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Abstract

Objectives: Previous research has shown that while missing data are common in

bioarchaeological studies, they are seldom handled using statistically rigorous

methods. The primary objective of this article is to evaluate the ability of imputation

to manage missing data and encourage the use of advanced statistical methods in

bioarchaeology and paleopathology. An overview of missing data management in bio-

logical anthropology is provided, followed by a test of imputation and deletion

methods for handling missing data.

Materials and Methods: Missing data were simulated on complete datasets of ordinal

(n = 287) and continuous (n = 369) bioarchaeological data. Missing values were

imputed using five imputation methods (mean, predictive mean matching, random

forest, expectation maximization, and stochastic regression) and the success of each

at obtaining the parameters of the original dataset compared with pairwise and list-

wise deletion.

Results: In all instances, listwise deletion was least successful at approximating the

original parameters. Imputation of continuous data was more effective than ordinal

data. Overall, no one method performed best and the amount of missing data proved

a stronger predictor of imputation success.

Discussion: These findings support the use of imputation methods over deletion for

handling missing bioarchaeological and paleopathology data, especially when the data

are continuous. Whereas deletion methods reduce sample size, imputation maintains

sample size, improving statistical power and preventing bias from being introduced

into the dataset.
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1 | INTRODUCTION

Missing data are ubiquitous in the social sciences. Bioarchaeological data

may be lost due to myriad factors including differential preservation,

selective excavation, post-mortem damage, pathology, transcription

errors, and/or computer crashes. When not handled properly, missing

values can introduce substantial bias into a dataset, leading to

erroneous study results and flawed interpretations (see Stojanowski &

Johnson, 2015). Furthermore, most statistical tests require datasets with

no missing data. Despite the significance of missing data, their treatment
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is often unreported in the social sciences, including in anthropology.

When missing data are addressed, the least statistically and theoretically

rigorous methods are generally used (see companion paper: Missing Data

in Bioarchaeology I). The goal of this paper is to explore techniques for

handling missing data, focusing on the use of imputation to manage miss-

ing bioarchaeological and paleopathological data. Imputation is defined

as inserting a plausible value in place of a missing value (Allison, 2001;

Schafer, 1999; Schafer & Graham, 2002). Our target audience includes

anthropologists who have basic statistical and programming knowledge,

but they need not be statistical experts, as methods are explained con-

ceptually rather than mathematically. This paper has two sections: Part I

gives a brief overview of classes of missing data and describes commonly

used missing data methods in biological anthropology. Part II provides a

case study test of seven methods for handling missing ordinal and con-

tinuous paleopathology data. This paper is intended as a companion

paper to Missing Data in Bioarchaeology I, which reviews current

approaches to missing data in bioarchaeology.

2 | PART I: BACKGROUND

The best way to manage missing data depends on how and why the

data are missing. Rubin (1976) described three main categories of

missing data: missing completely at random, missing at random, and

missing not at random. Data are described as missing completely at

random (MCAR) when the reason the data are missing is unrelated to

the pattern of missingness or any other variables of interest in the

data set (Graham et al., 1997; Pepinsky, 2018; Quintero &

LeBoulluec, 2018). If we have collected two variables (X and Y), data

are MCAR “if the probability of missing data on Y is unrelated to the

value of Y itself or to the values of any other variables in the data set”
(Allison, 2001, p. 3). For example, in a dataset containing information

on age (X) and femoral length (Y), data on femoral length would be

MCAR if their missingness is unrelated to age or femoral length.

MCAR data are likely rare among bioarchaeological datasets but could

occur when skeletons are only partially recovered due to an incom-

plete excavation grid or when taphonomic processes vary stochasti-

cally across mortuary deposits, resulting in some poorly preserved

skeletal elements or cortical surfaces.

The second category is missing at random (MAR). Data are miss-

ing at random if the pattern of missingness depends on some variable

in the dataset that is not the variable of interest (Graham et al., 2007;

Pepinsky, 2018; Quintero & LeBoulluec, 2018). Data are MAR if the

probability of missing data on Y depends on the variable X but not on

the value of Y (Allison, 2001). Using the above example, femoral

length (Y) data would be missing at random if the missingness

depended on age (X) but not on femoral length (Y) which could occur

if older individuals more often had poorly preserved long bones due

to osteoporosis.

The third category of missing data is missing not at random

(MNAR), also called not missing at random (NMAR). Data are

described as MNAR if the probability of missingness is related to the

variable of interest, that is, if the probability of missing data on

Y depends on Y itself (Pepinsky, 2018; Quintero & LeBoulluec, 2018).

For example, data missing under the variable femoral length (Y) would

be MNAR if the data are missing because of femoral length (Y). In

practice, this may be because the researcher opted to exclude individ-

uals with unusually short or long femurs, or because only “normal”
femurs were accessioned into the collection (see Bhaskaran &

Smeeth, 2014 for additional examples of MAR, MCAR, and MNAR

variables).

Data that are MCAR or MAR are less problematic than MNAR

and are often referred to as “ignorable” (Allison, 2001; Enders, 2010;

Graham, 2012; Osborne, 2013). Deleting data that are MCAR or

MAR, however, may result in a decline in statistical power due to a

decreased sample size. Since MCAR and MAR data are distributed

randomly, their absence should not introduce bias into the dataset

(Graham, 2009; Howell, 2007; Myers, 2011). Data missing not at ran-

dom, however, are problematic and referred to as “nonignorable”
(Allison, 2001; Graham, 2009, 2012). The probability of missingness

is dependent on the missing data, and it is almost impossible to

know the true extent of that relationship. Therefore, it is not possi-

ble to control or compensate for data missing not at random

(Graham, 2012; Howell, 2007; McKnight et al., 2007). MNAR data

can result in a substantially biased dataset, because information

vital to answering the research question is absent (De Leeuw

et al., 2003; Finch, 2010; Graham, 2009; Osborne, 2013). In

bioarchaeology (and paleopathology in particular), missing data

likely fall into a combination of all three categories and it may be

impossible to discern which variables belong in which category

(Morris et al., 2014; Myers, 2011).

Overall, the methods bioarchaeologists use to manage missing

data can broadly be classified into three categories: deletion, imputa-

tion, and maximum likelihood. Here we provide a detailed description

of each approach, its advantages, and its disadvantages.

