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Abstract

A smoothed bootstrap method is introduced for right-censored data based on the right-
censoring- A,y assumption introduced by Coolen and Yan (2004), which is a generalization of
Hill’s A,y assumption (Hill, 1968) for right-censored data. The smoothed bootstrap method
is compared to Efron’s method for right-censored data (Efron, 1981) through simulations.
The comparison is conducted in terms of the coverage of percentile confidence intervals
for the quartiles. From the study, it is found that the smoothed bootstrap method mostly
performs better than Efron’s method, in particular for small data sets. We also illustrate the
use of the method for survival function inference and compare it to a smoothed Kaplan-Meier
bootstrap method through simulations.

Keywords: Banks’ bootstrap, Efron’s bootstrap, Hill’s A,y assumption, nonparametric
predictive inference, right-censored data, right-censoring-A,) assumption.

1. Introduction

The bootstrap approach, as presented by Efron (1979), is a nonparametric method pro-
posed to measure the variability of sample estimates. Due to its simplicity to apply and
efficiency to provide good estimates, the method has been widely used for a variety of sta-
tistical problems (Efron and Tibshirani, 1993). If one has little information about a suitable
distribution, powerful nonparametric methods, e.g. the bootstrap method, are of great prac-
tical use (Davison and Hinkley, 1997).

Efron (1979) presented the bootstrap method for univariate real-valued data, and the
method is described with real world applications in many references, e.g. Berrar (2019),
Davison and Hinkley (1997) and Efron and Tibshirani (1993). The method creates multiple
bootstrap samples by sampling with replacement from the original data set, and the statistic
of interest is calculated based on each bootstrap sample. The empirical distribution of the
resulting values can be used as a good proxy for the distribution of the statistic of interest.
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For random variables with finite support, Banks (1988) presented a smoothed bootstrap
method by linear interpolation between consecutive observations. Suppose that there are n
observed data points, Banks’ bootstrap method starts with ordering the data and creating
n 4+ 1 intervals. This method assigns probability n+r1 to each interval. To create one Banks’
bootstrap sample, n intervals are drawn with replacement, then one observation is sampled
uniformly from each chosen interval; if an interval has been sampled twice or more times,
multiple observations will be sampled from that interval. It should be noted that this
method allows to sample from the whole support and ties do not occur in the bootstrap
samples. This is contrary to Efron’s method, where the process is restricted to sampling
with replacement from the original data set (Efron, 1979). Coolen and BinHimd (2020)
generalized Banks’ bootstrap method for data in the case of underlying distributions with
infinite support by assuming distribution tail(s) for the last interval(s).

For univariate right-censored data, Efron (1981) generalized the bootstrap method by
the empirical distribution assigning probability % to each data point, regardless whether the
observation is an event time or a right-censored time. To create one bootstrap sample, n ob-
servations are sampled with replacement from the original data set, then the Kaplan-Meier
estimator is used to compute the statistic of interest. This bootstrap method leads to boot-
strap samples including ties and right-censored observations, which can cause complications
in computations. Moreover, Dobler (2019) showed that the method can provide poor results
when the sample size is small.

This paper presents a smoothed bootstrap method based on the right-censoring-A,)
assumption introduced by Coolen and Yan (2004). As shown in this paper, this method
has three advantages over Efron’s bootstrap in case of right-censored data. First, the new
method tends to provide better results than Efron’s method, in particular for small data sets
and large censoring proportions. Secondly, the new method avoids ties and right-censored
observations in the bootstrap samples, which may simplify further computations based on
those samples. Thirdly, the new method provides a nearly smooth estimate of the survival
function.

This paper is organized as follows. In Section 2, Efron’s bootstrap methods for real-valued
data and right-censored data are reviewed (Efron, 1979, 1981), along with Banks’ bootstrap
method for real-valued data (Banks, 1988). Section 3 presents the smoothed bootstrap
method for right-censored data based on the right-censoring-A,) assumption introduced
by Coolen and Yan (2004). In Section 4, the smoothed bootstrap method is compared to
Efron’s bootstrap method in terms of the coverage of the bootstrap confidence intervals
through simulation studies. A brief comparison of the smoothed bootstrap method and
the well-known Kaplan-Meier estimator of the survival function is given in Section 5. The
smoothed bootstrap method is compared to a smoothed Kaplan-Meier bootstrap method in
Section 6. The final section provides some concluding remarks.

2. Bootstrap methods

This section introduces different bootstrap methods for real-valued data and right-
censored data. Let Y7,Y5,...,Y, be random quantities, which are independent and identi-
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cally distributed from a distribution F' supported on the finite interval [a, b]. Furthermore,
let y1, Y2, - - ., yn be the observations corresponding to Y7, Ys, ..., Y, and (F) be the statistic
of interest.

For real-valued data, Efron (1979) presented the bootstrap method based on the empirical
cumulative distribution function. This distribution assigns probability % to each observed
data point. To apply the bootstrap method, multiple samples of size n are created by
sampling with replacement from the observed data. Based on each bootstrap sample, the
statistic of interest is calculated. The empirical distribution of the resulting values is used
as a proxy for the sampling distribution of §(F").

Banks (1988) presented a smoothed bootstrap method for real-valued data by linear
interpolation between consecutive observations. Banks’ bootstrap method partitions the
support into n+ 1 intervals based on the observed data points and assigns probability n+_1 to
each interval. To create one bootstrap sample, n intervals are sampled with replacement from
the created intervals, then one observation is drawn uniformly from each chosen interval.
It is true that if an interval is chosen twice or multiple times during the procedure, the
observations will be sampled from that interval. Based on this bootstrap sample, the statistic
of interest is computed. These two steps are performed multiple times to create multiple
bootstrap samples along with their statistics of interest. The empirical distribution of the
resulting values is used as a proxy for the sampling distribution of 6(F').

Efron’s bootstrap method for right-censored data (Efron, 1981) is quite similar to the
standard bootstrap method for univariate real-valued data (Efron, 1979). The method as-
signs probability % to each observation, regardless whether it is an observed event time or
a right-censored observation. Suppose that the random variables 11,75, ...,T, are inde-
pendent and identically distributed from a distribution H supported on R and the cen-
sored random variables C4,Cy,...,C,, are independent and identically distributed from
a distribution G supported on R. The right-censored random variables are of the form
(X1, D1), (X2, D3),...,(X,, Dy), where the pair (X;, D;), for i = 1,2,...,n, is defined as

X; = min(T;,Cy), for i=1,2,...,n (1)

_f 1 if X; =T, (uncensored)
Dy = { 0 if X;=C; (censored) (2)

Suppose that (x1,dy), (z2,ds), ..., (z,,d,) are the observations of the corresponding ran-
dom quantities (X1, Dy), (X2, D2), ..., (X, D,) and 6(H) is the statistic of interest, which
can be estimated through (9(]:[ ). Efron’s bootstrap procedure for right-censored data is
described as follows (Efron, 1981):

(i) Sample n pairs (x;, d;) with replacement from the original data set, which has n obser-
vations. The bootstrap sample is denoted by Dj, ,={(z7%,d}), (x5, d5), ..., (z},d)}.

(ii) Calculate the statistic of interest 6* = A(Dj,,) based on D}, , sample and the Kaplan-
Meier estimator (Kaplan and Meier, 1958).
(iii) Perform steps (i) and (ii) B times; this leads to 6*1,6*2 ... 6*P.



Two points should be noted in this bootstrap procedure. First, due to the process of
this bootstrap method, Efron’s bootstrap samples have to include ties and right-censored
observations, which may cause some complications in computations, in particular when
the sample size is small and the censoring proportion is large. Secondly, if the censoring
proportion in the original data set is zero, Efron’s bootstrap method for right-censored data
will be reduced to Efron’s bootstrap method for univariate real-valued data presented in
(Efron, 1979).

3. The smoothed bootstrap method for right-censored data

Hill (1968, 1988) assumed that the observable random variables X,Xs, ..., X, are ex-
changeable with no ties, and the A,y assumption provides a partial specification of a prob-
ability distribution for the next future observation X, ; based on n observed data points.
This assumption orders the observations, then it assigns probability n+r1 for the next obser-
vation to be between any consecutive observations. This can be written as

1
n+1

P (Xni1 € (@0, T11))) = (3)
for all © = 0,1,2,...,n, where x(p) = —00 and x(,41) = 400 (for non-negative random
quantities, gy = 0 and z(,11) = +00).

