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1 Introduction

The holographic duality provides a laboratory to analyse the behaviour of large classes of
strongly coupled systems [1, 2]. In a certain large N limit, large classes of field theories
become dual to classical theories of gravity. Using holography as a tool kit is particularly
helpful in dealing with real time physics when finite temperature and chemical potential are
involved [3]. More generally, holography is a powerful tool to study field theories deformed
by relevant deformations.
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The geometries dual to the field theory thermal states are black holes of Hawking
temperature equal to the field theory temperature. In the most well understood case of
conformal field theories, the bulk geometries asymptote to Anti de-Sitter space (AdS).
The chemical potentials for the charges of global symmetries are fixed by the asymptotic
behaviour of the gauge fields dual to the corresponding field theory Noether current oper-
ators. Likewise, the deformation parameters of other irrelevant operators are fixed by the
boundary conditions of their bulk duals at the time-like conformal boundary of AdS.

In this paper we will be particularly interested in the intersection two areas that
holography has already seen many applications. The first one is the study of thermal
phase transitions and symmetry breaking. One of the most prominent examples is the
superfluid phase transition which was pioneered in [4, 5]. With applications in condensed
matter physics in mind, examples where spacetime symmetries are broken were also realised
holographically [6–9].

From the point of view of the bulk theory, continuous phase transitions are driven by
perturbative instabilities which can lead to spontaneous symmetry breaking in the stable
phase. In such a case, a new gapless mode appears in the theory, the dual of the Goldstone
mode. At the same time, the mode which drives the transition acquires a small gap which
closes to zero when approaching the critical point. This gapless collective degree of freedom
is precisely the Higgs/amplitude mode.

The second area of applied holography that we will be interested in this paper is the
effective theory governing the dynamics of low energy modes close to the critical point
and incorporate the almost gapless Higgs mode. In the language of superfluids, the usual
description of hydrodynamics away from the critical point captures the long wavelength
behaviour of the phase of the order parameter [10–13]. Our aim is to enlarge the effective
theory to include fluctuations of its modulus.

Papers with similar questions have appeared in the past. However, they either in-
volved models which can be solved exactly close to the critical point [14, 15], or numerical
techniques [16–19]. We chose to employ analytic techniques as we want to understand the
universality of the underlying physics from a boundary theory point of view. The main
tool in our construction will be the techniques we have recently developed in [20–23] to
analyse dissipative effects in holographic theories. These will let us identify an equation of
motion for the amplitude of the order parameter, a constitutive relation for the conserved
electric current of the theory and a Josephson relation for a local chemical potential we will
identify. In combination with the Ward identity for the global U(1) of the theory, these
will constitute a closed system of equations.

Later, we compare the resulting equations with those resulting from the Model F in
the classification of Hohenberg and Halperin [24] and find exact agreement after a certain
identification of the parameters in their model with our holographic results. As part of the
matching procedure, we produce a holographic formula for the complex kinetic coefficient
Γ0 in terms of black hole horizon data and thermodynamic quantities of the state. It would
be interesting to compare model F to holography beyond linear response.1

1See e.g. [25] for some recent numerical work in a direction along those lines.
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Using our effective theory equations, we analyse the behaviour of quasinormal modes
in the broken phase. By incorporating the dynamics of the almost gapless mode, we are
able to commute the limits of zero gap and infinite wavelength for the fluctuations. Naively,
one might expect that when holding the wavelength fixed, in the limit of small gap the
modes should match with the ones of the normal phase. However, we show that this is
true only at zero background chemical potential. Moreover, we analyse interesting pole
collisions in the complex plane that happen in the crossover region.

As we will see, the discontinuity mentioned above is related to the fact that the modes
of oscillation of the order parameter are different between the normal and the broken
phase. In the normal phase we have two copies of the same mode coming from its real and
imaginary parts. However, even though the background of the broken phase is continuously
connected to that of the normal phase, the mode for the fluctuations of the order parameter
involve its phase in a singular manner close to the critical point. This was already evidenced
from the analysis of [22], at infinite wavelengths. Interestingly, we find that the mode for
responsible charge diffusion is continuous.

Finally, we carry out a few numerical checks in order to verify some of our analytic
results. In particular, we focus on reproducing the dispersion relations for the quasinormal
modes that our theory predicts. The model that we chose to apply our analysis to has been
studied before in [16] and we chose to use exactly the same set of parameters that was used
there. Both our analytical and numerical results indicate that the original suggestion of [16]
regarding the “diffusion” constant of the pseudo-diffusive mode is not accurate for small
wavevectors. Interestingly, it only holds true for wavevectors of norm much larger than the
gap and below any other UV scale of the theory.

Our paper is organised in six main sections. In section 2 we present our holographic
setup along with the necessary thermodynamics of the bulk geometries. In section 3 we
employ our holographic techniques to extract all the necessary ingredients for our effective
theory. In section 4 we state our theory in two equivalent ways and we write the constitutive
relations of the current in terms of our hydrodynamic variables. In a separate subsection,
we carry out the comparison with Model F of [24]. In section 5 we examine the behaviour of
the quasinormal modes of our system in various limits and point out at its discontinuities.
Section 6 is devoted to our numerical checks. We conclude with some discussion and
conclusions in section 7.

