
JID:TCS AID:13590 /FLA [m3G; v1.328] P.1 (1-12)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Few induced disjoint paths for H-free graphs ✩

Barnaby Martin a, Daniël Paulusma a,∗, Siani Smith a, Erik Jan van Leeuwen b

a Department of Computer Science, Durham University, Durham, UK
b Department of Information and Computing Sciences, Utrecht University, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2022
Received in revised form 14 October 2022
Accepted 19 October 2022
Available online xxxx
Communicated by T. Calamoneri

Keywords:
Induced disjoint paths
H-free graph
Complexity dichotomy

Paths P 1, . . . , Pk in a graph G = (V , E) are mutually induced if any two distinct P i and P j

have neither common vertices nor adjacent vertices. For a fixed integer k, the k-Induced
Disjoint Paths problem is to decide if a graph G with k pairs of specified vertices (si, ti)

contains k mutually induced paths P i such that each P i starts from si and ends at ti .
Whereas the non-induced version is well-known to be polynomial-time solvable for every
fixed integer k, a classical result from the literature states that even 2-Induced Disjoint
Paths is NP-complete. We prove new complexity results for k-Induced Disjoint Paths if
the input is restricted to H-free graphs, that is, graphs without a fixed graph H as an
induced subgraph. We compare our results with a complexity dichotomy for Induced Dis-

joint Paths, the variant where k is part of the input.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider problems related to finding paths connecting pre-specified pairs of vertices. A path between vertices s and
t in an undirected graph G is an s-t path with terminals s and t . Terminal pairs (s1, t1), . . . , (sk, tk) are pairwise disjoint
if {si, ti} ∩ {s j, t j} = ∅ for i �= j. The well-known problem k-Disjoint Paths is to decide for a graph G and pairwise dis-
joint terminal pairs (s1, t1) . . . , (sk, tk), if there are pairwise vertex-disjoint paths P 1, . . . , Pk such that P i is an (si, ti)-path
for i ∈ {1, . . . , k}; here k is fixed, that is, k is not part of the input.

Shiloach [25] proved that 2-Disjoint Paths is polynomial-time solvable. Robertson and Seymour [24] even gave a
polynomial-time algorithm for k-Disjoint Paths for every integer k ≥ 2. In contrast, Disjoint Paths, the variant where k
is part of the input, appeared on Karp’s list of NP-complete problems.

Our focus. We consider the induced variant of k-Disjoint Paths. We say that paths P 1, . . . , Pk in a graph G = (V , E) are
mutually induced if any two distinct P i and P j have neither common vertices nor adjacent vertices, that is, if i �= j then
V (P i) ∩ V (P j) = ∅ and uv /∈ E for every u ∈ V (P i) and v ∈ V (P j). This leads to the following problem, where k is a fixed
constant.

✩ An extended abstract of this paper will appear in the proceedings of ISCO 2022 [21].

* Corresponding author.
E-mail addresses: barnaby.d.martin@durham.ac.uk (B. Martin), daniel.paulusma@durham.ac.uk (D. Paulusma), siani.smith@durham.ac.uk (S. Smith),

e.j.vanleeuwen@uu.nl (E.J. van Leeuwen).
https://doi.org/10.1016/j.tcs.2022.10.024
0304-3975/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2022.10.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://creativecommons.org/licenses/by/4.0/
mailto:barnaby.d.martin@durham.ac.uk
mailto:daniel.paulusma@durham.ac.uk
mailto:siani.smith@durham.ac.uk
mailto:e.j.vanleeuwen@uu.nl
https://doi.org/10.1016/j.tcs.2022.10.024
http://creativecommons.org/licenses/by/4.0/

JID:TCS AID:13590 /FLA [m3G; v1.328] P.2 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
k-Induced Disjoint Paths

Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have mutually induced paths P 1, . . . , Pk such that P i is an si-ti path for i ∈ {1, . . . ,k}?

Note that a graph G with a set of pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk) is a no-instance of k-Induced Disjoint
Paths if G has an edge between two terminals from different pairs.

In contrast to the previous setting, even 2-Induced Disjoint Paths is NP-complete, as shown both by Bienstock [4] and
Fellows [7]. Restricting the input to some special graph class might help improve our understanding of the hardness of the
problem. To do this systematically we focus on hereditary graph classes.

A class of graphs is hereditary if it is closed under vertex deletion. This is a natural property and non-surprisingly
hereditary graph classes provide a framework that captures many well-known graph classes. In particular, it is not difficult
to see that a graph class G is hereditary if and only if it can be characterized by a (unique) set FG of forbidden induced
subgraphs. For example, if G is the class of bipartite graphs, then FG is the set of all odd cycles.

The characterization by FG allows for a systematic study, which usually starts with the case where FG has size 1, say
FG = {H} for some graph H . A graph is H-free if it cannot be modified to H by a sequence of vertex deletions, and if
FG = {H} we obtain the class of H-free graphs, which we consider in our paper.

1.1. Related work

We first discuss existing results for Induced Disjoint Paths (where k is part of the input). All the positive results hold
for a slightly more general problem definition (see Section 6). Golovach et al. [11,12] proved that Induced Disjoint Paths is
linear-time solvable for circular-arc graphs and polynomial-time solvable for AT-free graphs, respectively. Belmonte et al. [3]
showed the latter for chordal graphs, and Jaffke et al. [14] did so for any graph class of bounded mim-width. In contrast,
Induced Disjoint Paths stays NP-complete even for claw-free graphs [8], line graphs of triangle-free chordless graphs [23]
and thus for (theta,wheel)-free graphs, and for planar graphs; to prove the latter, use a result of Lynch [19] (see [12]).

The following recent dichotomy is immediately relevant for our paper. Let G1 + G2 be the disjoint union of two vertex-
disjoint graphs G1 and G2, and let sG denote the disjoint union of s copies of a graph G . We write F ⊆i G if F is an induced
subgraph of a graph G , that is, F can be obtained from G by a sequence of vertex deletions. We let Pr denote the path on
r vertices. A linear forest is the disjoint union of one or more paths.

Theorem 1 ([22]). For a graph H, Induced Disjoint Paths on H-free graphs is polynomial-time solvable if H ⊆i sP3 + P6 for some
s ≥ 0; NP-complete if H is not a linear forest; and quasipolynomial-time solvable otherwise.

We return to Theorem 1 later, and we now fix k. Radovanović et al. [23] proved that k-Induced Disjoint Paths is polynomial-
time solvable for (theta,wheel)-free graphs. Fiala et al. [8] proved the same result for claw-free graphs. Note that both results
complement the aforementioned hardness results when k is part of the input. Golovach et al. [10] showed that Induced
Disjoint Paths is even FPT with parameter k for claw-free graphs. The same holds for planar graphs [15], and even for
graph classes of bounded genus, as shown by Kobayashi and Kawarabayashi [17]. Let Cr denote the r-vertex cycle. It follows
(using Lemma 3) from a result of Leveque et al. [18] that 2-Induced Disjoint Paths is NP-complete for H-free graphs if
H = Cr for every r ≥ 3 with r �= 6.