Coolen and Yan (2004) provided a partial specification of a probability distribution for
a real-valued random quantity X based on mass-function, M-function, values assigned to
open intervals conducted between consecutive observations, without any further restriction
on the spread of the probability mass within each interval. The M-function values are basic
probability assignments following the general theory introduced by Shafer (1976); they are
within [0, 1], and they all sum up to one.

Coolen and Yan (2004) generalized the A,y assumption for data including right-censored
observations. They divide the sample space into n + 1 intervals, then they assign certain
probabilities to those intervals. They first assume that the random quantities X1, X5, ..., X,
are exchangeable and non-negative and ties occur with probability zero. Suppose that
there are n observations including v event times and v right-censored observations, where
n=u+v. Let 0 <ty <tp <...<ty) be the event time observations, where 0 < u < n,
and 0 < ¢y < ¢y < ... < ¢ be the right-censored observations, where v = n — u. Let
I;i = (t@4), tus1)), for 0 <7 < u, and denote the ordered right-censoring times within I; by
cp < ¢y < ... <, where [; is the number of right-censored observations in the interval I;.
The sample space is divided into n+ 1 intervals (¢, t41)) and (¢, ti41)), where 1 < k <1,
ty = 0 and tg,41) = b if the support is [0,b] or t,41) = +oo if the support is [0, 4o00].
The probabilities for the next future observation X, to be in the intervals (g, t(11))
and (¢}, ti11)) are referred to by M-function values Mx, . (ts), tusny) and Mx, (¢, tatr)),
respectively. These M-function values can be computed by

1
My (tys b)) = = 11
{T’:C(r) <t(i)}
4

Ne,,, +1
<~>_ (4)
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; 1 Ne,,y + 1
M, (¢ tary) = ———=— ] —— (5)
) DR ey o0

where 7., is the number of individuals remaining at risk (still alive) just before time ¢

plus one, &ind Mg 18 the number of individuals remaining at risk just before time ¢, plus one.

The right-censoring A(,) assumption can be used to develop a smoothed bootstrap
method for right-censored data, generalizing Banks’ bootstrap method. The smoothed boot-
strap (SB) algorithm for right-censored data is as follows:

(i) Sample intervals with replacement n times with the M-function values.

(ii) Sample one observation uniformly from each finite interval. For the case of infinite
interval (z(;), 00), where z(;) could be either an event time or a right-censored observa-
tion, BinHimd (2014) assumed an Exponential tail for any infinite interval with rate
parameter A\ based on the corresponding assignment probabilities My, ., (), 00).
The rate parameter ;) can be estimated by

< —In (Mx, ,(z@),0)
e = (M, (2, 00)) ©)

L(i)

with (Mx,,, (z@),o0)) from Equations (4) and (5). After assuming the Exponential
tail, sample one observation being greater than x(;) from the tail for the infinite interval
((5); 00)-

(iii) Calculate the statistic of interest, 6*.

(iv) Perform steps from (i) to (iii) B times. This leads to B smoothed bootstrap samples
with their corresponding statistics of interest.

It should be noted that the smoothed bootstrap method uses sampling from the whole
data range, so ties can occur in the bootstrap samples with probability zero. Also, all obser-
vations generated for the bootstrap samples are event times. This makes the computations
straightforward for the statistics of interest, contrary to Efron’s bootstrap method, where
the KM estimate should be used when the data include censored observations. If the censor-
ing proportion in the original data set is equal to zero, then the smoothed bootstrap method
will be reduced to Banks’ bootstrap method for univariate real-valued data.

To apply the SB method for the case of original data set including ties, we need to break
them, and this can be done by adding a very small number (Gibbons and Chakraborti, 2020).
In this paper, we do not go further on this because we think no significant difference will
occur with the inferences, the resulting inferences will be nearly identical. If a tie between
two event time observations is observed, there will be a positive probability to chose the
observation for the SB bootstrap samples. If there is a tie between an event time and a
censored time, we assume that the right-censored observation will occur after the event
observation. For the case of ties between censored observations, the SB method will not be
really affected.



4. Comparison with Efron’s method

To compare methods through simulation studies in terms of the coverage probability,
statisticians usually consider high levels of confidence, e.g. 90%, 95% and 99%, and the best
method is considered to be the one that leads to lower discrepancy between the actual and
nominal coverage levels. However, Banks (1988) proposed to investigate the global coverage
accuracy to show the best method that provides lower discrepancy between the actual and
nominal coverage levels over the whole range of confidence levels. He generated 20 segments
by the quantiles of the statistic of interest with nominal level 0.05, and this can be found by

CRLu) = (%%)a%%)) (7)
CRR() = <Q(1_%)>q(1_%27+1)) (8)
where 1 = 1,2,...,10, aj41 = a; — 0.10, oy = 1 and gq(.) is the 2" quantile of functional

values, so C'RL(; are the confidence regions presenting the left tail of the global measure
of coverage accuracy, and CRR|;) are the confidence regions presenting the right tail of the
global measure of coverage accuracy.

Banks (1988) also generated 10 segments with nominal coverage probability 0.10 by

Cha = (%“g—“)’q(%)) U <q(1_%>,q(1ﬂ7+1)) (9)

where CR(Z-) = CRL(i) U CRR(i) fori=1,2,...,10.

These confidence regions are used to test the hypothesis that all segments have equal
coverage probabilities for a certain statistic of interest by conducting the chi-squared good-
ness of fit test (Banks, 1988). This test considers the discrepancy between the actual and
nominal coverage probabilities. Banks (1988) used this technique to compare his smoothed
bootstrap method to other bootstrap methods, namely Efron’s method (Efron, 1979), Ru-
bin’s Bayesian bootstrap (Rubin, 1981) and smoothed Rubin’s bootstrap (Banks, 1988),
where the best method has the lowest chi-squared value. This comparison method will also
be used in this section for the case of right-censored data.

To generate data sets containing right-censored observations, three different scenarios
are specified in Table 1. In each scenario, two distributions are considered, one is used to
generate event observations and the other is used to generate right-censored observations.
To create one right-censored data set from any scenario, we generate n observations from
each distribution of that scenario, then use Equations (1) and (2). The distributions used for
right-censored data sets are presented in Table 1 along with their corresponding parameter
values, where the censoring proportion in each scenario is set at 15% (other proportions of
right-censored observations are considered in (Al Luhayb, 2021) and the simulation results
are similar to the ones presented in this section. For more information on determining the
censoring proportions see (Al Luhayb, 2021; Wan, 2017)).



Scenario Distribution for event times Distribution for censored times

f(t) ="t e 0,1] g(c) = 721 c € [a, 1]
1 where o = 1.2 and g = 3.2. where a = 0 and b = 1.82.
[Beta(a, )] [Uniform(a, b)]
f(t) =5(5)*  exp(—(5)*); t € [0, 00) g(c) = Aexp(—Ac); ¢ € [0,00)
2 where o = 1.5 and 8 = 1. where A = 0.187.
[Weibull(a, )] [Exponential(\)]
2
BRCE e~ 1€ (0.00) | 0) = 55 exp(—(5)%): e € 0.0)
where a = 3 and = 3.7.
[Log-Normal(0, 1)] [Weibull(a, )]

Table 1: The density functions for the distributions used in each scenario to generate right-censored data
sets.

4.1. First scenario

For the case of finite support, we use the first scenario presented in Table 1 to generate
1000 right-censored data sets of size n. Based on each created data set, we apply each
bootstrap method 1000 times and compute the statistic of interest based on each bootstrap
sample. Hence, we derive confidence regions specified in Equations (7), (8) and (9). We then
count one for the confidence region that includes the true statistic of interest and zero else,
the true value of the statistic is the one corresponding to the distribution used to generate
the event time observations. We iterate this procedure for each generated data set to define
coverage proportions. Based on these coverage proportions, we can compute the chi-squared
value corresponding to each bootstrap method.

In some cases with Efron’s bootstrap method, the statistic of interest is not found based
on some bootstrap samples and the value of the Kaplan-Meier estimator because there is
no inverse for the survival function at the specific probability. This leads us to consider
three different suggestions. Suppose that we are interested in the median (the methods are
suggested for all quantiles), for any bootstrap sample whose median is not found by the
Kaplan-Meier estimator, we neglect these bootstrap samples, so the confidence regions may
be based on a number of medians less than 1000. This option is referred to by E;). The
second option is that we assume the maximum event time of the bootstrap sample whose
median is not found is the corresponding median for that bootstrap sample (Efron, 1967),
this is denoted by E(;). The last option is to fit an Exponential distribution to the tail

~

with rate parameter M =— In(S(tmaz))/tmaz, where t,q, is the maximum event time of the
bootstrap sample. Hence, the corresponding median can be found by X,,.q = — In(0.50)/ 2
This last option is described in (Brown et al., 1974), and it is referred to by E). With
the last two options, it is assured that the confidence regions are based on 1000 bootstrap
samples’ medians.

