable for graphs of diameter at most d if d ≤ 2
and NP-complete if d ≥ 3. We prove the same dichotomy for graphs of bounded radius.
For a graph H , a graph is H-free if it does not contain H as an induced subgraph. As
a consequence of our result, we can solve Matching Cut in polynomial time for P6-
free graphs, extending a recent result of Feghali for P5-free graphs. We then extend our
result to hold even for (sP3 + P6)-free graphs for every s ≥ 0 and initiate a complexity
classification of Matching Cut for H-free graphs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G = (V , E) be an (undirected) connected graph. A subset of edges M ⊆ E is a matching if no two edges in M have
a common end-vertex, whilst M is an edge cut if V can be partitioned into sets B and R , such that M consists of all the
edges with one end-vertex in B and the other one in R . We say that M is a matching cut if M is a matching that is also
an edge cut; see Fig. 1 for an example. Matching cuts have applications in number theory [12], graph drawing [20], graph
homomorphisms [11], edge labellings [1] and ILFI networks [9]. The corresponding decision problem is defined as follows:

Matching Cut

Input: a connected graph G .
Question: does G have a matching cut?

Chvátal [8] proved that Matching Cut is NP-complete. This led to an extensive study on the computational complexity
of the problem restricted to special graph classes [4,5,7,10,14–16,19]. We discuss some relevant results in this section
and in Section 7; see [7] for a more detailed overview of known algorithmic results, including exact and parameterized
algorithms [2,3,13,14].

Let G be a connected graph. The distance between two vertices u and v in G is the length (number of edges) of a shortest
path between u and v in G . The eccentricity of a vertex u is the maximum distance between u and any other vertex of
G . The diameter of G is the maximum eccentricity over all vertices of G . Borowiecki and Jesse-Józefczyk [5] proved that

* Corresponding author.
E-mail addresses: felicia.lucke@unifr.ch (F. Lucke), daniel.paulusma@durham.ac.uk (D. Paulusma), bernard.ries@unifr.ch (B. Ries).
https://doi.org/10.1016/j.tcs.2022.09.014
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2022.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.09.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:felicia.lucke@unifr.ch
mailto:daniel.paulusma@durham.ac.uk
mailto:bernard.ries@unifr.ch
https://doi.org/10.1016/j.tcs.2022.09.014
http://creativecommons.org/licenses/by/4.0/

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
Fig. 1. Left: an example of a matching cut, as indicated by the thick red edges. Right: the corresponding valid red-blue colouring, an equivalent definition
given in Section 2. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Matching Cut is polynomial-time solvable for graphs of diameter 2. Le and Le [15] gave a faster polynomial-time algorithm
for graphs of diameter 2 and proved the following dichotomy.

Theorem 1 ([15]). For an integer d, Matching Cut for graphs of diameter at most d is polynomial-time solvable if d ≤ 2 and NP-
complete if d ≥ 3.

Le and Le [15] also proved that Matching Cut for bipartite graphs of diameter at most d is polynomial-time solvable
if d ≤ 3 and NP-complete for d ≥ 4. Another recent dichotomy is due to Chen et al. [7], who extended results of Le and
Randerath [16] and proved that Matching Cut for graphs of minimum degree δ is polynomial-time solvable if δ = 1 and
NP-complete if δ ≥ 2 (note that the problem is trivial if δ = 1).

The radius of a connected graph G is closely related to the diameter; it is defined as the minimum eccentricity over all
vertices of G . It is readily seen that for every connected graph G ,

radius(G) ≤ diameter(G) ≤ 2 · radius(G).

Complexity dichotomies for graphs of bounded radius have been studied in the literature; for example, Mertzios and Spi-
rakis [18] showed that 3-Colouring is NP-complete for graphs of diameter 3 and radius 2, whilst 3-Colouring is trivial for
graphs of radius 1.

1.1. Our results

We will prove the following dichotomy for general graphs of bounded radius, which strengthens the polynomial part of
Theorem 1 (in order to see this, consider for example an arbitrary star and subdivide each of its edges once; the new graph
has radius 2 but its diameter is 4).

Theorem 2. For an integer r, Matching Cut for graphs of radius at most r is polynomial-time solvable if r ≤ 2 and NP-complete if
r ≥ 3.

We prove Theorem 2 in Section 4 after giving some more terminology in Section 2. In Section 3 we present some known
results that we need as lemmas for proving Theorem 2. In particular, we will use the reduction rules of Le and Le [15],
which they used in their polynomial-time algorithms for graphs of diameter 2 and bipartite graphs of diameter 3.

A graph H is an induced subgraph of G if H can be obtained from G after removing all vertices of V (G) \ V (H). A graph G
is H-free if G does not contain an induced subgraph isomorphic to H . We let Pr denote the path on r vertices. Feghali [10]
recently proved that Matching Cut is polynomial-time solvable for P5-free graphs and that there exists an integer r, such
that Matching Cut is NP-complete for Pr -free graphs. In a recent paper [17], we showed that the constant r in [10] is equal
to 27. In the same paper [17] we proved that Matching Cut is NP-complete even for (4P5, P19)-free graphs (by a slight
modification of the construction from [10]).