2 Setup

Our bulk theory will have to contain a complex scalar ψ which is dual to the operator Oψ
whose VEV will play the role of the order parameter in our system. The global U(1) under
which the boundary operator Oψ transforms, corresponds to a local symmetry in the bulk
gauged by the one-form Aµ. Moreover, we will include a relevant operator Oφ which will
introduce an additional deformation parameter φs. As we will see, the phase transition we
wish to study will be driven by either tuning the chemical potential µ or the deformation
parameter φ(s). Our results will be valid both at finite and at zero charge density.
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For our purposes, it is sufficient to consider the bulk action,

Sbulk =
∫
d4x
√
−g
(
− τ

4 F
µνFµν −

1
2DµψD

µψ∗ − 1
2∇µφ∇

µφ− V
)

(2.1)

where τ and V are in general functions of φ, |ψ|2. The covariant derivative acts on the
complex scalar according to Dψ = ∇ψ+ iqeAψ and the field strength of the gauge field is
simply F = dA. For small values of our scalar fields, we will assume that the functions τ
and V behave according to,

V ≈ 1
2m

2
ψ |ψ|2 + 1

2m
2
φ φ

2 + · · · ,

τ ≈ 1 + cψ |ψ2|+ cφ φ+ · · · . (2.2)

For the bulk geometry dual to the thermal state, we will consider a general metric which
preserves the Euclidean subgroup and time translations. Without any loss of generality,
this is captured by the general metric,

ds2 = −U(r)dt2 + dr2

U(r) + e2g(r)(dx2 + dy2) . (2.3)

One can arrive to this background in a variety of ways and the details will not be important
to our analysis. As we will see, what matters is the general properties of the background
geometry (2.3).

The conformal boundary is at r →∞ and we can use the coordinate invariance of the
background theory to fix the horizon r = 0. In the asymptotic region, the functions that
appear in our metric can be taken to approach,

U(r) = (r +R)2 + · · · , g(r) = ln (r +R) + · · · . (2.4)

We will set the Hawking temperature of the horizon to be T , fixing the near horizon Taylor
expansion,

U(r) = 4πTr + · · · , g(r) = g(0) + · · · . (2.5)

Since we will be primarily interested in the broken phase of our probe theory, the
complex scalar ψ will be non-trivial in the bulk geometry. In this case, the field redefinitions
ψ = ρ eiqeθ and Bµ = ∂µθ+Aµ are legitimate. This, brings our bulk action (2.1) to the form,

S =
∫
d4x
√
−g
(
− τ

4F
2 − 1

2∇µρ∇
µρ− 1

2∇µφ∇
µφ− 1

2q
2
eρ

2B2 − V
)
, (2.6)

where the field strength now reads F = dB. The resulting equations of motions from a
variation of the action (2.6) are given by,

∇µ∇µρ− ∂ρV − q2ρB2 − 1
4∂ρτF

2 = 0 ,

∇µ∇µφ− ∂φV −
1
4∂φτF

2 = 0 ,

∇µ(τFµν)− q2
eρ

2Bν = 0 . (2.7)
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In our construction we will consider background solutions of these equations that
correspond to deforming the theory by a chemical potential µ and scalar deformation
parameter φs. To achieve this, we will consider backgrounds with

ρ = ρ(r) , φ = φ(r) , B = Bt(r) dt . (2.8)

Near the horizon at r = 0, regularity imposes the expansion,

ρ(r) = ρ(0) + · · · , φ(r) = φ(0) + · · · , Bt(r) = B
(0)
t r + · · · , (2.9)

where ρ(0), φ(0) and B(0)
t are constants of integration which need to fixed.

Close to the conformal boundary at r → ∞, our physical considerations suggest the
power series expansions,

ρ(r) = ρs

(r +R)3−∆ψ
+ · · ·+ ρv

(r +R)∆ψ
+ · · · ,

φ(r) = φs

(r +R)3−∆φ
+ · · ·+ φv

(r +R)∆φ
+ · · · ,

Bt(r) = µ− %

r +R
+ · · · , (2.10)

where the conformal dimensions ∆ψ and ∆φ of the dual operators Oψ and Oφ are fixed
by the bulk masses according to ∆ψ (∆ψ − 3) = m2

ψ and ∆φ (∆φ − 3) = m2
φ. For the

purposes of this paper, we will be setting the complex scalar source ρs equal to zero. In
terms of the backgrounds, this will guarantee that we have no explicit breaking of the U(1)
symmetry. The constant of integration µ is the field theory chemical potential and % is the
corresponding charge density. It is worth noting, that our background thermal states will
eventually be parametrised by the temperature T , the chemical potential µ and the scalar
deformation parameter φs.

It is now worth describing the phase diagram of the system we are considering. Its
precise details will depend on the parameters of our theory. For our purposes, we will be
interested in the class of theories where a thermal phase transition does take place. In
this case, for some fixed values of T and scalar deformation φs, there is a critical value
for the chemical potential µc(T, φs) above which we can find solutions with a source-free
non-trivial ρ. These backgrounds correspond to the thermal states of the broken phase.
The hypersurface (T, φs, µc(T, φs)) defines a critical surface on which the energy difference
between the broken and the normal phase is exactly zero. In the following sections, we will
consider phase transitions which are driven by holding the T fixed and varying φs and µ.

2.1 Holographic renormalisation and thermodynamics

In this subsection we will present some of the thermodynamic properties of our system that
will be useful in our construction. The first step in extracting meaningful quantities form
the boundary theory point of view is holographic renormalisation [26]. Equally important
is the fact that holographic renormalisation is crucial in order to make the variational
problem well defined in the bulk [27]. In order to render the bulk action (2.1) finite, a
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suitable set of boundary counterterms is required. The precise form can depend on the
details of the theory but a universal set of counterterms is given by,

Sbdr = −1
2

∫
∂M

d3x
√
−γ

[
(3−∆φ)φ2 − 1

2∆φ − 5 ∂aφ∂
aφ

]

− 1
2

∫
∂M

d3x
√
−γ

[
(3−∆ψ)|ψ|2 − 1

2∆ψ − 5 DaψD
aψ∗

]
+ · · · , (2.11)

where γαβ is the induced metric on the asymptotic hypersurface ∂M of constant radial
coordinate r. The higher order terms can include higher derivatives of the bulk fields
which in our approximation become irrelevant.