Tables 2, 3 and 4 present the chi-squared values for the quartiles based on the SB
method and Efron’s bootstrap method. For the first quartile, the SB method performs
better in all sample sizes and in both segments’ divisions, which are created by Equations
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10 CR 20 CR
n measures SB E(l) E(2) E(S) SB E(l) E(2) E(g)
% 29.92 | 934.14 | 933.96 | 921.52 || 97.00 | 2366.84 | 2373.40 | 2355.72
6 NA — 1998 0 0 — 1998 0 0
ABS — 493 493 493 — 493 493 493
p-value | 0.000 | 0.000 | 0.000 | 0.000 || 0.000 | 0.000 0.000 0.000
x> 22.20 | 876.66 | 875.62 | 875.62 || 57.40 | 1857.84 | 1855.64 | 1855.64
10 NA — 104 0 0 — 104 0 0
ABS — 1 1 1 — 1 1 1
p-value | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
x> 11.70 | 45.98 | 45.98 | 45.98 || 27.44 | 286.68 | 286.68 | 286.68
20 NA — 1 0 0 — 1 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.231 | 0.000 | 0.000 | 0.000 || 0.095 | 0.000 0.000 0.000
% 11.60 | 78.76 | 78.76 | 78.76 | 22.48 | 162.32 | 162.32 | 162.32
40 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.237 | 0.000 | 0.000 | 0.000 | 0.261 | 0.000 0.000 0.000
x> 9.24 | 1498 | 1498 | 14.98 || 28.48 | 27.52 27.52 27.52
100 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.415 | 0.091 | 0.091 | 0.091 || 0.075 | 0.093 0.093 0.093

Table 2: The chi-squared values for )1 = 0.117, and their p-values with the corresponding NA and ABS
numbers.

(7), (8) and (9), respectively, except when the sample size is 100 and the division is set to 20
confidence regions. In this case, the SB method performs well, but Efron’s bootstrap method
performs better. For the median, the SB method performs better when the sample size is
6,10 and 20 in both divisions. When n = 40, 100, both bootstrap methods provide good
results, but Efron’s bootstrap method mostly performs better. For the last quartile, the
SB method performs better when n = 6, 10, 20,40 in both divisions. When n = 100, both
bootstrap methods provide nearly identical results, but Efron’s bootstrap method obtains
better results.

In Tables 2, 3 and 4, NA stands for the number of Efron’s bootstrap samples for which
the KM estimator does not provide their statistics of interest. ABS is the number of Efron’s
bootstrap samples which created of only right-censored observations. Those samples are
replaced by other samples including at least one event time. The NA and ABS numbers are
out of 1,000,000. It is obvious from the tables that the NA and ABS numbers decrease as
the sample size increases. With the SB method, these measures are not applicable because
the bootstrap samples contain event times only.



10 CR 20 CR
n measures SB E(l) E(Q) E(g) SB E(l) E(2) E(3)
% 45.34 | 207.84 | 186.38 | 196.36 || 55.24 | 231.48 | 206.48 | 223.04
6 NA — 8628 0 0 — 8628 0 0
ABS — 493 493 493 — 493 493 493
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
% 22.08 | 167.86 | 162.66 | 158.46 || 25.76 | 182.08 | 179.80 | 175.08
10 NA — 2332 0 0 — 2332 0 0
ABS — 1 1 1 — 1 1 1
p-value | 0.009 | 0.000 | 0.000 | 0.000 | 0.137 | 0.000 | 0.000 | 0.000
% 8.32 | 58.46 | 59.44 | 59.44 | 20.20 | 73.64 | 75.04 | 75.04
20 NA — 98 0 0 — 98 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.502 | 0.000 | 0.000 | 0.000 | 0.383 | 0.000 | 0.000 | 0.000
% 8.96 6.44 6.44 6.44 1248 | 18.12 | 18.12 | 18.12
40 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.441 | 0.695 | 0.695 | 0.695 | 0.864 | 0.514 | 0.514 | 0.514
x> 6.94 3.66 3.66 3.66 16.52 | 10.80 | 10.80 | 10.80
NA — 0 0 0 — 0 0 0
100 ABS — 0 0 0 — 0 0 0
p-value | 0.643 | 0.932 | 0.932 | 0.932 | 0.622 | 0.930 | 0.930 | 0.930

Table 3: The chi-squared values for Q2 = 0.236, and their p-values with the corresponding NA and ABS
numbers.

4.2. Second scenario

For the case of infinite support, we use the second scenario presented in Table 1 to create
right-censored data sets. Tables 5, 6 and 7 present the chi-squared values for the quartiles
based on the SB method and Efron’s bootstrap method. From Table 5, the SB method
performs better in comparison to those of Efron’s method at all different sample sizes in
both divisions. For the second quartile, the SB method provides better results at all different
sample sizes and in both divisions, except when the sample size is 100 with 10 confidence
regions. Table 7 shows that the SB method performs better when n = 6,10, and as the
sample size increases, both bootstrap methods perform well, but Efron’s method is better.
It is clear from the simulation results for the quartiles that the SB method has reduced the
discrepancies between the actual coverage proportions and the nominal sizes, in particular
when the sample size is small.



10 CR 20 CR
n measures SB E(l) E(g) E(g) SB E(l) E(g) E(g)
x? 157.04 | 751.88 | 678.06 | 557.32 || 211.40 | 1640.24 | 1628.72 | 1335.80
6 NA — 52306 0 0 — 52306 0 0
ABS — 493 493 493 — 493 493 493
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000
x> 40.58 | 108.58 | 99.38 | 76.08 | 62.80 | 277.60 | 262.68 | 211.36
10 NA — 26739 0 0 — 26739 0 0
ABS — 1 1 1 — 1 1 1
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
x? 3.78 13.08 | 12.24 | 11.54 13.88 58.52 57.2 56.44
20 NA — 5141 0 0 — 5141 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.925 | 0.159 | 0.200 | 0.241 0.791 0.000 0.000 0.000
x> 6.78 17.20 | 17.20 | 17.20 29.20 32.92 32.92 32.92
A0 NA — 113 0 0 — 113 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.660 | 0.046 | 0.046 | 0.046 | 0.063 0.025 0.025 0.025
x> 1248 | 11.74 | 11.74 | 11.74 || 45.56 44.16 44.16 44.16
NA — 0 0 0 — 0 0 0
100
ABS — 0 0 0 — 0 0 0
p-value | 0.188 | 0.228 | 0.228 | 0.228 | 0.001 0.001 0.001 0.001

Table 4: The chi-squared values for @3 = 0.396, and their p-values with the corresponding NA and ABS
numbers.

10 CR 20 CR
n measures SB E(l) E(Q) E(g) SB E(l) E(g) E(g)
e 10.58 | 192.48 | 180.86 | 179.30 || 41.48 | 255.08 | 239.28 | 245.44
6 NA — 5968 0 0 — 5968 0 0
ABS — 699 699 699 — 699 699 699
p-value | 0.306 | 0.000 | 0.000 | 0.000 || 0.002 | 0.000 | 0.000 | 0.000
X? 6.74 | 115.10 | 113.94 | 117.18 || 14.12 | 165.36 | 161.68 | 165.20
10 NA — 981 0 0 — 981 0 0
ABS — 14 14 14 — 14 14 14
p-value | 0.664 | 0.000 | 0.000 | 0.000 || 0.777 | 0.000 | 0.000 | 0.000
X° 13.36 | 33.40 | 33.40 | 33.40 || 34.52 | 88.72 | 88.72 | 88.12
20 NA — 106 0 0 — 106 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.147 | 0.000 | 0.000 | 0.000 || 0.016 | 0.000 | 0.000 | 0.000
X? 16.10 | 17.76 | 17.76 | 17.76 || 31.48 | 33.24 | 33.24 | 33.24
40 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.065 | 0.038 | 0.038 | 0.038 || 0.036 | 0.023 | 0.023 | 0.023
X2 12.40 | 6.56 6.56 6.56 24.48 | 26.16 | 26.16 | 26.16
100 NA — 0 0 10 O — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.192 | 0.683 | 0.683 | 0.683 | 0.178 | 0.126 | 0.126 | 0.126

Table 6: The chi-squared values for Q2 = 0.7832, and their p-values with the NA and ABS numbers.