As a consequence of the polynomial part of Theorem 2 we can show the following result.

Corollary 1. Matching Cut is polynomial-time solvable for P6-free graphs.

We prove Corollary 1 in Section 4 as well. In Section 5 we prove that if Matching Cut is polynomial-time solvable on a
class of H-free graphs, then it is so on the class of (P3 + H)-free graphs (here, the graph P3 + H denotes the disjoint union
of the graphs P3 and H). This means in particular that Matching Cut is polynomial-time solvable even for (sP3 + P6)-free
graphs for every s ≥ 0.

In Section 6 we show some new hardness results of Matching Cut for H-free graphs. In the same section, we also
combine all our new results with known results to give a state-of-the-art summary of Matching Cut for H-free graphs. We
finish our paper with a number of open problems in Section 7.
34

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
2. Preliminaries

Let G = (V , E) be a graph. For a vertex u, we let N(u) = {v | uv ∈ E} denote the neighbourhood of u in G . Let S ⊆ V . The
neighbourhood of S in G is the set N(S) = ⋃

u∈S N(u) \ S . We let G[S] denote the subgraph of G induced by S , that is, G[S]
can be obtained from G after deleting the vertices of S . Moreover, S is a dominating set of G if every vertex of V \ S has at
least one neighbour in S . In that case we also say that G[S] dominates G . The domination number of a graph G is the size of
a smallest dominating set of G .

Recall that we denote the path on r vertices by Pr . We let Cs denote the cycle on s vertices. A bipartite graph with
non-empty partition classes V 1 and V 2 is complete if there exists an edge between every vertex of V 1 and every vertex of
V 2. We let Kn1,n2 denote the complete bipartite graph with partition classes of size n1 and n2, respectively. The graph K1,n2

denotes the star on n2 + 1 vertices.
We denote the disjoint union of two graphs G1 and G2 by G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We denote the

disjoint union of s copies of a graph G by sG .
When constructing matching cuts we will often use an equivalent definition in terms of vertex colourings (see also [7,8,

10]). Let G = (V , E) be a connected graph. A red-blue colouring of G colours every vertex of G either red or blue. A red-blue
colouring of G is valid if every blue vertex has at most one red neighbour; every red vertex has at most one blue neighbour;
and both colours red and blue are used at least once. We refer to Fig. 1 for an example.

For a red-blue colouring, we let R and B denote the sets that consist of all vertices coloured red or blue, respectively (so
V = R ∪ B). We call R the red set and B the blue set of the red-blue colouring. We let R ′ consist of all vertices in R that
have a (unique) blue neighbour, and similarly, we let B ′ consist of all vertices of B that have a (unique) red neighbour. We
call R ′ the red interface and B ′ the blue interface of the red-blue colouring.

From a matching cut M of a connected graph G we can construct a valid red-blue colouring by colouring the vertices
of one connected component of G − M red and all other vertices of G blue. Similarly, from a valid red-blue colouring we
can construct a matching cut by taking all edges with one end-vertex in the red interface and one end-vertex in the blue
interface. Hence, we can make the following observation, which as mentioned is well known.

Observation 1. A connected graph G has a matching cut if and only if G admits a valid red-blue colouring.

3. Auxiliary results

In the remainder of our paper, we use Observation 1 and mainly search for valid red-blue colourings. We need the
following lemma, which has been used (implicitly) to prove other results for Matching Cut as well, such as the result for
P5-free graphs [10]. We include a short proof for completeness.

Lemma 1. For every integer g, it is possible to find in O (2gng+2) time a valid red-blue colouring (if it exists) of an n-vertex graph with
domination number g.

Proof. Let g ≥ 1 be an integer, and let G be a graph with domination number at most g . Hence, G has a dominating set
D of size at most g . We consider all options of colouring the vertices of D red or blue; note that this number is 2|D| ≤ 2g .
For every red vertex of D with no blue neighbour, we consider all O (n) options of colouring at most one of its neighbours
blue (and thus all of its other neighbours will be coloured red). Similarly, for every blue vertex of D with no red neighbour,
we consider all O (n) options of colouring at most one of its neighbours red (and thus all of its other neighbours will be
coloured blue). Finally, for every red vertex in D with already one blue neighbour in D , we colour all its yet uncoloured
neighbours red. Similarly, for every blue vertex in D with already one red neighbour in D , we colour all its yet uncoloured
neighbours blue.

As D is a dominating set, the above means that we guessed a red-blue colouring of the whole graph G . We can check
in O (n2) time if a red-blue colouring is valid. Moreover, the total number of red-blue colourings that we must consider is
O (2gng). �

Consider a red-blue colouring of a graph G = (V , E). A subset S ⊆ V is monochromatic if every vertex of S has the same
colour. We need the following known lemma (see e.g. [10] which uses it implicitly); again we added a short proof for
completeness.

Lemma 2. Let D be a dominating set of a connected graph G. It is possible to check in polynomial time if G has a valid red-blue
colouring in which D is monochromatic.

