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Simple Summary: In normal cells, p53 is a protein which regulates the cell cycle progression to
ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA
sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting
advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the
p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As
a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing
cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge
of these strategies is important in improving the overall therapeutic response of cancers with mutant
p53. This review highlights new strategies and discusses the progression of such therapies.

Abstract: TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53
expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have
oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they
can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In
this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy.
As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to
explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches
include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways,
p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and
challenges of these strategies are discussed.
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1. p53 and Mutations in Cancers

p53 is a tumour suppressor protein and nuclear transcription factor (53 kDa) regulating
target genes and involved in apoptosis, senescence, cell cycle arrest, and DNA repair. In
response to low doses of genomic stress, both extrinsic (e.g., UV-induced DNA damage)
and intrinsic (e.g., chromosomal aberrations), p53 regulates cell cycle arrest to allow for
DNA repair [1–3]. In response to high doses of stress, p53 is more likely to promote
apoptosis. Importantly, many chemotherapeutics act by inducing this stress-induced cell
death function of p53 to destroy tumour cells.

In the absence of stress, p53 protein expression is kept at low levels [4]. This is facilitated
by the E3 ubiquitin ligase MDM-2 (mouse double minute-2) that ubiquitinates p53 leading
to its degradation. In response to DNA damage, p53 is released from MDM2 suppression
allowing for p53-mediated transcription. MDM-2 limits p53 expression whilst p53 directly
promotes MDM-2 expression. This creates an autofeedback loop that allows for a fast and
dynamic signalling response to react to differences in stress quickly (Figure 1) [5,6].

TP53 mutation occurs in ~50–60% of all human cancers and can result in both the
absence of protein expression or the expression of a mutated protein [7]. p53 mutational
status within tumours is heterogeneous and the onset of TP53 mutations can vary greatly
in different cancers. As an example, in colorectal [8], breast [9], and pancreatic [10] cancers,
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TP53 mutation is marked as a late stage tumourigenic event aiding more with tumour
progression than with tumour initiation, while in pre-malignant breast lesions [11], hepato-
cellular carcinoma [12], and in astrocytoma [13] TP53 mutations present during the early
stages of tumorigenesis.
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Figure 1. p53 and mouse double minute-2 (MDM2) auto-feedback loop. DNA damage and cellular 
stress increase p53 expression and facilitate its nuclear import. This allows for p53′s transcriptional 
activation of target genes, including MDM2. p53-induced MDM2 activation then results in p53 bind-
ing to MDM2 and its proteasomal degradation. 
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Unlike most other tumour suppressor genes, TP53 mutations often affect a single al-
lele with loss of expression from the remaining allele [14]. This occurs via deletion of part 
of chromosome 17p [15], methylation of the second allele [16], or through additional mu-
tations [17]. Principally, whilst the presence of TP53 mutations span across almost all of 
its 393 aa residues (Figure 2), the specificity and frequency of the >25,000 registered TP53 
mutations can be differential based on the tumour type, with individual mutants often 
showing different phenotypical changes [18,19]. Importantly, most mutations are found 
in the DNA-binding domain (DBD) with six hotspot mutations at codons 175, 245, 248, 
249, 273, and 282 (Figure 2) [14,20]. 

 
Figure 2. TP53 structure and mutation distribution (%) within the DNA-binding domain (DBD). The 
frequency of each mutation in all cancers based on the p53 database (www.p53.fr) is indicated for 
the DBD of TP53. Amino acid positions are indicated below the domains. Five TP53 hotspot muta-
tion sites are further indicated with codon numbers above the bars. TA = transactivation domain; 
PRR = proline-rich region; DBD = DNA-binding domain; TD = tetramerization domain; CTD = car-
boxyl terminal regulatory domain. 

TP53 mutations can cause truncations or frameshifts in TP53 that almost always re-
sult in loss of p53 expression. Missense mutations generally result in expression of mutant 
proteins with one amino acid variation from WT p53 [14,18]. This generates a stable mu-
tant p53 protein with longer half-life, seen as increased expression in human cancers [21]. 
These mutant proteins, including all hotspots, can have alterations in the protein’s struc-
ture such as unfolding of the DBD (conformational/structural mutants) [22] or a decreased 
DNA binding ability (contact mutants) [18]. 