The generalization from paths to connected subgraphs joining sets of terminals instead of pairs has also been considered,
but these results do not impact upon our work in this paper; we refer to [22] for further details. Moreover, the restriction to
H-free graphs has also been studied for Disjoint Paths (recall that if k is fixed this problem is polynomial in general [24]);
see [16] for a complexity classification of Disjoint Paths for H-free graphs, subject to a set of three unknown cases.

1.2. Our results

To explain our results we first introduce some extra terminology. For r ≥ 1, the graph K1,r is the (r + 1)-vertex star, i.e.,
the graph with vertices x, y1, . . . , yr and edges xyi for i = 1, . . . , r. The graph K1,3 is known as the claw. The subdivision
of an edge uw removes uw and replaces it with a new vertex v and edges uv , v w . A subdivided claw is a tree with
one vertex x of degree 3 and exactly three leaves. For 1 ≤ h ≤ i ≤ j, let Sh,i, j be the subdivided claw whose three leaves are
of distance h, i and j from the vertex of degree 3. Note that S1,1,1 = K1,3. The graph S1,1,2 is called the chair (or fork). Let
S be the set of graphs, each connected component of which is a path or a subdivided claw.

Using the above terminology we can now present our main theorem.

Theorem 2. Let k ≥ 2. For a graph H, k-Induced Disjoint Paths restricted to H-free graphs is polynomial-time solvable if H is a
subgraph of the disjoint union of a linear forest and a chair, and it is NP-complete if H is not in S .

Comparing Theorems 1 and 2 shows that the problem becomes tractable for an infinite family of graphs H after fixing k.
As the class of claw-free graphs is contained in the class of chair-free graphs, Theorem 2 extends the aforementioned
2

JID:TCS AID:13590 /FLA [m3G; v1.328] P.3 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
polynomial-time result of Fiala et al. [8] for claw-free graphs. Moreover, the case H = C6 (the 6-vertex cycle) fills a gap
in the aforementioned result of Leveque et al. [18]. As we shall explain in Section 3, the NP-hardness construction relies
on their gadget but also requires significant additional work. Before doing this we first prove the polynomial-time part of
Theorem 2 in Section 2. Then, in Section 4, we prove Theorem 2.

In Section 5 we consider the problem from a parameterized complexity viewpoint. Recall that Golovach et al. [10] proved
that Induced Disjoint Paths is FPT for claw-free graphs when parameterized by the number k of paths. We consider the
class of Pr -free graphs. This gives us another natural parameter, namely r. However, we show by adapting a construction of
Haas and Hoffmann [13] that even 2-Induced Disjoint Paths is W[1]-hard for Pr -free graphs when parameterized by r.

In Section 6 we summarize our findings and give a number of relevant open problems. In particular we discuss some
open problems on the parameterized complexity of Induced Disjoint Paths.

2. Polynomial-time algorithms

In this section we prove the polynomial-time part of Theorem 2. We first show the following general result that we will
need as a lemma.

Lemma 1. For every linear forest F and every integer k ≥ 2, if the k-Induced Disjoint Paths problem is polynomial-time solvable for
H-free graphs for some graph H, then it is so for (F + H)-free graphs.

Proof. Let H be a graph such that k-Induced Disjoint Paths is polynomial-time solvable for H-free graphs. Let (G, T) be
an instance of k-Induced Disjoint Paths, where G is an (F + H)-free graph on n vertices and T is a set of k terminal pairs
(si, ti).

Let r = 2|V (F)| − 1. Note that F is an induced subgraph of Pr . We check in O (nk(r+1)) time (by brute force) if there
exists a solution (P 1, . . . , Pk) for (G, T) in which each path has at most r + 1 vertices. As k and r are constants, this takes
polynomial time.

Suppose we have not found a solution yet. Then if a solution (P 1, . . . , Pk) exists, at least one of the paths P i in it has
r + 2 or more vertices. We guess which path P i will have at least r + 2 vertices. This leads to k branches. We guess the first
r + 1 vertices u1, . . . , ur+1 on P i after si = u0. This leads to O (nr) further branches. We remove si, u1, . . . , ur and all their
neighbours from G , except for ur+1. Let G ′ be the resulting graph. In the pair (si, ti), we replace si by ur+1 to obtain a new
instance (G ′, T ′). As F is an induced subgraph of Pr , we have that G ′ is H-free. Hence, by our assumption, we can solve
k-Induced Disjoint Paths on (G ′, T ′) in polynomial time. As the total number of branches is polynomial, the total running
time is polynomial. �
We need two known results for proving the polynomial part of Theorem 2 in Lemma 2.

Theorem 3 ([8]). For every k ≥ 2, k-Induced Disjoint Paths is polynomial-time solvable for claw-free graphs.

Theorem 4 ([2]). If a connected chair-free graph G contains an induced claw and an induced path P on at least eight vertices, then G
has a vertex adjacent to all vertices of P .

Lemma 2. Let k ≥ 2. For every linear forest F , k-Induced Disjoint Paths is polynomial-time solvable for (F + chair)-free graphs.

Proof. By Lemma 1, it remains to consider chair-free graphs. Let (G, T) be an instance of k-Induced Disjoint Paths, where
G is a chair-free graph on n vertices and T = {(s1, t1), . . . , (sk, tk)} is a set of terminal pairs. Let (P 1, . . . , Pk) be a solution
for (G, T) (if it exists). We call a path P i long if it has at least eight vertices; else we call it short. We first guess which of
the paths of a solution for (G, T) will be short. There are 2k options for doing this, which is a constant number as k is a
constant. We will consider each of these options one by one.

Suppose we consider the option where T ′ ⊆ T is the subset of terminal pairs that will be in short solution paths. Let
|T ′| = k′ ≤ k. We guess all O (n5k′

) = O (n5k) options of choosing the inner vertices of the solution paths for the terminal
pairs in T ′ . We discard an option if two of the guessed solution paths contain an edge between them or if a guessed
solution path contains a vertex with a neighbour in some (si, ti) /∈ T ′ . Otherwise, we continue as follows.

We first delete all vertices of the guessed solution paths and also their neighbours from G . We denote the new in-
stance by (G, T) again and also write T = {(s1, t1), . . . , (sk, tk)}. Assuming our guess was correct, (G, T) only has solutions
(P 1, . . . , Pk) in which each P i is long. Hence, from G , we can safely remove for every i ∈ {1, . . . , k}, every vertex that is
adjacent to both si and ti .