10 CR 20 CR
n measures SB E(l) E(2) E(S) SB E(l) E(2) E(g)
% 36.28 | 959.10 | 955.56 | 955.56 || 96.04 | 2171.16 | 2159.92 | 2159.72
6 NA — 2051 0 0 — 2051 0 0
ABS — 699 699 699 — 699 699 699
p-value | 0.000 | 0.000 | 0.000 | 0.000 || 0.000 | 0.000 0.000 0.000
% 14.48 | 756.78 | 752.94 | 756.78 || 60.48 | 1406.24 | 1404.48 | 1406.24
10 NA — 124 0 0 — 124 0 0
ABS — 14 14 14 — 14 14 14
p-value | 0.106 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
x> 1558 | 73.26 | 73.26 | 73.26 || 43.08 | 343.96 | 343.96 | 343.96
20 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.076 | 0.000 | 0.000 | 0.000 || 0.001 | 0.000 0.000 0.000
% 7.48 | 98.82 | 98.82 | 98.82 || 22.08 | 147.52 | 147.52 | 147.52
40 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.587 | 0.000 | 0.000 | 0.000 | 0.280 | 0.000 0.000 0.000
x> 7.30 | 13.04 | 13.04 | 13.04 || 23.52 | 30.88 30.88 30.88
100 NA — 0 0 0 — 0 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.606 | 0.161 | 0.161 | 0.161 | 0.215 | 0.042 0.042 0.042

Table 5: The chi-squared values for Q1 = 0.4358, and their p-values with NA and ABS numbers.

4.8. Third scenario

In this section, we use the third scenario to create right-censored data sets. The chi-
squared values obtained from the actual coverage proportions for the first quartile are pre-
sented in Table 8. The SB method provides better results at all different sample sizes except
n = 100, where Efron’s bootstrap method performs better in both confidence region di-
visions. For the median, Table 9 presents the chi-squared values obtained from the actual
coverage proportions based on the SB method and Efron’s method. The SB method provides
smaller chi-squared values at all different sample sizes and in both divisions of confidence
regions. Table 10 presents the chi-squared values for the third quartile. The SB method has
less discrepancy between the actual and nominal coverage probabilities when n = 6, 10, 20, 40
in both numbers of confidence regions. When n = 100, both bootstrap methods provides

good results, but Efron’s method is better.
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10 CR 20 CR
n measures SB E(l) E(2) E(J) SB E(l) E(2) E(g)
X2 23.70 | 689.00 | 618.70 | 549.36 || 54.96 | 1323.96 | 1271.80 | 1114.52
6 NA 32959 0 0 — 32959 0 0
ABS 699 699 699 — 699 699 699
p-value | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
XQ 25.50 | 110.32 | 109.88 | 112.62 || 50.92 | 181.80 194.68 183.24
10 NA 15032 0 0 — 15032 0 0
ABS 14 14 14 — 14 14 14
p-value | 0.002 | 0.000 | 0.000 | 0.000 || 0.000 | 0.000 0.000 0.000
X2 12.20 | 10.82 10.24 10.56 || 23.76 | 25.80 27.36 27.56
20 NA 3019 0 0 — 3019 0 0
ABS 0 0 0 — 0 0 0
p-value | 0.202 | 0.288 0.331 0.307 || 0.206 | 0.136 0.097 0.092
XQ 11.12 | 11.26 11.26 11.26 || 22.64 | 21.16 21.16 21.16
40 NA 96 0 0 — 96 0 0
ABS 0 0 0 — 0 0 0
p-value | 0.268 | 0.258 0.258 0.258 || 0.254 | 0.328 0.328 0.328
X2 12.68 | 8.76 8.76 8.76 26.24 | 25.64 25.64 25.64
100 NA 0 0 0 — 0 0 0
ABS 0 0 0 — 0 0 0
p-value | 0.178 | 0.460 | 0.460 | 0.460 | 0.124 | 0.141 0.141 0.141
Table 7: The chi-squared values for Q3 = 1.2433, and their p-values with the NA and ABS numbers.
10 CR 20 CR
n measures SB E(l) E(Q) E(3) SB E(l) E(Q) E(3)
X2 26.10 | 791.26 | 746.94 | 936.34 || 46.28 | 879.16 | 844.68 | 991.00
6 NA — 50287 0 0 — 50287 0 0
ABS — 1207 1207 1207 — 1207 1207 1207
p-value | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
X2 8.88 | 116.74 | 108.60 | 113.76 || 26.68 | 139.08 | 140.28 | 146.12
10 NA — 19858 0 0 — 19858 0 0
ABS — 145 145 145 — 145 145 145
p-value | 0.448 | 0.000 | 0.000 | 0.000 |} 0.112 | 0.000 | 0.000 | 0.000
X2 6.80 | 104.44 | 103.54 | 107.36 || 13.32 | 135.44 | 138.48 | 144.28
20 NA — 2854 0 0 — 2854 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.658 | 0.000 | 0.000 | 0.000 | 0.822 | 0.000 | 0.000 | 0.000
X2 4.62 | 42.76 | 42.76 | 42.76 || 12.04 | 57.84 | 57.84 | 57.84
40 NA — 18 0 0 — 18 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.866 | 0.000 | 0.000 | 0.000 || 0.884 | 0.000 | 0.000 | 0.000
X2 5.96 12.02 12.02 12.02 || 12.88 | 17.08 17.08 17.08
NA — 0 0 0 — 0 0 0
100 ABS — 0 0 0 — 0 0 0
p-value | 0.744 | 0.212 0.212 190.212 || 0.845 | 0.584 | 0.584 | 0.584
Table 9: The chi-squared values for Qo = 1, and their p-values with the NA and ABS numbers.



10 CR 20 CR

n measures SB E(l) E(Q) E(g) SB E(l) E(g) E(3)
X2 24.06 | 962.34 | 946.68 | 974.80 || 109.68 | 2509.36 | 2460.76 | 2539.16
6 NA — 5841 0 0 — 5841 0 0
ABS — 1207 1207 1207 — 1207 1207 1207
p-value | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
% 9.04 | 917.08 | 917.62 | 912.78 || 67.20 | 2286.88 | 2270.72 | 2287.48
10 NA — 2437 0 0 — 2437 0 0
ABS — 145 145 145 — 145 145 145

p-value | 0.434 | 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000
X2 14.80 | 64.08 | 64.08 | 64.08 45.84 | 154.84 | 154.84 | 154.84

o | Na N 0 0 _ 11 0 0
ABS | — | 0 0 0 . 0 0 0
pvalue | 0.097 | 0.000 | 0.000 | 0.000 | 0.001 | 0000 | 0.000 | 0.000
2 | 19.04 | 25.95 | 25.98 | 25.98 | 39.96 | 59.12 | 59.12 | 59.12
o NA N 0 0 - 0 0 0
ABS | — | 0 0 0 _ 0 0 0
pvalue | 0.025 | 0.002 | 0.002 | 0.002 | 0.003 | 0000 | 0.000 | 0.000
1906 | 581 | 581 | 584 || 37.60 | 2756 | 27.56 | 27.56
NA 0 0 0 _ 0 0 0
001 apg | — 0 0 0 . 0 0 0

p-value | 0.432 | 0.756 | 0.756 | 0.756 0.007 0.092 0.092 0.092

Table 8: The chi-squared values for Q1 = 0.509, and their p-values with the NA and ABS numbers.

