
Submitted to Bernoulli

Continuous-time digital search tree
and a border aggregation model
SVANTE JANSON1, DEBLEENA THACKER2,*

1Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden,
E-mail: svante.janson@math.uu.se
2Department of Mathematics, NYU, Shanghai, 1555 Century Avenue, Pudong New District, Shanghai, China
200122, E-mail: *thackerdebleena@gmail.com

We consider the continuous-time version of the random digital search tree, and construct a coupling with a border
aggregation model as studied in Thacker and Volkov (2018), showing a relation between the height of the tree
and the time required for aggregation. This relation carries over to the corresponding discrete-time models. As a
consequence we find a very precise asymptotic result for the time to aggregation, using recent results by Drmota
et al. (2020) for the digital search tree.

Keywords: Random walk; Digital search trees; Border aggregation model

1. Introduction

A digital search tree Tn is a binary tree constructed from a sequence of n binary strings (called items or
keys). (See Section 2 for details, as well as for definitions of other concepts used below.) We consider
here only the case when the items are i.i.d. (independent, identically distributed) random infinite binary
strings, and furthermore, in each string the digits are independent Be(1/2) random variables, i.e., 0
or 1 with probability 1

2 each. (See Section 6 for the b-ary case.) Digital search trees are among the
fundamental objects of study in computer science algorithms and have been studied by many authors,
see e.g. [1; 3; 4; 5; 6; 8; 10; 11; 15].

Our main concern is with a continuous-time version of the digital search tree, studied also by Aldous
and Shields [1]. This can be defined by assuming that an infinite sequence (Wn) of items arrive at
random times that are given by a Poisson process; we then let Tt be the digital search tree defined by
the strings arriving up to time t. The continuous-time version is thus a Poissonization of the standard
version. A simple but central result (Theorem 3.5 and [1]) is that the continuous-time digital search tree
Tt can also be defined in two other ways that turn out to be equivalent; in particular, the continuous-
time digital search tree is equivalent to first-passage percolation on the infinite binary tree, with the
passage times of the edges exponentially distributed such that the passage time of an edge between
nodes of depth k− 1 and k has expectation 2k.

Our main result couples the continuous-time digital search tree and a border aggregation model on a
binary tree studied by Thacker and Volkov [17]. In this model, we fixK > 1 and consider the complete
binary tree TK of height K. We recursively define a collection of randomly growing subsets of sticky
nodes Sn, such that S0 is the set of the 2K nodes of depth K. Sn is obtained from Sn−1 as follows:
A particle is released from the root, and performs a symmetric (directed) random walk until it comes
to a neighbour vn of Sn−1. The random walk now stops, and the node vn becomes "sticky"; in other
words, Sn := Sn−1 ∪{vn}. This is repeated until the root o is sticky. Let ξK be the random number of
particles to be released until the root o is sticky. We define also a continuous-time version of the border
aggregation model by assuming that particles start from the root at times given by a Poisson process

1

2

(and that the random walk itself takes no time); let ΞK be the random time that the root gets sticky in
the continuous-time border aggregation model.

Figure 1. Binary tree TK with K = 4, and the red nodes denoting S0

Note that the digital search tree and the border aggregation model grow in opposite directions: the
digital search tree grows from the root downwards, while the border aggregation model grows from the
starting boundary at depthK up towards the root. Nevertheless, they are connected by a kind of duality,
and we show that the time ξK or ΞK taken by the border aggregation model equals in distribution the
time the (discrete or continuous-time, respectively) digital search tree reaches (external) height K
(Theorem 4.1). Equivalently, we have the following results, where he(T) denotes the external height
of a tree T as defined in (2.1).

Theorem 1.1. The following equalities hold.

(i) (Discrete time.) For any K > 1 and n> 0,

P
(
ξK 6 n

)
= P

(
he(Tn) >K

)
. (1.1)

(ii) (Continuous time.) For any K > 1 and t> 0,

P
(
ΞK 6 t

)
= P

(
he(Tt) >K

)
. (1.2)

We show this using the continuous-time versions; the result then easily transfers to discrete time too.
Asymptotic properties of the height he(Tn) of digital search trees have been studied by several

authors [1; 3; 5; 10]. In particular, very precise results are proved by Drmota, Fuchs, Hwang and
Neininger [5]. We use these results and Theorem 1.1 to obtain the following result on the distribution
of ξK , which improves on the bounds 2K−2

√
K+O(K−1/2) 6 ξK 6 2K−1+o(1) valid w.h.p. as shown

in [17, Theorem 5].

Theorem 1.2. As K→∞,

log2 ξK =K −
√

2K +
1

2
log2K −

1

log 2
+

log2K

4
√

2K
+Op

(1√
K

)
, (1.3)

where Op(·) is as defined in Section 2.1.

