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A B S T R A C T 

We present a simple method of extracting a small number of reference optical turbulence and wind profiles from a large data 
set for single conjugate and extreme adaptive optics (AO) simulations. These reference profiles can be used in slow end-to-end 

AO simulations to represent the variability of the atmosphere. The method is based on the assumption that performance for 
these systems is correlated with integrated atmospheric parameters r 0 , θ0 , and τ 0 . Profiles are selected from a large data set that 
conforms concurrently to the distributions of these parameters, and hence represents the variability of the atmosphere as seen 

by the AO system. We also extend the equi v alent layers method of profile compression to include wind profiles. The method 

is applied to stereo-SCIDAR data from ESO Paranal to e xtract fiv e turbulence and wind profiles that co v er a broad range in 

atmospheric variability, and we show using analytical AO simulation that this correlates to the equivalent range of AO-corrected 

Strehl ratios. 

K ey words: instrumentation: adapti ve optics – methods: data analysis – site testing. 
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 I N T RO D U C T I O N  

daptive optics (AO) techniques allow for partial compensation
f the phase aberrations suffered by light propagating through
tmospheric optical turbulence (Davies & Kasper 2012 ). In optical
stronomy and increasingly other applications such as ground-space
ptical communications, we are concerned with the vertical prop-
gation regime, in which plane-wave light propagates downwards
hrough turbulence to the ground. The vertical distribution (profile)
f the turbulence is one of the key determinants of the performance of
O systems. The profile is described by the refractive index structure
onstant C 

2 
n ( h ) as a function of height h abo v e the observ er. The wind

peed v( h ) and direction θ ( h ) associated with the turbulent layers is
lso of interest, since they define the temporal characteristics of the
urbulence. 

The profile is primarily a meteorological phenomenon, and varies
oth spatially across different sites and temporally, changing on
ime-scales as short as minutes up to seasons. Therefore, for any
articular location, characterization of the profile requires long-term
easurement campaigns (e.g. Els et al. 2009 ; Vernin et al. 2011 ;
sborn et al. 2018 ) or modelling based on meteorological data (e.g.
asciadri, Lascaux & Fini 2013 ; Osborn & Sarazin 2018 ). These

roduce large data sets containing thousands of profiles. 
A common use of the profile is as input to Monte Carlo AO

imulations, where they are used to generate and translate random
hase screens which serve as a model of the turbulent atmosphere.
o we ver, these simulations are computationally intensive and hence

arge data sets with thousands of profiles cannot be used to fully
haracterize the AO performance. 
 E-mail: o.j.d.farley@durham.ac.uk 
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Reference profiles that reflect the variability in the underlying data
et must therefore be extracted for use in simulation (e.g. Sarazin
t al. 2013 , 2017 ). F or more comple x multiguide star tomographic
O systems, where some of the residual wavefront error terms such
s tomographic error are a non-trivial function of the profile, this
as been directly addressed via cluster analysis (F arle y et al. 2018 )
nd using fast analytical AO simulation (F arle y et al. 2019 ). An
mportant conclusion of these w orks w as that the common practice
f averaging C 

2 
n ( h ) in each altitude bin to produce a ‘typical’ or

median’ profile may actually produce profiles that do not have the
xpected characteristics and therefore produce erroneous results in
imulation. It is better to select single profiles from the data set that
onforms to the required characteristics for a particular system. 

For single conjugate A O (SCA O), and its subset extreme AO
XAO), reference profiles are in principle easier to define since the
ystem measures and corrects integrated turbulence along a single
ine of sight. This means the residual error terms are functions of
ntegrated atmospheric parameters. Ho we ver, there is not currently a
rocedure in the literature for extracting single profiles that conform
o certain integrated parameters, without the averaging procedure
reviously described. 
Here, a simple method of extracting reference profiles from a

arge data set is presented that selects single profiles that conform
o required distributions of integrated atmospheric parameters. We
lso present an extension of the equi v alent layers method of profile
ompression (Fusco et al. 2001 ) that accounts for the wind profile
nd guarantees conservation of said atmospheric parameters when
he profile is compressed to a small number of layers suitable for use
n Monte Carlo simulation. 