In order to find the probe’s contribution to the free energy of the system, one must
Wick rotate to Euclidean time τ = i t and evaluate the total on-shell action Itot = Ib+Ibdr.
More precisely, since our system is infinite, one should evaluate the probe’s contribution
to the free energy density wFE = T Itot in the x− y plane.

In this paper, we will be ignoring the backreaction of the matter fields of our probe
theory (2.1) on the background geometry. This makes meaningful to keep the temperature
T fixed even during the real time evolution of the system. Given that we are only con-
sidering variations of the chemical potential δµ and the scalar deformation parameter δφs,
the first law for the grand canonical free energy wFE becomes,2

δwFE = −% δµ− 〈Oφ〉 δφs , (2.12)

where % = 〈J t〉 is the charge density of the theory and 〈Oφ〉 is the VEV of the neutral
scalar operator. In contrast to the electric charge, the expectation value 〈Oφ〉 is not a
conserved quantity. However, from the statistical physics point of view we can still consider
the variation of the free energy with respect to one of the couplings of the theory. Such
variations would show up as extra terms in the first law like the last term in (2.12).

More generally, we can define the expectation value 〈Jµ〉 of the conserved U(1) current
operator. For later reference, it will also be useful to define the thermodynamic suscepti-
bilities through variations of % and 〈Oφ〉 as functions of µ and φs,

δ% = χQQ δµ+ νµ δφs ,

δ〈Oφ〉 = νµ δµ+ νφ δφs . (2.13)

Another quantity that will prove useful later is the horizon charge density,

%h = e2g(0)
τ (0)B

(0)
t . (2.14)

By using the equation of motion for the vector field in (2.7), one can show that in the
normal phase, the horizon charge density is equal to the density %. However, this is not
true for the broken phase black holes since the bulk vector field becomes massive and
Stokes’ theorem doesn’t apply.

2We should note that in the presence of persistent superfluid currents, the first law contains additional
terms [15, 28, 29] which we can ignore in our case.
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We will follow very similar techniques to those of [20, 21]. For this reason, we note
that the VEVs around which we will construct our effect theory can be extracted from,

〈Jµ〉 = lim
r→∞

r5
√
−γ

[
∂L

∂(∂rBµ) + δS′bdr
δBµ

]
,

〈Oφ〉 = lim
r→∞

r3
√
−γ

[
∂L

∂(∂rφ) + δS′bdr
δφ

]
,

〈Oψ〉 = lim
r→∞

r3
√
−γ

[
∂L

∂(∂rψ∗)
+ δS′bdr

δψ∗

]
, (2.15)

where L is the Lagrangian density of the bulk action (2.6). The above formulae are going
to be directly useful to us when we consider the symplectic current of the theory. Finally,
we note that the electric current satisfies the Ward identity,

∇a〈Ja〉 = qe
2i (λ 〈Oψ∗〉 − λ∗ 〈Oψ〉) . (2.16)

In the above, the parameter λ is the source for the complex scalar operator Oψ.
Apart from the thermodynamic quantities defined above, we would like to define the

stiffness parameter wij , in a very similar way it was done in [30, 31]. One can imagine,
that instead of the homogeneous background that we consider in this paper, we could have
a more general family of background which break translations with a characteristic spatial
wavevector ki. For example these broken phase backgrounds would be driven by a static
mode of the form,

δρ = δρ(r) cos(k1 x+ cx) cos(k2 y + cy) , (2.17)

where cx and cy are the zero modes of the Goldstone modes for translations. The corre-
sponding backgrounds will then also be parametrised by the periods 2π/kx and 2π/ky and
so will the free energy wFE . Following very similar arguments with [31], we can easily show
the bulk expression,

wij = ∂ki∂kjwFE
∣∣∣
ki=0

= δij
∫ ∞

0
dr ρ2(r) = δij γ . (2.18)

A defining characteristic of the superfluid phase is the appearance of persistent super-
currents. The thermodynamic conjugate variables of these is the spatial components of
the source for the electric currents δµi, or more precisely the gauge invariant combination
δµi + ∂i δθv, with δθv the phase of the complex VEV 〈Oψ〉. This, can be read off from the
asymptotic behaviour of the phase,

δθ ≈ (r +R)2∆ψ−3 δθ(s) + · · ·+ δθ(v) + · · · . (2.19)

From the point of view of the variables we have chosen to work which, the asymptotics of
the phase field are encoded in the asymptotic behaviour of the gauge invariant one-form
field components along the field theory directions according to,

δBα =
∂αδθ(s)

(r +R)3−2 ∆ρ
+ · · ·+ δmα + · · ·+ δjα

r +R
+ · · · , (2.20)

where mα = ∂αθ(v) + δµα is the gauge invariant combination of the sources.