10 CR 20 CR
n measures SB E(l) E(g) E(g) SB E(l) E(Q) E(3)
X2 22.44 | 1670.96 | 1516.50 | 352.86 || 83.92 | 3478.60 | 3684.96 | 1100.52
6 NA — | 218705 0 0 — 218705 0 0
ABS — 1207 1207 1207 — 1207 1207 1207
p-value | 0.008 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
e 24.04 | 532.76 | 590.16 | 181.30 || 71.28 | 1380.88 | 1706.72 | 647.64
10 NA — 153425 0 0 — 153425 0 0
ABS — 145 145 145 — 145 145 145
p-value | 0.004 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000
X2 10.84 | 29.80 39.32 28.86 | 26.40 | 140.28 | 177.36 | 99.56
20 NA — 79850 0 0 — 79850 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.287 | 0.000 0.000 | 0.001 | 0.119 | 0.000 0.000 0.000
e 10.02 | 10.08 17.74 19.74 || 33.28 | 56.60 50.72 47.48
40 NA — 29450 0 0 — 29450 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.349 | 0.344 0.038 | 0.020 || 0.022 | 0.000 0.000 0.000
% 11.94 | 5.10 6.24 6.24 || 27.68 | 23.92 24.36 24.36
100 NA — 2356 0 0 — 2356 0 0
ABS — 0 0 0 — 0 0 0
p-value | 0.217 | 0.826 0.716 30.716 || 0.090 | 0.199 0.183 0.183

Table 10: The chi-squared values for (3 = 1.963, and their p-values with the NA and ABS numbers.




Through simulation studies, some important notes have been observed and they should
be mentioned clearly to get insights into the comparisons between the bootstrap methods.
First, the SB method creates bootstrap samples with event time observations only. This is
contrary to Efron’s bootstrap samples, which often include right-censored observations and
ties, due to the process of Efron’s bootstrap method, which creates the bootstrap samples
by sampling with replacement from the original data set. Secondly, the SB method mostly
provides better results than those of Efron’s method in terms of the coverage probability,
in particular when the sample size is small. For very large data sets with a small censoring
proportion, the SB method and Efron’s bootstrap method will provide nearly identical
results because the right-censoring-A,) assumption will be nearly identical to the cumulative
empirical distribution and the differences between the observed data points are very tiny.
Thirdly, we proposed three options for Efron’s bootstrap method E(yy, E(2) and E3) to create
the confidence region divisions because the statistic of interest may not be found based on
the Kaplan-Meier estimate, in particular when the sample size is small and the censoring
proportion is large. Fourthly, when the sample size is large, the three options E(;), E() and
E(3) provide nearly identical results because the KM estimator mostly provides the statistic
of interest based on each bootstrap sample, NA is equal or approximately equal to zero.
Finally, the chi-squared values corresponding to Efron’s bootstrap method usually decrease
as the sample size increases, while there is no pattern for the SB chi-squared values.

5. Survival function estimates

Analyzing survival data is of interest in many real world applications, e.g. in biology,
medicine, engineering and economics. In the literature, the Kaplan-Meier (KM) estimator
(Kaplan and Meier, 1958) has been widely used for survival function inferences due to its
simplicity to apply and efficiency to provide good survival estimates. In this section, the SB
method will be used to estimate the survival function and compare the results to the KM
estimator through two real application examples from the literature (Bartholomew, 1957;
Therneau, 2020). The 100(1 — 2a)% bootstrap pointwise confidence intervals will also be
derived for the survival function.

Example 1. Bartholomew (1957) provided a data set for 10 pieces of equipment installed
in a system. At a later time, some of these pieces had failed and the rest were still in use.
He aimed to study the lifetime distribution of the equipment, so he collected the following
data points 2,4,14,214,24,27,33,51,60+, 724+, where the 4+ sign means the corresponding
number is a right-censored observation. Based on the SB method, the lifetime distribution
can be estimated. We first order the data points and define the 11 intervals over the real
line, and hence we compute their corresponding M-function values by Equations (4) and (5).
This is illustrated in Table 11.

By using the information in Table 11, B = 1000 bootstrap samples of size 10 are created
by the SB method. Then, we derive the empirical survival function based on each bootstrap
sample. At any time ¢, we have 1000 survival function estimates. To provide a bootstrap
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Interval | M-function

(0,2) 0.0909
(2,4) 0.0909
(4,14) 0.0909

(14,24) 0.0909
(21+,24) | 0.0130
(24,27) 0.1039
(27,33) 0.1039
(33,51) 0.1039
(51,00) 0.1039
(60+,00) | 0.0519
(724,00) | 0.1558

Table 11: The M-function values corresponding to the 11 intervals created by Bartholomew’s data set.

estimate at a time ¢, we take the average of the 1000 survival function estimates at time ¢.
The estimated survival curve based on the SB method is presented in Figure 1.

The survival function estimates based on the SB method and the KM estimator are pre-
sented in Figure 1. The bootstrap estimated survival function (orange line) looks smooth;
but it is a step function with very small steps, contrary to the KM estimate (black step func-
tion), which only decreases at the 7 observed event times (2,4, 14,24,27,33,51). Between
each two observed data points, the SB estimate goes through the KM estimate, and at each
event time, the SB estimate is greater than the KM estimate. Based on the SB method, we
derive the 90% confidence intervals for the survival function at times t = 0,1,2,3, ..., 100,
and the bounds of confidence intervals are illustrated by the two green lines. At each time,
we order the 1000 survival function estimates, then take the 50th and 950th ordered resulting
values to provide the 90% confidence interval for the survival function at that time. Note
that the 90% confidence intervals’ bounds are step functions due to the empirical survival
function at each bootstrap sample taking only one of the 11 values 0,0.1,...,0.9,1 at any
time t.

Example 2. The lung cancer data set, which was provided by Therneau (2020) in the
survival package in R, will be used to show how the SB method and the KM estimator
behave for a large data set, where this data set analyzes the SB method and the KM estimator
for large data sets. The data set is for 138 patients who are detected to have lung cancer, the
time s represented in days. The censoring proportion in the data set is 0.188, and there are
17 ties. To apply the SB method, we need to break the ties, and this can be done by adding
a very small number to one of the tied observations.

Based on the SB method and the KM estimator, the estimated survival functions for the
lung cancer data are presented in Figure 2. From the figure, it is clear that the estimated
survival functions are nearly identical due to the large sample size and small censoring
proportion. The 90% bootstrap confidence intervals for the survival function at times ¢
are illustrated by the two green lines. Note that these bootstrap confidence intervals are
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Figure 1: The survival curves for Bartholomew’s data set based on the SB method with its 90% bootstrap
confidence intervals, and the KM estimate.

narrower than the ones in Example 1, this is due to the large sample size. The bounds of
the bootstrap confidence intervals are still step functions, but the steps are small, so that
the bounds look smooth. These examples show that the discrepancy between the estimated
survival functions based on the SB method and the KM estimator tends to decrease as the
sample size increases. For a small data set as in Example 1, the KM estimate decreases only
at the event times, so the estimated survival function is a step function with large steps.
This is contrary to the estimated survival function based on the SB method, which is quite
smooth. For a large data set with a small censoring proportion as in Example 2, the survival
function estimates based on the SB method and the KM estimate are nearly identical.

The bounds of bootstrap confidence intervals are step functions as shown in Examples
1 and 2. One can provide smoothed confidence interval’s bounds for the survival function,
by using the linear and log-transformed confidence intervals presented by Borgan and Li-
estgl (1990) and Klein and Moeschberger (2003). For confidence level 100(1 — 2a)%, these
confidence intervals accomplish that the survival function at time ¢ falls in the intervals
with approximately probability 100(1 — 2a)%. Borgan and Liestgl (1990) showed that the
log-transformed confidence interval is better than the linear confidence interval in terms of
the coverage accuracy, in particular for large confidence levels, e.g. 0.90 or 0.95. The SB
and KM estimates will be used to study the performances of linear and log-transformed
confidence intervals through simulations in Section 6. The 100(1 — 2a)% linear confidence
interval can be calculated by

S(t) F Z1-2a) x SD(S(1)) (10)
16
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Figure 2: The survival curves for lung cancer data based on the SB method with the 90% bootstrap
confidence intervals and the KM estimator.

and the 100(1 — 2a)% log-transformed confidence interval can be calculated by

(@)%, 5@ (11)
Z(152a)><5?(g(t))
S(t)xIn(5(t))

A

where 6 = exp( ) and Z(1_2q) is the (1 —2a) percentile of the standard Normal

distribution. SD(S(t)) is the standard deviation of the estimated survival function, where
the estimate can be either based on the SB method or the KM estimate. We restrict the
confidence intervals to be within [0, 1]. It should be noted that the linear confidence interval
is symmetric around the estimated survival function and the confidence interval’s bounds
are within [0, 1], but the log-transformed confidence interval is not symmetric about the
estimated survival function.