We apply this method to the 2019B data release from the Stereo-
CIDAR at ESO P aranal, Chile, selecting fiv e profiles from the
9 358 profiles that represent 5th, 25th, 50th, 75th, and 95th percentile
© 2022 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-8985-4277
mailto:o.j.d.farley@durham.ac.uk
https://creativecommons.org/licenses/by/4.0/


Reference turbulence profiles for SCA O/XA O 2967 

i
t

2

T
d

σ

w
a
w
c
f
s
(  

t
f  

a
p
a

t  

a  

d

p

r

θ

τ

w  

a  

v

w

Q

w  

v  

X  

f  

e  

t  

i  

a

(
o
c
o  

l
F  

p  

c
w  

t
p

b  

r  

e
s  

q
s  

t  

s

p  

u  

a  

b
i  

a
p

2

O  

a  

s
n  

s  

A
a  

S  

2  

p  

c
 

l

C

w  

o

h

w
e  

v

v

w  

w  

t  

w

θ

w
w  

t  

u

3

W
m  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/2/2966/6753222 by guest on 27 O
ctober 2022
n terms of the distribution of atmospheric parameters and also in 
erms of SCA O/XA O performance. 

 M E T H O D  

he residual wavefront error after SCA O/XA O correction can be 
efined in terms of classical error terms 

2 
φ = σ 2 

fitting + σ 2 
aniso + σ 2 

servo + σ 2 
alias + σ 2 

noise , (1) 

here σ 2 
fitting is deformable mirror fitting error, σ 2 

aniso the angular 
nisoplanatic error, σ 2 

servo the temporal servo lag error, σ 2 
alias the 

avefront sensor (WFS) aliasing, and σ 2 
noise the WFS noise. From 

lassical AO theory, σ 2 
fitting , σ

2 
aniso , σ

2 
servo , and σ 2 

alias can be computed 
rom atmospheric parameters r 0 , θ0 , and τ 0 , describing turbulence 
trength, angular correlation, and temporal correlation, respectively 
Fried 1982 , 1990 ; Rigaut, Veran & Lai 1998 ). It should be noted
hat these computations are based on a simplified AO model, and 
or a real system the error terms may only be correlated with
tmospheric parameters as opposed to being defined by them. Our 
rimary assumption is that this correlation is strong enough that the 
tmospheric parameters may be used as a proxy for AO performance. 

Any reference turbulence profiles drawn from a data set should 
herefore reflect the respective distributions of r 0 , θ0 , and τ 0 if they
re to reflect the variability in total wavefront error that arises from
iverse turbulence conditions. 
To accomplish this, we first compute the distributions of the 

arameters from the profiles, according to the definitions 

 0 = 

(
0 . 423 k 2 

∫ ∞ 

0 
C 

2 
n ( h ) d h 

)−3 / 5 

(2) 

0 = 

(
2 . 91 k 2 

∫ ∞ 

0 
C 

2 
n ( h ) h 

5 / 3 d h 

)−3 / 5 

(3) 

0 = 

(
2 . 91 k 2 

∫ ∞ 

0 
C 

2 
n ( h ) v( h ) 5 / 3 d h 

)−3 / 5 

(4) 

ith k = 2 π / λ the wav e v ector for light of wavelength λ, h the
ltitude, C 

2 
n ( h ) the refractive index structure constant profile, and

( h ) the wind velocity profile (Fried 1966 , 1976 ; Roddier 1981 ). 
Having obtained the distributions, for each value in the data base 

e compute its quantile within that distribution 

 ( x) = Pr ( x > X) = 1 − F X ( x) , (5) 

here the quantile Q of a parameter value x in a distribution of
alues X is the probability that x is greater than each value in
 , or equi v alently the complement of the cumulative distribution

unction of X e v aluated at x . This is therefore a normalization of
ach parameter set to values between 0 and 1, with 0.5 indicating
he median and so on. This is performed to ensure each parameter
s treated with equi v alent weight in the following analysis, while
llowing arbitrary distributions of the parameters themselves. 