– 7 –
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The final thermodynamic quantity we would now like to discuss it the current suscepti-
bility χJJ . If we wanted to consider all possible thermal states of our superfluids, we would
have to include backgrounds in (2.8) which contain these supercurrents. In the present
work, we wish to study the effective theory around states with zero supercurrents. How-
ever, these supercurrents will be relevant to our us from a perturbative point of view, as
they will be involved in the hydrodynamic modes we will consider. From the bulk point of
view, our broken phase backgrounds admit a non-trivial perturbation for the bulk one-form
field of the form,

δBi = δBi
i(r)dxi (2.21)

which behaves near the boundary behaves as,

δBi
i = δmi −

χJJ δmi

r +R
+ · · · , (2.22)

and χJJ is precisely the current susceptibility. Near the horizon, regularity imposes the
behaviour,

δBi
i = a

(0)
J δmi + · · · . (2.23)

Is is useful to note that given the perturbation δBi
i , the equation of motion for the gauge

field gives the relation,

χJJ δmi = q2
e

∫ ∞
0

dr ρ2 δBi
i . (2.24)

Given the fact that close to the phase transition we have approximately δBi
i ≈ δmi ev-

erywhere in the bulk, using the above equation it is easy to argue that close to the phase
transition we must have,

γ = χJJ
q2
e

+ · · · . (2.25)

We may have used holography to show this relation but the deeper reason is gauge invari-
ance with respect to the external source for the current.

3 Extracting the effective theory

In this section we will extract all the necessary ingredients to construct our effective theory.
In order to achieve this, we will follow a combination of techniques and arguments developed
in [20–23].

3.1 Expansions near the critical point

An important ingredient of our construction, will be the expansions of the background
solutions (2.8) around the critical point at (µc(φs), φs, T ). At exactly the critical point,
the perturbative equation of motion for the amplitude ρ in (2.7) admits a static solution
δρ∗(0). We will denote the background field at that point by Bt = ac and φ = φc.

– 8 –
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In order to establish our notation, we are moving away from the critical point
according to,

µ(ε) = µc(φs, T ) + ε2

2 δµ?(2) + · · · ,

φs(ε) = φs + ε2

2 δφs?(2) + · · · , (3.1)

with ε a parametrically small number. In this notation, the parameters, δµ?(2) and
δφs?(2), define the direction that we move away from the critical point in the space of
thermodynamic variables. At the same time, the background will have to change with
ε accordingly. By expanding the equations of motion (2.7), we can establish that the
correction for the background will admit an ε expansion of the form,

ρ = εδρ?(0) + ε3

3! δρ?(2) + · · · ,

φ = φc + ε2

2! δφ?(2) + · · · ,

Bt = ac + ε2

2! δa?(2) + · · · , (3.2)

along the broken phase. Following the steps of [22], it will also be useful to consider the
expansion of our backgrounds along the normal phase as well. The notation we will use
for this case is,

µ(ε) = µc(φs, T ) + ε2

2 δµ#(2) + · · · ,

φs(ε) = φs + ε2

2 δφs#(2) + · · · , (3.3)

with the corresponding expansion for the normal phase backgrounds,

ρ = 0 ,

φ = φc + ε2

2! δφ#(2) + · · · ,

Bt = ac + ε2

2! δa#(2) + · · · . (3.4)

From the point of view of the boundary theory, it is the asymptotic behaviour of the
corrections that will be important. For the broken phase backgrounds we can write,

δρ?(0) =
δρv?(0)

(r +R)∆ψ
+ · · · ,

δφ?(2) =
δφs?(2)

(r +R)3−∆φ
+ · · ·+

δφv?(2)

(r +R)∆φ
+ · · · ,

δa?(2) = δµ?(2) −
δ%?(2)
r +R

+ · · · . (3.5)

– 9 –
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In our analysis, we will also need to behaviour of these perturbations close to the black
hole horizon at r = 0 which reads,

δa?(2) = δa
(1)
?(2)r + · · · ,

δφ?(2) = δφ
(0)
?(2) + · · · ,

δρ?(0) = δρ
(0)
?(0) + · · · . (3.6)

For the normal phase expansion under the variations (3.3), we can write very similar
expressions for both the asymptotic and the near horizon expansions.

By using the definitions the thermodynamic susceptibilities of equation (2.13) we can
write the following relations,

δ%?(2) = χ?QQ δµ?(2) + ν?µ δφs?(2)

δ〈O〉?(2) = ν?µ δµ?(2) + ν?φ δφs?(2)

(3.7)

for the broken phase. For the normal phase expansion we can write the corresponding
relations,

δ%#(2) = χ#
QQ δµ#(2) + ν#

µ δφs#(2) ,

δ〈O〉#(2) = ν#
µ δµ#(2) + ν#

φ δφs#(2) . (3.8)

In the hydrodynamic limit we can write the expressions,

δ〈Oφ〉?(2) = (2 ∆φ − 3) δφv?(2) , δ〈Oφ〉#(2) = (2 ∆φ − 3) δφv#(2) , (3.9)

but for us, it is the asymptotic form of the symplectic current that will play a direct role
in our analysis. Finally, it is worth noting for the normal phase we have the additional
relation δ%#(2) = e2g(0)

τ (0)δa
(1)
#(2). This is nothing but our earlier statement that in the

normal phase the horizon charge density (2.14) is equal to the field theory one.
Another important part of our strategy is the set of static perturbations we will use in

the Crnkovic-Witten symplectic current. Similarly to [22], the first static perturbation we
will need is can be obtained from the broken phase background expansion (3.2). Taking a
derivative with respect to ε we find the static perturbation,

δρ? = δρ?(0) + ε2

2! δρ?(2) + · · · ,

δφ? = ε δφ?(2) + · · · ,
δB?

t = ε δa?(2) + · · · . (3.10)

This fluctuation will play a double role in our construction. The first one is as we described
above, it will be used as one of the two solutions in the symplectic current. The second role
is that it will be used to construct the next to leading order hydrodynamic perturbation
we wish to study with our effective theory. For the same reason, we will also consider the

– 10 –
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expansion along the normal phase (3.4) and take a derivative with respect to ε to find the
perturbation,

δρ# = 0 ,
δφ# = ε δφ#(2) + · · · ,

δB#
t = ε δa#(2) + · · · . (3.11)

The second static solution that we will use in the symplectic current is the pertur-
bation for the supercurrent of equation (2.21). Since our effort is to extract information
infinitesimally close to the critical point, we will also need to consider the ε expansion of
that as well,

δBi
i = δBi

i(0) + ε2δBi
i(2) + · · ·

χjj = ε2χjj(2) + · · ·

a
(0)
J = 1 + ε2a

(0)
J(2) + · · · (3.12)

where the zeroth order solution is simply δBi
i(0) = δmi, as can be seen by solving the

one-form field equation of motion (2.7) in the normal phase with ρ = 0. This is exactly
the argument we used to show the relation (2.25).