We now check in polynomial time if there are two terminal si and ti that belong to different connected components of
the resulting graph G ′ . If so, then we can discard this branch. Else, we let (G ′

1, T ′
1), . . . , (G ′

r, T ′
r) be the connected components

of G ′ , together with the terminal pairs subsets of T they contain.
We consider each (G ′

j, T
′
j) as a separate instance. We check in polynomial time if G ′

j is claw-free. First suppose that
we find that G ′ contains an induced claw. We claim that we may discard the branch, as (G ′ , T ′) has no solution. For a
j j j

3

JID:TCS AID:13590 /FLA [m3G; v1.328] P.4 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
s1 p1 q1 x1

r1

s2 r2 q2 x2

p2

s1 p1 q1 x1

r1

s2

r2 q2 x2

p2

Fig. 1. The part of the graph G1 that corresponds to a vertex x in a graph G that has exactly two neighbours x1 and x2.

contradiction, suppose (G ′
j, T

′
j) has a solution. Recall that all paths in any solution for (G ′

j, T
′
j) must be long. Consider a

path P i in this solution. As P i must be long, Theorem 4 tells us that G ′
j must contain a vertex adjacent to all vertices of P i .

However, by construction, G ′
j contains no vertices adjacent to both si and ti , which both belong to P i , a contradiction.

Now suppose that we find that G ′
j is claw-free. Otherwise, we apply Theorem 3 to check in polynomial time if (G ′

j, T
′
j)

has a solution. If for some (G ′
j, T

′
j) no solution exists, then we move to the next branch; otherwise, we return a yes-answer.

As the number of branches is polynomial and processing each branch takes polynomial time, the total running time of
our algorithm is polynomial. �
3. NP-completeness results

In this section we prove the NP-completeness part of Theorem 2 (see Section 4 for details on how we combine the
several hardness results proven in this section). As explained below, we base our proofs on a hardness result of Leveque et
al. [18] for 2-Induced Cycle, which is to decide if a graph has an induced cycle containing two distinguished vertices x and
y (we assume without loss of generality that the induced cycle is a hole, meaning it has at least four vertices).

Theorem 5 ([18]). The 2-Induced Cycle problem is NP-complete even for instances (G, x, y) where G is a graph of maximum degree 3,
and x and y each have degree 2.

Now let (G, x, y) be an instance of 2-Induced Cycle, where G has maximum degree 3, and x and y have degree 2. Let x and
y have neighbours x1, x2 and y1, y2 respectively. We replace x and its incident edges by the following. Create vertices p1, q1,
r1, p2, q2, r2, s1, s2. Add edges s1 p1, p1q1, q1x1, q1r1, r1s2 and s2r2, r2q2, q2x2, p2s1, p2q2. In the same way, we replace y and
its incident edges by vertices a1, b1, c1, a2, b2, c2, t1, t2 and edges a1t1, a1b1, b1 y1, b1c1, c1t2 and a2t1, a2b2, b2 y2, b2c2, c2t2.
Note that any vertex that is introduced has degree at most 3. For an integer d ≥ 0, we now subdivide every incident edge
of every newly introduced vertex d times. We denote the new graph by Gd and say that Gd is the d-replacement for G . Note
that Gd has maximum degree 3 as well. See also Fig. 1, where we display the replacement of x for d = 1.
We now derive the following relation.

Lemma 3. For a graph G of maximum degree 3 that has two vertices x and y of degree 2 and for every integer d, it holds that (G, x, y)

is a yes-instance of 2-Induced Cycle if and only if (Gd, {(s1, t1), (s2, t2)}) is a yes-instance of 2-Induced Disjoint Paths. Moreover,
Gd has maximum degree 3.

Proof. It is readily seen that for every integer d ≥ 0, Gd has maximum degree 3.
To prove the remainder of the lemma, first assume that d = 0. We observe that the paths s1, p1, q1, x1 and s2, r2, q2, x2

are mutually induced. The paths s1, p2, q2, x2 and s2, r1, q1, x1 are also mutually induced. Moreover, these are the only two
options that can co-exist, in the following sense. A path from s1 to x1 that uses only edges of this gadget and that does
not have s2 as an internal vertex has to pass through q1. Similarly, a path from s2 to x2 that uses only edges of this gadget
and that does not have s1 as an internal vertex has to pass through q2. See also Fig. 2. The same observations hold with
respect to the gadget replacing vertex y. Hence, G has a hole containing x and y if and only if Gd has mutually induced
paths between s1 and t1 and between s2 and t2.
4

JID:TCS AID:13590 /FLA [m3G; v1.328] P.5 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
s1 p1 x2 x2

r1

s2 r2 q2 x2

p2

s1 p1 q1

x1

r1

s2

r2 q2 x2

p2

s1 p1 q1 x1

r1

s2 r2 q2 x2

p2

s1 p1 q1 x1

r1

s2

r2 q2 x2

p2

Fig. 2. The path from s2 to x1 (left) and the path from s1 to x2 (right) from the proof of Lemma 3 if d = 1.

• •

• •

• •

• •

• • • •

• •

Fig. 3. A drawing of H1 (left) and H3 (right).

Note that any incident edges of every vertex of Gd that does not belong to G can be subdivided an arbitrary number
of times without affecting the correctness of the reduction (q1, q2, b1, b2 remain bottlenecks). So, the claim also holds for
d ≥ 1. �
Our first two results require a single change to the construction of [18]. The first rectifies, by using Lemma 3, a potential
issue with the same claim made in [10].

Lemma 4. For every k ≥ 2, the k-Induced Disjoint Paths problem is NP-complete for K1,4-free graphs.

Proof. First let k = 2. By Theorem 5 it holds that 2-Induced Cycle is NP-complete on graphs of maximum degree 3 where
the two distinguished vertices have degree 2. Apply the reduction of Lemma 3 for d = 0. The graph G0 has maximum
degree 3; thus, it is K1,4-free.

Now suppose k ≥ 3. We reduce from 2-Induced Disjoint Paths restricted to K1,4-free graphs. Let G be a K1,4-free graph
that forms, together with two disjoint terminal pairs (s1, t1) and (s2, t2), an instance of 2-Induced Disjoint Paths. We add
k − 2 isolated edges s3t3, . . . , sktk to G (so these isolated edges consist of new vertices s3, . . . , sk and t3, . . . , tk). Let G ′ be
the new graph. It is readily seen that G together with terminal pairs (s1, t1), (s2, t2) has a solution if and only if G ′ together
with terminal pairs (s1, t1), . . . , (sk, tk) has a solution. �
Lemma 5. For every s ≥ 3 with s �= 6, 2-Induced Disjoint Paths is NP-complete for Cs-free graphs.

Proof. Leveque et al. [18] proved that 2-Induced Cycle is NP-complete on Cs-free graphs for every s ≥ 3 with s �= 6, where
the two distinguished vertices have degree 2. We apply Lemma 3 for a sufficiently large integer d. In this way, we ensure
that Gd is Cs-free. �
Our third result requires a significant overhaul of the construction in [18].

3.1. Omitting “H”-graphs and Six-Vertex Cycles. Let H1 be the “H”-graph on six vertices formed by an edge joining the
middle vertices of two paths on three vertices. For � ≥ 2, let H� be the graph obtained from H1 by subdividing the crossing
edge (which is the edge whose endpoints both have degree 3) � − 1 times. See Fig. 3 for two examples.