Mutant p53 proteins often lose some or all of p53′s tumour suppressive function (loss-
of-function, LOF) but may also acquire gain-of-function (GOF). This GOF resembles an 
oncogenic phenotype and is independent of WT p53 [18]. We and others have shown that 
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Figure 1. p53 and mouse double minute-2 (MDM2) auto-feedback loop. DNA damage and cellular
stress increase p53 expression and facilitate its nuclear import. This allows for p53’s transcriptional
activation of target genes, including MDM2. p53-induced MDM2 activation then results in p53
binding to MDM2 and its proteasomal degradation.

Unlike most other tumour suppressor genes, TP53 mutations often affect a single
allele with loss of expression from the remaining allele [14]. This occurs via deletion of
part of chromosome 17p [15], methylation of the second allele [16], or through additional
mutations [17]. Principally, whilst the presence of TP53 mutations span across almost all of
its 393 aa residues (Figure 2), the specificity and frequency of the >25,000 registered TP53
mutations can be differential based on the tumour type, with individual mutants often
showing different phenotypical changes [18,19]. Importantly, most mutations are found in
the DNA-binding domain (DBD) with six hotspot mutations at codons 175, 245, 248, 249,
273, and 282 (Figure 2) [14,20].
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Figure 2. TP53 structure and mutation distribution (%) within the DNA-binding domain (DBD).
The frequency of each mutation in all cancers based on the p53 database (www.p53.fr) is indicated
for the DBD of TP53. Amino acid positions are indicated below the domains. Five TP53 hotspot
mutation sites are further indicated with codon numbers above the bars. TA = transactivation domain;
PRR = proline-rich region; DBD = DNA-binding domain; TD = tetramerization domain; CTD = carboxyl
terminal regulatory domain.

TP53 mutations can cause truncations or frameshifts in TP53 that almost always result
in loss of p53 expression. Missense mutations generally result in expression of mutant
proteins with one amino acid variation from WTp53 [14,18]. This generates a stable mutant
p53 protein with longer half-life, seen as increased expression in human cancers [21]. These
mutant proteins, including all hotspots, can have alterations in the protein’s structure such
as unfolding of the DBD (conformational/structural mutants) [22] or a decreased DNA
binding ability (contact mutants) [18].

Mutant p53 proteins often lose some or all of p53’s tumour suppressive function
(loss-of-function, LOF) but may also acquire gain-of-function (GOF). This GOF resembles
an oncogenic phenotype and is independent of WTp53 [18]. We and others have shown
that mutant p53 promotes invasion and metastasis, tumour growth, genomic instability
and chemoresistance [23–26], via a multitude of different mechanisms (reviewed in [27–30]).
Mutant p53 proteins can further have dominant-negative effects over the remaining WT
protein [20,28]. This was attributed to mutp53’s ability to form hetero–tetramer complexes

www.p53.fr
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with the WTp53 protein [20], causing multimer inactivation [31]. This was seen for both
contact and conformational p53 mutants [20].

2. Mutant p53 and Chemoresistance

Mutp53 forms a challenging anti-cancer therapeutic target, mainly due to its lack of
druggable allosteric sites, the occurrence of thermodynamically disrupted states as well as
its intrinsic ability to confer drug resistance [24,32,33].

The association between mutp53 expression and decreased chemosensitivity is seen
in various primary cancers, including breast [34], ovarian [35], lung [36], and hematopoi-
etic [37]. Loss of WTp53 expression can underlie this chemoresistance, but there are also
ways in which mutant p53 acquires chemoresistance via its GOF [33]. Mechanisms include,
but are not limited to, upregulation of drug transporters, enhanced DNA repair, activation
of stemness, apoptosis avoidance, and drug inactivation (Figure 3).
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Figure 3. Examples of ways in which mutant p53 promotes chemoresistance. Mutant p53 can impact
various cellular processes to prevent chemotherapeutics drugs from working. It can neutralize
chemotherapy, promote efflux and impair the way in which these drugs promote cancer cell death.
This figure shows examples of these pathways.

