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Quantum gravity in AdS7 × S4 is dual to a six-dimensional (6D) superconformal field theory, known as
the 6D (2,0) theory, which is very challenging to describe because it lacks a conventional Lagrangian
description. On the other hand, certain null reductions of the 6D (2,0) theory give rise to 5D Lagrangian
theories with SU(1,3) spacetime symmetry, SO(5) R symmetry, and 24 supercharges. This appears to be
closely related to the superconformal group of a 3D superconformal Chern-Simons theory known as the
Aharony-Bergman-Jafferis-Maldacena theory, which is believed to be integrable in the planar limit, if one
exchanges the role of conformal and R symmetry. In this Letter, we construct a representation of the 5D
superconformal group using 6D supertwistors and show that it admits an infinite dimensional extension
known as Yangian symmetry, which opens up the possibility that these 5D theories are exactly solvable in
the planar limit.
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Introduction.—One of the cornerstones of modern phys-
ics is the concept of symmetry, which constrains the form
of particle interactions and provides powerful theoretical
tools for computing observables. For example, Lorentz and
gauge symmetry are fundamental ingredients of the stan-
dard model while conformal symmetry is essential for
describing critical phenomena and quantum gravity in
anti–de Sitter space via the AdS=CFT correspondence.
Moreover supersymmetry plays a prominent role in string
theory and various possible extensions of the standard
model. The three canonical examples of AdS=CFT relate
superconformal theories in three, four, and six spacetime
dimensions to quantum gravity in AdS4 × S7, AdS5 × S5,
and AdS7 × S4, respectively [1]. The superconformal
theories in the first two cases (known as the Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory [2–5] and
N ¼ 4 super Yang-Mills [6]) are well understood, but
the third case [known as the 6D (2,0) theory] remains very
mysterious despite decades of research.
In the planar limit, N ¼ 4 super Yang-Mills and the

ABJM theory have a remarkable property known as
integrability, which makes it possible to explicitly compute
many observables to all orders in perturbation theory (see
Ref. [7] and references therein). A hallmark of integrability
is the presence of an infinite dimensional symmetry known
as Yangian symmetry. The Yangian algebra is a graded

algebra whose level-0 generators correspond to the super-
conformal groups PSUð2; 2j4Þ and OSpð6j4Þ, in N ¼ 4
super Yang-Mills and the ABJM theory, respectively.
Since integrability is usually restricted to two-dimensional
models, the above property hints at their secret equivalence
to string theory, which is described by a two-dimensional
sigma model (more precisely, the ABJM theory is only
described by string theory in a certain limit; at strong
coupling it is dual to M theory). Nonsupersymmetric
integrable theories known as conformal fishnet theories
can also be obtained by deforming N ¼ 4 super Yang-
Mills and the ABJM theory [8–10]. A conformal fishnet
theory has also been found in 6D, although the underlying
superconformal theory is unknown [11].
Given the above considerations, it is natural to wonder if

the 6D (2,0) theory, which has superconformal group
OSpð8j4Þ, exhibits some form of integrability as well.
While this theory is not believed to have a conventional
Lagrangian description, such descriptions can be obtained
by dimensional reduction to five dimensions [12–16]. In
this Letter, we will consider a class of Lagrangians which
describe a particular null reduction of the 6D (2,0) theory
which breaks the 6D conformal group to SUð1; 3Þ × Uð1Þ
while preserving the R symmetry and three quarters of the
superconformal symmetry [17,18]. The spacetime sym-
metry contains a Lifshitz scaling and can therefore be
thought of as a nonrelativistic conformal symmetry. The
Lagrangians are 5D Ω-deformed super Yang-Mills theories
with a Lagrange multiplier which localizes the path integral
onto anti-self-dual field configurations. The instanton
solutions and correlation functions of these theories exhibit
a rich mathematical structure, from which many observ-
ables of the 6D theory can in principle be derived [19–21].
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Note that the 5D superconformal group described above
appears to be closely related to that of the ABJM theory if
one exchanges the roles of conformal and R symmetry and
performs Wick rotations. As a first step toward under-
standing the possible role of integrability in the 6D (2,0)
theory, we therefore ask the following group theoretic
question: does the 5D superconformal group admit a
Yangian extension? In this Letter we answer this question
in the affirmative. Since the Killing form vanishes we must
find a representation with a nontrivial bilinear form in
order to construct the Yangian. Using supertwistors of the
6D superconformal group, we construct bilocal operators
corresponding to level-1 generators and verify that they
obey a deformed analog of the Jacobi relations known as
the Serre relations, which is a necessary and sufficient
condition to have a Yangian algebra. Since the representa-
tion we use is not the fundamental representation of the 5D
superconformal group, standard theorems guaranteeing that
the Serre relations are satisfied do not apply, making our
construction very nontrivial.
This result is significant for several reasons. First of all, it