The profiles are selected using a k-d tree search algorithm 

Manee wongv atana & Mount 1999 ), which allows rapid computation 
f nearest neighbours in an N-dimensional parameter space. In our 
ase, we have a three-dimensional space consisting of the quantiles 
f r 0 , θ0 , and τ 0 . We then search this space for data points that
ie close to quantile values of all three distributions concurrently. 
 or e xample, a search around the point (0.5,0.5,0.5) will return the
rofile that lies closest to the median values of all parameters. The
hoice of the quantile values may depend on the application; here, 
e will use the values [0.05, 0.25, 0.5, 0.75, 0.95], corresponding to

he 5th percentile, lower quartile, median, upper quartile, and 95th 
ercentile of each distribution. This gives five profiles covering a 
road range of variability in each parameter, and therefore a broad
ange of variability in AO performance. Provided the data set is large
nough, single profiles that conform to these constraints within a 
mall error should be found. The size of this error, which we can
uantify as the Euclidean distance in the three-dimensional quantile 
pace between the target and selected profile, is returned as part of
he k-d tree search and can be used to assess the quality of the profiles
elected. We will denote this quantity 	 Q . 

If desired, additional parameters can be included in this search 
rocess. F or e xample, scintillation inde x or Ryto v variance may be
seful to include if the AO system is required to work at low elevation
ngles. This is a trivial extension of the method, however it should
e noted that a higher dimensional parameter space search makes 
t more difficult to select profiles that adhere to target values of
ll parameter distributions concurrently due to the lower density of 
oints in higher dimensional spaces. 

.1 Extended equi v alent lay ers compression 

nce the profiles are selected, they may need to be compressed to
 smaller number of layers in order to be usable in Monte Carlo
imulation. Depending on simulation size and complexity, the total 
umber of layers can range from five or fewer for SCA O/XA O
imulations on small telescopes to o v er 30 for EL T -scale tomographic
O. There are several ways of accomplishing this compression that 
re optimal in different situations (Saxenhuber et al. 2017 ). For
CA O/XA O, the equi v alent layers method can be used (Fusco et al.
001 ), which compresses the profile while conserving r 0 and θ0 . We
resent here an extension of the equi v alent layers method that also
onserves τ 0 by taking into account the wind speed profile. 

The profile is split into L slabs equally spaced in altitude. For each
ayer l the total turbulence strength is simply integrated 

 

2 
n ( h l ) d h = 

∫ 

l 

C 

2 
n ( h ) d h, (6) 

here the integral runs o v er the altitudes of the slab l . The altitude
f each layer is given by 

 l = 

∫ 
l 
C 

2 
n ( h ) h 

5 / 3 d h ∫ 
l 
C 

2 
n ( h ) d h 

, (7) 

hich ensures conservation of θ0 by placing the layers at the 
qui v alent altitude. Similarly, we then define the compressed wind
elocity profile layers 

 ( h l ) = 

∫ 
l 
C 

2 
n ( h ) v ( h ) 5 / 3 d h ∫ 
l 
C 

2 
n ( h ) d h 

, (8) 

hich ensures conservation of τ 0 . The final required parameter is the
ind direction for each compressed layer. We choose to define this

hrough a weighted average of wind directions in each slab, with the
eights defined as the wind speeds, i.e. 

( h l ) = arg 

(∫ 
l 
e iθ ( h ) v( h ) d h ∫ 

l 
v( h ) d h 

)
, (9) 

here the projection into the complex plane e i θ ensures correct 
rapping of directions when averaging (i.e. 360 o = 0 o ). We take

he complex argument of the final result to project back into angular
nits. 

 RESULTS  

e show an example of this method applied to Stereo-SCIDAR 

easurements from ESO Paranal (Osborn et al. 2018 ), site of the
MNRAS 517, 2966–2971 (2022) 
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M

Figure 1. Distributions of r 0 , θ0 , and τ 0 at λ= 500 nm for the Paranal Stereo- 
SCIDAR 2019B data release. Each distribution is illustrated by histograms 
showing probability density (solid lines, right-hand axis) and cumulative 
probability density (dashed lines, left-hand axis). 
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Table 1. Quantiles of the distributions of r 0 , θ0 , and τ 0 from the Paranal 
Stereo-SCIDAR 2019B data set. The values in brackets are obtained from the 
fiv e e xtracted reference profiles, for comparison to the target values. The 	 Q 

column indicates the distance in three-dimensional quantile space between 
the target and selected profiles. 