2.1 | Deletion

1. Pairwise deletion (aka available case analysis) involves dropping

cases or individuals based on variables present for each analysis

(Allison, 2001; Graham, 2012; van Buuren, 2018). For example, an

individual missing a periodontal disease score will be deleted from

any analyses requiring periodontal disease as a variable but

included in other tests, such as analyses for femoral length. This

approach is easy to perform and has the benefit of making use of

all available data, greatly maximizing the sample size. However,

each analysis uses a slightly different sample, generating results

that may not be comparable or are inconsistent across variables

(Myers, 2011; Newman, 2014; van Ginkel et al., 2020). Published

tables may list different sample sizes, which can be misleading if

not appropriately explained, and repeatedly running similar ana-

lyses on overlapping samples raises concerns of alpha inflation. If

the data are not MCAR, pairwise deletion can create bias in the

parameter estimates (Allison, 2001; Baraldi & Enders, 2010). Fur-

thermore, when each analysis is based on a slightly different

350 WISSLER ET AL.
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sample, there is no straightforward procedure for calculating the

standard error for the entire sample (Graham, 2012).

2. Listwise deletion (aka casewise deletion) involves the removal of

an individual and all their data – an entire row in a spreadsheet – if

any data for that individual are missing (Allison, 2001;

Graham, 2012; van Buuren, 2018). This is the default method

employed by statistical software programs SAS, SPSS, and Stata

(van Buuren, 2018). Listwise deletion has the advantages of being

easy to understand, being simple to execute, and not requiring

advanced statistical knowledge or software (Allison, 2001;

Meeyai, 2016). It creates a complete dataset that allows one to

proceed with statistical analysis (Baraldi & Enders, 2010). If,

however, the amount of missing data is even moderate, listwise

deletion can result in an enormous decrease in sample size and

subsequent loss of statistical power (Baraldi & Enders, 2010;

Graham, 2012). The amount of missing data may be so great

that entire variables could be deleted. If the data are not

MCAR, listwise deletion can introduce substantial bias into

final p-values and confidence intervals (Allison, 2001; Baraldi &

Enders, 2010). Many statisticians consider listwise deletion to

be the worst of all possible techniques for handling missing

data (Allison, 2001; King et al., 1998; van Buuren, 2018;

Wilkinson, 1999).

2.2 | Imputation

Imputation, defined as inserting a plausible value in place of a missing

value, is an alternative to deletion methods for handling missing data

(Allison, 2001; Schafer, 1999; Schafer & Graham, 2002). Imputation is

a broad term that encompasses numerous frameworks and mathemat-

ical models for producing and selecting the imputed values. Critics of

imputation claim these approaches “make up data,” invoking various

justifications for continuing to use deletion methods (Osborne, 2013;

Schafer, 1999; van Ginkel et al., 2020). Studies have shown, however,

that imputed data are often better able to recover the original param-

eter estimates and are more easily replicable by other researchers

than deletion methods (Fichman & Cummings, 2003; King et al., 1998;

Osborne, 2013; Pedersen et al., 2017).

1. Mean replacement is the simplest imputation strategy: the mean

of a variable is substituted for each missing data point of that vari-

able (Little & Rubin, 2002). Mean imputation is easy to understand

and implement but will decrease the variance of the sample. As

such, large amounts of missing data will skew covariate relation-

ships and affect the strength and direction of correlations

(Graham, 2012; Musil et al., 2002; Osborne, 2013).

2. Regression imputation uses the complete case data for all variables

to build a regression model that is then used to predict missing

values. Regression imputation is conceptually intuitive and utilizes

all variables in the dataset to generate predictions (Graham, 2012;

Musil et al., 2002). The imputed values, however, lie on the regres-

sion line, so the sample variance is artificially decreased and

correlations between variables are spuriously strengthened

(Graham, 2012; van Buuren, 2018; Zhang, 2016).

3. Stochastic regression imputation corrects for the over correlation

between variables by adding random “noise” back into the model

(Newman, 2003; van Buuren, 2018). One way to add this noise is

by randomly selecting from the residuals and adding that value to

the predicted missing value (Enders, 2010; Little & Rubin, 2002;

van Buuren, 2018). Stochastic regression has the advantage of

being able to produce unbiased parameters when the data are

MCAR or MAR but will underestimate standard errors (Alli-

son, 2001; Enders, 2010).

4. Random forest (RF) imputation uses a decision tree approach to

predict the best values to impute. A bootstrapped random subset

of samples is created to build multiple regression trees for each

variable (Shah et al., 2014). The behavior of the data as it is run

through the trees predicts the best values for the missing data. RF

imputation is a commonly used method in epidemiology

(Henriksson et al., 2016; Shah et al., 2014; Weng et al., 2019) and

is capable of handling mixed data types and variable interactions

(Stekhoven & Bühlmann, 2012; Tang & Ishwaran, 2017; Waljee

et al., 2013). RF imputation can also be perceived as a black box

technique, with little understanding of how the decision trees are

being grown (Breiman, 2001).

5. Predictive mean matching (PMM) is an expanded form of hot deck

imputation. Hot deck imputation is a broad “record matching tech-

nique” in which missing values from an individual (the recipient)

are replaced by observed values from a similar case (the donor)

(Kaiser, 1983, p. 1). This method requires the selection of an impu-

tation model, such as linear regression. The model is estimated

using the complete cases of the predictor variable and the variable

to be imputed, and then the model is used to predict all values of

the variable to be imputed, observed, and missing. Subsequently,

each predicted missing value is matched to the most similar pre-

dicted values from the observed cases; one of these close cases is

randomly selected, and the missing value is substituted for the

observed value (Bailey et al., 2020; Little, 1988; Vink et al., 2014).

Because PMM matches values from other donor cases within the

dataset, imputed values will always fit with the observed range of

values (Kleinke, 2018; Vink et al., 2014). A potential disadvantage

to PMM is that it may not be acceptable for use with small sample

sizes, as the pool of available observed outcomes with a similar

case prediction will be small (Kleinke, 2018).

2.3 | Maximum likelihood estimation

1. Expectation maximization (EM) is a common maximum likelihood

algorithm that uses a two-step iterative process. In the E-step, a

missing value is imputed based on what would be expected given

other values in the dataset (Dempster et al., 1977; Graham, 2012;

Newman, 2003). In the M-step, the algorithm checks whether the

new value has the highest probability of being a good fit with the

rest of data. If not, the process begins again, imputing a more likely

WISSLER ET AL. 351
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value until all missing data have been replaced with the most likely

values (Musil et al., 2002). EM procedures generally perform better

than mean imputation or deletion methods (Nelwamondo

et al., 2007). One potential drawback to EM, however, is that it

produces SEs that may be narrower than those of the true data

and thus may artificially increase statistical confidence (Musil

et al., 2002).