Continuous time digital search tree 3

For convenience, let

mK = 2
K−
√

2K+ 1
2

log2K− 1
log 2

+
log2 K

4
√
2K . (1.4)

Then, Theorem 1.2 says that log2 ξK = log2mK +Op
(
1/
√
K
)
, or, equivalently,

ξK =mK

(
1 +Op

(
K−1/2)). (1.5)

Conjecture 1.3. We conjecture that also

E ξK =mK

(
1 +O

(
K−1/2))= 2

K−
√

2K+ 1
2

log2K− 1
log 2

+
log2 K

4
√
2K

+O
(

1√
K

)
. (1.6)

We have not been able to prove (1.6), see Remark 5.1, but as a corollary of Theorem 1.2 and tail
estimates by Drmota [3], we show the following cruder estimate.

Theorem 1.4. As K→∞,

E ξK = EΞK =
(
1 + o(1)

)
mK = 2

K−
√

2K+ 1
2

log2K− 1
log 2

+o(1)
. (1.7)

The border aggregation model was introduced as internal erosion by Levine and Peres [13]. In [17],
this model was studied on a variety of graphs, and several interesting results were obtained. One reason
for the interest in the border aggregation model is its possible connections to other interesting models
in statistical physics, in particular the classical diffusion limited aggregation (DLA) [18; 9; 2], and
internal diffusion limited aggregation (IDLA) [12; 14; 16]. It is conjectured [13] that on Z2 DLA and
the border aggregation model are "inversions" of each other in some sense; however, no rigorous results
are known. (Nevertheless, [17] uses bounds obtained in [9] for DLA to obtain results for the border
aggregation model.) Note that the digital search tree can be regarded as IDLA on the infinite binary
tree (see Section 2.5); moreover, it can also be regarded as DLA on the same infinite binary tree, see
Barlow, Pemantle, Perkins [2, Lemma 1.3]. Thus, our results show a connection between the border
aggregation model and IDLA or DLA on trees. (Note that on Zd, IDLA is very different from DLA
and the border aggregation model, with asymptotically a round shape [12].)

The rest of the paper is organized as follows. Section 2 contains definitions and other preliminaries.
Section 3 gives the equivalence of the different constructions of the continuous-time digital search tree.
Section 4 contains the coupling of the digital search tree and the border aggregation model, leading to
the proof of Theorem 1.1, and then Section 5 gives the proofs of Theorems 1.2 and 1.4. Section 6
discusses briefly extensions to the b-ary case.

2. Preliminaries
We recall some standard notation, adding some perhaps less standard details.

2.1. General

Exp(λ) denotes an exponential distribution with rate λ, i.e., with the density function λe−λx, x > 0,
and thus the expectation 1/λ.
Op(an), where an is a given positive sequence, denotes some sequence of random variables Xn

such that the family{Xn/an} is bounded in probability, i.e., limC→∞ supn P(|Xn|>Can) = 0.
ω(1) denotes a sequence tending to +∞.
x∧ y denotes min{x, y}.

4

2.2. Binary trees

An (extended) binary tree is a rooted tree where each node has either 0 or two children; in the latter
case there is one left child and one right child. Nodes with 0 children (leaves) are called external nodes
and nodes with 2 children are called internal nodes.

Let Vi(T) denote the set of internal nodes of T , and Ve(T) the set of external nodes.
The root of a binary tree is denoted o. The depth d(v) of a node in a binary tree is the distance from

v to the root o; thus d(o) = 0.
If v and w are nodes in a binary tree T , then v � w means that v is on the path from the root to w

(including the endpoints).
Unless we say otherwise, we consider only finite binary trees. However, we let T∞ denote the infinite

binary tree where each node has two children. Thus, T∞ has 2k nodes of depth k, k > 0. Every finite
binary tree can be regarded as a subtree of T∞.

The size |T | := |Vi(T)| of an extended binary tree is the number of internal nodes. Thus an extended
binary tree of size n has n internal and n+ 1 external nodes, see e.g. [4, Section 1.2.1].

A binary tree is empty if it has size 0, i.e., if there is no internal node and only a single external node
(the root).

The (external) height he(T) of a binary tree T is the maximum depth of an external node, i.e., (with
max∅ :=−1 for the empty tree)

he(T) := max
{
d(v) : v ∈ Ve(T)

}
= max

{
d(w) :w ∈ Vi(T)

}
+ 1. (2.1)

TK is the complete binary tree of heightK; it has 2K external nodes, all at depthK, and thus 2K−1
internal nodes.

Remark 2.1. It is also common to study binary trees without external nodes; we may call them re-
duced binary tree. The subtree of internal nodes in an extended binary tree is a reduced binary tree
(including the case of a reduced empty tree with no nodes), and this gives an obvious 1–1 correspon-
dence between extended and reduced binary trees. In the present papers, all binary trees are extended
binary trees as defined above.

2.3. A random walk

Given an extended binary tree T , consider the random walk defined by starting at the root, and then
moving repeatedly from the current node to one of its children, chosen at random with probability 1/2
each (independently of previous choices), until we reach an external node.