Proof. Consider a valid red-blue colouring of G , in which D is monochromatic. Assume without loss of generality that every
vertex of D is coloured red. Let C be a connected component of G − D . If C is not monochromatic, then C has an edge
uv where u is red and v is blue. However, now v has at least two red neighbours, namely u and a neighbour in D (such
35

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
Fig. 2. An example of a graph G with a valid red-blue (S, T , X, Y)-colouring.

Fig. 3. An example of an application of rules R1–R3 that results in a 4-tuple (S, T , X, Y). The set S ′ consists of the thick red vertex and the set T ′ consists of
the thick blue vertex. Note that S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y , and that every valid red-blue (S ′, T ′, S ′, T ′)-colouring is a valid red-blue (S, T , X, Y)-colouring.

a neighbour exists, as D is a dominating set of G). This is a contradiction. Hence, the vertex set of every connected com-
ponent is monochromatic. Moreover, we may assume without loss of generality that the vertices of exactly one connected
component of G − D are coloured blue (else we can safely recolour the vertices of some connected component from blue to
red). Hence, we can check all O (n) options of choosing this unique blue connected component. For each option we check
in polynomial time if the obtained red-blue colouring is valid. �

Let G = (V , E) be a connected graph and S, T , X, Y ⊆ V be four non-empty sets with S ⊆ X , T ⊆ Y and X ∩ Y = ∅.
A red-blue (S, T , X, Y)-colouring of G is a red-blue colouring with a red set containing X ; a blue set containing Y ; a red
interface containing S and a blue interface containing T . Note that V \ (X ∪ Y) might be non-empty. Moreover, the red and
blue interfaces may also contain vertices not in S and T , respectively. We refer to Fig. 2 for an example.

Now, let S ′ and T ′ be two non-empty subsets of V with S ′ ∩ T ′ = ∅ such that every vertex of S ′ is adjacent to exactly
one vertex of T ′ , and vice versa. We call (S ′, T ′) a starting pair of G .

For a starting pair, Le and Le [15] define five propagation rules that we give below – in our terminology – as rules R1–R3.
The goal of these rules is to extend S ′ and T ′ by finding as many vertices as possible whose colour must be either red or
blue in any valid red-blue colouring with a red interface containing S ′ and a blue interface containing T ′ . We will place
any newly found red vertices in a set X that already contains S ′ and any newly found blue vertices in a set Y that already
contains T ′ . We let S be the subset of X consisting of red vertices with a blue neighbour in Y , and we let T be the subset
of Y consisting of blue vertices with a red neighbour in X . So it holds that S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y . The vertices of S
will belong to the red interface and the vertices of T will belong to the blue interface of the valid red-blue colouring that
we are trying to construct. Note that the vertices of X \ S and Y \ T may or may not belong to the red or blue interface (as
this depends on the colour of the uncoloured vertices in V \ (X ∪ Y), which we still have to determine).

We now state the propagation rules R1–R3. Initially we set X := S := S ′ and Y := T := T ′ . As mentioned, R1–R3 try to
put vertices of Z = V \ (X ∪ Y) into one of the sets S , X \ S , T or Y \ T . They are defined as follows (see Fig. 3 for an
example):

R1. Return no (that is, G has no valid red-blue (S ′, T ′, S ′, T ′)-colouring) if a vertex v ∈ Z is
• adjacent to a vertex in S and to a vertex in T , or
• adjacent to a vertex in S and to two vertices in Y \ T , or
• adjacent to a vertex in T and to two vertices in X \ S , or
• adjacent to two vertices in X \ S and to two vertices in Y \ T .

R2. Assume v ∈ Z and R1 does not apply. If v is adjacent to a vertex in S or to two vertices of X \ S , then move v from Z
to X . If moreover v is adjacent to a (unique) vertex w in Y , then also add v to S and w to T .

R3. Assume v ∈ Z and R1 does not apply. If v is adjacent to a vertex in T or to two vertices of Y \ T , then move v from Z
to Y . If moreover v is adjacent to a (unique) vertex w in X , then also add v to T and w to S .

Le and Le [15] proved the following two lemmas. The first lemma shows that rules R1–R3 are safe and is not difficult to
verify, whereas the second lemma is proven by a reduction to 2-Satisfiability. We slightly changed the formulation of their
36

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
lemma so that it can be applied to the case where the graph G may also have a valid red-blue colouring in which not every
connected component of G − (X ∪ Y) is monochromatic.

Lemma 3 ([15]). Let G be a graph with a starting pair (S ′, T ′). Assume that exhaustively applying rules R1–R3 did not lead to a
no-answer but to a 4-tuple (S, T , X, Y). The following holds:

(i) S ′ ⊆ S ⊆ X and T ′ ⊆ T ⊆ Y and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′, T ′, S ′, T ′)-colouring if and only if G has a valid red-blue (S, T , X, Y)-colouring (note that the backward

implication holds by definition), and
(iii) every vertex in V \ (X ∪ Y) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in Y \ T .

Moreover, the 4-tuple (S, T , X, Y) can be obtained in polynomial time.