2.4 | Prior approaches to imputation in other
disciplines

While missing data are a problem in nearly all fields of research, some

disciplines, such as psychology, ecology, and health sciences, have

adopted advanced methods for handling missing data more quickly

than others, particularly compared to biological anthropology. We sus-

pect this delay may be due to a lack of awareness that imputation

exists or a belief that certain types of data (e.g., age and sex) are not

appropriate to impute (McKnight et al., 2007). In other fields, how-

ever, scholars regularly impute a wide variety of missing demographic

and social variables that are comparable to those used in biological

anthropology and which can be used as a model for our field moving

forward. Working in the social sciences, Evans and Smokowski (2015)

tested how social capital—as measured by proxies such as social sup-

port and mental health—predicts the likelihood of intervening in

school bullying. They imputed missing survey data on demographic

factors such as ethnicity and religion, responses on parental support,

school satisfaction, and optimism about the future. Turney (2015)

examined how paternal incarceration may be a cause of food insecu-

rity for children, imputing missing survey answers on how often a

child has been hungry or how often they skipped meals.

Researchers in the natural and ecological sciences have adopted

advanced techniques as standard for dealing with missing data, imput-

ing a diverse array of biological traits—such as leaf area, seed mass,

plant height, animal body mass, litter size, diet diversity, sociality, and

generation length—that are analogous to data regularly used in many

areas of biological anthropology (Bird et al., 2020; Cooke et al., 2019,

2020; Grilo et al., 2020; Ordonez & Svenning, 2017; Pacifici

et al., 2013; Taugourdeau et al., 2014). Divíšek et al. (2018) for exam-

ple, searched for patterns of traits that could be indicators of invasive

plant species and imputed missing data on leaf area, plant height, and

seed weight. While investigating how certain traits relate to ecological

strategies, Cooke et al. (2020) used multiple imputation to manage

missing data on body mass, habitat breadth, generation length, diet,

and litter/clutch size.

Imputation of missing demographic or health data like those used

in sociocultural anthropology and bioarchaeology is commonplace

within epidemiological and clinical studies (Barnard & Meng, 1999;

Bodnar et al., 2006; Costello et al., 2014; Ferrie et al., 2005; Petersen

et al., 2014; Zeka et al., 2006). Lassale et al. (2018) imputed missing

body measurements, testing the association between obesity and cor-

onary heart disease. Dam et al. (2016) imputed missing values for age,

education, smoking, and health status to examine whether increased

alcohol use in postmenopausal women increases their risk of breast

cancer while decreasing their risk of coronary heart disease. In gen-

eral, disciplines in the social, ecological, and biological sciences employ

more sophisticated approaches to missing data, particularly compared

to certain areas in biological anthropology.

2.5 | Prior approaches to imputation in biological
anthropology

Missing data have been identified as a concern in many subfields of

biological anthropology including paleoanthropology (Clavel

et al., 2014; Gordon et al., 2008; Kramer & Konigsberg, 1999), prima-

tology (Ely et al., 2013; Jardim et al., 2021), paleogenomics (Irving-

Pease et al., 2021; Ishiya et al., 2019; Mizuno et al., 2017), and

bioarchaeology (Burnett et al., 2013; Kenyhercz & Passalacqua, 2016;

Stojanowski & Johnson, 2015). While most scholars in these areas

agree that deletion is an unsatisfactory method for handling missing

data, there are few discipline-specific papers providing guidance or

suggesting best practices. As discussed in the companion paper, many

researchers do not disclose the presence of missing values in their

datasets. Imputation seems to have been adopted unequally among

various subfields of biological anthropology, likely reflecting the types

of questions asked, the statistical analyses employed, and the other

disciplines from which each subfield draws.

Paleoanthropology relies on inherently fragmentary data and

small sample sizes due to the nature of the fossil record. Paleoanthro-

pologists have therefore been compelled to reconcile with their miss-

ing data more so than many other areas of biological anthropology.

EM is a commonly found missing data method in vertebrate paleontol-

ogy, having been recommended by Strauss et al. (2003) and used in

numerous other studies in biological anthropology (Athreya &

Wu, 2017; Scherer, 2007; Stefan, 2004). The need to reconstruct

fragmentary hominin crania has been a major driver of missing data

management. Glantz et al. (2009) imputed missing fossil cranial mea-

surements to assess group membership for the Teshik-Tash 1 cranium.

Paleoanthropologists employing geometric morphometrics have

adopted other approaches for handling missing values. Gunz et al.

(2009) for example, proposed using multiple multivariate regression to

estimate missing values to reconstruct fragmentary hominin crania.

Due to the fragmentary and low-quantity nature of ancient DNA

(aDNA), paleogeneticists must work with incomplete and low cover-

age genomic data, with most samples below an average 1x depth of

coverage. Imputation is used to infer genotype calls (e.g., Aa, AA, or

aa) across aDNA samples so that there are sufficient genotypes to

compare among study samples and analyze concurrently with large

comparative aDNA and modern datasets. Unlike other incomplete

biological anthropology data, genomic data are helpfully governed by

a well-documented biological mechanism that allows genotypes to be

inferred based on their association with other genotypes linkage dis-

equilibrium (LD) (Neale, 2010). LD is the non-random association

alleles have with other geographically close alleles. Chromosomes

recombine when chunks of the genome are exchanged during meiosis;

352 WISSLER ET AL.
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these chunks are known as haplotypes. Therefore, genotype imputa-

tion methods leverage large reference panels of phased (separated by

chromosome) haplotypes from hundreds to millions of individuals to

infer missing genotypes (Browning & Browning, 2016). While geno-

type imputation is highly successful for modern genomic data

(Browning et al., 2018; Pasaniuc et al., 2012), there are caveats when

working with aDNA. Namely, high-quality comparative reference

panels comprise genomes from modern individuals, which may not be

representative of ancient genomic diversity and consequently bias

results toward the reference alleles (Hui et al., 2020). Also, miscoding

lesions sequenced from degraded aDNA fragments and sequencing

errors in low coverage aDNA data can masquerade as variants, which

can penalize real genotype similarities and add additional noise to

sparse and stochastically preserved aDNA data. Despite these difficul-

ties, researchers have used imputation workflows to significantly

increase aDNA sample sizes for downstream analyses, such as popula-

tion affinity, genetic relatedness, demographic history, and phenotypic

inferences (Gamba et al., 2014; Jensen et al., 2019; Martiniano

et al., 2017).