To derive the linear and log-transformed confidence intervals for a survival function at
time ¢, the standard deviation of the estimated survival function needs to be derived first.
For the estimated survival function based on the SB method, the standard deviation can be
computed by

(12)

_— e ()2 — (S5, 80/ B
Uboot(S(t)) =
B-1
The standard deviation of the KM survival function estimate can be computed by the
well-known Greenwood’s formula (Greenwood, 1926; Kaplan and Meier, 1958). The esti-
mated survival functions based on the SB method and the KM estimator along with their
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Figure 3: The survival curves for the equipment data based on the smoothed bootstrap method and the
KM estimator with their 90% linear confidence intervals.

corresponding standard deviations will be used to obtain the linear and log-transformed
confidence intervals. Next, Examples 1 and 2 will be used again to present the linear and
log-transformed confidence intervals.

Figure 3 presents the estimated survival functions for the data of Example 1 based on
the SB method and the KM estimator along with their corresponding 90% linear confidence
intervals. The SB method smooths the bounds of the linear confidence interval for the
survival function. In contrast, the KM estimator provides step functions for the confidence
interval’s bounds due to the fact that the KM method drops only at the event times. For
the values of ¢ beyond the largest event time, the KM survival function estimate together
with its linear confidence interval remain constant. The estimated survival function for
the smoothed bootstrap method decreases beyond the largest event time and its confidence
interval becomes more narrow.

For the data in Example 1, Figure 4 presents the SB and KM estimated survival functions
with their corresponding log-transformed 90% confidence intervals. The KM estimate leads
to the bounds of confidence interval being step functions due to the fact that drops occur only
at the event time observations. In contrast, the SB method provides more smooth bounds.
From Figures 3 and 4, it is clear that both confidence intervals, regardless of the method
being used to estimate the confidence intervals, have nearly identical patterns. The only
difference is that the linear confidence interval is symmetric around the survival function as
presented in Figure 3 (except in the tails due to the logical restriction to the interval [0, 1])
and the symmetry is not observed with the log-transformed confidence interval.

18
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Figure 4: The survival curves for the equipment data based on the smoothed bootstrap method and the
KM estimator with their 90% log-transformed confidence intervals.
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Figure 6: The survival curves for the lung cancer data based on the smoothed bootstrap method and the
KM estimator with their 90% log-transformed confidence intervals.
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Figure 5: The survival curves for the lung cancer data based on the smoothed bootstrap method and the
KM estimator with their 90% linear confidence intervals.

Figures 5 and 6 present the linear and log-transformed confidence intervals, respectively,
for the data in Example 2 based on the SB method and the KM estimator. Due to the large
sample size, the SB and KM methods provide nearly identical estimates for the survival
function as shown in Figure 2. As a consequence, the corresponding confidence intervals are
nearly identical as presented in Figures 5 and 6. From this example, we can conclude that
the SB and KM methods have about the same behaviour for large data sets with many event
time observations. This may be beneficial because the well-known excellent large sample
properties of the Kaplan-Meier estimator (Klein and Moeschberger, 2003) seem to hold for
the SB method. For the case of large sample size and large censoring proportion, the SB
and KM methods may not have the same performance as the censored times seriously affect
the estimated survival function based on the KM estimator.

6. The Kaplan-Meier smoothed bootstrap method for right-censored data

Efron (1981) introduced the bootstrap method for right-censored data, which has been
widely used for survival inferences due to its simplicity to implement and good results, see
e.g. Gross and Lai (1996); Mazucheli et al. (2005). The method is used by Bilker and Wang
(1997) to provide confidence bands for the estimated survival function and it is used to
compare two survival distributions by Heller and Venkatraman (1996). However, for the
case of a small data set, Efron’s bootstrap method does not perform well due to ties and
censored observations, which occur in the bootstrap samples. This motivates development
of a smoothed bootstrap method based on the Kaplan-Meier estimator. In this section, we
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present the KM smoothed bootstrap method, then it will be compared to the smoothed
bootstrap method, which is presented in Section 3, through simulations.

The Kaplan-Meier estimate can be used to smooth the bootstrap method for right-
censored data. Suppose that a data set of size n includes u event time observations and v
right-censored observations, where n = u+ v, and ties occur with probability 0. First, the n
observed data points should be ordered, then we create u+ 1 intervals of the form (¢(;),¢(i11))
based on the event time observations, where ¢+ = 0,1,2,...,u and ¢ = 0 and #(,41) = o0.
Secondly, we assign a probability P(; to each interval of the form (¢(;),t(;+1)), such that

P(i) = P(t(i) <T < t(i+1)) = S(t(i)) — g(t(i+1)) (13)

where S(t(;)) and S(t(; 1)) are the KM estimates for the survival functions at fixed times
and £(;41), respectively.

For clarity, we present the KM smoothed bootstrap algorithm for right-censored data,
which is referred to by SBa, in the following steps:

(i) Order the observed data points and add the end points ¢ty = 0 and ¢(,4+1) = +00 (or
t+1) = b for the case of finite support [0,b]). This leads to t) < ta) < ... < tp) <
t(u—&—l)'

(ii) Create u+ 1 intervals of the form (t4;),¢(;41)), where i = 0, ..., u, based on the u event
times.

(iii) Compute the assignment probabilities P(; by Equation (13) for the u + 1 intervals.

(iv) Sample with replacement n intervals with the assignment probabilities P(;), then sample
one observation uniformly from each finite interval. For the infinite interval [t(,), c0),
we will fit an Exponential tail for this interval similar as described for the SB method
in Section 3. The Exponential tail is fitted with rate parameter (Brown et al., 1974)

A

s = —In(SCw)) (14)

tu)
This leads to obtain one bootstrap sample of size n.
(v) Calculate the empirical survival function at a fixed time ¢, S*(¢), based on the bootstrap
sample.

(vi) Perform steps (iv) and (v) B times in order to have B survival function values at a
fixed time ¢.

In this KM smoothed bootstrap approach, it should be noted that the last interval will
not be chosen during the bootstrap implementation if the maximum observation is an event
time, in which case the corresponding probability P, is equal to 0. This leads to poor results
for the survival function at any time ¢ > (., as all survival function values at ¢ > (,) based
on all bootstrap samples will be equal to 0. If the largest observation of the original data
set is censored, then the last interval can be chosen in this bootstrap procedure.

To compare the KM smoothed bootstrap method, SBa, to the SB method, which is
presented in Section 3, through simulations, we use the second scenario listed in Table
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n = 6 10 20 40 100

t S(t)| SB | SBa | SB | SBa | SB | SBa | SB | SBa | SB | SBa
0.138 | 0.95 | 0.998 | 0.994 | 0.985 | 0.978 | 0.993 | 0.991 | 0.988 | 0.986 | 0.896 | 0.899
0.223 | 0.90 | 0.979 | 0.954 | 0.995 | 0.988 | 0.918 | 0.895 | 0.948 | 0.944 | 0.884 | 0.895
0.298 | 0.85 | 0.938 | 0.877 | 0.967 | 0.942 | 0.894 | 0.883 | 0.943 | 0.942 | 0.879 | 0.882
0.368 | 0.80 | 0.972 | 0.956 | 0.923 | 0.872 | 0.890 | 0.871 | 0.947 | 0.936 | 0.911 | 0.916
0.436 | 0.75 | 0.965 | 0.913 | 0.908 | 0.885 | 0.886 | 0.858 | 0.937 | 0.932 | 0.879 | 0.883
0.503 | 0.70 | 0.936 | 0.855 | 0.947 | 0.928 | 0.930 | 0.918 | 0.888 | 0.890 | 0.869 | 0.865
0.570 | 0.65 | 0.886 | 0.881 | 0.899 | 0.856 | 0.872 | 0.842 | 0.916 | 0.909 | 0.876 | 0.879
0.639 | 0.60 | 0.909 | 0.857 | 0.943 | 0.902 | 0.925 | 0.906 | 0.876 | 0.873 | 0.868 | 0.869
0.710 | 0.55 | 0.913 | 0.819 | 0.896 | 0.838 | 0.870 | 0.831 | 0.906 | 0.897 | 0.887 | 0.890
0.783 | 0.50 | 0.956 | 0.897 | 0.954 | 0.892 | 0.879 | 0.830 | 0.873 | 0.862 | 0.874 | 0.881
0.861 | 0.45 | 0.900 | 0.821 | 0.904 | 0.826 | 0.880 | 0.825 | 0.905 | 0.885 | 0.902 | 0.897
0.943 | 0.40 | 0.923 | 0.772 | 0.938 | 0.876 | 0.878 | 0.832 | 0.874 | 0.844 | 0.878 | 0.873
1.033 | 0.35 | 0.897 | 0.691 | 0.901 | 0.800 | 0.918 | 0.892 | 0.908 | 0.899 | 0.900 | 0.903
1.132 | 0.30 | 0.902 | 0.765 | 0.945 | 0.854 | 0.880 | 0.801 | 0.879 | 0.859 | 0.904 | 0.898
1.243 | 0.25 | 0.930 | 0.694 | 0.899 | 0.762 | 0.868 | 0.774 | 0.902 | 0.883 | 0.902 | 0.880
1.373 | 0.20 | 0.935 | 0.601 | 0.894 | 0.686 | 0.877 | 0.729 | 0.905 | 0.865 | 0.899 | 0.891
1.533 | 0.15 | 0.905 | 0.552 | 0.916 | 0.665 | 0.937 | 0.815 | 0.913 | 0.835 | 0.908 | 0.885
1.744 | 0.10 | 0.943 | 0.422 | 0.930 | 0.503 | 0.896 | 0.619 | 0.926 | 0.818 | 0.909 | 0.868
2.078 | 0.05 | 0.967 | 0.230 | 0.955 | 0.357 | 0.925 | 0.459 | 0.900 | 0.617 | 0.863 | 0.720