For an external node v, let pv be the probability that this random walk ends in v. Thus (pv)v∈Ve(T)
is a probability distribution on Ve, which we call the harmonic measure of T . The harmonic measure
is given by

pv = 2−d(v), v ∈ Ve(T). (2.2)

By construction, the harmonic measure is a probability measure, and thus, for any finite binary tree
T , ∑

v∈Ve(T)

2−d(v) = 1. (2.3)

(Alternatively, (2.3) is easily seen by induction on the size |T |.)

Continuous time digital search tree 5

2.4. Boundaries

We say that a finite set B of nodes in Vi(T∞) is a boundary, if every infinite path from the root con-
tains exactly one element of B. The set of external nodes Ve(T) of a finite binary tree is a boundary;
conversely, given a boundary B, there exists exactly one binary tree T with B = Ve(T). (The inter-
nal nodes of T are the nodes v that are strict ancestors of some node w ∈ B.) Hence there is a 1–1
correspondence between (finite) binary trees and boundaries, given by T ↔ Ve(T).

Given a boundary B, the harmonic measure (2.2) on the corresponding tree is a probability measure
on B, which we also call the harmonic measure on B.

2.5. Digital search trees

A digital search tree is a binary tree constructed recursively from a sequence of n> 0 infinite binary
strings W1, . . . ,Wn (called items) as follows; the digital search tree has size n and each internal node
stores one of the items. See e.g. [11, Section 6.3], [15, Section 6.1], [4, Section 1.4.3], [8, Section 6.4].

Definition 2.2. The digital search tree is constructed as follows.

(i) Start with an empty binary tree, containing only the root as an external node.
(ii) The items Wi arrive one by one, in order; each item comes first to the root of the tree.

(iii) When an item comes to an external node, it is stored there. The node becomes internal and two new
external nodes are added as children to it.

(iv) When an item Wi comes to an internal node v at depth d, it is passed to the left [right] child of v
if the (d+ 1)th bit of W is 0 [1]. The construction proceeds recursively until an external node is
reached.

We shall only consider the random case, where each string Wi is a random string of independent
bits, each with the symmetric Be(1/2) distribution, and furthermore the strings are independent. We let
Tn denote the random digital search tree constructed from such strings, and we consider the sequence
(Tn)∞0 constructed from an infinite sequence of items (Wn)∞1 .

It is obvious from the definitions, that when constructing the random digital search tree Tn, the ith
string Wi performs a random walk on Ti−1 as described in Section 2.3. (Hence, the digital search tree
equals IDLA for this directed random walk, as said in the introduction.) Consequently, the sequence
of random digital search trees (Tn)∞0 can also be defined as follows, without explicitly using random
strings.

Definition 2.3. The random digital search trees Tn, n> 0, are constructed recursively, starting with
T0 empty. Tn+1 is obtained from Tn by choosing an external node v in Tn at random according to
the harmonic measure (2.2) and converting this node v to an internal node by adding two (external)
children to it.

2.6. Continuous-time digital search trees

We think of item Wi as arriving at time i, and (Tn)∞0 as a stochastic process of trees in discrete time.
As often in similar problems, it is useful to consider also the corresponding process in continuous time,
with items arriving according to a rate 1 Poisson process. This means that item Wn arrives at a random
time τ(n), where the waiting times ηn := τ(n)− τ(n− 1) (with τ(0) = 0) are i.i.d. Exp(1).

6

W1

W3

W5

W2

W4

W6

Figure 2. Digital search tree for 6 items; W1 = {01011 . . .}, W2 = {10011 . . .},W3 = {00101 . . .},W4 =
{10110 . . .},W5 = {00011 . . .},W6 = {10100 . . .}. The green nodes are the external nodes and the blue nodes
are the internal nodes.

Definition 2.4. Let the sequence (Wn)∞n of random items arrive according to a Poisson process with
rate 1 on [0,∞). (As above, the strings Wn are independent, with independent Be(1/2) bits.) The
continuous-time digital search tree Tt is the digital search tree constructed from the itemsWi that have
arrived until time t.

Equivalently, we can use Definition 2.3, adding new nodes at times given by a Poisson process.
Let N(t) be the number of items that have arrived up to time t; thus N(t) ∼ Po(t), and Tt is the

random digital search tree constructed from a random number N(t) items. More precisely, the discrete
and continuous-time processes (Tn)n and (Tt)t are related by

Tt = TN(t) (t> 0), Tn = Tτ(n) (n> 0). (2.4)

In other words, Tt is obtained from Tn by Poissonization.
Note that τ(n) is the stopping time when the size |Tt| becomes n.

2.7. The border aggregation model

Border aggregation models on finite connected graphs were studied by Thacker and Volkov [17]. In
general, consider any (directed or undirected) finite, connected graph with a fixed vertex o, the origin,
and a non-empty boundary set denoted by B. As in the introduction, we recursively define a randomly
growing sequence of sets of sticky vertices Sn as follows.

Definition 2.5. Construct random sticky sets Sn, n> 0, as follows.

(i) S0 =B, the given boundary.
(ii) At times n = 1,2, . . . , given Sn−1, let a particle start at o and perform a random walk until it

reaches a neighbour vn of the sticky set. Then it stops, and the node vn is added to the sticky set,
i.e., Sn := Sn−1 ∪ {vn}.