Primatologists have also dealt with missing data in their research,

though the qualities of those data and causes of their missingness

often differ from those in paleogenomics or paleoanthropology. While

investigating the social pairing process among rhesus macaques Capi-

tanio et al. (2017) imputed missing values on behavioral responsive-

ness and temperament. Grebe et al. (2019) studied ringtail lemurs to

understand mechanisms and origins of dominance among females.

Using the AMELIA package in R, the authors not only imputed missing

endocrine data, but also compared imputed and observed values to

ensure they had generated plausible imputed values. Studying the

sleeping behaviors of proboscis monkeys, Feilen and Marshall (2014)

imputed missing values on tree characteristics and measurements.

The authors additionally noted the reasons for missing data that

included “malfunction of data collection devices, forest fires, river clo-

sure, and storms” (p. 1132) which hindered data collection.

Bioarchaeological data have their own suite of unique characteris-

tics that can make them more challenging to analyze than data from

other fields. The data are often a mix of continuous, categorical, and

binary variables that are best analyzed together. Many statistical tests

do not work well with categorical data or do not accept mixed data

types. Unlike continuous data, categorical and binary data have a low

range of possible values. For example, according to “Standards for

Data Collection from Human Skeletal Remains” (Buikstra &

Ubelaker, 1994), porotic hyperostosis should be recorded as 0, 1, 2, 3,

or 4 – with 0 as no expression, and 4 as the highest expression. Some

of the more statistically complicated methods for imputing missing

data do not work well with such a narrow range of allowable values.

However, because of this low range, less computationally intensive

methods may be successful; for instance, a randomly imputed number

selected from 0 to 4 is more likely to fit than one selected from 0 to

100. Furthermore, the missing values in a bioarchaeological dataset

may fall in different classes of missingness depending on the variable.

Cribra orbitalia may be MCAR, linear enamel hypoplasia may be MAR,

and periodontal disease may be MNAR. Each variable may require

separate pre-analysis data treatments and procedures for handling

missing values (Stojanowski & Johnson, 2015).

Another challenge with bioarchaeological data is that we regularly

collect data that are MNAR, yet we fail to account for those biases in

our analyses or interpretations. For example, most scoring procedures

for periodontal disease code missing teeth as NA or not scorable

(e.g., Kerr, 1988). However, in cases of extreme periodontal disease,

tooth loss will occur (Lindhe et al., 1983; Morelli et al., 2018;

Ong, 1998; Ramseier et al., 2017). Antemortem tooth loss may there-

fore be the highest expression of periodontal disease. Scoring teeth

missing antemortem as NA introduces MNAR values, creating a biased

dataset.

Compared to other subtopics within biological anthropology,

bioarchaeologists have made far less use of statistically sophisticated

methods for handling missing data and are more likely to rely on dele-

tion methods (see companion article). The areas in which imputation

has been used extensively include biodistance analyses and broader

investigations of population affinity (Godde & Rangel González, 2022;

Paul et al., 2013; Prevedorou & Stojanowski, 2017; Rathmann

et al., 2022). Noting the limitations of missing data early on, Howells

(1973) proposed three options for handling missing biodistance data:

mean imputation, regression, and making an educated guess. Working

with dental metrics and nonmetrics, Thompson et al. (2015) imputed

missing values to reevaluate evidence surrounding biological related-

ness and population movement at Cahokia's mound 72. Similarly, Red-

fern and Hefner (2019) imputed missing cranial measurements to

investigate the presence of individuals with African ancestry in the

East Smithfield Black Death cemetery. In recent years, numerous dis-

sertations have emerged that impute missing biodistance data

(Bethard, 2013; Bolhofner, 2017; Miller, 2015; Pacheco-Forés, 2020;

Paul, 2017).

Despite the regular use of imputation in biodistance, few

researchers have assessed the performance of imputed data when

analyzed. Kenyhercz and Passalacqua (2016) tested four different

imputation methods—hot deck, iterative robust model-based imputa-

tion (IMRI), k-nearest neighbor (kNN), and mean—on continuous cra-

nial metric data with 10%, 20%, 50%, and 90% of the values in the

dataset missing. Kenyhercza et al. (2019) performed a nearly identical

study but assessing imputation of ordinal nonmetric cranial traits.

Both papers found all imputation methods perform similarly with low

amounts of missing data. At higher percentages of missing data, how-

ever, differences emerged; kNN performed well with cranial metric

data and IRMI worked well with cranial nonmetric data. Kenyhercz

and Passalacqua (2016) however, additionally tested how imputed

data affect biodistance analyses by calculating Mahalanobis distances

(D2) using both imputed and complete datasets. They found that hot

deck, IRMI, and mean imputation artificially decreased the distance

between populations, causing them to appear more similar while kNN

increased the distance. Fortunately, most methods generated values

that were able to classify individuals into correct population groupings

with acceptable success. IRMI, however, had the highest levels of

group misclassification, with one group only receiving a 7% correct

classification.
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Beyond biodistance, few researchers have investigated imputa-

tion of other bioarchaeological data such as pathology, trauma, age-

at-death, or sex. Auerbach and colleagues (Auerbach, 2011; Auerbach

et al., 2005; Auerbach & Ruff, 2004) proposed several multiple regres-

sion equations to estimate missing skeletal measurements to assess

stature. Wissler (2021) imputed missing ordinal paleopathology data

to investigate frailty and survival in the 1918 influenza pandemic. A

recent paper by Muzzall (2021) proposed a technique for estimating

biological sex. Using machine learning techniques and generalized low

rank models to impute missing data, the model achieved a high suc-

cess rate when cranial interlandmarks and dental metric distances are

combined.

3 | PART II : A CASE STUDY TEST OF
IMPUTATION OF PALEOPATHOLOGY DATA

The second aim of this paper is to discover which imputation tech-

niques are appropriate for imputing missing ordinal and continuous

paleopathology data. Previous researchers have noted that the

amount of missing data can have substantial impacts on representa-

tiveness of a dataset as well as the success of various imputation

approaches (Kleinke, 2018; Leite & Beretvas, 2010; Quintero &

LeBoulluec, 2018). Furthermore, whether the data are MCAR, MAR,

or MNAR will affect imputation performance (King et al., 1998; Musil

et al., 2002; Pepinsky, 2018). We therefore examine how different

amounts of missing data and how patterns of missingness impact

imputation success. To accomplish this, we simulated missing data on

two complete bioarchaeological datasets (no missing data) and tested

five methods for imputing ordinal paleopathology data and continuous

skeletal measurements alongside pairwise and listwise deletion to dis-

cover which approach best approximated the parameters of the origi-

nal dataset.