Table 12: The actual coverage proportions for the true survival function at each value of ¢ in the 90%
quantile confidence intervals based on the two smoothed bootstrap methods.

1 to create right-censored data sets. We study the coverage proportions for the survival
function at 19 distinct fixed times in the quantile, linear and log-transformed confidence
intervals based on the SB and SBa methods. The confidence level is set at 90% and the
survival functions at the 19 different times are listed in the second column in Tables 12, 13
and 14. These 19 different times are presenting equally spaced quantiles of the event time
distribution. By this way, we can discover how the SB and SBa methods perform at different
times t.

For the simulations, N = 1000 data sets of size n are created to conduct the com-
parison between the SB and SBa methods. Based on each generated data set, we apply
each bootstrap method B = 1000 times, and then we derive the empirical survival function
based on each bootstrap sample. This leads to 1000 empirical survival functions based on
each bootstrap method. For the 90% quantile confidence interval of the survival function
at time ¢, we order the resulting values then compute 3;50) (t), which is the lower bound,

and QE‘%O) (t), which is the upper bound. To conduct the 90% linear and log-transformed
confidence intervals of the survival function at time ¢, we should first calculate the average
and the standard deviation of the 1000 survival function estimates, then use Equations (10)
and (11). For each confidence interval including the true survival function at time ¢, we
count one; otherwise, we count zero. This is repeated for all generated data sets in order to
define the actual coverage proportions for the survival function at a fixed time t.
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n = 6 10 20 40 100

t S(t)| SB | SBa | SB | SBa | SB | SBa | SB | SBa | SB | SBa
0.138 | 0.95 | 0.998 | 0.989 | 0.992 | 0.985 | 0.985 | 0.981 | 0.954 | 0.952 | 0.908 | 0.903
0.223 | 0.90 | 0.987 | 0.970 | 0.988 | 0.973 | 0.938 | 0.943 | 0.905 | 0.902 | 0.894 | 0.897
0.298 | 0.85 | 0.981 | 0.945 | 0.962 | 0.951 | 0.905 | 0.895 | 0.898 | 0.897 | 0.881 | 0.881
0.368 | 0.80 | 0.969 | 0.930 | 0.922 | 0.922 | 0.889 | 0.892 | 0.898 | 0.894 | 0.890 | 0.886
0.436 | 0.75 | 0.955 | 0.908 | 0.898 | 0.872 | 0.886 | 0.876 | 0.909 | 0.901 | 0.884 | 0.888
0.503 | 0.70 | 0.935 | 0.878 | 0.895 | 0.862 | 0.878 | 0.860 | 0.891 | 0.881 | 0.872 | 0.863
0.570 | 0.65 | 0.911 | 0.848 | 0.888 | 0.852 | 0.881 | 0.858 | 0.882 | 0.870 | 0.879 | 0.877
0.639 | 0.60 | 0.895 | 0.837 | 0.880 | 0.846 | 0.869 | 0.855 | 0.880 | 0.867 | 0.867 | 0.871
0.710 | 0.55 | 0.913 | 0.827 | 0.890 | 0.827 | 0.865 | 0.849 | 0.873 | 0.860 | 0.891 | 0.892
0.783 | 0.50 | 0.918 | 0.803 | 0.882 | 0.837 | 0.881 | 0.852 | 0.866 | 0.851 | 0.881 | 0.875
0.861 | 0.45 | 0.910 | 0.789 | 0.894 | 0.812 | 0.862 | 0.844 | 0.861 | 0.841 | 0.873 | 0.871
0.943 | 0.40 | 0.899 | 0.762 | 0.901 | 0.796 | 0.872 | 0.841 | 0.876 | 0.851 | 0.872 | 0.864
1.033 | 0.35 | 0.906 | 0.733 | 0.894 | 0.791 | 0.878 | 0.827 | 0.882 | 0.863 | 0.889 | 0.868
1.132 | 0.30 | 0.919 | 0.719 | 0.897 | 0.771 | 0.875 | 0.827 | 0.881 | 0.842 | 0.889 | 0.870
1.243 | 0.25 | 0.926 | 0.670 | 0.889 | 0.740 | 0.869 | 0.790 | 0.870 | 0.828 | 0.883 | 0.863
1.373 | 0.20 | 0.936 | 0.615 | 0.895 | 0.716 | 0.882 | 0.758 | 0.860 | 0.808 | 0.880 | 0.855
1.533 | 0.15 | 0.950 | 0.534 | 0.913 | 0.654 | 0.874 | 0.712 | 0.868 | 0.788 | 0.882 | 0.860
1.744 | 0.10 | 0.955 | 0.413 | 0.935 | 0.544 | 0.900 | 0.671 | 0.882 | 0.753 | 0.881 | 0.830
2.078 | 0.05 | 0.974 | 0.242 | 0.965 | 0.361 | 0.950 | 0.490 | 0.914 | 0.657 | 0.871 | 0.743

Table 13: The actual coverage proportions for the true survival function at each value of ¢ in the 90% linear
confidence intervals based on the two smoothed bootstrap methods.

Based on the SB and SBa methods, Table 12 presents the coverage proportions for the
survival function at different times ¢ in the 90% quantile confidence intervals. When the
time t is small, both bootstrap methods provide over-coverage; and as the sample size n
increases, the discrepancies between the actual and nominal coverage proportions decrease.
For medium and large values of ¢, the SB method mostly performs better than the SBa
method, in particular when the sample size is small. The SB method mostly provides over-
coverage regardless to the value of ¢ while the SBa method mostly provides under-coverage
when the time ¢ is large, in particular for small data sets. For the largest values of ¢ consid-
ered, the SBa method performs poorly while the SB method shows its superiority in making
the discrepancy between the actual and nominal coverage probabilities less, particularly for
small data sets n = 6,10 and 20. As the sample size increases, the results of SBa method
improve, and this is obvious when n = 40 and 100.

For the survival function at 19 different values of ¢, Table 13 presents their actual coverage
proportions at the 90% linear confidence intervals based on the SB and SBa methods. When
the time ¢ is small, both bootstrap methods provide over-coverage, in particular when the
sample size is small. As the sample size increases, the bootstrap methods decrease the
discrepancies between the actual and nominal coverage probabilities. For medium and large
values of time ¢, the SB method provides better results than those of the SBa method, in
particular for small data sets. For the largest values of time ¢, the SBa method performs
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n = 6 10 20 40 100