To limit toxicity of drugs, mutp53 can directly act on drug availability by regulating
drug efflux or drug stability. Mutp53 promotes expression of the (MDR1) gene encoding
for the ATP-binding cassette (ABC) transmembrane transporter ABCB1/P-glycoprotein
(P-gp) [38]. P-gp extrudes xenobiotic substances/toxic compounds and chemotherapeutic
drugs [39]. The transcriptional upregulation of P-gp in cancer is driven by GOF-mutp53’s
direct binding to MDR1′s promoter [40]. This enhances drug efflux, reduces drug absorp-
tion, and minimizes drug retention/accumulation, causing resistance to anti-cancer drugs,
such as taxanes (paclitaxel), vinca alkaloids (vinblastine), and anthracyclines (daunoru-
bicin) [41]. Of note, other ABC transporters such as ABCG2 can also be upregulated by
mutant p53 to enhance secretion of 5-flouracil (5-FU) [42]. Interestingly, mutant p53 does
not only regulate the gene expression of such transporters. We recently discovered that
mutp53 also specifically enhances plasma membrane expression of P-gp and ATP7B in
response to cisplatin and etoposide to enhance efflux, perhaps working in concert with
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transcriptional regulation of such transporters [24,26]. GOF-mutp53 (R248W and R282W)
can also directly inactivate chemotoxic drugs by upregulating cytochrome P450 enzyme
3A4 (CYP3A4) that help neutralize these drugs [43].

In order to limit toxicity of drugs, mutp53 intercepts in many downstream signalling
pathways. In response to drug-induced DNA damage, mutant p53 promotes DNA repair.
As an example, GOF-mutp53 (R175H and R248Q) promoted etoposide resistance by en-
hancing tyrosyl-DNA phosphodiesterase 2′s (TDP2) expression in lung cancer cells in an
Ets2 dependent manner [44]. TDP2 in turn repaired etoposide induced double-strand DNA
breaks [45], resulting in chemoresistance. Likewise, GOF-mutp53 upregulated the expres-
sion of O(6)-methylguanine-DNA-methyltransferase (MGMT) in glioblastoma, enabling
the repair of alkylation induced DNA damage by temozolomide [46]. Mutp53 can also
directly or indirectly prevent apoptosis. Transcriptionally, it can upregulate Nrf2 (nuclear
factor erythroid 2-related factor 2) in response to cisplatin to induce expression of the anti-
apoptotic mitochondrial genes: Bcl2 and Bcl-xL [47]. Alternatively, GOF-mutp53’s apoptotic
resistance can also occur via direct inhibition of caspases 8 and 9 [48–50] or through tran-
scriptional upregulation of miRs that target the apoptosis machinery [51]. Many of the
chemotherapeutics are known to cause autophagic cell death through apoptosis. Mutp53
can avoid apoptosis by inducing autophagy via the mTor/AMPK signalling pathway [52],
although autophagy itself also regulates mutp53 expression (see Section 3.1.2).

It is likely that in an actual cancer, mutant p53 employs one or more of these mech-
anisms to combat chemotherapeutics, resulting in selection for p53 mutations. In fact,
selection of mutp53 is driven by the fact that mutp53 actively promotes stemness [53].
This could be seen as promoting chemoresistance because cancer stem cells are relatively
quiescent and therefore less vulnerable to chemotherapy that predominantly acts on highly
proliferative cells [53].

3. Strategies That Exploit Mutant p53 Expression

Numerous current and previous studies have explored targeted treatment strategies
that either directly target mutp53 or exploit the cancers’ dependence on pathways that
rely on mutp53 expression [54]. However, so far, very few of these have progressed to pre-
clinical/clinical trial studies and many have resorted to trialling combinations of various
treatments.

In this review, we provide an updated review on potential therapeutic strategies, both
current and new, that can be employed in mutp53-bearing cancers. The reviewed strategies
are grouped under the three main types of p53 specific anti-cancer treatment approaches:
mutant p53-targeted therapy, gene delivery therapy, and immunotherapy (Figure 4). We
also discuss the option to combine these therapies.