3.1 | Materials

Ordinal missing data were simulated on a complete dataset of

287 individuals from the Hamann–Todd Human Skeletal Collection.

This sample includes a mix of males, females, African American indi-

viduals, and European American individuals ranging in age from 18 to

80 years. Recorded paleopathology data include porotic hyperostosis,

cribra orbitalia, periodontal disease, linear enamel hypoplasia, and

periosteal lesions of the tibia. The range of ordinal values for each are

porotic hyperostosis, 0–2; cribra orbitalia, 0–3; periodontal disease,

0–4; linear enamel hypoplasia, 0–3; and periostosis, 0–3.

Continuous missing data were simulated on a complete dataset of

369 individuals from the same collection. Variables include left and

right femoral bicondylar lengths – measured in centimeters – and the

antero-posterior (AP) and transverse (TR) vertebral neural canal diam-

eters of the first, fifth, and tenth thoracic vertebrae (T1, T5, and T10),

and the first and third lumbar vertebrae (L1 and L3) – measured in

millimeters.

3.2 | Methods

Seven missing data methods were chosen for evaluation: mean impu-

tation, PMM, stochastic linear regression, RF, EM, pairwise deletion,

and listwise deletion. These methods were chosen because they are

commonly used in the social sciences. Excellent statistical packages

are available for each, making these methods easy to implement and

more accessible to non-experts. These methods represent a wide

range of statistical approaches and range from mathematically simple

(e.g., mean imputation), to complex (e.g., EM).

Several R packages were used to impute the missing data, as no sin-

gle package worked with all methods and all data types. Mean replace-

ment, PMM, and stochastic linear regression were achieved using the

mice package (v3.11.0; van Buuren & Groothuis-Oudshoorn, 2011). For

each, m = 10 imputations were performed with 50 iterations. RF imputa-

tion was executed with the missForest package (v1.4; Stekhoven &

Bühlmann, 2012) for both ordinal and continuous data; the mice package

was unable to form discrete decision trees for the ordinal data given the

low range of possible values. EM for both ordinal and continuous data

was performed using missMethods (v0.2.0; Rockel, 2020). Pairwise dele-

tion was achieved using na.rm = TRUE to remove individuals with miss-

ing values by variable. Listwise deletion used the na.omit function,

deleting an entire individual from that iteration of the dataset. All ana-

lyses were performed in RStudio version 1.1.456 (Rstudio Team, 2016).

To evaluate how the amount of missing data influences the success

of the seven approaches five different datasets with 5%, 10%, 20%, 30%,

and 40% of the data missing were created using the R package imputeR

(v2.2; Feng et al., 2020) resulting in 25 ordinal datasets and 25 continuous

datasets with missing data. To assess how patterns in the missing data

affect imputation, five additional datasets with percentages of missingness

that differ for each variable were created to more accurately reflect pat-

terns of missingness found in a genuine bioarchaeology dataset. Missing

data were simulated as MCAR, MAR, and MNAR using the R package mis-

sMethods (v0.2.0; Rockel, 2020), resulting in a total of 15 additional data-

sets. For the ordinal data, percentages of missingness were set at porotic

hyperostosis = 12.5%, cribra orbitalia = 20%, periodontal disease = 25%,

linear enamel hypoplasia = 30%, and periostosis = 10%. For continuous

data, the following percentages of missingness were selected: femoral

length right = 10%, femoral length left = 10%, T1AP = 15%,

T1TR = 10%, T5AP = 12.5%, T5TR = 10%, T10AP = 15%,

T10TR = 15%, L1AP = 20%, L1TR = 15%, L3AP = 20%, and

L3TR = 15%. These percentages mirror the amount of missing values in

the first author's dissertation dataset (Wissler, 2021). Note that these data

come from a documented osteological collection and therefore these per-

centages may not represent what would be found in an archeological

assemblage.

3.3 | Assessing success

The success of each imputation method was assessed using the normal-

ized root mean square error (NRMSE), which measures the difference

between predicted and observed values; a lower NRMSE indicates a
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better fit. NRMSE was calculated using the hydroGOF package (v0.4-0;

Zambrano-Bigiarini, 2020). As NRMSE is a standard metric for evaluating

imputation methods, the results will be broadly comparable to similar

studies in other disciplines. Calculating NRMSE requires original and

imputed values and thus could not be used to assess success for the two

deletion methods. Therefore, percent error of the mean was also used to

compare success of imputation and deletion methods. NRMSE and per-

cent error quantify slightly different aspects of imputation success.

NRMSE quantifies the difference between paired original and imputed

values; percent error evaluates the difference in the overall mean between

the original and imputed datasets. The R code for these procedures is

available under the first author's GitHub Repository (Wissler, 2022).

3.4 | Case study results

1. Ordinal data summary results are shown in Figures 1–4.

Tables with the complete results are available as Supporting

Information. Figure 1 shows that when evaluated using NRMSE, all

imputation methods performed roughly the same. For the 5%,

10%, 20%, 30%, and 40% missing datasets, pairwise deletion, and

EM had slightly better performance compared to the other

methods while listwise deletion was the worst when evaluated

with percent error (Figure 2). Mean imputation of ordinal data per-

formed poorly compared to all other imputation and deletion

methods at 5%, 10%, 20%, and 30% missingness when evaluated

with percent error. PMM with 30% missingness did worse than

40% missingness when assessed with percent error, which is not a

pattern that is found among any other results.