t S(t)| SB | SBa | SB | SBa | SB | SBa | SB | SBa | SB | SBa
0.138 | 0.95 | 0.919 | 0.836 | 0.891 | 0.863 | 0.913 | 0.899 | 0.924 | 0.909 | 0.921 | 0.917
0.223 | 0.90 | 0.922 | 0.854 | 0.910 | 0.877 | 0.906 | 0.876 | 0.925 | 0.915 | 0.910 | 0.907
0.298 | 0.85 | 0.936 | 0.867 | 0.931 | 0.877 | 0.912 | 0.889 | 0.914 | 0.897 | 0.907 | 0.900
0.368 | 0.80 | 0.941 | 0.868 | 0.931 | 0.876 | 0.918 | 0.894 | 0.918 | 0.906 | 0.891 | 0.884
0.436 | 0.75 | 0.945 | 0.858 | 0.930 | 0.876 | 0.914 | 0.873 | 0.909 | 0.898 | 0.904 | 0.897
0.503 | 0.70 | 0.941 | 0.860 | 0.937 | 0.869 | 0.907 | 0.874 | 0.904 | 0.887 | 0.872 | 0.869
0.570 | 0.65 | 0.948 | 0.850 | 0.932 | 0.869 | 0.905 | 0.866 | 0.899 | 0.887 | 0.883 | 0.876
0.639 | 0.60 | 0.952 | 0.859 | 0.931 | 0.863 | 0.909 | 0.875 | 0.891 | 0.873 | 0.885 | 0.881
0.710 | 0.55 | 0.968 | 0.880 | 0.933 | 0.861 | 0.895 | 0.872 | 0.884 | 0.868 | 0.893 | 0.888
0.783 | 0.50 | 0.973 | 0.880 | 0.933 | 0.868 | 0.904 | 0.867 | 0.881 | 0.867 | 0.887 | 0.883
0.861 | 0.45 | 0.972 | 0.889 | 0.943 | 0.855 | 0.903 | 0.868 | 0.882 | 0.860 | 0.882 | 0.879
0.943 | 0.40 | 0.969 | 0.908 | 0.933 | 0.860 | 0.902 | 0.870 | 0.892 | 0.870 | 0.878 | 0.871
1.033 | 0.35 | 0.973 | 0.937 | 0.933 | 0.870 | 0.894 | 0.865 | 0.890 | 0.878 | 0.891 | 0.879
1.132 | 0.30 | 0.985 | 0.988 | 0.934 | 0.882 | 0.900 | 0.859 | 0.899 | 0.857 | 0.892 | 0.881
1.243 | 0.25 | 0.982 | 0.991 | 0.940 | 0.921 | 0.896 | 0.844 | 0.876 | 0.854 | 0.887 | 0.867
1.373 | 0.20 | 0.974 | 0.987 | 0.943 | 0.970 | 0.899 | 0.839 | 0.868 | 0.836 | 0.886 | 0.871
1.533 | 0.15 | 0.972 | 0.983 | 0.933 | 0.965 | 0.901 | 0.900 | 0.879 | 0.834 | 0.890 | 0.870
1.744 | 0.10 | 0.954 | 0.973 | 0.931 | 0.962 | 0.914 | 0.964 | 0.888 | 0.879 | 0.884 | 0.858
2.078 | 0.05 | 0.936 | 0.969 | 0.917 | 0.950 | 0.906 | 0.951 | 0.895 | 0.960 | 0.876 | 0.847

Table 14: The actual coverage proportions for the true survival function at each value of ¢ in the 90%
log-transformed confidence intervals based on the two smoothed bootstrap methods.

poorly because an Exponential tail is assumed for the last interval in only one case, which
is the case that the maximum observation is censored; the last interval will not be selected
during the bootstrap procedure if the last observation is event due to P,y = 0. This leads to
poor estimated results for the survival function at any time ¢ > ¢(,); the estimated survival
function at any time ¢ > L) is set equal to zero.

Table 14 outlines the actual coverage probabilities for the survival function at different
times t in the 90% log-transformed confidence intervals. At different sample sizes n and
different times t, the SB method mostly provides better results than the SBa method, in
particular for sample sizes 6 and 10. For n = 6, 10, 20, the SB method mostly provides over-
coverage, but when the sample size is 40,100, it mostly provides under-coverage. When
the time t is small, e.g. ¢ = 0.138,0.223, the SBa method provides under-coverage when
n = 6, 10, and as the sample size increases to 20, 40, 100, it performs well. Overall, the SBa
method leads to better coverage in the log-transformed confidence intervals in comparison
to the results at the quantile and linear confidence intervals, in particular for small data
sets.

For this section, we introduced a smoothed bootstrap method based on the Kaplan-
Meier estimate and compared it to the SB method through simulation studies. Based on
the simulation results, it is apparent that the SB method mostly provides better coverage.
This is because of three reasons; first, the SB method partitions the sample space into
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n + 1 intervals based on all observed data points while the SBa method creates only u + 1
intervals by the event time observations, where © < n. The second reason is that with
the SB method, we assume an Exponential tail to each infinite interval while with the SBa
method, we assume only one Exponential tail to the last interval. Thirdly, the last interval
will not be selected during the SBa bootstrap procedure if the maximum observation is an
event time due to the fact that P, = 0. This leads to poor results for the survival function
at times that are greater than ().

7. Concluding remarks

This paper has introduced a smoothed bootstrap method for right-censored data (Al Luhayb,
2021) based on the right-censoring A,y assumption proposed by Coolen and Yan (2004).
This method is easy to implement and it provides good results. To investigate its perfor-
mance, we compared it to Efron’s method in terms of the coverage probabilities for the
quartiles through simulation studies. The smoothed bootstrap method mostly performs
better than Efron’s method, in particular for small data sets. For survival inferences, the
smoothed bootstrap method has been applied and compared to the Kaplan-Meier estimate
through two examples. Then, it is compared to the alternative smoothed bootstrap method
based on the Kaplan-Meier estimate. The comparisons were in terms of the coverage of the
quantile, linear and log-transformed confidence intervals for the survival function at different
times t. The smoothed bootstrap method performs better than the Kaplan-Meier smoothed
bootstrap method, in particular when the sample size is small and the time ¢ is large.

Due to the process of Efron’s method, which is sampling with replacement from the
original data set, the bootstrap samples often include ties and right-censored observations,
which may lead to poor results in particular when the sample size is small and the cen-
soring proportion is large. In contrast, the smoothed bootstrap method prevents ties and
right-censored observations to occur in the bootstrap samples, and the smoothed bootstrap
method samples from the whole data support by using the right-censoring A,y assump-
tion. For large data sets, Efron’s method can provide good accuracy. However, it is not
always easy to obtain large data sets for real world applications, e.g. in statistics related to
medicines (Freireich et al., 1963; Nahman et al., 1992; Sedmak et al., 1989), so it may be
beneficial to use the smoothed bootstrap method instead in such cases.

For survival inferences, the smoothed bootstrap method was used and compared to the
Kaplan-Meier estimate through two real applications from the literature. For a small data
set, the smoothed bootstrap method provided a smooth survival curve while the Kaplan-
Meier estimate decreases only at the event times t. When the sample size is large, the
smoothed bootstrap method and the Kaplan-Meier estimate lead to nearly identical esti-
mates of the survival function. Through simulation studies, the smoothed bootstrap method
has been compared to the Kaplan-Meier smoothed bootstrap method in terms of the cov-
erage proportions for the survival function at different times ¢ in the quantile, linear and
log-transformed confidence intervals. In these confidence intervals, the smoothed bootstrap
method mostly provided better results, in particular when the sample size is small and the
time t is large. With the smoothed bootstrap method, an Exponential tail is assumed for
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each infinite interval while only one Exponential tail is assumed for the last interval when
the Kaplan-Meier smoothed bootstrap method is applied. With the smoothed bootstrap
method based on the Kaplan-Meier estimate, the last interval will not be chosen during the
bootstrap procedure if the maximum observation is an event time; it may be selected only
if there is at least one right-censored observation greater than the maximum event time.

To implement the smoothed bootstrap method in R software, it requires approximately
15% more time than Efron’s method. This is due to the ordering of the observations,
computation of the M-function values corresponding to the n + 1 intervals and sampling
from the intervals to create the bootstrap samples. The Kaplan-Meier smoothed bootstrap
method requires similar computation time as the smoothed bootstrap method.

In this paper we have considered the use of the bootstrap method for uncertainty quan-
tification in case of estimation only. Consideration of the use of the bootstrap method for
other inferences is also important. One example is the use for hypothesis testing, a detailed
study of the newly proposed bootstrap method, with comparison to Efron’s bootstrap, ap-
plied to hypothesis tests is reported by Al Luhayb (2021). Considering Type-1 errors, the
new bootstrap method also provides mostly better results for hypothesis testing than Efron’s
bootstrap, as for estimation in particular for small data sets and large censoring proportions.
Comparing the performances of these bootstrap methods with regard to Type-2 errors for
hypothesis tests is an important topic for future research. A further possible use of the
smoothed bootstrap method is in reliability applications. For example, Marks et al. (2014)
used Efron’s bootstrap method for inference on system lifetime distributions for both paral-
lel and series systems. It may be beneficial to use the smoothed bootstrap method instead
in such settings, in particular because the resulting survival functions are much smoother.
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