(iii) This is repeated until some time ξK when the root becomes sticky; then the process stops.

Continuous time digital search tree 7

Thus, ξK is the number of particles required to build a path from the boundary to the origin by this
aggregation process. We are (as Thacker and Volkov [17]) interested in the distribution of ξK .

This model was introduced as internal erosion by Levine and Peres [13]. In the present paper we
consider only the case described in the introduction, when the graph is the binary tree TK and the
random walk is the directed random walk in Section 2.3.

We use also a continuous-time version of the border aggregation model.

Definition 2.6. The continuous-time border aggregation model is defined as in Definition 2.5, but
with particles arriving according to a Poisson process with rate 1. Let ΞK be the time this process
stops. (We assume that the random walk takes no time.)

Thus, with the notation in Section 2.6,

ΞK = τ(ξK) =

ξK∑
i=1

ηi, (2.5)

where ηi ∼ Exp(1) are i.i.d. and independent of ξK . In particular,

EΞK = E ξk. (2.6)

3. More on continuous-time digital search trees

We give first an alternative construction of the continuous-time digital search tree Tt and then show
that it agrees with Definition 2.4.

Definition 3.1. Equip each node v in the infinite binary tree T∞ with a random variable Xv ∼
Exp(2−d(v)), with all Xv independent. Let

Yv :=
∑
w�v

Xw, v ∈ V (T∞), (3.1)

and let Tt be the extended binary tree with

Vi(Tt) := {v ∈ V (T∞) : Yv 6 t}. (3.2)

Remark 3.2. We may interpret the internal nodes in Tt as infected; then Definition 3.1 describes
an infection that spreads randomly on T∞ from parents to children, starting with the root o being
infected from the outside, where Xv is the time it takes for node v to become infected once its parent
is. (Imagine the root having an outside parent that is infected at time 0.) In other words, Tt can be
seen as first-passage percolation on T∞, but note that different edges have different distributions of the
infection times Xv .

To see the equivalence of Definition 2.4 and Definition 3.1, we introduce a third definition, and then
show that all three are equivalent.

Definition 3.3. Equip each node v ∈ T∞ with an exponential clock that rings with rate 2−d(v), inde-
pendently of all other clocks. Start with T0 empty. Ignore all clocks that are not currently in an external
node. When a clock rings in an external node v, then v becomes an internal node of Tt and its two
children become new external nodes.

8

Remark 3.4. More generally, Aldous and Shields [1] studied a process defined as in Definition 3.3
but with rates c−d(v) for some constant c > 1. (See [2] for c < 1.) They noted that this is equivalent to
Definition 3.1 (with these rates), and that that the process is a random time change of the corresponding
discrete-time process defined as in Definition 2.3, but using instead of the harmonic measure (2.2) on
the external nodes the measure where pv is proportional to c−d(v). Note that the simple relation (2.3)
is special for the case c= 2, and thus the relation between the discrete and continuous-time models is
in general more complicated than in Definition 2.4.

Theorem 3.5 (Essentially Aldous and Shields [1]). Definitions 2.4, 3.1 and 3.3 define the same
stochastic process of trees (Tt)t>0. (In the sense of all having the same distribution.)

Proof. In Definition 3.3, the total rate of the clocks in the external nodes is always 1, by (2.3). Hence,
new internal nodes are created with rate 1. Furthermore, if v is an external node, then the clock at v
rings with rate 2−d(v), and thus the probability that the clock at v is the next clock in an external node
that rings is also 2−d(v). In other words, when a new internal node is added, it is chosen randomly
among the existing external nodes according to the harmonic measure (2.2), just as in Definition 2.3.
Hence the process (Tt) constructed in Definition 3.3 has the same distribution as the one defined in
Definitions 2.2–2.4.

Furthermore, in Definition 3.3, consider for each node v ∈ T∞ the stopping time, τv say, when v
becomes an external node, and let Xv be the waiting time until the next time the clock at v rings.
Then Xv , v ∈ T∞, are independent exponential random variables with the rates in Definition 3.1.
Furthermore, since τv is the time the parent of v becomes an internal node (with τ0 = 0 for the root),
it follows by induction that the time τv + Xv when the clock rings and v becomes an internal node
equals Yv defined in (3.1), and thus (3.2) holds and the process (Tt)t coincides with the one defined
by Definition 3.1.

In particular, this gives a description of the height he(Tt) of Tt, and thus indirectly also of he(Tn).
Use Definition 3.1 and let, for k > 0,

Y ∗k := min
v:d(v)=k

Yv. (3.3)

In other words, Y ∗k is the smallest sum
∑
wXw along a path from the root to a node of depth k; in the

language of Remark 3.2, Y ∗k is the time the infection reaches depth k. (I.e., it reaches external height
k+ 1.)