Similarly, for the MCAR, MAR, and MNAR datasets, all methods

performed about the same based on the NRMSE (Figure 3). Interest-

ingly, there is no strong difference in imputation success among data

that are MCAR, MAR, and MNAR under NRMSE, which contrasts with

the findings of other similar studies (Musil et al., 2002;

Pepinsky, 2018). Evaluated with percent error, however, all the

F IGURE 1 Barplot showing
imputation results using normalized root
mean square error (NRMSE) for ordinal
data with percent missing values. EM,
expectation maximization; Mean, mean;
PMM, predictive mean matching; Reg,
regression; RF, random forest

F IGURE 2 Barplot showing
imputation results using percent error for
ordinal data with percent missing values.
EM, expectation maximization; Listwise,
listwise deletion; Mean, mean; pairwise,
pairwise deletion; PMM, predictive mean
matching; Reg, regression; RF, random
forest
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F IGURE 3 Barplot showing
imputation results using normalized root
mean square error (NRMSE) for ordinal
data with missing completely at random
(MCAR), missing at random (MAR), and
missing not at random (MNAR) missing
data. EM, expectation maximization;
Mean, mean; PMM, predictive mean
matching; Reg, regression; RF, random

forest

F IGURE 4 Barplot showing
imputation results using percent error for
ordinal data with missing completely at
random (MCAR), missing at random
(MAR), and missing not at random
(MNAR) missing data. EM, expectation
maximization; Listwise, listwise deletion;
Mean, mean; Pairwise, pairwise deletion;
PMM, predictive mean matching; Reg,
regression; RF, random forest

F IGURE 5 Barplot showing
imputation results using normalized root
mean square error (NRMSE) for
continuous data with percent missing
values. EM, expectation maximization;
Mean, mean; PMM, predictive mean
matching; Reg, regression; RF, random
forest
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F IGURE 6 Barplot showing
imputation results using percent error for
continuous data with percent missing
values. EM, expectation maximization;
Listwise, listwise deletion; Mean, mean;
Pairwise, pairwise deletion; PMM,
predictive mean matching; Reg,
regression; RF, random forest

F IGURE 7 Barplot showing
imputation results using normalized root
mean square error (NRMSE) for
continuous data with missing completely
at random (MCAR), missing at random
(MAR), and missing not at random
(MNAR) missing data. EM, expectation
maximization; Mean, mean; PMM,
predictive mean matching; Reg,
regression; RF, random forest

F IGURE 8 Barplot showing
imputation results using percent error for
continuous data with missing completely
at random (MCAR), missing at random
(MAR), and missing not at random
(MNAR) missing data. EM, expectation
maximization; Listwise, listwise deletion;
Mean, mean; Pairwise, pairwise deletion;
PMM, predictive mean matching; Reg,
regression; RF, random forest
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missing data methods perform worse on MNAR datasets compared to

MCAR or MAR datasets (Figure 4). Overall, no single imputation

method was best able to recover the parameters of the original data-

set in all categories of missing ordinal data.

2. Continuous data summary results are shown in Figures 5–8.

Tables with the complete results are available as Supporting Infor-

mation. The results for continuous data are similar to those of the

ordinal data. For 5%, 10%, 20%, 30%, and 40% missingness, the

percent of missing data was a stronger predictor of imputation

success than the imputation method, with the possible exception

of mean imputation, which performed worse than all other

methods across all levels of missingness (Figure 5). Listwise dele-

tion performed considerably worse compared to all other methods;

the percent error for even 5% missing data with listwise deletion

exceeded the percent error for 40% missingness with any other

method (Figure 6). Overall, data that are MNAR generally have

worse imputation success regardless of the method, though the

differences are not large when assessed using NRMSE (Figure 7).

Figure 8 likewise shows that listwise deletion has the least success

at obtaining the parameters of the original dataset, as even MCAR

data had a higher percent error when treated with listwise deletion

compared to MNAR data with any other missing data method.

3. General findings across all the results – ordinal and continuous –

there is little variation in performance apart from mean imputation

and listwise deletion. When evaluated with NRMSE, mean imputa-

tion for continuous data performed worse across all amounts of

missingness (5%–40%) and all patterns of missingness (MCAR,

MAR, and MNAR) (Figures 5 and 7). With ordinal data, however,

mean imputation was among the better performing methods

(Figures 1 and 3), although the difference is not great. Using

percent error, however, mean imputation is among the best-

performing methods, except for data that are MNAR. This discrep-

ancy is due to how NRMSE and percent error are calculated.

NRMSE assesses differences between paired original and imputed

values while percent error assesses differences in the overall mean

between the original and imputed datasets. As most of the imputa-

tion methods used here do not calculate imputed values using the

mean (e.g., random forest, stochastic regression, and EM), percent

error may produce results that are slightly biased against these

approaches. Whether NRMSE or percent error is better for evalu-

ating the success of missing data methods will depend on whether

one is trying to obtain the exact values of the original dataset or

retain overall patterns in the data.

Listwise deletion was undoubtedly the worst method for handling

missing data. The percent error for even 5% or 10% missing data

exceeded that of 40% missingness for the six other methods. Note

that for continuous data, listwise deletion with 40% missingness had a

percent error of only 6.14% (exact percent errors are available in Sup-

porting Information). With ordinal data, even the more sophisticated

methods had percent errors between 3.9 and 7.4 for 30% missing-

ness. Furthermore, once listwise deletion had been performed with

40% of the values missing there were only a handful of individuals

(rows) left in the dataframes, and in two versions the entire dataframe

was empty as all rows had at least one NA.

On the whole, all imputation methods were relatively successful

at recovering the means of the MCAR and MAR datasets. More

sophisticated forms of imputation (PMM, regression, random forest,

and EM) performed much better than mean imputation or either dele-

tion method.

4 | DISCUSSION

For both continuous and ordinal data, no imputation or deletion

method performed noticeably better than any others across all data-

sets. Overall, evaluating success of ordinal data proved more difficult

than continuous data; the results are more inconsistent and even

minor differences in which values were simulated as missing—thus

affecting the underlying distribution of the datasets—seemed to have

a greater impact on the final results. The success of all seven missing

data methods was much worse for ordinal data. Even the lowest per-

cent error for 5% missing ordinal data was greater than the percent

error for 40% missing continuous data. This likely reflects problems

inherent in ordinal paleopathology data: the low range of possible

values and variable percentages of missingness. It is possible that ordi-

nal paleopathology data are not well-suited for imputation. Imputation

assumes that there are associations among variables in a dataset. If

those associations are poor or absent, imputation will not work. Liao

et al. (2014) have devised an “imputability measure” that “provides
quantitative evidence of how well each missing value can be imputed

by borrowing information from other variables or subjects” (p. 355).

The authors warn that researchers should be cautious with variables

that have poor imputability measures. While beyond the scope of this

paper, it would be worth investigating the performance of ordinal

paleopathology data when evaluated with this imputability measure.

An additional concern with the imputation of ordinal data is when

scores are collapsed to binary variables such as presence/absence.