We prove that for every � ≥ 1, 2-Induced Disjoint Paths is NP-complete for (C6, H�)-free graphs. To this end, we consider
the hardness reduction by Leveque et al. [18] for 2-Induced Cycle in more detail. We very closely follow their notation and
the proof of our main Lemma 6 mimics the proof of their Lemma 2.6. We show how their construction can be modified so
that it becomes H�-free for any fixed � ≥ 1 and C6-free.

Let φ be an instance of 3-Satisfiability consisting of m clauses C1, . . . , Cm on n variables z1, . . . , zn . For each clause C j of
the form y3 j−2 ∨ y3 j−1 ∨ y3 j where yi , i ∈ [3m], is a literal from {z1, . . . , zn, z1, . . . , zn}. Let � ≥ 1 be given. We will construct
a graph G�

φ with two specified vertices x and y of degree 2 so that G�
φ has a hole containing x and y if and only if there is

a truth assignment satisfying φ.
5

JID:TCS AID:13590 /FLA [m3G; v1.328] P.6 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
α1+ α1++ α2+ α3+ α4++ α4+

α α′

α1− α1−− α2− α3− α4−− α4−

β1+ β1++ β2+ β3+ β4++ β4+

β β ′

β1− β1−− β2− β3− β4−− β4−

Fig. 4. The literal gadget (dashed lines indicate paths of length �).

α1− α1−− α2− α3− α4−− α4−

β1− β1−− β2− β3− β4−− β4−

c1+ c1−

c1+ c1−

c12+ c12−

c0+ c2+ c2− c0−

c3+ c3−

Fig. 5. The clause gadget together with its interface with the literal gadget (drawn above). Dashed lines indicate paths of length �.

For each literal y j , prepare a graph G�(y j) (literal gadget) as drawn in Fig. 4 where the corresponding labelled vertices
inherit a subscript j. Numerous vertices on paths will remain unlabelled. Our literal gadget is more elaborate than that in
[18] as we need to forbid, as induced subgraphs, the C6 and for any fixed �, every H� . The idea is that two induced disjoint
paths may be drawn through this gadget either crossing the edges (α2+, α3+) and (β2+, β3+); or the edges (α2−, α3−) and
(β2−, β3−). All other possibilities are forbidden.

For each clause C j , prepare a graph G�(C j) (clause gadget) as drawn in the bottom of Fig. 5 where the corresponding
labelled vertices inherit a subscript j. Numerous vertices on paths will remain unlabelled. Our clause gadget is exactly the
same as in [18] except we replaced the edges by paths. The idea is that a path may be drawn through this gadget in
precisely one of three ways selecting the literal that is true.

For each variable zi , prepare a graph G�(zi) (variable gadget) as in Fig. 6 consisting of two internally disjoint paths P+
i

(top) and P−
i (bottom). The idea in Fig. 6 is that full edges and dashed edges alternate on this diagram and the length

is enough for m full edges. The end points of the full edges are labelled (p+
i,1, p++

i,1), . . . , (p+
i,2m, p++

i,2m) on the top; and
(p−

i,1, p
−−
i,1), . . . , (p−

i,2m, p−−
i,2m) on the bottom. Our variable gadget is exactly the same as in [18] except we lengthened some

paths. The idea is that a path may be drawn through this gadget in precisely one of two ways selecting whether the variable
is evaluated true or false.
6

JID:TCS AID:13590 /FLA [m3G; v1.328] P.7 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
d++ • • • P+ • • • d−+

d+ d−

d+− • • •
P− • • • d−−

Fig. 6. The variable gadget. Dashed lines indicate paths of length �. Dotted lines indicate a continuation of the gadget.

We now construct the final graph G�
φ . We do this in a manner similar to Leveque et al. [18] from the disjoint union of all

the graphs G�(y j) (literal gadgets), G�(C j) (clause gadgets) and G�(xi) (variable gadgets). Compared to the construction [18],
we replace some edges by paths of length � (so the construction would be the same when � = 1) and sometimes use slightly
different vertex names. In three places, however, the modifications go further beyond the construction of Lemma 2.6 in [18]
and we will indicate those specifically below. In particular, the top of Fig. 5 shows how a clause gadget interacts with a
literal gadget in our construction; see point 6 below. A variable gadget interacts with a clause gadget in a similar way; see
points 4 and 5 below.

1. For j = 1, . . . , 3m − 1, add paths of length � between α′
j and α j+1 and between β ′

j and β j+1.

2. For j = 1, . . . , m − 1, add paths of length � between c0−
j and c0+

j+1.

3. For i = 1, . . . , m − 1, add paths of length � between d−
i and d+

i+1.
4. For i = 1, . . . , n, let yn1 , . . . yn

z−i
be the occurrences of zi over all literals. For j = 1, . . . , z−

i , delete the edge p+
i, j p++

i, j and

add the four edges p+
i, jα

2+
n j

, p+
i, jβ

2+
n j

, p++
i, j α3+

n j
, p++

i, j β3+
n j

. Additionally to these edges, which were in [18], we also add:
p+

i, jα
3+
n j

, p+
i, jβ

3+
n j

, p++
i, j α2+

n j
, p++

i, j β2+
n j

.

5. For i = 1, . . . , n, let yn1 , . . . yn
z+i

be the occurrences of zi over all literals. For j = 1, . . . , z+
i , delete the edge p−

i, j p−−
i, j and

add the four edges p−
i, jα

2+
n j

, p−
i, jβ

2+
n j

, p−−
i, j α3+

n j
, p−−

i, j β3+
n j

. Additionally to these edges, which were in [18], we also add:
p−

i, jα
3+
n j

, p−
i, jβ

3+
n j

, p−−
i, j α2+

n j
, p−−

i, j β2+
n j

.

6. For i = 1, . . . , m and j = 1, 2, 3, add the edges α2−
3(i−1)+ jc

j+
i , α3−

3(i−1)+ jc
j−
i , β2−

3(i−1)+ jc
j+
i , β3−

3(i−1)+ jc
j−
i . Additionally to these

edges, which were in [18], we also add: α3−
3(i−1)+ jc

j+
i , α2−

3(i−1)+ jc
j−
i , β3−

3(i−1)+ jc
j+
i , β2−

3(i−1)+ jc
j−
i . See the top of Fig. 5.

7. Add paths of length � between α′
3m and d+

1 and between β ′
3m and c0+

1 .
8. Add the vertex x. Add paths of length � between x and α1 and between x and β1.
9. Add the vertex y. Add paths of length � between y and c0−

m and between y and d−
n .

Claim 1. φ is satisfied by a truth assignment if and only if G�
φ contains a hole passing through x and y.

Proof. The idea is that any hole emanating from x and moving rightwards towards y (see Fig. 4) must traverse the literal
gadgets in precisely one of two ways (upper path on top and bottom; or bottom path on the top and bottom). Now, subse-
quently the paths building the hole may return to these literal gadgets but they can never leave them as each α, β, α′, β ′ are
already traversed. Subsequently, the paths do indeed not return to the literal gadgets to ensure their consistent evaluation
with the variables and that one in each clause is true.