represents the first example of a Yangian extension of a
superconformal group in five dimensions. It also represents
the first example based on a nonrelativistic conformal
group above two dimensions (for recent work on non-
relativistic integrable theories in two dimensions see
Refs. [22–24]). Furthermore, if this turns out to be a
symmetry of the 5D Ω-deformed super Yang-Mills theories
described above, this would strongly suggest that they are
exactly solvable in the planar limit and would provide a
powerful new toolbox for analyzing 5D gauge theories,
which are typically nonrenormalizable and therefore far
less understood than lower dimensional gauge theories.
Finally, it would have important implications for quantum
gravity via the AdS=CFT correspondence, as we discuss in
the conclusion.
Null reduction of 6D (2,0).—While the interacting 6D

(2,0) theory does not have a conventional Lagrangian
description, much can be learned from dimensional reduc-
tion. Let us therefore consider the (2,0) theory on a
manifold with metric

ds2 ¼ −2dxþ
�
dx− −

1

2
Ωijxidxj

�
þ dxidxi; ð1Þ

where i ∈ f1; 2; 3; 4g, −πR ≤ xþ ≤ πR, and Ω is an anti-
self-dual two form satisfying ΩikΩjk ¼ R−2δij. This metric
can be obtained from a standard 6D Minkowski metric
ds2 ¼ dx̂μdx̂μ via a change of variables and Weyl trans-
formation [19] and describes the boundary of AdS7 with
radius R when written as a U(1) fibration over a non-
compact complex projective space [17,25]. Note that the
Weyl anomaly of the 6D (2,0) theory [26] vanishes for the
metric in Eq. (1) [17].

The field content of the abelian 6D (2,0) theory
consists of a self-dual two form, 5 scalar fields, and 8
Majorana-Weyl fermions [27–29]. Reducing it along
xþ and nonabelianizing gives the following Lagrangian
theory [17]:

L ¼ k
4π2R

Tr

�
1

2
Fi−Fi

− þ
1

2
GijF ij −

1

2
∇iXI∇iXI

þ i
2
ψ̄AΓ−D−ψ

A þ i
2
ψ̄AΓi∇iψ

A þ 1

2
ψ̄AΓþΓ̃I½XI;ψA�

�
;

ð2Þ

where ∇i ¼ Di − 1
2
ΩijxjD−, with D− and Di being stan-

dard covariant derivatives for the gauge fields A− and Ai, G
is a self-dual Lagrange multiplier, F is an anti-self-dual
field strength constructed from a linear combination of the
field strengths Fij and F−i, and k is an orbifold parameter
[19,21]. The XI , where I ∈ f1;…; 5g, are scalars trans-
forming in the 5 of the R symmetry group SO(5), while the
spinors are 6D symplectic-Majorana-Weyl transforming
in the 4 of the USpð4Þ ⋍ SOð5Þ R symmetry, i.e.,
A ∈ f1;…; 4g. Our spinor conventions are summarized
in Appendix B of the Supplemental Material [30]. All fields
are valued in the adjoint of SUðNÞ. Setting Ω ¼ 0 provides
a field theoretic realization of the discrete light-cone
quantization description of the 6D (2,0) theory [31]. The
t’Hooft coupling is given by λ ¼ g2YMN ∝ NR=k. The
planar limit can then be defined by taking N and k to
infinity while holding λ fixed. Moreover in the regime
N ≪ k3 we expect the gravitational dual to be IIA string
theory on C̃P3 × S4 (where C̃P3 is a noncompact complex
projective space) [17].
Superconformal symmetry.—The nonrelativistic super-

conformal symmetries of the 5D theory in Eq. (2) are
generated by the maximal subalgebra of the 6D super-
conformal group OSpð8j4Þ that commute with Pþ, the
generator of xþ translations which are an isometry of the
metric in Eq. (1). Denoting the superconformal generators
of the 6D (2,0) theory in Minkowski background with
hatted indices, we find that Pþ is given by [19]