There is little guidance on whether dichotomization should occur

before imputation or after (Demirtas, 2007; Floden & Bell, 2019). Gro-

bler and Lee (2020) found that imputing the original value and dichot-

omizing at the end can result in biased parameter estimates. They

recommend “imput[ing] the binary variable even if intuitively this

means throwing away potentially useful data” (p. 476). Furthermore,

depending on the method used, imputed values of ordinal variables

may be converted to continuous variables which do not match the

values required for analysis. As an example, if the values of an ordinal

dataset range from 0 to 2, imputed values may be 1.2 or 0.7, neither

of which are allowable values. In such circumstances, practitioners

often round to the nearest whole integer that matches the data

(Schafer, 1997). Horton et al. (2003) however, found that rounding

may lead to inaccurate parameter estimates if the data are not nor-

mally distributed. Simple rounding is highly discouraged for nominal

datasets because it imposes an order on the data that is not present in

the original dataset (Galati et al., 2014).
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It has been noted that some of the “ordinal” data bioarchaeolo-

gists collect may actually be nominal, that is, scores thought to have

inherent ranking may not be so organized. Hens and Godde (2020)

found that increasing palatal suture closure scores did not consistently

reflect greater age at death and were therefore nominal rather than

ordinal scores. Imputation of nominal data has received considerably

less attention than ordinal data (Lang & Wu, 2017). As mentioned

above, imputing non-ordinal variables may impose an order on the

dataset that should not be present. Additional research is needed to

clarify how imputation of nominal data impacts the dataset and

parameter estimates.

Despite expert caution against pairwise deletion (Allison, 2001;

Graham, 2012; Kang, 2013; van Buuren, 2018), this method per-

formed reasonably well for both ordinal and continuous data, though

it is difficult to fully test its success as it could not be assessed with

NRMSE. Deletion methods cause a high rate of data loss that can be

especially problematic if the data are MNAR. As paleopathologists

generally have small sample sizes, any method that reduces the data

further is suboptimal and may result in a biased dataset and decreased

analytical power. The findings of this study agree with prior research

on the use of listwise deletion (e.g., King et al., 1998). Listwise dele-

tion was the worst at recovering the parameters of the original skele-

tal sample, particularly if the data are MNAR.

How much missing data is too much? There is little clear guidance

on the maximum amount of missing data allowed before missing data

methods or statistical analyses become too biased (Dong &

Peng, 2013; Hardt et al., 2013; Meeyai, 2016; Saunders et al., 2006).

The definition of a “small” amount of missingness varies from <5% to

<20% missing (Little & Rubin, 2002; Tabachnick et al., 2007). Some

statisticians caution that bias may occur in samples with more than

10% of the data missing and that samples with over 40% missing

should be used for “hypothesis generating” only (Madley-Dowd

et al., 2019, p. 64). Others recommend a maximum of 30% missing

when imputing missing values and no more than 20% with sample

sizes of 50 or lower (Hardt et al., 2013). Under tightly controlled cir-

cumstances, however, authors have managed to successfully impute

and analyze datasets with much higher percentages of missing data.

Madley-Dowd et al. (2019) imputed up to 80% missing MCAR and

MAR data employing multiple imputation with auxiliary variables.

Meeyai (2016) was able to recover unbiased parameters for MCAR

data with 60% of the values missing for samples greater than

n = 1000. Unbiased regression coefficients have been obtained with

a 90% fraction of missing information,1 though statistical power

dropped considerably after 50% missing even with m = 20 imputa-

tions (Graham et al., 2007).

The percent of missing information may not be the most impor-

tant consideration when faced with missing data. Sample size is an

important factor; 20% missing may have a greater impact with a sam-

ple size of 50 than with a sample size of 500 (Meeyai, 2016; Saunders

et al., 2006). The class of missingness – MCAR, MAR, or MNAR – will

also affect how much missing data is acceptable. Even a small amount

of MNAR values may result in a biased dataset no matter what impu-

tation method is used (Dong & Peng, 2013; Tabachnick et al., 2007).

Whether the missing values are among the independent and/or

dependent variables will also impact the success of missing data

methods and ultimate statistical analyses (Saunders et al., 2006).

Overall, there is no consensus on the maximum amount of missing

data and numerous other factors including the sample size, type of

data, and patterns of missingness must inform one's approach to deal-

ing with missing data.

Incorporating imputation methods as standard practice for han-

dling missing data in bioarchaeology will contribute to the advance-

ment of the field. Numerous scholars have drawn attention to the

dearth of advanced statistical analyses in bioarchaeology

(Agarwal, 2016; Konigsberg & Frankenberg, 2013; Zuckerman

et al., 2016). Zuckerman et al. (2016) argue that paleopathology has

been slow to adopt advances from other fields, instead relying on less

rigorous methods without critical reflection. These shortcomings have

hindered our ability to advance our understanding of human health

throughout history in a way that is meaningful to modern populations.

While recent years have seen a surge in more advanced analytical

methods such as hazards models, survival analysis, and principal com-

ponents analysis, much research – particularly paleopathology and

trauma analysis – still depends on univariate statistical analyses. While

summary statistics have their place, reliance on them represents an

impediment to the advancement of paleopathology. Analyses such as

the t-test or chi-square have strict statistical assumptions about the

data such as normal distribution or equal variances; inappropriate use

of such tests can result in erroneous results and thus unfounded infer-

ences regarding health in the past. As paleopathology data rarely

adhere to these assumptions, often data must be aggregated or

binned in ways that obscure vitally important patterns. More sophisti-

cated analyses allow data to be explored in its complexity rather than

by arbitrary bins, contributing to a more nuanced understanding of

human health throughout history.

Another serious drawback of less advanced methods is their fail-

ure to account for the concerns raised by Wood et al. (1992) in the

osteological paradox. Because of selective mortality, straightforward

percentages or counts of pathology lesions from a skeletal sample will

overestimate disease prevalence in the living population. The authors

explain how aggregating data for more simple analyses prevents us

from accounting for variation in individual frailty, obscuring not only

important variation in disease experience, but also the potential pres-

ence of subpopulations.

While imputation is a vital new step forward for handling missing

data in bioarchaeology, one aspect that should be considered is the

use of imputed values to draw conclusions about the lived experi-

ences of past people. A great strength of bioarchaeology is the multi-

scalar ability to move seamlessly from populations to individuals.

Consider, for example, a bioarcheological project that incorporates

biological distance and stable isotopes to examine population affinity,

migration, and diet. Multidimensional scaling (MDS) plots and carbon–

nitrogen graphs show population groupings and diets of the sample.