Lemma 4 ([15]). Let G be a graph with a starting pair (S ′, T ′). Assume that exhaustively applying rules R1–R3 did not lead to a no-
answer but to a 4-tuple (S, T , X, Y). It can be decided in O (mn) time if G has a valid red-blue (S, T , X, Y)-colouring (or equivalently,
a valid red-blue (S ′, T ′, S ′, T ′)-colouring) in which every connected component of G − (X ∪ Y) is monochromatic.

Finally, we need one more result from the literature (which has been strengthened in [6]).

Theorem 3 ([21]). A graph G = (V , E) on n vertices is P6-free if and only if each connected induced subgraph of G contains a dominat-
ing induced C6 or a dominating (not necessarily induced) complete bipartite graph. Moreover, we can find such a dominating subgraph
of G in O (n3) time.

4. The proofs of Theorem 2 and Corollary 1

We first prove Theorem 2, which we restate below.

Theorem 2 (restated). For an integer r, Matching Cut is polynomial-time solvable for graphs of radius at most r if r ≤ 2 and NP-
complete for graphs of radius at most r if r ≥ 3.

Proof. The case where r ≥ 3 follows from Theorem 1 after observing that the class of graphs of diameter at most 3 is
contained in the class of graphs of radius at most 3. So assume now that r ≤ 2. Let G be a graph of radius at most r. If
r = 1, then G has a vertex that is adjacent to all other vertices. In this case G has a matching cut if and only if G has a
vertex of degree 1; we can check the latter condition in polynomial time. From now on, assume that r = 2. Then G has a
dominating star H , say H has centre u and leaves v1, . . . , vs for some s ≥ 1. By Observation 1 it suffices to check if G has a
valid red-blue colouring.

We first check if G has a valid red-blue colouring in which V (H) is monochromatic. By Lemma 2 this can be done
in polynomial time. Suppose we find no such red-blue colouring. Then we may assume without loss of generality that a
valid red-blue colouring of G (if it exists) colours u red and exactly one of v1, . . . , vs blue. That is, G has a valid red-blue
colouring if and only if G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring for some i ∈ {1, . . . , s}. We consider all O (n)

options of choosing which vi is coloured blue.
For each option we do as follows. Let vi be the vertex of v1, . . . , vs that we coloured blue. We define the starting pair

(S ′, T ′) with S ′ = {u} and T ′ = {vi} and apply rules R1–R3 exhaustively. The latter takes polynomial time by Lemma 3. If
this exhaustive application leads to a no-answer, then by Lemma 3 we may discard the option. Suppose we obtain a 4-tuple
(S, T , X, Y). By again applying Lemma 3, we find that G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring if and only if G
has a valid red-blue (S, T , X, Y)-colouring. By R2 and the fact that u ∈ S ′ ⊆ S we find that {v1, . . . , vs} \ {vi} belongs to X .

Suppose that G has a valid red-blue (S, T , X, Y)-colouring c such that G − (X ∪ Y) has a connected component D that is
not monochromatic. Then D must contain an edge uv , where u is coloured red and v is coloured blue. Note that v cannot
be adjacent to vi , as otherwise v would have been in Y by R3 (since vi ∈ T ′ ⊆ T). As H is dominating, this means that
v must be adjacent to a vertex w ∈ V (H) \ {vi} = {u, v1, . . . , vs} \ {vi}. As u ∈ S ′ ⊆ S ⊆ X and {v1, . . . , vs} \ {vi} ⊆ X , we
find that w ∈ X by R2 and thus will be coloured red. However, now v being coloured blue is adjacent to two red vertices
(namely u and w), contradicting the validity of c.

From the above we conclude that for any valid (S, T , X, Y)-colouring (if it exists), every connected component G −
(X, Y) is monochromatic. Hence, we can apply Lemma 4 to find in polynomial time whether or not G has a valid red-blue
(S, T , X, Y)-colouring, or equivalently, if G has a valid red-blue ({u}, {vi}, {u}, {vi})-colouring.

The correctness of our algorithm follows from the above arguments. As we branch O (n) times and each branch takes
polynomial time to process, the total running time of our algorithm is polynomial. �

We now prove Corollary 1, which we restate below.
37

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
Fig. 4. Left: an example of a generalized starting pair (S ′, T ′) with core (S ′′, T ′′), where S ′ consists of the two red vertices, S ′′ consists of the thick red
vertex, T ′ consists of the two blue vertices and T ′′ consists of the thick blue vertex. Right: the application of rules R1-R3 on (S ′, T ′). Note that the resulting
four tuple (S, T , X, Y) immediately results in a valid red-blue colouring. Hence, having some vertices in S ′ \ S ′′ and T ′ \ T , which are adjacent to a vertex
with an opposite colour, can help significantly.

Corollary 1 (restated). Matching Cut is polynomial-time solvable for P6-free graphs.

Proof. Let G be a connected P6-free graph. By Theorem 3, we find that G has a dominating induced C6 or a dominating (not
necessarily induced) complete bipartite graph Kr,s . By Observation 1 it suffices to check if G has a valid red-blue colouring.

If G has a dominating induced C6, then G has domination number at most 6. In that case we apply Lemma 1 to find
in polynomial time if G has a valid red-blue colouring. Suppose that G has a dominating complete bipartite graph H with
partition classes {u1, . . . , ur} and {v1, . . . , vs}. We may assume without loss of generality that r ≤ s.