Pþ ¼ P̂þ þ 1

4
ΩijM̂ij þ

1

8R2
K̂−: ð3Þ

The bosonic generators of the 5D subalgebra are then
given by

P−¼ P̂−; Pi ¼ P̂iþ
1

2
ΩijM̂j−; Kþ ¼ K̂þ;

T¼ D̂− M̂þ−; Miþ ¼ M̂iþ−
1

4
ΩijK̂j;

Cκ ¼ 1

4
ηκijM̂ij; B¼ 1

2
RP̂þ−

1

8
RΩijM̂ijþ

1

16R
K̂−; ð4Þ
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where ηκij are 4D self-dual t’Hooft matrices with κ ∈
f1; 2; 3g and the R symmetry generators are

RIJ ¼ R̂IJ; ð5Þ

where RIJ is symmetric and traceless with respect to
the invariant tensor of USp(4). Hence, the 6D conformal
symmetry is broken from SO(2,6) to SUð1; 3Þ × Uð1Þ,
where the U(1) is generated by Pþ, and the USp(4) R
symmetry is unbroken. Note that T generates a Lifshitz
scaling ðx−; xiÞ → ðΛ2x−;ΛxiÞ, so this can be thought of as
a nonrelativistic conformal group.
We also find the following fermionic generators [17,32]:

Q− ¼ Γ−Q̂

Sþ ¼ ΓþŜ

Θ− ¼ 1

4

�
RΩijΓijQ̂þ 1

R
Γ−Ŝ

�
: ð6Þ

The hatted spinors are 6D symplectic-Majorana-Weyl
spinors in the 4 of the USp(4) R symmetry (for simplicity,
we have suppressed their spinor and R symmetry indices).
This gives 16 real components for Q̂ and Ŝ. The above
combinations of Γ matrices act as projectors, reducing this
by half so Q−, Sþ, and Θ− each have eight real compo-
nents, with the subscripts indicating the chirality under
Γþ−. Hence there are total of 24 superconformal charges.
The 5D superconformal algebra can be deduced from the

6D one, and one finds that the bosonic subalgebra generates
Uð1Þ × SUð1; 3Þ × SOð5Þ ≅ Uð1Þ × SOð6Þ × USpð4Þ (see
Appendixes C and D of Ref. [30] for more details). We will
later require a nondegenerate bilinear form to raise and lower
adjoint indices. The natural choice is theKilling form,which
is defined in terms of the adjoint representation:

gmn
Ad ¼ StrðAdðJmÞ · AdðJnÞÞ ¼

X
p;q

ð−1Þjqjfmp
q fnqp : ð7Þ

It is a standard result of Lie superalgerbas that the Killing
form vanishes for OSpð2nþ 2j2nÞ, and we have explicitly
checked this for the 5D superalgebra.Wewill therefore need
to use a different representation, which we describe in the
next section.
Twistorial representation.—Since the Killing form of the

5D superalgebra generated by Eqs. (3)–(6) vanishes, we
must use a different representation in order to define a
nondegenerate bilinear form on the superalgebra. We will
construct it from the twistorial representation of the 6D
superconformal symmetry group OSpð8j4Þ [33]:

ZMâ ¼ ðλα̂ â; μâ
β̂
; ηÂ â; η̃â

B̂
Þ: ð8Þ

The indices α̂; β̂ ∈ f1; 2; 3; 4g correspond to chiral spinor
indices of the 6D Lorentz group SU(4), while â ∈ f1; 2g

label the fundamental representation of SU(2) which arises
from the 6D little group SOð4Þ ¼ SUð2Þ × SUð2Þ. These
indices are raised and lowered using the two-index anti-
symmetric tensor εâ b̂ and its inverse. Â; B̂ ∈ f1; 2g label
the fundamental representation of a subgroup of the R
symmetry Uð2Þ ⊂ USpð4Þ. This subgroup arises from
using harmonic superspace variables parametrizing the
coset fUSpð4Þ=½Uð1Þ × Uð1Þ�g [34]. Our index conven-
tions are summarized in Appendix A of Ref. [30]. Note that
ðλ; μÞ are bosonic and ðη; η̃Þ are fermionic. Supertwistors
have also been used to study Yangian symmetry of N ¼ 4
super Yang-Mills [35] and the ABJM theory [36].
In terms of the variables in Eq. (8), the 6D super-

conformal generators are given by

P̂α̂ β̂ ¼ λα̂ âλβ̂â; K̂α̂ β̂ ¼
∂
2

∂λα̂ â∂λβ̂â
;