3.2 Hydrodynamic perturbations

Before specialising to the low frequency, long wavelength fluctuations we are interested in,
it is worth setting up the problem for a generic perturbation that depends on the field
theory coordinates. By exploiting the translations in space and time, we will assume a
Fourier decomposition of the form,

δF(r, t, x) = e−iω(t+S(r))+iεqxδf(r) , (3.13)

for bulk fields. The function S(r) a function which behaves near the horizon as S(r) =
ln r
4πT + · · · and vanishes sufficiently fast at the boundary. We will consider the quasinormal
modes in the longitudinal sector and we will ignore the y component of the gauge field as
it is decoupled from the rest. Our goal is to describe the system near the critical point
and for this reason we take the momentum to be of order εq ∼

√
δµ,
√
δφs. Given the

above behaviour for the function S near the horizon, imposing regular ingoing boundary
conditions near the horizon leads to the expansions,

δρ(r) = δρ(0) + · · · ,

δφ(r) = δφ(0) + · · · ,

δbx(r) = δb(0)
x + · · · ,

δbt(r) = δb
(0)
t + · · · ,

δbr(r) = δb
(0)
t

4πTr + · · · . (3.14)
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By following general arguments, the generic expansion of our fluctuations close to the
conformal boundary is,

δρ(r) = δρs

(r +R)3−∆ψ
+ · · ·+ δρv

(r +R)∆ψ
+ · · · ,

δφ(r) = δφs

(r +R)3−∆φ
+ · · ·+ δφv

(r +R)∆φ
,

δbx(r) = (δµx + i ε q δθv) + δjx
r +R

+ · · · ,

δbt(r) = (δµt − i ω δθv) + δjt
r +R

+ · · · . (3.15)

However, for the purposes of this paper we will be interested in the source free dynamics
of the low energy modes. For this reason, we will aim to set the scalar and current sources
δφs, δρs, δµa equal to zero.

By following arguments very similar to [22], we can show that the degrees of freedom
we wish to describe are captured by the expansion,

ω = ε2 ω[2] + · · · ,

δρ = δρ̃(0) + ε δρ̃(1) + ε2

2 δρ̃(2) · · · ,

δφ = ε δφ̃(2) + · · · ,
δbt = ε δã(2) + · · · ,
δbx = δb̃x(0) + ε δb̃x(1) + ε2 δb̃x(2) + · · · ,

δθv = 1
ε
δθ̃v + δθ̃v(0) + · · · . (3.16)

By expanding the equations of motion in ε, we can see that the only solution regular
at the horizon for δb̃x(0), δb̃x(1) is just a constant. Moreover, the equations of motion for
the fields {δρ̃(0), δã(2), δφ̃(2)} are solved by a linear combination of the following solutions
{δρ̃(0) = 0, δã(2) = δa#(2), δφ̃(2) = δφ#(2)} and {δρ̃(0) = δρ?(0), δã(2) = δa?(2), δφ̃(2) =
δφ?(2)}. Finally, note that we can add a constant (everywhere in the bulk) to δã(2), which
we will call for convenience −iω[2]δθ0, and get another solution. As a result we can write,

δρ̃(0) = δa δρ?(0) ,

δã(2) = δa δa?(2) − δa#(2) − iω[2]δθ0 ,

δφ̃(2) = δa δφ?(2) − δφ#(2) ,

δb̃x(0) = iq δθ̃v . (3.17)

An important point is that the parameters δµ∗(2) and δφ∗(2) defining the broken phase
variation in the above equations are identical to the variations of the background. This
can be easily seen by inspection of the equations of motion. However, the variations δφs#(2)
and δµ#(2) are left undetermined by simply looking at the equations of motion.

Regarding the neutral scalar, the net deformation for the hydrodynamic perturbation
is,

δφ̃s(2) = δa δφs∗(2) − δφs#(2) . (3.18)
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The requirement for zero total deformations suggests that δφs#(2) should be such that
δφ̃s(2) = 0. Finally, the variation parameter δµ#(2) will be determined by imposing the
electric current conservation Ward identity (2.16). Note that the Ward identity does not
provide any non-trivial information about the static perturbations of the backgrounds.
However, it is going to be essential in fixing δµ#(2).