3.1. Mutant p53-Specific Targeted Therapy

Most mutant p53 targeting strategies in cancers have focused on incorporating one of
three key mechanisms: reactivation of mutp53 into a WTp53-like state [55–57], degradation
of mutp53 [58–60], or perturbation of mutp53’s function while reactivating WT function [61].
These mechanisms are appealing because expression of mutant p53 in cancers is often high,
whereas WTp53 expression in normal tissue is low [62], allowing for specific targeting of
mutant p53 with minimal side effects.
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3.1.1. Reactivating Mutant p53 to Behave like a WT Molecule

Most common p53 missense mutations, including all hotspots have a complete or
partial loss of WT function [63,64]. Many mutants exist in a distorted conformation that
prevents them from binding to the DNA and exert p53 function. The p53 hotspot mutant
R175H, a conformational mutant, has been most extensively studied. Murine studies
showed that expressing WTp53 or restoring WTp53 expression causes tumour regres-
sion [56], tumour clearance [57], senescence [55,57] and increased survival [56], suggesting
that reactivation therapies in which mutants are converted to a WT molecule could work
in vivo.

The earliest discovery of a small molecule compound that was reported to medi-
ate mutp53 reactivation was CP31398 [65,66]. The compound was initially suggested to
bind to mutp53’s core domain [66], although a later study contested this binding and
instead suggested the compound functioned as a DNA intercalating agent that exhibits
both p53-dependent and -independent anti-tumour activity [67]. Subsequent studies then
discovered molecules such as PRIMA-1, APR-246, MIRA-1, and STIMA-1, which are called
Michael acceptors due to their ability to bind covalently with p53’s cysteine residues [68,69].
This results in an enhanced thermal stability of reactivated mutp53 in a WTp53-like fold-
ing state [69] and tumour growth inhibition [65,70,71]. APR-246, the methylated form
of PRIMA-1 is one of the few p53 specific targeted therapies which has progressed to
clinical trials [65,70,72]. Another p53-specific targeted therapy in clinical trials is COTI-2,
a thiosemicarbazone compound, which primarily induces Zn+2 chelation-mediated p53
refolding, restoring p53’s DNA binding capacity [73,74]. However, the molecule’s pro-
apoptotic effect was reported to be both p53-dependent and -independent in pre-clinical
models [73,75]. More recently, arsenic trioxide, a cysteine reactive compound stabilizes
the DNA-binding loop–sheet–helix motif alongside the overall β-sandwich fold of p53
structural mutants through covalent binding [76]. This drug restored p53’s transcriptional
activity both in vitro and in vivo and is currently in clinical trial for patients with AML
(acute myeloid leukaemia) [76,77].
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Compounds that target specific p53 mutants using covalent binding have also been
developed. PK083 and PK7088 were synthesized to target the base substitution-induced
cavity in hotspot Y220C p53 mutants [71]. In particular, PK7088 was found to promote
re-folding of the Y220C p53 mutant with subsequent induction of p53 target genes’ (p21
and NOXA) expression [71].

Compounds such as SCH529074 [78] and peptides like CDB3 [79] were developed to
act as chaperones by non-covalently binding to mutp53’s DBD and consequently restoring
WTp53 activity. Interestingly, a similar non-covalent binding could also be demonstrated
by using peptides such as pCAPs, that change the equilibrium between unfolded and
folded p53 states with their stronger binding affinity (non-covalent) to WTp53 over mutp53
(R175H and R273H) [80].

The interest of researchers in almost all of these drugs originates from the notion that
mutp53 expression in cancers is so high that, upon conversion into a WTp53-like molecule,
a death response is likely initiated, making such compounds likely to act even in the
absence of additional therapies. However, they are generally explored in conjunction with
conventional chemotherapy to further enhance WTp53-dependent cell death. Although
these compounds were designed to target structural mutants, DNA contact mutants as well
as WTp53 can under certain conditions unfold (e.g., in hypoxia) [81]. This would suggest
that these compounds could target other mutants, dependent on the tumour environment.

In many tumours, instead of missense mutations, p53 expression is lost due to non-
sense TP53 mutations, such as Q192X and E298X, resulting in truncated p53 mRNA expres-
sion, nonsense mediated mRNA decay (NMD), and subsequent loss of protein expression.
Compounds like Ataluren [82] and aminoglycoside Geneticin (G418) [83] were reported to
induce enhanced translational readthrough of the p53 mutants, resulting in the translation
of full-length p53 protein that was functionally active. However, the potential high cyto-
toxicity of read-through-inducing treatments such as G418 remains a major challenge for
long-term clinical application [84].