If r ≥ 2 and s ≥ 3, then it is readily seen that applying rules R1–R3 on any starting pair ({ui}, {v j}) yields a no-answer.
Hence, V (H) is monochromatic for any valid red-blue colouring of G . This means that we can check in polynomial time by
Lemma 2 if G has a valid red-blue colouring.

Now assume that r = 1 or s ≤ 2. In the first case, G has a (not necessarily induced) dominating star and thus G has
radius 2, and we apply Theorem 2. In the second case, r ≤ s ≤ 2, and thus G has domination number at most 4, and we
apply Lemma 1. Hence, in both cases, we find in polynomial time whether or not G has a valid red-blue colouring. �
5. Extending Corollary 1

In this section we slightly generalize the framework of Le and Le [15] in order to obtain new algorithms for Matching
Cut on H-free graphs.

First we slightly generalize the definition of a starting pair (S ′, T ′) of a graph G . We still let S ′ and T ′ be two non-empty
subsets of V with S ′ ∩ T ′ = ∅. However, now we only require that every vertex of S ′ is adjacent to at most one vertex of T ′ ,
and vice versa, whilst at least one vertex of S ′ must be adjacent to a vertex of T ′ . We let S ′′ ⊆ S ′ consists of those vertices
of S ′ that have exactly one neighbour in T ′ . Similarly, we let T ′′ consists of those vertices of T ′ that have exactly one
neighbour in S ′ . We call (S ′, T ′) a generalized starting pair of G with core (S ′′, T ′′). Note that by definition, |S ′′| = |T ′′| ≥ 1.
See Fig. 4 for an example.

When we apply rules R1–R3, we first initiate by setting S := S ′′; X := S ′; T := T ′′; and Y := T ′; see also Fig. 4. The
following two lemmas can be readily checked by mimicking the proofs of Lemmas 3 and 4 given in [15].

Lemma 5. Let G be a graph with a generalized starting pair (S ′, T ′) with core (S ′′, T ′′). Assume that exhaustively applying rules R1–R3
did not lead to a no-answer but to a 4-tuple (S, T , X, Y). The following holds:

(i) S ′′ ⊆ S ⊆ X; S ′ ⊆ X; T ′′ ⊆ T ⊆ Y ; T ′ ⊆ Y ; and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring if and only if G has a valid red-blue (S, T , X, Y)-colouring, and

(iii) every vertex in V \ (X ∪ Y) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in Y \ T .

Moreover, the 4-tuple (S, T , X, Y) can be obtained in polynomial time.

Lemma 6. Let G be a graph with a generalized starting pair (S ′, T ′) with core (S ′′, T ′′). Assume that exhaustively applying rules R1–R3
did not lead to a no-answer but to a 4-tuple (S, T , X, Y). It can be decided in O (mn) time if G has a valid red-blue (S, T , X, Y)-
colouring (or equivalently, a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring) in which every connected component of G − (X ∪ Y) is
monochromatic.

We are now ready to prove the main result of this section.

Theorem 4. Let H be a graph. If Matching Cut is polynomial-time solvable for H-free graphs, then it is so for (H + P3)-free graphs.

Proof. Assume that Matching Cut is polynomial-time solvable for H-free graphs. Let G be a connected (H + P3)-free graph
with n vertices and m edges. We first check if G has a matching cut of size at most 2. We can do this in polynomial time
38

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
by considering all O (m2) options of choosing two edges. From now on we assume that G has no matching cut of size at
most 2; in particular this implies that G has no vertex of degree 1.

We may also assume that G has an induced subgraph G ′ that is isomorphic to H ; else we are done by our assumption.
Let G∗ be the graph obtained from G after removing every vertex of V (G ′) ∪ N(V (G ′)). As G ′ is isomorphic to H and G is
(H + P3)-free, G∗ is P3-free.

We continue as follows. We first consider all O (m) options of choosing an edge from E(G), one of whose end-vertices
we colour red and the other one blue. Afterwards, for each (uncoloured) vertex in G ′ we consider all options of colouring it
either red or blue. As G ′ is isomorphic to H , there are 2|V (H)| options of doing this. As H is a fixed graph, this is a constant
number. Now, for every red vertex u of G ′ with no blue neighbour, we consider all O (n) options of colouring at most one
of its neighbours blue (and thus all other not yet coloured neighbours of u will be coloured red). Similarly, for every blue
vertex v of G ′ with no red neighbour, we consider all O (n) options of colouring at most one of its neighbours red (and thus
all other neighbours of v will be coloured blue). Note that afterwards each vertex of V (G ′) ∪ N(V (G ′)) is either coloured
red or blue.

There are O (m2|V (H)|n|V (H)|) options in total of colouring the end-vertices of an edge in G and the vertices of G ′ . In each
option, we have at least one red vertex and at least one blue vertex. We now consider the options one by one.