Quantile r 0 [cm] θ0 [arcsec] τ 0 [ms] 	 Q 

0.05 7.8 (7.8) 1.1 (1.1) 1.5 (1.5) 0.003 
0.25 11.1 (11.0) 1.6 (1.6) 2.3 (2.3) 0.015 
0.5 14.1 (14.1) 2.0 (2.0) 3.5 (3.6) 0.011 
0.75 17.1 (17.1) 2.5 (2.6) 5.4 (5.3) 0.018 
0.95 23.3 (23.0) 3.5 (3.5) 8.3 (8.4) 0.007 
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ery Large Telescope and close to the Cerro Armazones site of the

xtremely Large Telescope. 
The 2019B data set consists of 19 358 turbulence profiles, taken

n 161 nights between 2016 April and 2019 October, spanning all
onths of the year. The average temporal sampling during a run is

round 2 min. Altitude resolution ranges between around 200 m and
 km, and the profile layers are binned into 250 m altitude bins,
ith 100 bins in total between the ground and 25 km. In addition

o turbulence profiles, wind speed and direction for the strongest
urbulent layers are also measured. The sparse wind profiles are
patio-temporally interpolated to fill in the missing layers. We note
hat this may not be an optimal way of obtaining the wind profile,
nd it may be better to use wind profiles from an external source, for
xample meteorological models. Ho we ver, this is beyond the scope
f this basic demonstration of the method. 
NRAS 517, 2966–2971 (2022) 
The distributions of atmospheric parameters from this data set
re shown in Fig. 1 , with the rele v ant target quantiles in Table 1 .
e transform each data point to its quantile within the parameter

istributions (equation 5 ) and employ the k-d tree search algorithm to
nd profiles that correspond to the target quantiles for each parameter
oncurrently. The parameters of the resulting profiles are shown in
rackets in Table 1 , where we see very good agreement with the
arget values, and 	 Q values indicating profiles have been found in
ll cases within a distance 2 per cent from the target quantiles, and
s close as 0.3 per cent. 

In Fig. 2 , we show the full 100 layer profiles and the same
rofiles compressed to 10 layers with our extended equi v alent layers
ethod. The parameters for the compressed profiles are conserved,

y definition. We also show wind profiles in Fig. 3 , with the same
ompression applied. We can see by simple visual inspection that a
iverse range of C 

2 
n and wind profiles have been extracted. 

We illustrate the quality of our selected profiles in Fig. 4 , where we
how the density of points (profiles) in our three-dimensional r 0 − θ0 

τ 0 parameter space. We can see that, for the most part, the selected
rofiles lie very close to their target values. As would be expected
rom the 	 Q values in Table 1 , this is particularly true for the more
xtreme ( Q = 0.05 and Q = 0.95) profiles, where the density of
oints is greater and so it is more likely a profile can be found close
o the target. The points in the parameter space around Q = 0.25, 0.5,
nd 0.75 are more sparse, and our selected profile is further from the
arget, but still within a maximum o v erall distance of 	 Q = 0.018,
r 1.8 per cent in percentile terms. We highlight the importance of
his analysis when employing this method: for smaller data sets or a
reater number of parameters, there may not be sufficient density in
he parameter space to ensure small 	 Q values, resulting in profiles
hat are not representative. 

Finally, as a form of validation we show results from an analytical
ourier domain AO simulation (Farley, Townson & Osborn 2022 )

n Fig. 5 . We compute the on-axis long exposure Strehl ratio for all
9 358 profiles, shown as the histogram, and o v erlay the rele v ant
uantiles of this distribution as black vertical lines. The Strehl
atio obtained with the extracted reference profiles corresponding
o the same quantiles are shown as orange vertical lines. The small
ivergence of the reference profiles from the target quantiles is a
esult of the fact that for this AO system and simulation, the total
avefront error and hence Strehl ratio is not an exact function of

he turbulence parameters as we have assumed. There is also likely
 contribution from the fact that some profiles are further from their
arget values, for example the Q = 0.75 profile, which corresponds
o the second orange line from the left in Fig. 5 , has the largest 	 Q
nd shows the largest discrepancy of 0.05 in Strehl ratio. However,
or the most part the reference profiles provide very similar Strehl to
heir target quantiles. 