3.1.2. Induction of Mutp53 Degradation

Although counterintuitive at first glance, mutant p53 degradation strategies are also
explored as a mutp53 targeting strategy in the clinic [60,77,85–89]. The idea behind removal
strategies is that mutp53 causes genetic changes in the cancer cells that make them depen-
dent on mutp53 expression [90]. Many cell lines in which mutp53 expression is severely
reduced are impaired in growth and do not survive when xenografted in mice [91,92].
Importantly, loss of mutp53 expression in vivo also resulted in decreased tumour growth
and tumour regression [93,94].

As the use of CRISPR or RNAi in the clinic is still mainly exploratory, many researchers
have focused on decreasing mutp53 stability with drugs. In particular, the inhibition of
Heat-shock protein 90 (Hsp90) and Histone deacetylase 6 (HDAC6) chaperone complex
which stabilizes mutp53 remains the most studied method for mutp53 degradation. Mech-
anistically, the Hsp90 protein conceals the ARF-binding site of MDM2 protein, preventing
p53 degradation [58]. The earliest use of an Hsp90 inhibitor, Geldanamycin, in mutp53
cancer cell lines reduced mutant p53 expression and concomitantly refolded mutp53 into a
more WT-like conformation [95]. Similarly, Hsp90 inhibition by 17AAG (17-allylamino-17-
demethoxygeldanamycin) activated MDM-2 and another mutp53 targeting E3 ubiquitin
ligase, CHIP (carboxy-terminus of Hsp70-interacting protein), to degrade mutp53 [60]. No-
tably, Ganetespib, a more potent Hsp90 inhibitor was in a Phase III clinical trial GALAXY-2
for patients with advanced NSCLC, but has been terminated early due to lack of significant
improvement in overall survival [96].

HDAC6 is believed to activate Hsp90 and promote Hsp90′s inhibition of MDM2 and
CHIP [97] and is therefore also of interest to destabilize mutp53. Indeed, inhibitors such
as FR901228, the FDA approved drug SAHA [59], A542 and trichostatin A caused Hsp90-
dependent mutp53 depletion [98]. In contrast to proteasomal degradation, SAHA was
shown to cause mutp53 degradation through autophagy [99]. Spautin-1′s inhibition of
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macro autophagy and consequent activation of chaperone-mediated autophagy (CMA)
caused lysosomal uptake and degradation of mutp53 upon nutrient deprivation [100].

In 2012, Freed-Pastor et al. reported that GOF-mutp53 regulated the mevalonate
pathway to promote tumorigenesis [101]. Statins inhibit this pathway and were studied as
agents that block mutp53 downstream signalling. More recently, statins were also found
to destabilize mutant p53 through DNAJA1 and CHIP-mediated ubiquitination [102]. A
retrospective study investigating statin use in lung cancer, found that the usage of statins
reduced the 5-year mortality [103]. It would be interesting to see if this changes dependent
on p53 status in these cancers.

Numerous other compounds promote degradation of mutp53, including, but not
limited to, disulfiram [104], YK-3-237 [105], arsenic trioxide [106], NSC59984 [107], and
gold nanoparticles [108], although the specificity, the exact mechanism of degradation
and/or the clinical use of such compounds needs further investigation.

3.1.3. Disruption of Mutp53 Function

Mutp53 function often relies on binding partner proteins. These include other tran-
scription factors, the p53 family members p63 and p73, ETS1, SREBP, but also other proteins
such as Pin1 [109]. Binding of mutp53 to these proteins either inhibits their function (e.g.,
p53 family members) or potentiates their function (e.g., ETS1). Mutp53 treatment strategies
aim to prevent these interactions or disturb downstream signalling.

p63 and p73 are p53 homologs and exist in different isoforms in various tissues and
tumours [110,111]. In humans, p63 is important for embryonic development, differentiation
and for epithelial cell maintenance [112–115]. Likewise, p73 regulates cytoskeletal rear-
rangement [116], cell adhesion [117,118], ciliogenesis [119], and planar cell polarity [120].
The full-length versions of these proteins, TAp63 and TAp73, are generally thought to have
tumour suppressive function [110,111]. Mutp53 proteins inhibit TAp63 and TAp73 function
and so promote tumorigenesis, metastasis, and chemoresistance [14]. Most strategies focus
on disruption of mutp53’s inhibitory interaction with p73 [121]. Prodigiosin facilitated
p73 upregulation by disrupting mutp53’s interaction with p73. This induced WTp53-like
transcriptional activity of p73 with p21 activation and anti-tumour potential [122]. Com-
pounds such as RETRA [61] and short interfering mutant p53 peptides (SIMPs) [123], also
act by disrupting mutp53’s interaction with p73 and restoring its function. Interestingly, a
compound called 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2) was found to prevent
mutp53’s inhibition of TAp73α (a C-terminal splice variant with tumour suppressive func-
tion) by disrupting both mutp53 and MDM2 binding to p73 in neuroblastoma, further
enhancing p73 function [124].