D̂¼ 1

2
λα̂ â∂λα̂ â þ 2; M̂α̂

β̂
¼ λα̂ â∂λβ̂ â −

1

4
δα̂
β̂
λγ̂ â∂λγ̂ â

R̂Â B̂ ¼ ηÂ âηB̂â ; R̂Â B̂ ¼ ∂
2

∂ηÂ â
∂ηB̂â

; R̂Â
B̂ ¼ ηÂ â

∂ηB̂ â − δÂ
B̂

Q̂α̂ Â ¼ λα̂ âηÂâ ; Q̂α̂
Â
¼ λα̂ â∂ηÂ â ;

Ŝα̂ Â ¼ ∂
2

∂λα̂ â∂ηÂâ
; ŜÂα̂ ¼ ηÂ â

∂λα̂ â : ð9Þ

Note that this representation is not linear. A linear repre-
sentation can be obtained by noting that the supertwistors
are self-conjugate

λα̂ â¼ ∂μα̂ â ; μα̂ â¼−∂λα̂ â ; ηÂ â ¼−∂η̃Â â ; η̃Â â¼−∂ηÂ â ;

ð10Þ

and using these relations to extend the action of the
superconformal generators in Eq. (9) to μ and η̃. For
example, writing the momentum generator as a linear
operator acting on both λ and μ gives

P̂α̂ β̂ ¼ εâ b̂ðλα̂ â∂μβ̂ b̂ − λβ̂ â∂μα̂ b̂Þ: ð11Þ

Similarly, the special conformal symmetry generator Ŝα̂ Â
can be written as a linear operator as follows:

Ŝα̂ Â ¼ εâ b̂ð−μα̂ â∂ηÂ b̂ þ η̃Â â∂λα̂ b̂Þ: ð12Þ

In this way the 6D superconformal generators can be
written as ð16þ 8Þ × ð16þ 8Þ supermatrices which can be
readily implemented on a computer and used to check the
Yangian algebra, as we explain in the next section and
Appendix E of Ref. [30]. We denote the matrix represen-
tation by R and spell it out below:
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ð13Þ

where Im is anm ×m unit matrix, ε2 refers to εâ b̂, and E
ρ
ξ is

a rectangular matrix with 1 in the ρth row and ξth column
and zeros everywhere else. The matrix elements in Eq. (13)
can be read off from linear representations like Eqs. (11)
and (12) by noting that the rows and columns are labeled by
the components of ðλ; μ; η; η̃Þ. For notational consistency,
the labels of some generators on the left-hand side appear in
a slightly different order from those in Eq. (9). Dilatations
are given by

ð14Þ

The matrix representation for 6D generators labeled by
Lorentz indices is given by

P̂μ ¼
1

2
RðP̂α̂ β̂ÞΣ̃μβ̂ α̂; K̂μ ¼

1

2
RðK̂α̂ β̂ÞΣβ̂ α̂

μ ;

M̂μν ¼ −
1

2
RðM̂α̂

β̂
ÞΣ̃β̂

μν α̂; ð15Þ

where Σ and Σ̃ are Clebsch-Gordan coefficients whose
precise definition in terms of the 6D Clifford algebra can be
found in Appendix B of Ref. [30]. One can then obtain a
matrix representation for the 5D generators in Eq. (4) by
taking appropriate linear combinations. Moreover, the
matrix representation of the 5D R symmetry generators
is simply given by

fRÂ B̂; RÂ B̂; R
Â
B̂
g ¼ fRðR̂Â B̂Þ;RðR̂Â B̂Þ;RðR̂Â

B̂Þg: ð16Þ

Finally, the matrix represenation of the 5D fermionic
generators is

QÂ
−α̂ ¼ Σ̃−α̂ β̂RðQ̂β̂ ÂÞ; Q−α̂ Â ¼ Σ̃−α̂ β̂RðQ̂β̂

Â
Þ

Sα̂ Âþ ¼ Σα̂ β̂
þ RðŜÂ

β̂
Þ; Sþα̂

Â
¼ Σα̂ β̂

þ RðŜβ̂ ÂÞ

Θα̂ Â
− ¼ 1

4
RΩijðΣiΣ̃jÞα̂β̂RðQ̂β̂ ÂÞ þ 1

4R
Σα̂ β̂
− RðŜÂ

β̂
Þ

Θα̂
−Â ¼ 1

4
RΩijðΣiΣ̃jÞα̂β̂RðQ̂β̂

Â
Þ þ 1

4R
Σα̂ β̂
− RðŜβ̂ ÂÞ: ð17Þ

Using the explicit representation constructed above, we
can now define a metric on the 5D superalgebra:

gRðX; YÞ ¼ Str½RðXÞ ·RðYÞ�: ð18Þ

The nonzero components of this metric are

gðPþ;PþÞ ¼ −
4

R2
; gðRÂB̂;RĈD̂Þ ¼ −4ðδÂ

Ĉ
δB̂
D̂
þ δB̂

Ĉ
δÂ
D̂
Þ;

gðP−;KþÞ ¼ −8; gðRÂ
B̂
;RĈ

D̂
Þ ¼ −4δÂ

D̂
δĈ
B̂
;

gðPi;MjþÞ ¼ 4Ωij; gðQα̂ Â
− ; Sþβ̂ B̂Þ ¼ −8δα̂

β̂
δÂ
B̂
;

gðCκ;CρÞ ¼ −2δκρ gðQα̂
−Â; S

B̂
þβ̂
Þ ¼ 8δα̂

β̂
δB̂
Â
;

gðB;BÞ ¼ −1; gðΘα̂
−Â;Θ

β̂ B̂
− Þ ¼ 1ffiffiffi

2
p

R
Ĉα̂ β̂δB̂

Â
;

gðT;TÞ ¼ 8; ð19Þ

where Ĉα̂ β̂ is a charge conjugation matrix defined in
Appendix B of Ref. [30]. Using the results of this section,
we can now define a Yangian extension of the 5D
superalgebra.
Yangian.—The Yangian YðgÞ of a lie (super-)algebra g

consists of infinitely many levels, with dimðgÞ generators at
each level. The infinite tower of generators can be derived
from the level-0 generators Jað0Þ and level-1 generators Jað1Þ,
which obey the following supercommutation relations:

½Jað0Þ; Jbð0Þg ¼ fabc Jcð0Þ; ½Jað1Þ; Jbð0Þg ¼ fabc Jcð1Þ; ð20Þ

along with the Serre relations
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½Jað1Þ; ½Jbð1Þ; Jcð0Þgg þ graded cyclic perms

¼ 1

6
ð−Þjijjljþjkjjnjflaif

m
bjf

n
ckf

ijkfJlð0Þ; Jmð0Þ; Jnð0Þ�; ð21Þ

where jaj ¼ 0 for bosonic generators and 1 for fermionic
generators. For the 5D superconformal algebra we are
considering, a ∈ f1;…; 50g, with J ∈ fPþ; P−; Pi; B; Cκ;
T;Miþ; Kþ; RÂ B̂; R

Â B̂; RÂ
B̂
g bosonic and J ∈ fQα̂ Â

− ; Qα̂
−Â;

Sþα̂ Â; S
Â
þα̂;Θα̂

−Â;Θ
α̂ Â
− g fermionic. Furthermore, f·; ·; ·�

denotes the graded symmetrizer of three generators.
For a system of Ns sites the level-0 and level-1

generators can be defined as follows:

Jað0Þ ¼
XNs

u

Jað0Þu; ð22Þ

Jað1Þ ¼ fabc
XNs

u<v

Jcð0ÞuJ
b
ð0Þv; ð23Þ

where Jað0Þu is understood to act locally on the uth site. The

number of sites is defined abstractly and depends on the
observable in question, for example the number of legs of a
scattering amplitude or the number of operators in a
correlation function. Note that the level-1 generators are
bilocal. In principle, they can also contain local terms, but
we will not need to consider this. We provide several
explicit examples of level-1 generators in Appendix F of
Ref. [30]. Level-k generators are then obtained by commut-
ing k level-1 generators and are (kþ 1) local. To establish
the existence of a Yangian extension of the 5D superalgebra
constructed in the previous section, we must therefore
verify that the relations in Eqs. (20) and (21) are satisfied
for the definitions in Eqs. (22) and (23). Remarkably, using
the 24 × 24 matrix representation constructed in the pre-
vious section, we have verified that this is indeed the case
using computer algebra. We attach our Mathematica code,
5DYangian.nb, and review its structure in Appendix E
of Ref. [30].
A sufficient (but not necessary) condition for the Serre