Corollary 3.6. We have the equality in distribution, for all t> 0,

he(Tt)
d
= min

{
k > 0 : Y ∗k > t

}
= max

{
k > 0 : Y ∗k 6 t

}
+ 1. (3.4)

Equivalently, for any t> 0 and k > 0,

P
(
he(Tt)> k

)
= P

(
Y ∗k 6 t

)
. (3.5)

Proof. Definition 3.1 and (3.3) yield the relation, for k > 0,

{he(Tt) 6 k}= {v /∈ Vi(Tt) when d(v) = k}= {Y ∗k > t}. (3.6)

Hence, using Definition 3.1, (3.4) holds with actual equality of the random variables. By Theorem 3.5,
we have equality in distribution for any of the definitions.

Continuous time digital search tree 9

4. Connection with the border aggregation model

Theorem 4.1. For any K > 0, ΞK+1
d
= Y ∗K .

We give two proofs of this theorem. The first uses a simple induction. The second is longer but
perhaps gives more insight; it is more combinatorial and is based on a study of the aggregation process.
The second proof also provides a coupling of the two processes.

First proof of Theorem 4.1. The claim is trivially true for K = 0: Ξ1 is the time of arrival of the first

particle, so Ξ1 ∼ Exp(1) and Ξ1
d
=Xo = Y ∗0 .

Denote the two children of the root by oL and oR. Consider the continuous-time border aggregation
model on TK+1, and let Ξ∗K+1 be the time oL or oR becomes sticky. Then the next particle stops at the
root, and thus

ΞK+1 = Ξ∗K+1 +X, (4.1)

where X ∼ Exp(1) is independent of Ξ∗K+1.
Up to time Ξ∗K+1, the particles proceed to oL or oR, with probability 1/2 each and independently of

each other and of the arrival times of the particles. By a standard property of Poisson processes, this
means that oL and oR are fed particles by two independent Poisson processes with rates 1/2. Let both
these processes continue beyond Ξ∗K+1, and let ΞL and ΞR be the times oL and oR, respectively, then
become sticky. Then

Ξ∗K+1 = ΞL ∧ΞR. (4.2)

Moreover, the two processes beneath oL and oR are independent copies of the original process on the

smaller tree TK , with time running at half speed. Hence, ΞL
d
= ΞR

d
= 2ΞK , and thus by (4.1) and (4.2),

ΞK+1
d
= 2
(
ΞK ∧Ξ′K

)
+X (4.3)

with Ξ′K
d
= ΞK , X ∼ Exp(1) and ΞK , Ξ′K , X independent.

Similarly, recalling the definition (3.3) of Y ∗K , let Y ∗L and Y ∗R be the smallest sum
∑
Xv along a path

from oL or oR, respectively, to a node of depth K. Then

Y ∗K = (Y ∗L +Xo)∧ (Y ∗R +Xo) = Y ∗L ∧ Y
∗
R +Xo. (4.4)

Moreover, Y ∗L and Y ∗R are independent and both have the same distribution as 2Y ∗K−1, since the subtree
of descendants of oL (or oR), equipped with theirXv is isomorphic to the full tree with root o, but given
the variables 2Xv . Hence, (4.4) yields

Y ∗K
d
= 2(Y ∗K−1 ∧ Y

∗′
K−1) +Xo, (4.5)

with Y ∗′K−1
d
= Y ∗K−1, Xo ∼ Exp(1), and Y ∗K−1, Y ∗′K−1 and Xo independent.

Comparing (4.3) and (4.5), we see that the distributions of ΞK+1 and Y ∗K satisfy the same recursive
equation, and thus they are equal by induction.

Second proof of Theorem 4.1. In the (discrete or continuous-time) border aggregation model, define,
at any given time t, the absorption set At as the set of all internal nodes v such that v is a neighbour of
the sticky set St, but no ancestor of v is. Consider only the process (At) of absorption sets; At evolves

10

by letting a new particle perform the random walk until it hits At, say at v. Then v becomes sticky,
which means that the parent v′ of v is added toAt, while v and all other descendants of v′ are removed.
(If v is the root, then instead the process stops.)

Note that the absorption setAt is a boundary in the sense of Section 2.4, and that given the boundary
At at some time t, the next node that becomes sticky is chosen randomly from At according to the
harmonic measure on At, see Sections 2.3 and 2.4. Furthermore, (At)t is a Markov process.

From now on we consider the continuous-time version; furthermore, we consider the tree TK+1
with external nodes at depth K + 1. Equip the nodes v ∈ VK := {v : d(v) 6 K} = Vi(TK+1) with
exponential clocks as in Definition 3.3. Define a process A′t of subsets of VK as follows:

(i) A′0 :=A0 = {v : d(v) =K}.
(ii) Clocks outside the current A′t are ignored. When a clock at a node v ∈ A′t rings, A′t is updated as

above; i.e., the parent v′ of v is added to A′t, while v and all other descendants of v′ are removed.
(If v is the root, then instead the process stops.)

Given A′t, the next clock in A′t that rings is random with a distribution given by the harmonic mea-
sure on A′t. Hence, the process A′t just constructed has the same distribution as the process At in the
aggregation process, and we may assume that At =A′t for all t> 0.