More formally, first assume that φ is satisfied by a truth assignment ξ ∈ {0, 1}n . We pick a set of vertices that induce a
hole containing x and y.

1. Pick vertices x and y.
2. For i = 1, . . . , 3m, pick αi, α′

i , βi, β ′
i .

3. For i = 1, . . . , 3m, if yi is satisfied by ξ , then pick α1+
i , α1++

i , α2+
i , α3+

i , α4++
i , α4+

i and any vertices on a direct path
between these. Else, pick α1−

i , α1−−
i , α2−

i , α3−
i , α4−−

i , α4−
i and any vertices on a direct path between these.

4. For i = 1, . . . , n, if ξ(i) = 1, then pick all vertices of P+
i and all the neighbours of the vertices in P+

i of the form α2+
k (or

one could choose α3+
k , but only one among the two) for any k. Additionally pick any vertices on a direct path between

these.
5. For i = 1, . . . , n, if ξ(i) = 0, then pick all the vertices of P−

i and all the neighbours of the vertices in P−
i of the form

α2+
k (or one could choose α3+

k , but only one among the two) for any k. Additionally pick any vertices on a direct path
between these.
7

JID:TCS AID:13590 /FLA [m3G; v1.328] P.8 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
6. For i = 1, . . . , m, pick the vertices c0+
i and c0−

i . Choose any j ∈ {3i − 2, 3i − 1, 3i} such that ξ satisfies y j . Pick vertices
α2−

j and α3−
j .

– If j = 3i − 2, then pick c12+
i , c1+

i , c1−
i , c12−

i as well as all vertices on a path between: c0+ and c12+
i ; c12+

i and c1+
i ; c0−

and c12−
i ; c12−

i and c1−
i .

– If j = 3i − 1, then pick c12+
i , c2+

i , c2−
i , c12−

i as well as all vertices on a path between: c0+ and c12+
i ; c12+

i and c2+
i ; c0−

and c12−
i ; c12−

i and c2−
i .

– If j = 3i, then pick c3+
i , c3−

i as well as all vertices on a path between: c0+ and c3+
i ; c0−

i and c3−
i .

It suffices to show that the chosen vertices induce a hole in G�
φ containing x and y. The only potential problem is that for

some k, one of the vertices α2+
k , α3+

k , α2−
k , α3−

k was chosen more than once. If α2+
k and α3+

k were picked in Step 3, then
yk is satisfied by ξ . Therefore, α2+

k and α3+
k were not chosen in Step 4 or Step 5. Similarly, if α2−

k and α3−
k were picked in

Step 6, then yk is satisfied by ξ . Therefore, α2−
k and α3−

k were not chosen in Step 3. Thus, the chosen vertices induce a hole
in G�

φ containing x and y.

Now assume that G�
φ has a hole including x and y. The hole must contain α1 and β1 since they are the only neighbours

of x. Next, either both α1+
1 and β1+

1 are in the hole or both α1−
1 and β1−

1 . Without loss of generality, let α1+
1 and β1+

1 be in
the hole (the same reasoning will apply in the other case). Since α1−

1 , β1−
1 , α1−−

1 , β1−−
1 are all neighbours of two vertices

in the hole, they cannot themselves be in the hole. Thus, α1++
1 , β1++

1 must be in the hole. Now, since, α1−
1 , β1−

1 , α1−−
1 ,

β1−−
1 are all neighbours of two vertices in the hole, they cannot themselves be in the hole. Thus, α2+

1 , β2+
1 , and the paths

that lead to them, must be in the hole. Since α2+
1 , β2+

1 have the same neighbourhood outside of G(y1) it follows that α3+
1 ,

β3+
1 must be in the hole. Indeed, applying this reasoning once more, so must also α4++

1 , β4++
1 , and the paths that lead to

them. Now, since α4−
1 , β4−

1 , α4−−
1 , β4−−

1 are all neighbours of both α4++
1 and β4++

1 , α4+
1 and β4+

1 must be in the hold.
Finally, note that α4−

1 , β4−
1 are not in the hole, as they are adjacent to both α4++

1 and β4++
1 . So it must contain instead α′

1,
β ′

1, α2, β2. By induction, we see for i ∈ [3m] that the hole must contain αi , βi , α′
i , β

′
i . Also, for each i, the hole must contain

α1+
i , α1++

i , . . . , α2+
i , α3+

i , . . . , α4++
i , α4+

i or α1−
i , α1−−

i , . . . , α2−
i , α3−

i , . . . , α4−−
i , α4−

i . Hence, the hole contains d+
1 and c0+

1 .

By symmetry we may assume the hole contains d++
1 , and the path to p+

1,1, and α2+
k for some k. As α1++

k is adjacent
to two vertices in the hole, the hole must contain one of α2+

k and α3+
k . Similarly, the hole cannot proceed on a path to

α4++
k , so it must contain p+

1,2 and p++
1,2 . By induction, we see that the hole contains p+

1,i , p
++
1,i , for i ∈ [n], and d−

1 . If the hole
contains d−−

1 , then the hole must contain p−
1,i, p

−−
1,i , for i ∈ [n], and eventually d+−

1 , a contradiction. Thus, the hole must
contain d+

2 . By induction, for i ∈ [n], we see that the hole contains all the vertices of the path P+
i or P−

i and, by symmetry,
we assume that the hole contains neighbours of the vertices in P+

i or P−
i , one among α2+

k and α3+
k , for each k.

Similarly, for i ∈ [m], it follows that the hole must contain c0+
i and c0−

i . The hole also contains one of the following:

– c12+
i , c1+

i , c1−
i , c12−

i , and the paths between, and either one of α2−
j , α3−

j ; or one of β2−
j , β3−

j .

– c12+
i , c2+

i , c2−
i , c12−

i , and the paths between, and either one of α2−
j , α3−

j ; or one of β2−
j , β3−

j .

– c3+
i , and the path between, and either one of α2−

j , α3−
j ; or one of β2−

j , β3−
j .

We now recover the satisfying assignment ξ . For i ∈ [n], set ξ(i) = 1 if the vertices of P+
i are in the hole; otherwise set

ξ(i) = 0. By construction, at least one literal in every clause is satisfied by ξ , so indeed ξ is a satisfying assignment. �
Claim 2. The graph G�

φ is C6-free and Hi-free for every i ∈ [�].