art/stac2880_f1.eps
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Figure 2. Optical turbulence profiles extracted from the Stereo-SCIDAR 

2019B data set that follow the target quantiles in turbulence parameters. 
From upper to lower panel: Q = 0.05, 0.25, 0.5, 0.75, and 0.95, representing 
very bad conditions to very good conditions. For each panel, the full 100- 
layer Stereo-SCIDAR is shown by the solid line and a 10-layer compressed 
version, using our extended equi v alent layers method, sho wn as crosses. 
When the profile is compressed, the C 

2 
n d h values increase since the altitude 

bins become larger, and we are considering the integrated turbulence strength 
in each altitude bin. 

4

W  

v  

S  

b  

t

s
w  

Figure 3. Wind profiles extracted from the Stereo-SCIDAR 2019B data set 
that follows the target quantiles in turbulence parameters. From upper to lower 
panel: Q = 0.05, 0.25, 0.5, 0.75, and 0.95, representing very bad conditions 
to very good conditions. Each panel shows both the wind velocity v( h ) (blue, 
left-hand axis) and direction θ ( h ) (orange, right-hand axis) as a function of 
altitude h . The 100-layer Stereo-SCIDAR profiles are shown as solid lines 
and 10-layer compressed profiles as crosses in each case. 
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 C O N C L U S I O N S  

e have presented a method of extracting reference C 

2 
n ( h ), wind

elocity, and wind direction profiles from large profile data sets for
CA O/XA O. This method relies on the error budgets of these systems
eing defined by, or at least correlated with, integrated parameters of
he turbulence profile. 

By computing distributions of these integrated parameters and 
electing profiles that adhere to quantiles of these distributions, 
e obtain a set of profiles that will reflect the variability of the
tmosphere when used in simulation. We have also presented an 
xtension of the equi v alent layers profile compression method, which
ay be used to reduce the number of layers in a profile while

onserving r 0 , θ0 , and τ 0 . 
We have shown the application of this method to the 2019B

tereo-SCIDAR data set from P aranal, e xtracting fiv e C 

2 
n ( h )

nd wind profiles representing a wide range of turbulence 
onditions. 

Finally, we showed that these profiles correspond to a similar range
f AO performance, using an analytical AO simulation to compute 
he long-exposure AO-corrected Strehl ratio for every profile in the 
ata set and our reference profiles. 
MNRAS 517, 2966–2971 (2022) 
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Figure 4. Two-dimensional slices through the three-dimensional r 0 − θ0 

− τ 0 quantile parameter space, showing detail around the target quantiles. 
Columns represent the r 0 − θ0 , θ0 − τ 0 , and τ 0 − r 0 planes as indicated 
at the top of the figure. Each ro w sho ws a 0.1 size region around the target 
quantiles, from Q = 0.05 to Q = 0.95 from the upper to lower row. The blue 
points indicate individual turbulence profiles in the data set, with the black 
cross representing the chosen profile for that quantile. The grey dashed lines 
represent the centre of the target quantile. 

Figure 5. Distribution of Strehl ratio for the 2019B data set obtained via 
analytical AO simulation (black histogram), with quantiles Q = 0.05, 0.25, 
0.5, 0.75, and 0.95 indicated by vertical black dashed lines. Strehl ratio 
obtained with the extracted reference profiles for the same quantiles are 
indicated by orange vertical lines. 

A

T  

C  

a  

b  

e
 

(  

J  

2  

m

D

T  

t

R

D
E  

F  

F  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/2/2966/6753222 by guest on 27 O
ctober 2022
C K N OW L E D G E M E N T S  

his research used Python including NUMPY and SCIPY (van der Walt,
olbert & Varoquaux 2011 ), MATPLOTLIB (Hunter 2007 ), ASTROPY ,
 community-developed core Python package for Astronomy (Ro-
itaille et al. 2013 ) the Python AO utility library AOtools (Townson
t al. 2019 ). 
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