The above approaches are only a handful of approaches that are currently being
explored to tackle mutp53 cancers. Other approaches target mutp53 downstream signalling
pathways including the EGFR signalling pathway with drugs such as NA20 [125] or
cetuximab [126] use synthetic lethal approaches to find vulnerabilities of mutant p53 cancer
cells that can be targeted with drugs [127,128] or target the capacity of mutp53 to form
aggregates using compounds such as ReAcp53 [129,130].

Importantly, novel discoveries on the function and consequence of mutp53 expression
in cancers are still being made on a fairly regular basis. It is likely that effective strategies
that disrupt mutp53 function rely on a much better understanding of the mechanisms
underlying all of mutp53’s actions.

3.2. Mutant p53-Specific Gene Therapy

Re-expressing p53 using p53 gene therapy is a very appealing strategy to allow for
restoration of a p53-mediated cell-death response upon chemotherapeutic challenge in
cancer cells. However, restoring p53 expression in tumours remains challenging and has
mainly been approached using viral delivery or nanotherapeutics/lipid particle delivery
of p53.
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p53 viral gene delivery research started around 1994 and used replication-deficient
recombinant adenovirus in tumour cell lines, in xenografts, and in orthotopic murine
models. In all cases, a p53-dependent growth inhibition and marked apoptotic response
could be detected when viruses successfully delivered p53 to the target cells [55,57,131–134].

The Onyx company developed a tumour-restricted adenovirus for WTp53 gene deliv-
ery and reported effective replication of the virus in cells with p53 mutants but not WTp53
cells [135]. Likewise, in China, Gendicine is an approved recombinant p53 adenovirus gene
therapy product that was initially administered in combination with radiotherapy to treat
head and neck cancer, but it has now also been reported effective in other cancers [136].

A major limitation of replication-deficient viruses is efficiency with not all tumour cells
being targeted and effects likely to be transient [133]. Frequent re-dosing to ensure a long-
term effect might therefore be necessary. Replication competent viruses or oncolytic viruses,
known as CRAdp53 vectors [137], including ONYX15 [138], SG600-p53 [139], AdDelta24-
p53 [137], and H101 [140] were therefore developed and could negate some of these
problems, although the safety of using such viruses needs further testing. Interestingly,
even though some of the p53 gene therapy’s WT-p53 protein expression in only some
cells, secondary effects in inducing systemic immunological response led to long-lasting
effects on tumour regression [55,57]. In a hepatocarcinoma mouse model, re-expression
of p53 using a doxycycline model induced a cooperative mechanism between tumour cell
senescence and the innate immune system leading to complete tumour regression [57].
These data suggest that expression of p53 in only part of the tumour cells might be sufficient
to trigger an immune response to eliminate more than just the infected cells.

As an alternative to viral delivery, liposome-mediated delivery of WTp53 protein was
studied in head and neck cancer [141]. By targeting the liposomes with transferrin (a ligand
recognized by the transferrin receptor that is expressed to high levels on cancer cells), it was
possible to deliver WTp53 and cause tumour regression [141]. This strategy was further
developed into a clinical nano-therapy treatment, SGT-53, that is currently in advanced
clinical trial stage for various solid cancers and even for COVID-19, in which p53 is thought
to play a role in viral infection [142–144].

p53 restoration gene therapy has mostly been studied in tumours without p53. It seems
plausible that the potential ability of GOF-p53 mutants to induce a dominant negative
effect on reintroduced WTp53 would negate the effect of the p53 gene therapy. However, in
one of the earliest studies, the dominant negative p53 mutants did not abrogate adenoviral
transmitted WTp53 protein function [132]. Some reports suggest that the ONYX-15 p53
gene therapy actually relies on deregulated p53 signalling and works best in mutp53
cells [145], although others demonstrated enhanced oncolytic activity of ONYX-15 in
WTp53 cells [146] or activity that was independent on p53 status [147,148]. More recently,
parvovirus targeting of glioblastoma stem cells with a cytotoxic protein NS1 showed that
this virus is more effective in mutp53 cells [149]. These studies likely suggest disease/cell
specificity and raise the question on how p53 is involved in viral infection, viral replication,
and which patient would benefit most from such therapies.