Consider an option as described above. In particular, let e = uv be the chosen edge whose end-vertices we coloured
differently, say we coloured u red and v blue. We first check in polynomial time if every red vertex in this option has at
most one blue neighbour and if every blue vertex has at most one red neighbour. If one of these two conditions does not
hold, we discard the option. Now let S ′ consist of u and all red vertices of V (G ′) ∪ N(V (G ′)), and let T ′ consists of v and
all blue vertices of V (G ′) ∪ N(V (G ′)). We let S ′′ ⊆ S ′ consist of all red vertices that have (exactly) one blue neighbour, and
we let T ′′ ⊆ T ′ consist of all blue vertices that have (exactly) one red neighbour. By construction (recall that we started
with picking an edge whose end-vertices we coloured differently), |S ′′| = |T ′′| ≥ 1. Hence, we can consider (S ′, T ′) as a
generalized starting pair with core (S ′′, T ′′).

Our algorithm will now check if G has a valid (S ′′, T ′′, S ′, T ′) red-blue colouring by applying rules R1–R3 exhaustively.
If we find a no-answer, then we can discard the option by Lemma 5. Otherwise, we found in polynomial time, again by
Lemma 5, a 4-tuple (S, T , X, Y), for which the following holds:

(i) S ′′ ⊆ S ⊆ X ; S ′ ⊆ X ; T ′′ ⊆ T ⊆ Y ; T ′ ⊆ Y ; and X ∩ Y = ∅,
(ii) G has a valid red-blue (S ′′, T ′′, S ′, T ′)-colouring if and only if G has valid red-blue (S, T , X, Y)-colouring, and

(iii) every vertex in V \ (X ∪ Y) has no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour in
Y \ T .

We now prove the following claim.

Claim. All connected components of G − (X ∪ Y) are monochromatic in every valid red-blue (S, T , X, Y)-colouring of G.

We prove the claim as follows. For a contradiction, assume G has a valid red-blue (S, T , X, Y)-colouring, for which at
least one connected component F of G − (X ∪ Y) is not monochromatic. As V (G ′) ∪ N(V (G ′)) ⊆ S ′ ∪ T ′ and S ′ ⊆ X and
T ′ ⊆ Y , we find that V (F) belongs to G∗ (recall that G∗ is the P3-free graph obtained from G after deleting the vertices of
V (G ′) ∪ N(V (G ′))). Hence, F is P3-free and thus as F is connected, F must be a complete graph. If F consists of one vertex
or at least three vertices, then F must be monochromatic. Hence, F consists of exactly two vertices x and y.

By statement (iii), both x and y have no neighbour in S ∪ T ; at most one neighbour in X \ S and at most one neighbour
in Y \ T . If x and y have a common neighbour, then F must be monochromatic. If one of them, say x, has a neighbour
in both X \ S and a neighbour in Y \ T , then y must be coloured with the same colour as x and thus again F must be
monochromatic. As G has minimum degree 2, this means that x and y each have exactly one neighbour in X ∪ Y , and these
two vertices in X ∪ Y must be different.

Let x′ be the unique neighbour of x in X ∪ Y , and let y′ be the unique neighbour of y in X ∪ Y , so x′ �= y′ . However,
now we find that G has a matching cut of size 2, namely the set {xx′, yy′}, a contradiction. This completes the proof of the
claim. �
Due to the above claim, we can now check in polynomial time, by using Lemma 6, whether G has a valid red-blue
(S, T , X, Y)-colouring in which every connected component in G − (X ∪ Y) is monochromatic. If so, then we are done,
and else we discard the option.

The correctness of our algorithm follows from its description. As the total number of branches is O (m2|V (H)|n|V (H)|) and
we can process each branch in polynomial time, the total running time of our algorithm is polynomial. Hence, we have
proven the theorem. �

Bonsma [4] proved that Matching Cut is polynomial-time solvable for the class of claw-free graphs, that is, K1,3-free
graphs. By combining, respectively, Corollary 1 and Bonsma’s result with s applications of Theorem 4 we obtain the following
result.
39

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
Theorem 5. For every integer s ≥ 0, Matching Cut is polynomial-time solvable for (sP3 + P6)-free graphs and for (sP3 + K1,3)-free
graphs.

6. A partial complexity classification for H-free graphs

The girth of a graph that is not a tree is the length of a shortest cycle in it. Bonsma [4] proved that Matching Cut is
NP-complete for planar graphs of girth 5, and thus for Cr -free graphs with r ∈ {3, 4}. Hence, Matching Cut is NP-complete
for H-free graphs whenever H contains a C3 or C4. Le and Randerath [16] proved that Matching Cut is NP-complete for
bipartite graphs of minimum degree 3 and maximum degree 4. Consequently, Matching Cut is NP-complete for H-free
graphs whenever H contains an odd cycle. We use a result of Moshi [19] to prove the same for the case where H has a not
necessarily odd cycle.

Let uv be an edge in a graph G . We replace the edge by two new vertices w1 and w2 and edges uw1, uw2, v w1 and
v w2. We call this operation a K2,2-replacement and denote the resulting graph by Guv ; see also Fig. 5. We can now state
the following lemma.

Lemma 7 ([19]). For any edge uv of a graph G, the graph G has a matching cut if and only if Guv has a matching cut.

We can show the following result.

Lemma 8. For every graph H that is not a forest, Matching Cut is NP-complete for H-free graphs.