Proof. Owing to the length of the � paths that populate our construction and are drawn as dashed edges in our figures,
we need only verify the omission of the relevant graphs on the connected components of the graph Gφ after the removal
of these � paths that are dashed edges. That would suffice for C6, but Hi has a pendant edge, so for these we must leave
a pendant edge from the corresponding connected component at the extremities of an instance of these � paths that are
drawn as dashed edges. In this fashion, we only need to check for omission of the given graphs in the non-trivial cases
drawn in Fig. 7. It can be readily observed that these graphs are P7 free (but they are not P6-free). Hence, we need not test
beyond H3. This task was accomplished by a program testing subgraph isomorphism whose code we provide a link to.1

We will give an explicit argument for the case of C6-freeness, which is simpler as C6 has numerous symmetries (a
transitive automorphism group). Let us begin with the graph depicted on the left-hand side of Fig. 7. This graph has an
automorphism that swaps α and β at the same time as + and −. It also has an automorphism that only swaps + and

1 See https://github .com /barnabymartin /InducedSubgraph.
8

https://github.com/barnabymartin/InducedSubgraph

JID:TCS AID:13590 /FLA [m3G; v1.328] P.9 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
α1+ α1++ •

• α

α1− α1−− •

β1+ β1++ •

• β

β1− β1−− •

• α2− α3− •

• β2− β3− •

c1+ c1−

• •

Fig. 7. Cases that need to be checked for omission of the graphs C6 and Hi (1 ≤ i ≤ �).

−. Any subgraph that induces a C6 cannot contain any of the unlabelled vertices, nor α nor β . This leaves eight vertices
that may be involved. We will consider the case where the C6 contains α1+ . Owing to the two automorphisms we have
described, this argument would equally apply to α1− and β1− . But any C6 must involve one of these vertices as there were
only eight to choose from. Thus, when we have considered this case, our work is done:

Subcase A. The C6 contains α1+ and α1++ . All other neighbours of α1+ (except α) are adjacent to α1++ . No C6 can be
formed here.
Subcase B. The C6 contains α1+ and α1−− . Any C6 involving a path α1−− to α1+ must next go to β1− . We cannot continue
this cycle.
Subcase C. The C6 contains α1+ and β1−− . Any C6 involving a path β1−− to α1+ must next go to α1− or α1−− . We cannot
continue this cycle.
Subcase D. The C6 contains α1+ and β1− . Now, β1− can have as the next in the cycle either of β1+ or β1++ . We cannot
continue this cycle.
Subcase E. The C6 contains α1+ and α1− . Now, α1− can have as the next in the cycle either of β1+ or β1++ . We cannot
continue this cycle.

Now we consider the graph depicted on the right-hand side of Fig. 7. Any C6 cannot contain any of the unlabelled
vertices. It follows that it must use all six remaining vertices. But this induced graph has a triangle, so we are finished. �

We note that the construction in [18] omits all cycles other than C6, and they note specifically this lacuna, which we
have remedied.

We now prove our result.

Lemma 6. For every integer � ≥ 1, 2-Induced Disjoint Paths is NP-complete for (C6, H�)-free graphs.

Proof. We give a reduction from an instance φ of 3-Satisfiability. First, we construct G�
φ . By Claim 1, G�

φ has a hole through
x and y if and only if φ is satisfiable. Moreover, G�

φ is (C6, H�)-free by Claim 2. We now apply the reduction of Lemma 3.
As we can choose the integer d in Lemma 3 sufficiently large, the resulting graph is still (C6, H�)-free. �
4. The proof of Theorem 2

We now use the results from the previous two sections to prove our main theorem.

Theorem 2 (restated). Let k ≥ 2. For a graph H, k-Induced Disjoint Paths restricted to H-free graphs is polynomial-time solvable if
H is a subgraph of the disjoint union of a linear forest and a chair, and it is NP-complete if H is not in S .

Proof. If H has a cycle Cs , apply Lemma 5 for s �= 6 or Lemma 6 for s = 6. Then we may assume H is a forest. If H has
a vertex of degree at least 4, then every K1,4-free graph is H-free, so apply Lemma 4. Suppose H has maximum degree
at most 3. If H has a connected component with at least two vertices of degree 3, then H has an induced H� , so apply
Lemma 6 again. Else, H is in S . If H is a subgraph of the disjoint union of a linear forest and a chair, then H is a linear
forest, or the disjoint union of a linear forest and a chair, or the disjoint union of a linear forest and a claw. Hence, we can
apply Lemma 2. �
9

JID:TCS AID:13590 /FLA [m3G; v1.328] P.10 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
5. Parameterized complexity

We prove that 2-Induced Disjoint Paths is W[1]-hard for Pr -free graphs when parameterized by r. In order to do this we
adapt a reduction of Haas and Hoffmann [13]. They prove that finding an induced path through three specified vertices is
W[1]-hard when parameterized by the length of the path. The graph of their construction can potentially contain arbitrarily
long induced paths, but we propose a modification which guarantees that the length of any induced path in the construction
is bounded. Below, we discuss the original construction and our modification; the proof of correctness is almost exactly the
same.

Theorem 6. 2-Induced Disjoint Paths is W[1]-hard on Pr-free graphs, parameterized by r.

Proof. The reduction is from Independent Set, which is known to be W[1]-hard when parameterized by the size k of the
solution [6]. Let G = (V , E) be an instance of this problem, where V = {v1, . . . , vn}, and let k be the parameter. The main
ingredient of the construction by Haas and Hoffmann [13] is a set of k vertex sets, which are called choice diamonds. The
i-th choice diamond consists of n vertices vi

1, . . . , v
i
n , and two vertices si and ti which are adjacent to all vi

1, . . . , vi
n . Our

modification is to make vi
1, . . . , v

i
n a clique, instead of an independent set as in the original construction of [13] (the reason

for this modification is to ensure that the final gadget we construct is Pr -free for r = 4k + 4). Afterwards, we identify si−1

and ti for each 2 ≤ i ≤ k and call the resulting graph G V C .
Now create two copies of G V C . Denote the vertices in the first copy by si , vi

j , and ti and in the second copy by σ i , ϕ i
j ,

and τ i , respectively. Add an edge between tk and τ k and subdivide it once (this is a minor modification with respect to the
original construction, in which tk and τ k are identified; however, we want tk and τ k to be terminals from different pairs).
Call the resulting graph G ′′ .

Note that G ′′ is a union of 2k + 2 cliques, one of which has size 1. In the remainder, we will not add any more vertices,
only edges. Since any induced path can contain at most two vertices of any clique, the graph is and will remain Pr -free for
r = 4k + 4.

From G ′′ , construct the graph G ′ by adding the following edges (again, following Haas and Hoffmann [13]):

– add a consistency edge between vi
j and ϕ i

� , for all 1 ≤ i ≤ k and all 1 ≤ j, � ≤ n with j �= � (thus kn(n − 1) consistency
edges are added in total);

– add independence edges between {vi
p, ϕ i

p} and {v j
q, ϕ

j
q} for each edge v p vq ∈ E and for all 1 ≤ i, j ≤ k with i �= j (thus

4k(k − 1) · |E| independence edges are added in total);
– add set edges between {vi

�, ϕ
i
�} and {v j

�, ϕ
j
�} for all 1 ≤ i, j ≤ k with i �= j and all 1 ≤ � ≤ n (thus 4k(k − 1)n set edges

are added in total).