Although technically not a p53 gene delivery strategy, a more recently CRISPR/Cas9-
based therapeutic vector (inducible and tumour specific) has been proposed to restore p53
function in mutp53 cells [150,151]. This technique could replace the mutated p53 locus with
a functional p53 copy through homologous recombination. Just like gene delivery, delivery
of the CRISPR/Cas9 system could be done via viral vectors or lipid particles, although
functionality still needs to be demonstrated in cells [150,151]. Notably, CRISPR/Cas has
recently been shown to select for p53 mutations in p53 WT cells, which could indicate that
there are restrictions associated with this approach [152].

In conclusion, p53 gene delivery could be an effective strategy as long as the hurdles
to effective delivery, side-effects, and selectivity can be addressed in the future.
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3.3. Mutant p53 Specific Immunotherapy

Immunotherapy is one of the most prominent methods that can provide long-term
tumour regression [153], as has been demonstrated with therapy targeted against K-RAS
and other mutations [153,154]. In contrast to K-RAS, p53 is mutated on many more amino
acids, making it challenging to find a specific ‘mutp53’ targeting region for immunother-
apy. Preliminary studies and trials have shown promising data corresponding to the im-
munogenicity of mutp53-derived peptide epitopes. These peptides were used to generate
activated T-cell response in vitro for in vivo delivery via vaccination [155–158]. Likewise, a
high-throughput screening of p53 hotspot mutants (R175H, Y220C, G245S, R248Q, R248W,
and R282W) found neoantigens in metastatic epithelial cancers. A mutp53-specific T-cell re-
sponse was elicited when co-cultured with autologous APCs (antigen-presenting cells) that
then recognized mutant p53 [153]. Of note, cells with different p53 mutants had different
capacities to present immunogenic epitopes [153], suggesting a potential link between the
types of p53 mutants and their immunogenicity in different cancers.

As WTp53 is expressed at low levels in normal cells and mutp53 accumulates in
tumour cells, immunotherapy using WTp53 peptide has also been explored [159]. The
efficacy of this approach is supported by the observation that a WTp53 peptide induced
a p53-specific cytotoxic T-cell response against mutp53/WTp53 in both mice [160,161]
and in cancer patients [159,162–164]. One study also showed selective killing of tumour
cells over normal cells [159]. Importantly, this method would bypass the requirement of
mutp53-specific immunogenicity.

Over 20 different clinical trials have been conducted using p53 vaccination as a strategy
to combat cancers. Although a p53 response is seen and vaccines are generally considered
safe, a phase II trial did not show enough benefit to warrant progression to phase III
trial [165]. Therefore, further research is needed to enhance immune strategies for mutant
p53 in the future.

3.4. Mutant p53 Specific Combination Therapy

For future anti-cancer therapeutic application, the effect of a single strategy application
might not be sufficient to cause long-term tumoricidal effects or to overcome potential
resistance. This could be resolved by combining the different methods discussed above or
by coupling of p53 specific therapeutic strategies with other therapies that target relevant
pathways to exploit synergistic effects for improved therapeutic benefit.

Past and ongoing trials like to combine p53 immunotherapy with p53 gene therapy. As
an example, one strategy includes priming the autologous lymphocytes with anti-p53 genes
in vitro, followed by their in administration in patients [166]. The use of this strategy has
rendered promising therapeutic potential in xenograft studies [167]. However, the clinical
application of this strategy in humans, so far, has not shown evidences of objective tumour
response [167] due to lack of p53-specific self-tolerance and the presence of immunogenicity
against the viral vectors.