For the electric current of the theory, the electric current follows the ε expansion,

δjt = ε δjt[1] + · · · ,
δjx = ε2 δjx[2] + · · · , (3.19)

which is compatible with the expansion of the vector field in equation (3.20). The above
to the identifications of the asymptotic data,

−iω[2]δθ̃v = δa δµ?(2) − δµ#(2) − iω[2]δθ0

0 = δa δφs?(2) − δφs#(2)

δjt[1] = −δa δ%?(2) + δ%#(2)

δφ̃v(2) = δa δφv?(2) − δφv#(2) . (3.20)

At the same time, the above lead to the near horizon behaviour for the time component
of the on-form field,

δã(2) = −iω[2]δθ0 + (δa δa(1)
?(2) − δa

(1)
#(2)) r + · · · . (3.21)

The radial component of the one-form field admits the ε expansion,

δbr = εδb̃r(1) + ε2

2 δb̃r(2) + · · · . (3.22)

Near the horizon, the equation of motion (2.7) and regularity (3.14) yields the constraint,

iω[2]

(
q2τ (0)

c e−2g(0) + q2
e

(
δρ

(0)
?(0)

)2
)
δθ0 = iω[2] δ%̃h(2)e

−2g(0) + iτ (0)
c q2ω[2]e

−2g(0)
δθ̃v . (3.23)

As we will later see, this is the first equation that will be part of our effective theory and
it will play the role of a Josephson relation.

3.3 Symplectic current

In this section we will combine the analysis we have discussed so far with the techniques
developed in [20–23]. For the theory described by the bulk action (2.6), the symplectic
current density is given by,

Pµδ1,δ2
= δ1Bα δ2

(
∂L

∂(∂µBα)

)
+ δ1ρ δ2

(
∂L

∂(∂µρ)

)
+ δ1φ δ2

(
∂L

∂(∂µφ)

)
− (1↔ 2) , (3.24)

where δ1 and δ2 denote any two perturbations which solve the equations of motion (2.7).
Moreover, the asymptotic behaviour of the radial component gives,

P rδ1,δ2 = 1
r3
(
δ1φs δ2

(√
−γ 〈Oφ〉

)
− δ2ϕs δ1

(√
−γ 〈Oφ〉

))
+ 1
r3
(
δ1ρs δ2

(√
−γ 〈Oρ〉

)
− δ2ρs δ1

(√
−γ 〈Oρ〉

))
+ 1
r3
(
δ1ma δ2

(√
−γ 〈Ja〉

)
− δ2ma δ1

(√
−γ 〈Ja〉

))
+ · · · , (3.25)
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where we have used the expressions in equation (2.15) along with the fact that we work
in the hydrodynamic limit. The latter allows us to drop the derivatives terms in the
counterterms of equation (2.11).

The property which is crucial in our construction is the fact that for any two
perturbations which solve the equations of motion (2.7), the symplectic current density is
divergence free,

∂µPµδ1,δ2
= 0 . (3.26)

We are going to construct two symplectic currents from our hydrodynamic and two static
perturbations. The first one is PδH,δ? , which is made out of the static perturbation (3.10).
The second one is PδH,δmx , made out of the static perturbation (2.21).

Given the fact that we can Fourier expand our modes, we find it convenient to do the
same for the components of the symplectic current density according to,

Pµδ1,δ2
= e−iω(t+S(r))+iεqxPµδ1,δ2

. (3.27)

The divergence free condition (3.26) gives,

− iωP tδ1,δ2 + P r′δ1,δ2 − iωS
′P rδ1,δ2 + iεqP xδ1,δ2 = 0

⇒ P rδ1,δ2

∣∣∣
r→∞

− P rδ1,δ2

∣∣∣
r→0

+
∫ ∞

0
dr(−iωP tδ1,δ2 − iωS

′P rδ1,δ2 + iεqP xδ1,δ2) = 0 . (3.28)

where in order to get the second line, we have integrated from the horizon to infinity.
Turning our attention to the specific examples for perturbations to be used in the

symplectic current, we will first consider PδH,δ? which is made out of our hydrodynamic
mode and the static perturbation in (3.2). After performing an expansion of the Fourier
components in ε, we obtain,

P tδH,δ? = O(ε2) , P xδH,δ? = −i q δa δρ2
?(0) ε+O(ε2) , (3.29)

and for the radial component we have,

P rδH,δ? = −e2g
(
δa?(2)δH(τW rt)[1] − δã(2)δ?(τW rt)[1]

+ aU

2 (δρ?(2)δρ
′
?(0) − δρ

′
?(2)δρ?(0)) + U

2 (δρ?(0)δρ̃
′
(2) − δρ

′
?(0)δρ̃(2))

+ U(δφ?(2)δφ̃
′
(2) − δφ

′
?(2)δφ̃(2))− iω[2]S

′Uaδρ2
?(0)

)
ε2 +O(ε3) . (3.30)

Using the above relations for the symplectic current PδH,δ? in equation (3.28) we obtain
our first reduced equation,

− δjt[1]δµ?(2) + iω[2]δ%?(2)δθ̃v + (2∆φ − 3)δφ̃v(2)δφs?(2)

= iω[2]δ%h?(2)δθ0 + iω[2]
(
δρ

(0)
(0)?

)2
e2g(0)

δa− q2 δa

∫ ∞
0

drδρ2
?(0) . (3.31)

As we will in the next section, the above relation will become the effective equation of
motion for the amplitude of the order parameter.
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We will now consider the symplectic current PδH,δax which is constructed from the
hydrodynamic and the static perturbation of equation (3.10). For the Fourier modes of the
components along the field theory directions we have that,

P tδH,δax = O(ε2) , P xδH,δax = O(ε3) , (3.32)

while for the radial component we have the non-trivial form,

P rδH,δax = −Uτc
(
δBx

x(0)(−iqδb̃r(1) + qω[2]S
′δθ̃v + δb̃′x(2))− iqδθ̃vδB

x′
x(2)

)
ε2 +O(ε3) . (3.33)

Substituting the asymptotic and near horizon expressions in equation (3.28) at order ε2 we
find that,

δjx(2) = −iχ(2)
jj q δθ̃v + τ (0)

c qω[2] (δθ0 − δθ̃v) , (3.34)

which as we will later see, will yield a constitutive relation for the electric current along
with the third line of equation (3.20).