This completes the construction. Let the vertex pairs for the instance be (s1, tk) and (σ 1, τ k).
To show correctness, we essentially repeat the arguments of Haas and Hoffmann [13, Lemma 7, Theorem 8]. Let P 1, P 2

be mutually induced disjoint (s1, tk)- and (σ 1, τ k)-paths respectively. By shortcutting if necessary, we may assume that P 1

and P 2 are induced paths of G ′ . By construction, P 1 must contain one of {v1
1, . . . , v

1
n}, say v1

j , and P 2 must contain one of
{ϕ1

1 , . . . , ϕ1
n }, say ϕ1

� . By the consistency edges, j = �; otherwise, P 1 and P 2 would not be mutually induced. Also note that
since v1

1, . . . , v
1
n and ϕ1

1 , . . . , ϕ1
n both induce a clique, P 1 cannot follow a consistency edge from v1

j and P 2 cannot follow
a consistency edge from ϕ1

j , or P 1 and P 2 would not be mutually induced. Also note that the independence and set edges
incident on v1

j and ϕ1
j lead to exactly the same vertices, and thus these vertices cannot be part of P 1 nor P 2, or they

would not be mutually induced. Hence, P 1 must continue to t1 = s2 and P 2 must continue to τ 1 = σ 2. Since {v1
1, . . . , v

1
n}

is a clique and P 1 is an induced path, P 1 must continue to one of {v2
1, . . . , v2

n}. Similarly, P 2 must continue to one of
{ϕ2

1 , . . . , ϕ2
n }. By repeating the same argument, we can argue that P 1 and P 2 only use edges of the choice diamonds, and

none of the consistency, independence, and set edges.
In particular, the preceding implies that the paths P 1 and P 2 use vertices s1, v1

γ1
, t1, . . . , vk

γk
, tk and σ 1, ϕ1

δ1
, τ 1, . . . , ϕk

δk
,

τ k respectively. The consistency edges ensure that γi = δi for 1 ≤ i ≤ k, as argued previously. The set edges ensure that
vγ1 , . . . , vγk is a set of size k; indeed, if γi = γ j for some 1 ≤ i, j ≤ k with i �= j, then vi

γi
ϕ

j
γ j = vi

γi
ϕ

j
γi is an edge of G ′ by

construction, but vi
γi

is in P 1 and ϕ j
γ j = ϕ

j
γi is in P 2, contradicting that P 1 and P 2 are mutually induced. The independence

edges ensure that vγ1 , . . . , vγk form an independent set; indeed, if vγi vγ j ∈ E for some 1 ≤ i, j ≤ k, then vi
γi
ϕ

j
γ j is an edge of

G ′ by construction, but vi
γi

is in P 1 and ϕ j
γ j is in P 2, contradicting that P 1 and P 2 are mutually induced. Hence, vγ1 , . . . , vγk

is an independent set of size k.
For the converse, an independent set I = {vγ1 , . . . , vγk } in G can be transformed in a solution to the instance: by follow-

ing a similar reasoning as above, the vertices s1, v1
γ1

, t1, . . . , vk
γk

, tk form an (s1, tk)-path that is mutually disjoint from the
(σ 1, τ k)-path formed by σ 1, ϕ1

γ , τ 1, . . . , ϕk
γ , τ k . �
1 k

10

JID:TCS AID:13590 /FLA [m3G; v1.328] P.11 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
6. Conclusions

We showed new tractable and hard results for k-Induced Disjoint Paths for H-free graphs and extended a number of
known results in this way. The open cases all involve graphs H that are not the disjoint union of some linear forest and the
chair but that do belong to the family S; we recall that S consists of all graphs, every connected component of which is a
path Pr or a subdivided claw Sh,i, j .

Due to the above, k-Induced Disjoint Paths belongs to a set of several other problems whose complexity is open for
Sh,i, j-free graphs for many h, i, j. The best-known problem of this set of problems is Independent Set, which is to decide
if a graph has an independent set of size at least p for some integer p. Alekseev [1] proved that if a graph H is not in
S , then Independent Set is NP-complete for H-free graphs. If H ∈ S , only a restricted number of cases are known to be
polynomial-time solvable for Independent Set. Another example is 3-Colouring for H-free graphs of bounded diameter
(see [20]). We do not know any graph Sh,i, j and integer d such that 3-Colouring for Sh,i, j-free graphs of diameter d is
NP-complete (and only a small number of polynomial cases exist). Hence, in order to make further progress on k-Induced
Disjoint Paths and these other problems we must better understand the structure of Sh,i, j -free graphs.

It would also be interesting to consider the parameterized complexity of the problem in more detail. First recall that
Golovach et al. [10] showed that Induced Disjoint Paths is FPT for claw-free graphs when parameterized by k. The class
of claw-free graphs is properly contained in the class of chair-free graphs. From Theorem 2 we know that Induced Dis-

joint Paths is XP for chair-free graphs when parameterized by k. Is the problem even FPT for chair-free graphs when
parameterized by k?

Moreover, in Theorem 6 we proved that even 2-Induced Disjoint Paths is W[1]-hard on Pr -free graphs when parame-
terized by r. But what is the parameterized complexity of Induced Disjoint Paths for Pr -free graphs if r is a constant but
k is the parameter? So far, we only know that the problem is in XP by Theorem 2 and that we may assume that r ≥ 7 due
to Theorem 1. Again we may draw a parallel to the situation for Independent Set on Pr -free graphs. This problem can be
solved in polynomial time for r < 7 [9] and is trivially in XP when parameterized by the size of the solution. However, it
is open whether if it is FPT for constant r ≥ 7 when parameterized by the size of the solution (see also [5]). Progress on
this problem would help to advance our understanding of k-Induced Disjoint Paths on Pr -free graphs (see [22] for a close
relationship between both problems when the input is restricted to Pr -free graphs for some integer r ≥ 1).

Finally, in some previous works, a slightly more general definition is used (see also Section 1). Given a graph G , vertex-
disjoint paths P 1, . . . , Pk , for some integer k ≥ 1 are flexibly mutually induced paths of G if there is no edge between two
vertices from different P i and P j except possibly between the endpoints of the paths. If k is in the input, the complexity of
the corresponding decision problem and ours is most likely different for Pr -free graphs. Namely, Flexibly Induced Disjoint
Paths is NP-complete for P14-free graphs [22], whilst Induced Disjoint Path is quasipolynomial-time solvable for P14-free
graphs by Theorem 1. However, it is readily seen that all polynomial-time results in Theorem 2 (so, for fixed k ≥ 2) also
hold for Flexible k-Induced Disjoint Paths. This is even in the case if we also allow that two different paths P i and P j

share a terminal (this even more general variant has been considered in the literature as well).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] V.E. Alekseev, The effect of local constraints on the complexity of determination of the graph independence number, in: Combinatorial-Algebraic
Methods in Applied Mathematics, 1982, pp. 3–13 (in Russian).