Typically, the researcher would discuss the life histories of aberrant

individuals that do not follow the patterns of the rest of the group,

such as individuals with unusual diets or who migrated from far away.
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If, however, missing variables were imputed – which is already stan-

dard practice in biodistance – the locations of individual points on the

plots would be based on imputed, rather than actual values which

may, or may not, represent the true values. Kenyhercz and Passalac-

qua (2016) recommend that when selecting an imputation technique

for this type of individual-level analysis, the objective is to choose the

most accurate method. However, the goal of imputation is not to

recover the exact values missing from the dataset, but to “preserve
important characteristics of the data set as a whole” (Graham, 2009,

p. 559). Imputed data are intended to examine overall patterns in the

data, not the life experiences of single individuals. How do we recon-

cile these two disparate goals? Further research is needed to ensure

that as bioarchaeology continues to grow and adopt methods from

other fields, we apply those methods appropriately.

This study has several limitations. First, according to Rubin's Rules

(Rubin, 1987), statistical analyses are to be performed on each of the

m datasets, and the final parameters of interest (e.g., p-values, confi-

dence intervals, etc.) pooled at the very end using the equations

designed by Rubin. The approach used in this paper, however, pools

the multiply imputed datasets and assesses success at the end – a vio-

lation of Rubin's Rules.2 Failing to adhere to Rubin's Rules can result

in over- or underestimated parameters such as SEs, confidence inter-

vals, and p-values. Second, the success of imputation and deletion

methods will depend not only on the percent of missing data, but also

on the sample size. The samples used here (ordinal n = 287; continu-

ous n = 369) are large compared to most paleopathology datasets.

Additional research is needed to compare the results found here with

those from smaller samples. Third, this study tests the success of

missing data methods on ordinal and continuous data separately,

however many bioarchaeologists collect mixed data types and analyze

them together. Future research is needed to identify which methods

are successful at imputing mixed data including continuous, ordinal,

and binary values. Finally, this paper investigates the best methods for

imputing missing data, but ultimately bioarchaeologists are interested

in how those imputed values can be used to answer questions about

human experiences in the past. Further research is needed to examine

how imputed values perform in the types of statistical tests we use

most often such as survival analysis, principle components analysis,

ANOVAs, or even t-tests and chi-square tests to assess how imputed

data affect our results and the conclusions we draw about past indi-

viduals and populations.

5 | CONCLUSION

The primary aim of this paper is to provide background on missing

data methods, highlighting how imputation can be used to manage

missing data in bioarchaeology and paleopathology. There are a num-

ber of approaches for handling missing data, including deleting data or

imputing missing values. While each technique has advantages and

disadvantages, imputation methods are recommended over deletion.

Other fields in the natural and social sciences commonly use imputa-

tion. However, bioarchaeological research (apart from biodistance

analyses) seldom uses imputation to handle missing data. This paper

tests the ability of seven methods to yield effective parameter esti-

mates when handling missing ordinal and continuous bioarchaeologi-

cal data. Results demonstrate that no single method performs best in

all circumstances, suggesting there is no “one-size-fits-all” solution to

missing data problems. Listwise deletion is not recommended as it

performed the worst for both ordinal and continuous data, introduc-

ing the most error into the dataset. While pairwise deletion preserved

the characteristics of the original dataset, it is not recommended due

to the loss of data. Ultimately, the best methods for handling missing

data are the more sophisticated methods: stochastic regression,

PMM, random forest, and EM. Overall, stochastic regression imputa-

tion consistently performed well across both ordinal and continuous

data when assessed with either percent error or NRMSE.

Future studies should test the success of imputation on mixed

continuous and ordinal data as well as how well imputation works

with very small sample sizes. We hope these findings encourage the

use of more advanced methods to manage missing data in bioarch-

aeology. With greater understanding of the limitations and structure

of our data, bioarchaeologists can explore sources of bias more effec-

tively and implement statistically rigorous analyses.
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ENDNOTES
1 Fraction of missing information (FMI) is “a measure of uncertainty about

the values we would impute for missing elements” (Wagner, 2010;

p. 224). It quantifies the amount of variance between imputed datasets

and is affected by both the quality and quantity of available data. See

Wagner (2010) for full discussion of FMI and the mathematical

definition.
2 Recent research has shown that Rubin's Rules can create biased variance

estimates depending on the imputation method used and therefore may

not always be the best approach for pooling parameter estimates. See

Bartlett (2021) and Seamen et al. (2014) for further discussion.

REFERENCES

Agarwal, S. C. (2016). Bone morphologies and histories: Life course

approaches in bioarchaeology. American Journal of Physical Anthropol-

ogy, 159(S61), 130–149.
Allison, P. D., (2001). Missing data. Sage Publications.

Athreya, S., & Wu, X. (2017). A multivariate assessment of the Dali homi-

nin cranium from China: Morphological affinities and implications for

Pleistocene evolution in East Asia. American Journal of Physical Anthro-

pology, 164(4), 679–701.
Auerbach, B. M. (2011). Methods for estimating missing human skeletal

element osteometric dimensions employed in the revised fully tech-

nique for estimating stature. American Journal of Physical Anthropology,

145(1), 67–80.
Auerbach, B. M., Raxter, M. H., & Ruff, C. (2005). If I only had a …: Missing

element estimation accuracy using the fully technique for estimating

statures. American Journal of Physical Anthropology, 126(S40), 70.

Auerbach, B. M., & Ruff, C. B. (2004). Human body mass estimation: A

comparison of “morphometric” and “mechanical” methods. American

Journal of Physical Anthropology, 125(4), 331–342.
Bailey, B. E., Andridge, R., & Shoben, A. B. (2020). Multiple imputation by

predictive mean matching in cluster-randomized trials. BMC Medical

Research Methodology, 20(72), 1–16.
Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing

data analyses. Journal of School Psychology, 48(1), 5–37.
Barnard, J., & Meng, X.-L. (1999). Applications of multiple imputation in

medical studies: From AIDS to NHANES. Statistical Methods in Medical

Research, 8(1), 17–36.
Bartlett, J. W. (2021). Reference-based multiple imputation—What is the

right variance and how to estimate it. Statistics in Biopharmaceutical

Research, 1–9. https://doi.org/10.1080/19466315.2021.1983455
Bethard, J. D. (2013). The bioarchaeology of Inka resettlement practices:

Insight from biological distance analysis, Doctoral dissertation. Univer-

sity of Tennessee. https://trace.tennessee.edu/utk_graddiss/2399

Bhaskaran, K., & Smeeth, L. (2014). What is the difference between miss-

ing completely at random and missing at random? International Journal

of Epidemiology, 43(4), 1336–1339.
Bird, J. P., Martin, R., Akçakaya, H. R., Gilroy, J., Burfield, I. J., Garnett, S. T.,
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