For each node v ∈ VK , let now τv := inf{t > 0 : u ∈ At for some u � v}, i.e., the first time that
either v or one of its ancestors belongs to the absorption set, and let Xv be the waiting time from τv
to the next time that the clock at v rings. Then the random variables Xv , v ∈ VK , are independent and
have the exponential distributions given in Definition 3.1. (We may define Xv also for d(v) >K for
completeness, but these variables will not matter.) Define Yv by (3.1).

For a node v ∈ VK , let

Zv := min
w�v, d(w)=K

{
Yw − Yv

}
. (4.6)

This is the minimum over the paths from v to the boundary Ve(TK+1) of the sum
∑
uXu for all nodes

u in the path, excluding the endpoints. In particular, Zv = 0 when d(v) =K.
We claim that at any time t> 0 with t6 ΞK+1,

At =
{
v ∈ VK : Zv 6 t but Zu > t for all u≺ v

}
, (4.7)

and furthermore

τv = Zv for every v ∈At. (4.8)

We prove this claim by induction; it is evidently true for t= 0, and it then suffices to consider the finite
number of times that At changes.

Suppose that the claim holds for some time t. If v ∈At, then the next time that the clock at v rings
is, letting again v′ be the parent of v and noting that Yv = Yv′ +Xv (with Yo′ := 0),

τv +Xv = Zv +Xv = min
w�v, d(w)=K

{
Yw − Yv′

}
. (4.9)

Let v be the node in the current At such that the time Zv + Xv in (4.9) is minimal. Then v is the
next node to become sticky, and its parent v′ is the next node added to At; this happens at time τv′ =
Zv +Xv , which by (4.9) equals the minimum over all paths from v′ to Ve(TK+1) that pass through v
of the sum

∑
uXu for u in the path, excluding the endpoints. A path from v′ to Ve(TK+1) that does

not pass through v must pass through some other node v′′ ∈At, and since Zv′′ +Xv′′ > Zv +Xv , it
follows that

∑
uXu for u in this path is > Zv+Xv . Hence, using (4.9) and (4.6), τv′ = Zv+Xv = Zv′ ;

Continuous time digital search tree 11

moreover (4.7) holds up to time Zv +Xv . This completes the induction step, and thus the proof of the
claim (4.7)–(4.8).

Obviously, o ∈At for some t, and thus (4.8) applies to v = o. Consequently, the time ΞK+1 that the
root becomes sticky is, using the definitions of τo and Xo together with (4.8), (3.1), (4.6) and (3.3),

ΞK+1 = τo +Xo = Zo +Xo = Zo + Yo = Y ∗K . (4.10)

Proof of Theorem 1.1. (ii): Theorem 4.1 and Corollary 3.6 yield, for K > 1 and t> 0,

P
(
ΞK 6 t

)
= P

(
Y ∗K−1 6 t

)
= P

(
he(Tt) >K

)
. (4.11)

(i): By (3.6),

Y ∗k = min
{
t> 0 : he(Tt)> k

}
. (4.12)

Define analoguously, for the discrete time process,

Y ∗∗k := min
{
n> 0 : he(Tn)> k

}
. (4.13)

Then, see the relations (2.4),

Y ∗k = τ(Y ∗∗k) =

Y ∗∗k∑
i=1

ηi, (4.14)

where as in (2.5), ηi are i.i.d. Exp(1) and independent of the discrete time process. Hence, (2.5),
Theorem 4.1 and (4.14) yield

ξK+1∑
i=1

ηi = ΞK+1
d
= Y ∗K =

Y ∗∗K∑
i=1

ηi. (4.15)

If we take the Laplace transforms of the left-hand side, we obtain by conditioning on ξK+1, for any
s> 0,

E exp

(
−s

ξK+1∑
i=1

ηi

)
= E

((
Ee−sη

)ξK+1
)

= E
(

(1 + s)−ξK+1

)
. (4.16)

This and an identical calculation for the right-hand side show that, taking s= x−1 − 1, E
(
xξK+1

)
=

E
(
xY
∗∗
K
)

for every x ∈ (0,1). In other words, ξK+1 and Y ∗∗K have the same probability generating
function, and thus the same distribution.

Consequently, using the definition (4.13), for K > 0,

P
(
ξK+1 6 n

)
= P

(
Y ∗∗K 6 n

)
= P

(
he(Tn)>K

)
= P

(
he(Tn) >K − 1

)
. (4.17)

The result follows by replacing K by K − 1.

5. Proofs of Theorems 1.2 and 1.4

We next prove Theorem 1.2, using Drmota, Fuchs, Hwang and Neininger [5, Theorem 3 and its proof
in Section 5.1].