Proof. Let H be a graph that is not a forest. Then H has a cycle C� . As C�-free graphs form a subclass of H-free graphs,
we only need to prove the lemma for C�-free graphs. As Matching Cut is NP-complete for bipartite graphs (of diameter at
most 4) due to the aforementioned result of Le and Le [15], we may assume that � is even, say � = 2r for some r ≥ 2.

We prove by induction that Matching Cut is NP-complete for C2r -free graphs for every r ≥ 2. If r = 2, this follows
immediately from the aforementioned NP-completeness result of Bonsma [4] for planar graphs of girth 5, which are C4-
free. Assume that r ≥ 3. We reduce from Matching Cut for Cr -free graphs, for which the problem is NP-complete: if r is
odd this follows from the above; and if r is even this follows from the induction hypothesis. Let G be a Cr -free graph. Apply
a K2,2-replacement on every edge of G . The resulting graph is C2r -free and by Lemma 7, it has a matching cut if and only
if G has a matching cut. �

For two graphs G1 and G2 we write G1 ⊆i G2 if G1 is an induced subgraph of G2. Let H∗ be the “H”-graph, which is the
graph with vertices a1, b1, c1, a2, b2, c2 and edges aibi , bici (i = 1, 2) and b1b2. We can now show the following summary
theorem; see also Fig. 6.

Theorem 6. For a graph H, Matching Cut on H-free graphs is

– polynomial-time solvable if H ⊆i sP3 + K1,3 or sP3 + P6 for some s ≥ 0, and
– NP-complete if H ⊇i Cr for some r ≥ 3, K1,4 , P19 , 4P5 or H∗ .

Proof. The polynomial-time solvable cases follow from Theorem 5. If H has a cycle, then we apply Lemma 8. Now suppose
that H has no cycle so H is a forest. First suppose that H is a forest that contains a vertex of degree at least 4. Then H
contains an induced K1,4, and thus the class of H-free graphs contains the class of K1,4-free graphs. The result then follows
from the aforementioned result of Chvátal [8], which in fact shows that Matching Cut is NP-complete even for K1,4-free
graphs, as observed by Bonsma [4] and Kratch and Le [14]. The remaining three results are proven in [17]. �

Every forest that is Pr -free for some positive constant r and that has maximum degree at most 4 has a constant-bounded
diameter, so has constant size. Hence, Theorem 6 has the following consequence.

Corollary 2. There only exists a finite number of connected graphs H for which the computational complexity of Matching Cut is
open when restricted on H-free graphs.

7. Conclusions

We gave a complexity dichotomy for Matching Cut for graphs of bounded radius and proved a number of new results on
the complexity of Matching Cut for H-free graphs. We summarized all the known results for H-free graphs in Theorem 6
and showed that although there still exists an infinite number of unresolved cases, the number of open cases where H is a
connected graph is finite.
40

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
Fig. 5. The K2,2-replacement applied on edge uv .

Fig. 6. The graphs P3 + P6 (left) and P3 + K1,3 (right).

We finish our paper with a number of open problems. Recall that Le and Le [15] showed that Matching Cut for bipartite
graphs of diameter at most d is polynomial-time solvable if d ≤ 3 and NP-complete for d ≥ 4. Their hardness construction
has radius 4, and we therefore pose the following open problem:

Open Problem 1. Determine the complexity of Matching Cut for bipartite graphs of radius 3.

A standard ingredient of determining the complexity of a problem for H-free graphs is to first consider classes of large
girth. If a problem is NP-complete for graphs of girth at least g , for every fixed integer g ≥ 3, then it is NP-complete for
H-free graphs whenever H has a cycle; just take g to be larger than the length of a largest cycle in H . However, to prove
Lemma 8 we could only use the result of Bonsma [4] for (planar) graphs of girth 5 and had to rely on the construction of
Moshi [19] to show hardness if H has a cycle of length at least 5. Hence, we believe the following open problem of Le and
Le [15] is interesting.

Open Problem 2 ([15]). Determine for every g ≥ 6, the complexity of Matching Cut for graphs of girth g.

For K1,t -free graphs, the complexity of Matching Cut is fully determined (see Theorem 6) with the problem becoming
NP-complete for t ≥ 4. On the positive side, Kratsch and Le [14] proved that Matching Cut can be solved in polynomial
time for K1,4-free graphs that in addition are also (K1,4 + e)-free, where K1,4 + e is the graph obtained from K1,4 by adding
an edge between two of its leaves. We finish our paper with the following open problem, for which we identified some
borderline cases; the chair is the graph obtained from the claw K1,3 after subdividing one of its edges exactly once.