[2] V.E. Alekseev, Polynomial algorithm for finding the largest independent sets in graphs without forks, Discrete Appl. Math. 135 (2004) 3–16.
[3] R. Belmonte, P.A. Golovach, P. Heggernes, P. van’t Hof, M. Kaminski, D. Paulusma, Detecting fixed patterns in chordal graphs in polynomial time,

Algorithmica 69 (3) (2014) 501–521.
[4] D. Bienstock, On the complexity of testing for odd holes and induced odd paths, Discrete Math. 90 (1991) 85–92.
[5] E. Bonnet, N. Bousquet, P. Charbit, S. Thomassé, R. Watrigant, Parameterized complexity of independent set in H-free graphs, Algorithmica 82 (2020)

2360–2394.
[6] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: on completeness for W[1], Theor. Comput. Sci. 141 (1–2) (1995) 109–131.
[7] M.R. Fellows, The Robertson-Seymour theorems: a survey of applications, in: Proc. AMS-IMS-SIAM Joint Summer Research Conference, in: Contempo-

rary Mathematics, vol. 89, 1989, pp. 1–18.
[8] J. Fiala, M. Kamiński, B. Lidický, D. Paulusma, The k-in-a-path problem for claw-free graphs, Algorithmica 62 (2012) 499–519.
[9] A. Grzesik, T. Klimosová, M. Pilipczuk, M. Pilipczuk, Polynomial-time algorithm for maximum weight independent set on P6-free graphs, ACM Trans.

Algorithms 18 (1) (2022) 4.
[10] P.A. Golovach, D. Paulusma, E.J. van Leeuwen, Induced disjoint paths in claw-free graphs, SIAM J. Discrete Math. 29 (2015) 348–375.
[11] P.A. Golovach, D. Paulusma, E.J. van Leeuwen, Induced disjoint paths in circular-arc graphs in linear time, Theor. Comput. Sci. 640 (2016) 70–83.
[12] P.A. Golovach, D. Paulusma, E.J. van Leeuwen, Induced disjoint paths in AT-free graphs, J. Comput. Syst. Sci. 124 (2022) 170–191.
11

http://refhub.elsevier.com/S0304-3975(22)00620-X/bibCB16F352B7BD4FEEF87DA81C6A286B5Es1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibCB16F352B7BD4FEEF87DA81C6A286B5Es1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib3E67B7918C438527BFBCD14E92B5FDAAs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib6A0AF2A600A4D7534CCC9C947F4DFFC7s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib6A0AF2A600A4D7534CCC9C947F4DFFC7s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib404629D6671155A960500F7C2BC5B96Cs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib5AB91BEB0C3E3489381FC19AA5BD85EFs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib5AB91BEB0C3E3489381FC19AA5BD85EFs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib0EE2E35C2F326931914E2238C32B7C0Fs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibEC2891564DD14114E91AE3CBB7A131CFs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibEC2891564DD14114E91AE3CBB7A131CFs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib0B94D567A011704A5D5D56AE53E626DCs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibF6631725B468C3C2E44D033E13B6D15Bs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibF6631725B468C3C2E44D033E13B6D15Bs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib39AD2E757A4E1BF7649E4AB21A270960s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibD5CEBDE2813A3D342EE541B3E2E0BCD0s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibD3BC80C2A7512E9325301CDF7C51908Es1

JID:TCS AID:13590 /FLA [m3G; v1.328] P.12 (1-12)

B. Martin, D. Paulusma, S. Smith et al. Theoretical Computer Science ••• (••••) •••–•••
[13] R. Haas, M. Hoffmann, Chordless paths through three vertices, Theor. Comput. Sci. 351 (2006) 360–371.
[14] L. Jaffke, O. Kwon, J.A. Telle, Mim-width I. Induced path problems, Discrete Appl. Math. 278 (2020) 153–168.
[15] K. Kawarabayashi, Y. Kobayashi, A linear time algorithm for the induced disjoint paths problem in planar graphs, J. Comput. Syst. Sci. 78 (2012)

670–680.
[16] W. Kern, B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen, Disjoint paths and connected subgraphs for H-free graphs, Theor. Comput. Sci. 898 (2022)

59–68.
[17] Y. Kobayashi, K. Kawarabayashi, Algorithms for finding an induced cycle in planar graphs and bounded genus graphs, in: Proc. SODA 2009, 2009,

pp. 1146–1155.
[18] B. Lévêque, D.Y. Lin, F. Maffray, N. Trotignon, Detecting induced subgraphs, Discrete Appl. Math. 157 (2009) 3540–3551.
[19] J. Lynch, The equivalence of theorem proving and the interconnection problem, SIGDA Newsl. 5 (1975) 31–36.
[20] B. Martin, D. Paulusma, S. Smith, Colouring H-free graphs of bounded diameter, in: Proc. MFCS 2019, in: LIPIcs, vol. 138, 2019, 14.
[21] B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen, Few induced disjoint paths for H-free graphs, in: Proc. ISCO 2022, in: LNCS, in press.
[22] B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen, Induced disjoint paths and connected subgraphs for H-free graphs, in: Proc. WG 2022, in: LNCS,

vol. 13453, 2022, pp. 398–411.
[23] M. Radovanović, N. Trotignon, K. Vus̆ković, The (theta,wheel)-free graphs part IV: induced paths and cycles, J. Comb. Theory, Ser. B 146 (2021) 495–531.
[24] N. Robertson, P.D. Seymour, Graph minors XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1995) 65–110.
[25] N. Shibi, Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile, Discrete Math. 29 (1980) 53–76.
12

http://refhub.elsevier.com/S0304-3975(22)00620-X/bibB410CD6B24CEDF2A6B5AA01B60536FA3s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibA9C32127D26123972DEE6545E6CC65DAs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib9C5C900E4068B0EFC65D53CCF2F113A2s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib9C5C900E4068B0EFC65D53CCF2F113A2s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib18A7B9BAFD4114325AF0E6370D19006Es1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib18A7B9BAFD4114325AF0E6370D19006Es1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib8867C62AECDAD0B0CD8F0BE961B70D63s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib8867C62AECDAD0B0CD8F0BE961B70D63s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib43490708BEAAB784676EA78288ABA9BDs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib6B2F6286DA096F34694E589497F780CCs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibFDE439767FC1086E6723566426FB6B53s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib5D0CB283400F6EA748CE5C7363332BCBs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib5D0CB283400F6EA748CE5C7363332BCBs1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib4CF29B1D839B07B70961B7C01DDFEFA5s1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bibD74355A822B87F7E3BF787A0B725398Ds1
http://refhub.elsevier.com/S0304-3975(22)00620-X/bib408008702F70BF75D06BEC8A1F2083B6s1

	Few induced disjoint paths for H-free graphs
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Polynomial-time algorithms
	3 NP-completeness results
	4 The proof of Theorem 2
	5 Parameterized complexity
	6 Conclusions
	Declaration of competing interest
	Data availability
	References