12

Proof of Theorem 1.2. Let n= nK , K > 1, be such that

log2 n=K −
√

2K +
1

2
log2K −

1

log 2
+

log2K

4
√

2K
+
aK√
K

(5.1)

for some sequence aK . Later in the proof we will choose ak such that aK →±∞, arbitrarily slowly,
and we may assume aK = o

(√
K
)

as K→∞. Define

k̃ := log2 n+
√

2 log2 n−
1

2
log2 log2 n+

1

log 2
, (5.2)

θ̃ :=
3 log2 log2 n

4
√

2 log2 n
, (5.3)

and, as in [5],

kH := bk̃c, (5.4)

k` := kH + `, for ` ∈ Z, (5.5)

θ := k̃− kH ∈ [0,1), (5.6)

Elementary calculations show that√
log2 n=

√
K − 1√

2
+

log2K

4
√
K

+O
(1√

K

)
, (5.7)

log2 log2 n= log2K +O
(1√

K

)
, (5.8)

k̃− θ̃ =K − 1 +
aK√
K

+O
(1√

K

)
, (5.9)

k1 = k̃− θ+ 1 =K + θ̃− θ+
aK +O(1)√

K
, (5.10)

θ− θ̃ =K − k1 +
aK +O(1)√

K
. (5.11)

In particular, since aK = o
(√
K
)

and θ̃ = o(1), (5.9) implies

k̃ =K − 1 + o(1), (5.12)

and thus, for all large K,

kH = bk̃c ∈ {K − 1,K − 2}. (5.13)

In other words, for large K, either K = kH + 1 = k1 or K = kH + 2 = k2.
Suppose now that aK →−∞. On the subsequence where K = k2 (if there are any such K), we

have by (1.1) and [5, Lemma 11], writing Hn := he(Tn) as in [5],

P(ξk 6 n) = P
(
Hn >K

)
= P

(
Hn > kH + 1

)
→ 0. (5.14)

Continuous time digital search tree 13

On the subsequence where K = k1 (if there are any such K), (5.11) yields

θ− θ̃ =−ω(1)√
K

=− ω(1)√
log2 n

, (5.15)

and thus, using also [5, Remark 5], P(Hn = k1)→ 0, and thus

P(ξk 6 n) = P
(
Hn >K

)
= P

(
Hn = kH + 1

)
+ P
(
Hn > kH + 1

)
→ 0. (5.16)

Together, (5.14) and (5.16) show that if aK →−∞, then P(ξk 6 n)→ 0 as K→∞, regardless of
whether K = k1 or k2.

On the other hand, suppose that aK →+∞. Since θ̃ > 0 (for large K at least), (5.9) implies that for
large K, k̃ >K − 1, and thus, by (5.13), kH =K − 1 and K = k1. Furthermore, (5.11) implies

θ− θ̃ =
ω(1)√
K

=
ω(1)√
log2 n

. (5.17)

Hence, [5, Remark 5 and Lemma 10] imply that P(Hn 6 kH)→ 0, and thus (1.1) yields

P(ξk 6 n) = P
(
Hn >K

)
= P

(
Hn > kH

)
→ 1. (5.18)

Finally, define

ZK :=
√
K
(

log2 ξK −
(
K −

√
2K +

1

2
log2K −

1

log 2
+

log2K

4
√

2K

))
. (5.19)

Then, (5.14), (5.16) and (5.18) show, together with (5.1), that if aK →−∞, then P(ZK 6 aK)→ 0,
while if aK →+∞, then P(ZK 6 aK)→ 1. This is equivalent to ZK =Op(1), and thus to (1.3).

Finally, we use Theorem 1.2 to prove Theorem 1.4 on the mean.

Proof of Theorem 1.4. In this proof, all limits are as K→∞. First, (1.5) implies,

ξK/mK
p−→ 1, (5.20)

and thus, by (2.5) and the law of large numbers,

ΞK/mK
p−→ 1. (5.21)

Note that this immediately implies, by Fatou’s lemma [7, Theorem 5.5.3],

lim inf
K→∞

EΞK
mK

> 1. (5.22)

To obtain also an upper bound, we use tail estimates by Drmota [3]. Note that Drmota uses the
internal height, thus his Hn = he(Tn)− 1. Furthermore, Pk(x) in [3] is the distribution function of the
Poissonized version of Hn, and thus in our notation

Pk(x) = P
(
he(Tx)− 1 6 k

)
. (5.23)

14

Hence, by (1.2), for K > 2 and x> 0,

P(ΞK > x) = P
(
he(Tx) 6K − 1

)
= PK−2(x). (5.24)

We use [3, Lemma 4], for convenience denoting nK−2 there by n̄K and noting that 1
2 < ck < 1 for

large k; this yields together with (5.24), for large K,

P(ΞK > x) >
(

1− 1

n̄K

)
e−x/n̄K , 0 6 x6 n̄K , (5.25)

P(ΞK > x) 6 e−x/(2n̄K), x> n̄K . (5.26)

Let ε > 0. Then (5.21) says that P
(
(1 − ε)mK < ΞK < (1 + ε)mK

)
→ 1, which combined with

(5.25)–(5.26) (taking x= n̄K) implies that for large K we must have (1− ε)mK < n̄K < (1 + ε)mK .
In other words,

n̄K/mK → 1. (5.27)

Hence, (5.21) is equivalent to ΞK/n̄K
p−→ 1, which means

P
(
ΞK/n̄K > x

)
→ 1{x < 1} (5.28)

for every x 6= 1. Furthermore, (5.26) implies that, for large K,

P
(
ΞK/n̄K > x

)
6 1{x < 1}+ e−x/2 (5.29)

for every x> 0. Consequently, dominated convergence yields

E
ΞK
n̄K

=

∫ ∞
0

P
(ΞK
n̄K

> x
)

dx→
∫ ∞

0
1{x < 1}dx= 1 (5.30)

as K→∞. The result follows by (5.27) and (2.6).