Open Problem 3. Complete the classification of Matching Cut for H-free graphs; in particular what is the complexity of Matching
Cut for chair-free graphs, 2P4-free graphs and P7-free graphs?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] J. Araújo, N. Cohen, F. Giroire, F. Havet, Good edge-labelling of graphs, Discrete Appl. Math. 160 (2012) 2502–2513.
[2] N.R. Aravind, S. Kalyanasundaram, A.S. Kare, On structural parameterizations of the matching cut problem, in: Proc. COCOA 2017, in: LNCS, vol. 10628,

2017, pp. 475–482.
[3] N.R. Aravind, R. Saxena, An FPT algorithm for matching cut and d-cut, in: Proc. IWOCA 2021, in: LNCS, vol. 12757, 2021, pp. 531–543.
[4] P.S. Bonsma, The complexity of the matching-cut problem for planar graphs and other graph classes, J. Graph Theory 62 (2009) 109–126.
[5] M. Borowiecki, K. Jesse-Józefczyk, Matching cutsets in graphs of diameter 2, Theor. Comput. Sci. 407 (2008) 574–582.
[6] E. Camby, O. Schaudt, A new characterization of Pk-free graphs, Algorithmica 75 (2016) 205–217.
[7] C. Chen, S. Hsieh, H. Le, V.B. Le, S. Peng, Matching cut in graphs with large minimum degree, Algorithmica 83 (2021) 1238–1255.
[8] V. Chvátal, Recognizing decomposable graphs, J. Graph Theory 8 (1984) 51–53.
[9] A.M. Farley, A. Proskurowski, Networks immune to isolated line failures, Networks 12 (1982) 393–403.

[10] C. Feghali, A note on matching-cut in Pt -free graphs, Inf. Process. Lett. 179 (2023) 106294.
[11] P.A. Golovach, D. Paulusma, J. Song, Computing vertex-surjective homomorphisms to partially reflexive trees, Theor. Comput. Sci. 457 (2012) 86–100.
[12] R.L. Graham, On primitive graphs and optimal vertex assignments, Ann. N.Y. Acad. Sci. 175 (1970) 170–186.
[13] C. Komusiewicz, D. Kratsch, V.B. Le, Matching cut: kernelization, single-exponential time fpt, and exact exponential algorithms, Discrete Appl. Math.

283 (2020) 44–58.
[14] D. Kratsch, V.B. Le, Algorithms solving the matching cut problem, Theor. Comput. Sci. 609 (2016) 328–335.
41

http://refhub.elsevier.com/S0304-3975(22)00549-7/bibF7CF9AC6CC362154A92F3E2227CA9029s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib599D09ED9A2B2186E7C15713A52F7308s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib599D09ED9A2B2186E7C15713A52F7308s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibB1A5411BC0BB0EC60519640C3FD220ADs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib9CB6CC6A31764CD0DB16B08F0965B51As1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib03EC02384D578C587D9FA5F095D74BAAs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib75D1217AC4C2290F1D466CFA2FD7E4CAs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibE90C8169A102D83F935603CDE6E34B24s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib1FCFE4706DF1C231E3660507007CA469s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib37A22B3FD1CDA081154D23987521F72Ds1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibD684F8322B7404CD384BF1E425D9356Es1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib99D03151E48CA240C7E1CA31AF2E75ACs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibF6B71F22919682E591863BF331A61F88s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib01A8217F184626ADC2A35BFFDC3F198Fs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib01A8217F184626ADC2A35BFFDC3F198Fs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib3857C3175A241DF178727C534BBF8B30s1

F. Lucke, D. Paulusma and B. Ries Theoretical Computer Science 936 (2022) 33–42
[15] H. Le, V.B. Le, A complexity dichotomy for matching cut in (bipartite) graphs of fixed diameter, Theor. Comput. Sci. 770 (2019) 69–78.
[16] V.B. Le, B. Randerath, On stable cutsets in line graphs, Theor. Comput. Sci. 301 (2003) 463–475.
[17] F. Lucke, D. Paulusma, B. Ries, Finding matching cuts in H-free graphs, in: Proc. ISAAC 2022, LIPIcs, in press.
[18] G.B. Mertzios, P.G. Spirakis, Algorithms and almost tight results for 3-colorability of small diameter graphs, Algorithmica 74 (2016) 385–414.
[19] A.M. Moshi, Matching cutsets in graphs, J. Graph Theory 13 (1989) 527–536.
[20] M. Patrignani, M. Pizzonia, The complexity of the matching-cut problem, in: Proc. WG 2001, in: LNCS, vol. 2204, 2001, pp. 284–295.
[21] P. van ’t Hof, D. Paulusma, A new characterization of P6-free graphs, Discrete Appl. Math. 158 (2010) 731–740.
42

http://refhub.elsevier.com/S0304-3975(22)00549-7/bib422DF8A2E8DBFDD15FE249728E9F1BD5s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib9C8EC355701277821677841789E31887s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibEC5AFBABF7771B36727F7627A74F341Es1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibE6F33520AA0EC4DE44DEA596E703484Bs1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bib7942796CD2E81493A6246F0DB05FFF34s1
http://refhub.elsevier.com/S0304-3975(22)00549-7/bibB96AB4220D49B7682F6789AF70369EE8s1

	On the complexity of matching cut for graphs of bounded radius and H-free graphs
	1 Introduction
	1.1 Our results

	2 Preliminaries
	3 Auxiliary results
	4 The proofs of Theorem 2 and Corollary 1
	5 Extending Corollary 1
	6 A partial complexity classification for H-free graphs
	7 Conclusions
	Declaration of competing interest
	References