4 Effective theory

In this section we will collect the results of section 3 to form our effective theory for a
suitable set of hydrodynamic variables. We will do this in two different ways, using two
different sets of variables. In the first approach, we will write a constitutive relation for
the electric current in terms of the chemical potential and the amplitude and phase of
the condensate. The effective theory will then be complete by fixing a Josephson relation
and a first order time evolution equation for the amplitude of the order parameter. When
combined with the Ward identity (2.16), we obtain a closed system of equations for the
dynamics of the system. The second approach uses an effective energy potential which
allows us to write the equations of motion for the charge density and the amplitude and
phase of the condensate as a system of first order equations in time. This will allow us to
compare with the Model F in the classification of Hohenberg and Halperin [24].

4.1 Hydro description

In order to clearly state our effective theory, we need to identify its dynamical variables. For
this purpose, the most straightforward set of variables is the phase of the order parameter
δθ̃v, the variable δθ0 and δa which parametrises the amplitude of the order parameter
according to,

〈Oψ〉 = ∆〈Oψ〉b
(
1 + ε−1 δa+ i qe δθv

)
, (4.1)

with ∆〈Oψ〉 = (2 ∆ψ − 3) ε δρv∗(0) + · · · , the VEV of the complex scalar operator in the
thermal state. For later convenience, we will define the new amplitude variable, δã = δa/ε.

However, we still have the variation variable δµ# in our description which can be
specified by the first line of (3.20). An alternative description, which seems more natural
from the hydrodynamics point of view, is to maintain the phase δθ̃v, the amplitude δa and
to trade δµ#(2) for the chemical potential variation defined by,

δµ̃ = ε
(
δµ∗(2) δa− δµ#(2)

)
. (4.2)
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For any quantity O which is a function of the chemical potential µ and scalar deformation
φs, we can define the difference,

∆O = O?(µc + δµ∗, φs + δφs∗)−O#(µc + δµ∗, φs + δφs∗) . (4.3)

This measures the difference of the value of O between the normal and the broken phase
at fixed chemical potential and deformation parameter.

After these definitions, we can write the constitutive relations for the current,

δJt = −χ#
QQ δµ̃− 2 ∆% δã ,

δJi = −χJJ ∂iδθv − σd ∂iδµ̃ , (4.4)

which are nothing but equation (3.34) and the third line of (3.20) when combined with the
first line of (3.20). In the above we have reinstated factors of ε and Fourier transformed
back to a coordinate space description and we have also introduced the incoherent conduc-
tivity σd = τ (0). Recasting equation (3.23) in terms of our new variables then provides a
Josephson relation for the chemical potential variation δµ̃,

q2
ee

2g(0) (∆ρ(0)
)2

∂tδθv =
(
χ#
QQ ∂t − σd ∂i∂

i + q2
e e

2g(0) (∆ρ(0)
)2
)
δµ̃+ 2 ∆%h ∂tδã . (4.5)

By using the Ward identity (2.16), this equation can be written in the form of a Josephson
relation for the local chemical potential,

δµ̃ = ∂tδθv −
χJJ
q2
e $1

∂2δθv + $2
qe$1

∂tδã , (4.6)

where we have defined the coefficients,

$1 = sc
4π
(
∆ρ(0)

)2
, $2 = 2

qe
(∆%−∆%h) = 2

qe
(%∗ − %h∗) . (4.7)

In the last equality we have used that in the normal phase the field theory charge density
is equal to the horizon one and therefore %h# = %#.

From the above we see that in this notation our Josephson relation (4.6) contains
dissipative effects. It is also evident that the amplitude degree of freedom has to enter
both the constitutive relations (4.4) as well as the Josephson relation (4.6). The final
equation we have left in order to have a complete description is (3.31) which fixed the
dynamics of the amplitude. In our notation it reads,

$1 ∂tδã−
(
8 ∆wFE + γ ∂i∂

i
)
δã− qe$2 ∂tδθv − (2 ∆%− qe$2) δµ̃ = 0 , (4.8)

with γ as defined in (2.18). In order to obtain the equation above, we have used that the
difference in the free energy density can be written as,

∆wFE = −1
2
(
χ?QQ − χ

#
QQ

)
δµ2
∗ −

1
2
(
ν?φ − ν

#
φ

)
δφ2

s∗ −
(
ν?µ − ν#

µ

)
δφs∗ δµ∗ + · · · , (4.9)

at leading order in the variations δµ∗ and δφs∗. This concludes the construction of our
effective theory which is comprised of the equations (4.6), (4.8) and the Ward identity (2.16)
given the constitutive relations (4.4).
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Finally, we would like to write the constitutive relation for the expectation value,

δ〈Oφ〉 = 2 ∆〈Oφ〉 δã+ ν#
µ δµ̃ , (4.10)

of the neutral scalar operator. The above relation follows from the last line of equa-
tion (3.20) and the definitions (3.8) and (4.2).