Remark 5.1. To prove Conjecture 1.3 by similar arguments, one would need much stronger tail esti-
mates than (5.25)–(5.26). It seems that the method of proof of [5, Lemma 11] might give the required
estimates; however, we have not verified the (non-trivial) details and leave the conjecture as an open
problem.

6. b-ary trees

We have in this paper only considered binary trees. A random b-ary digital search tree can be con-
structed in the same way for any given b> 2, using strings Wi with letters from an alphabet A of size
b, for exampleA= {0,1, · · · , b− 1}; we still assume that the letters are independent and that all letters
have the same probability (viz. 1/b).

Similarly, the border aggregation model can be defined on b-ary trees as in Definition 2.5, where
now the random walk at each step selects a child with probability 1/b each.

Most of the results above hold with only trivial changes. The harmonic measure (2.2) becomes
b−d(v). In Definitions 3.1 and 3.3, the rate should be b−d(v). In particular, Theorems 1.1 and 4.1 still
hold (by the same arguments).

Continuous time digital search tree 15

However, Theorem 1.2 uses results for the binary case proved in [5]; the results and methods there
ought to generalize to arbitrary b, but that has not yet been done, so we cannot extend this result to
larger b. Nevertheless, we conjecture that for the border aggregation model on regular b-ary trees, for a
suitable constant cb > 0,

logb ξK =K −
√

2K + cb logbK +Op(1). (6.1)

References

[1] David Aldous and Paul Shields. A diffusion limit for a class of randomly-growing binary trees.
Probab. Theory Related Fields 79 (1988), no. 4, 509–542.

[2] Martin T. Barlow, Robin Pemantle and Edwin A. Perkins. Diffusion-limited aggregation on a tree.
Probab. Theory Related Fields 107 (1997), no. 1, 1–60.

[3] Michael Drmota. The variance of the height of digital search trees. Acta Inform. 38 (2002), no. 4,
261–276.

[4] Michael Drmota, Random Trees, Springer, Vienna, 2009.
[5] Michael Drmota, Michael Fuchs, Hsien-Kuei Hwang and Ralph Neininger, Node profiles of sym-

metric digital search trees: Concentration properties. Random Structures Algorithms 58 (2021),
no. 3, 430–467.

[6] Michael Drmota, Svante Janson and Ralph Neininger. A functional limit theorem for the profile
of search trees. Ann. Appl. Probab. 18 (2008), no. 1, 288–333.

[7] Allan Gut. Probability: A Graduate Course. Springer, New York, 2005.
[8] Philippe Jacquet and Wojciech Szpankowski: Analytic Pattern Matching: From DNA to Twitter.

Cambridge University Press, Cambridge, 2015.
[9] Harry Kesten. How long are the arms in DLA? J. Phys. A 20 (1987), no. 1, L29–L33.

[10] Charles Knessl and Wojciech Szpankowski. Asymptotic behavior of the height in a digital search
tree and the longest phrase of the Lempel-Ziv scheme. SIAM J. Comput. 30 (2000), no. 3, 923–
964.

[11] Donald E. Knuth: The Art of Computer Programming. Vol. 3: Sorting and Searching. 2nd ed.,
Addison-Wesley, Reading, MA, 1998.

[12] Gregory F. Lawler, Maury Bramson and David Griffeath: Internal diffusion limited aggregation.
Ann. Probab. 20 (1992), no. 4, 2117–2140.

[13] Lionel Levine and Yuval Peres. Internal erosion and the exponent 3/4. Preprint, 2007.
http://www.math.cornell.edu/~levine/erosion.pdf

[14] Lionel Levine and Vittoria Silvestri. How long does it take for internal DLA to forget its initial
profile? Probab. Theory Related Fields 174 (2019), no. 3-4, 1219–1271.

[15] Hosam M. Mahmoud: Evolution of Random Search Trees, Wiley, New York, 1992.
[16] Vittoria Silvestri. Internal DLA on cylinder graphs: fluctuations and mixing. Electron. Commun.

Probab. 25 (2020), Paper No. 61, 14 pp.
[17] Debleena Thacker and Stanislav Volkov. Border aggregation model. Ann. Appl. Probab. 28

(2018), no. 3, 1604–1633.
[18] T. A. Witten and L. M. Sander. Diffusion-limited aggregation. Phys. Rev. B (3) 27 (1983), no. 9,

5686–5697.