relations to hold is that the adjoint representation of the
superconformal group appears once in the tensor product of
the representation of the single-site level-0 generators with
its conjugate [37]. In our case, this condition is not satisfied
since the single-site representation is constructed from the
fundamental representation of OSpð8j4Þ. The Serre rela-
tions are therefore not guaranteed to hold, and we must
check them explicitly. That they indeed hold implies that
our construction is very nontrivial.
If the single-site level-1 generators do not include local

terms (as they do in our construction), the Serre relations
for more than one site follow from the single-site Serre
relations [37]. It is therefore sufficient to check the single-
site Serre relations in our case, which we have done for over

one thousand randomly chosen examples. We have also
verified the multisite Serre relations for over a thousand
randomly chosen examples, which provides a nontrivial
check of our level-1 expressions and the underlying
Mathematica code.
Discussion.—Exactly solvable quantum field theories

above two dimensions serve as important toy models
analogous to the harmonic oscillator and hydrogen atom
in quantum mechanics. Apart from self-dual Yang-Mills
and its dimenisonal reductions [38–40] and conformal
fishnet theories, the only other examples we know of are
N ¼ 4 super Yang-Mills and the ABJM theory in the
planar limit. These theories also arise in two of the three
canonical examples of the AdS/CFT correspondence,
suggesting that there is one more integrable quantum field
theory waiting to be discovered above two dimensions.
In this note we demonstrate that the nonrelativistic

superconformal symmetry group of certain 5DΩ-deformed
gauge theories which arise from null reductions of the 6D
(2,0) theory can be extended to an infinite dimensional
Yangian, providing the first example of such an extension
in five dimensions. The key technical steps were to
construct a representation of the 5D superconformal group
with a nonzero bilinear form using 6D supertwistors and
dimensional reduction, and to explicitly check the Serre
relations using an efficient Mathematica code. This result
opens up the exciting possiblity that these 5D gauge
theories may be exactly solvable in the planar limit. It
would also be interesting to see if our approach can make
contact with other integrable theories [11] by lowering the
amount of supersymmetry or including nontrivial local
terms in the level-1 generators.
One way to demonstrate that the 5D gauge theories

considered in this paper are indeed integrable would be to
explore Yangian symmetry of the action using the strategy
recently developed in Ref. [41]. A more conventional
approach would be to identify observables in the 5D gauge
theory that enjoy this symmetry. Since the representation
constructed in this paper naturally describes scattering
amplitudes in five dimensions [33,42–48], these would be
the most natural observables to consider. Oneway to deduce
such amplitudes would be to construct solutions to the
superconfonformal Ward identities which exhibit the
required factorization properties. It may also be possible
to compute them by adapting the methods developed for
self-dual Yang-Mills in Ref. [49]. Computing scattering
amplitudes should also shed light onwhether the 5D theories
considered in this Letter are renormalizable. In contrast to
ordinary 5D super Yang-Mills theories, the 5D theories we
consider have nonrelativistic superconformal symmetry at
the classical level, and we expect this symmetry to persist in
the quantum theory.
The next step would be to investigate if the amplitudes

exhibit dual superconformal symmetry in the planar limit
[50–54]. InN ¼ 4 super Yang-Mills and the ABJM theory
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this symmetry encodes level-1 Yangian generators [35,53].
Dual conformal structure was also recently found in
the amplitudes of self-dual Yang-Mills [55]. Moreover,
inN ¼ 4 super Yang-Mills dual superconformal symmetry
is tied to amplitude-Wilson loop duality [56–60] and self-
duality of IIB string theory on AdS5 × S5 under a certain
combination of bosonic and fermionic T-duality trans-
formations [61,62]. On the other hand, the origin of dual
superconformal symmetry in the ABJM theory remains
mysterious [63–67]. Since the superconformal symmetry of
the 5DΩ-deformed gauge theories considered in this Letter
appears to be closely related to that of the ABJM theory,
this raises the tantalizing possibility that these two theories
are related by some analog of T duality [68]. Hence, the
existence of Yangian symmetry in five dimensions has the
potential to greatly improve our understanding of higher
dimensional gauge theories and reveal new dualities in
quantum gravity.
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