Another strategy combines p53-specific gene therapy with conventional immunother-
apy by direct administration of adenoviral p53 (Ad-p53) gene therapy with immune
checkpoint inhibitors such as anti-PD1 or agonists of cytokines such as CD122. This is
to stimulate a WT-p53 specific immune response using the Ad-p53 and at the same time,
bypass the immune checkpoint blockade normally found in cancer with inhibitors such as
anti-PD1. This strategy has been investigated in recurrent and metastatic cancers [168] and
was reported to cause effective tumour remission in murine tumour models [169].

p53-specific gene or immunotherapy with conventional chemotherapy in more ad-
vanced and often chemo-resistant cancers has also been explored. As an example, in
platinum resistant ovarian cancer patients (phase I), the combined therapy of modified
vaccinia Ankara vaccine delivering wild-type human p53 (p53MVA) with gemcitabine
chemotherapy yielded immunological response in some patients with durable disease
control [170]. This study also proposed that the combination therapy of p53MVA with
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immunotherapeutic agents that have immunomodulatory effects, such as anti-CTLA-4,
would improve therapeutic effect [170].

Numerous combinations of p53-specific targeted therapies have been trialled with
conventional chemotherapies or cancer-specific treatments in different types of cancers. In
particular, APR246 has been shown to synergize with DNA-damaging anti-cancer drugs
cisplatin and adriamycin [171,172]. This was attributed to the synergistic crosstalk between
APR-246′s reactivation of mutp53 sensitizing the tumour cells to the DNA damaging
agents [65]. APR-246 was also noted to demonstrate enhanced synergy with inhibitors of
other cancer signalling, including proteosome inhibitor carfilzomib [173], BRAF inhibitor
vemurafenib [174], Poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib [175], etc.
Other mutant p53 reactivating strategies also show promise for combination therapy. As
an example, a phase II clinical trial for myelodysplastic syndrome (MDS)/acute myeloid
leukaemia (AML) patients is currently being conducted combining arsenic trioxide with
decitabine and cytarabine to treat MDS and AML, respectively [77].

Finally, completely novel vulnerabilities created by mutant p53 expression are explored
for synthetic lethality. An example of this is the acetylation of codon 158 in mutp53 cancers.
Acetylation of this mutant by a variety of acetylators, including HDAC, JQ1, and topotecan
makes this mutant vulnerable to cisplatin-induced cell death [176].

Taken together, it is likely that given the role of p53 and the mutant form of p53 in
many different cell processes, not one single therapy will be totally successful in eliminating
all mutp53-bearing tumour cells. Combining current chemotherapy with new therapy is
often the way in which new drugs are trialled in cancer and therefore would form the
easiest and most cost-effective combination to explore.

4. Conclusions and Future Perspectives

The search for mutp53-specific treatment strategies began almost two decades ago.
However, very few have advanced to clinical trial stages, with none being currently ap-
proved for patient treatments (except for Gendicine in China). This is in part caused by
the elusiveness of p53 mutants existing in different states/forms (e.g., conformational or
contact mutants) bearing different targetabilities as well as the intrinsic ability of mutp53
to overcome its dependence on multiple pathways and allow for resistance to various
treatment regimes.

However, with p53-specific targeted therapy, the development of small molecules that
directly or indirectly target mutp53 has proven to be highly promising particularly with
discoveries such as APR-246 and COTI-2, currently in clinical trials. Likewise, targeted
inhibition of mutp53’s molecular chaperones such as HDAC-6 and hsp90 has progressed to
pre-clinical and phase I, II and III clinical trial studies, respectively. Yet, the key challenge
involving p53-specific targeted therapy remains selectivity and specificity of the compound
ensuring the delivery works in the targeted cells with minimal effect on normal cells.

For p53-specific immunotherapy, the data shown so far reflect the important knowl-
edge that both mutp53 and WTp53 are immunogenic and can elicit tumoricidal immuno-
genic reactions from immune cells in vivo. However, whilst adoptive cell therapy against
mutp53 appears to be promising, it potentially could facilitate a more effective and durable
objective clinical response when combined sequentially with conventional chemotherapy
or simultaneously with gene therapy.

p53-specific gene delivery therapy has a highly encouraging therapeutic potential but
requires further optimization to improve efficacy and reduce toxicity. Long-term valida-
tion within in vivo models with delivery systems capable of ensuring uniform systemic
transfections/infections will be pivotal. More importantly, the combination of p53-specific
gene therapy in the form of p53 cancer vaccines with targeted immunotherapy could
be one of the more important strategies that bears significant potential and necessitates
further investigations.
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