4.2 Matching with model F

In this subsection we will compare the effective theory we finalised in the previous sub-
section to the Model F of Hohenberg and Halperin [24]. In order to do this, we will need
to rewrite our theory in terms of the amplitude δa, the angle δθv and the charge density
δ%̃ = δJ t fluctuations. To do this we can simply invert the constitutive relation for the time
component of the electric current in equation (4.4). After solving for the time derivatives
of the fields in our description by using equations (4.6), (4.8) and (2.16) we have the system
of first order equations in time,

∂tδ%̃ = σd

χ#
QQ

∂i∂
i(δ%̃− 2 ∆% δã) + χJJ ∂i∂

iδθv ,

∂tδã = λ1

γ ∂i∂iδã+ 8 ∆E|%,φs δã+ 2 ∆%
χ#
QQ

δ%̃

+ χJJ
qe

λ2 ∂i∂
iδθv ,

∂tδθv = χJJ
q2
e

λ1 ∂i∂
iδθv + 1

χ#
QQ

(δ%̃− 2 ∆% δã)

− λ2
qe

γ ∂i∂iδã+ 8 ∆E|%,φs δã+ 2 ∆%
χ#
QQ

δ%̃

 . (4.11)

In order to simplify the notation we have introduced the quantity,

∆E|%,φs = ∆wFE |µ,φs −
1

2χ#
QQ

(∆%)2
∣∣∣
µ,φs

, (4.12)

which is the energy density difference of the broken and the normal phase at fixed charge
density and scalar deformation. The above relation is easy to show by e.g. using the results
of appendix B in [22]. Moreover, in equations (4.11), we have defined the two important
quantities,

λi = $i

$2
1 +$2

2
, . (4.13)

We now need to match the above system of equations to the equations that one would
obtain from the phenomenologically motivated equations of the Model F of [24]. In order
to do that, we first need to consider the Ginzburg-Landau free energy functional close to
the critical point,

F [ψ,m] =
∫
d2x

(
w0
2 |∇ψ|

2 + r̃0
2 |ψ|

2 + ũ0|ψ|4 + 1
2C0

m2 + γ0m |ψ|2
)
, (4.14)
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where in this notation m is the conserved charge density. Given the above energy func-
tional, the dissipative equations of motion for the U(1) order parameter ψ and the current
continuity equation respectively are,

∂tψ = −2Γ0
δF

δψ?
− ig0ψ

δF

δm
,

∂tm = λm0 ∇2 ∂F

∂m
+ 2 g0 Im

(
ψ?

δF

δψ?

)
. (4.15)

After decomposing the order parameter as ψ = ∆〈Oψ〉 (1 + δã− i g0 δθv) and the charge
density as m = m0 + δ%̃, we can match the resulting equations of motion provided that,

g0 = qe , C0 = χ#
qq , γ0 = − ∆%

χ#
QQ (∆〈Oψ〉)2 , w0 = χJJ

q2
e (∆〈Oψ〉)2 ,

m0 = ∆% , ũ0 = − 1
(∆〈Oψ〉)4 ∆E|%,φs , r̃0 = 4 ∆wFE

(∆〈Oψ〉)2 ,

Γ0 = (∆〈Oψ〉)2 (λ1 + i λ2) , λm0 = σd = τ (0) . (4.16)

The important lesson that we extract from having explicit expressions for these constants
from holography is that apart from r̃0 and m0, the rest remain finite as we approach the
critical point. Notably, the dissipative kinetic coefficient Γ0 remains complex as ε → 0.
These observations will play an important role in the next subsection where we discuss
the hydrodynamic modes as we approach the critical point from both the normal and the
broken phases.

It is important to note that the coefficients (4.16) are ultimately fixed by information
which is held fixed either due to conservation laws, like the charge density %, or because it
is part of the sources in the problem, like the deformation parameter φs. We have written
quantities, like the susceptibilities χ#

QQ, χ?QQ and the free energy wFE which are more
natural for the grand canonical ensemble. However, these are to be evaluated on states of
chemical potential which is specified by the fixed charge density %.

5 Hydrodynamic modes

In this section we will consider the quasinormal modes of the system which is captured
by the effective theory that we constructed in section 4. More specifically, we will be
interested in three different regimes of the phase space while holding fixed the wavevector
of fluctuations ki. The first one will be the normal phase as we approach the critical point.

The two subsequent subsections are devoted to two distinct limits of the general, finite
density case, for small and for large values of the gap as compared to the modulus of
the wavevector. As we will see, at finite density the limits of approaching the transition
from the normal and the broken phase give a discontinuity in the dispersion relations. In
other words, at a fixed wavevector the dispersion relations of the our quasinormal modes
are discontinuous across the phase transition. The final regime we will examine is the
broken phase at zero chemical potential. In this case, we will have a great simplification
of the dispersion relations and we will be able to follow the modes in the complex plane
analytically. Moreover, this section will answer some of the questions raised in [23].
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5.1 Normal phase

In this subsection we will consider the hydrodynamic modes of our system as we approach
the critical point from the normal phase of the system. In general, at exactly the critical
point the only gapless modes of our system are fluctuations of the charge density and the
critical modes of the complex scalar that become gapless. Even though we are at finite
charge density, the fact that we are in the probe limit suggests that the charge density
fluctuations will decouple from the pressure and the momentum of system leading to a
purely diffusive mode.

More specifically, in the normal phase the constitutive relations for the fluctuations of
the electric current are,

δJ t = χ#
QQ δµ , δJ i = −σd ∂iδµ . (5.1)

From a holographic point of view, the incoherent conductivity is given by σd = τ (0) in the
normal phase. Imposing the Ward identity (2.16) yields a mode with dispersion relation,

ω = −i σd

χ#
QQ

k2 = −i τ
(0)

χ#
QQ

k2 . (5.2)

In order to understand the mode relevant to the charged scalar, we will employ once
again the symplectic current of our theory. Suppose that δρ(0) is the static mode at the
critical point. In order to construct the finite wavevector one we perturbatively expand it
in the wavevector according to,

δρH = e−iω(t+S(r))+iεqx
(
δρ(0) + ε δρ(1) + ε2 δρ(2) + · · ·

)
,

ω = ε ω[1] + ε2 ω[2] + · · · . (5.3)

By considering the symplectic current that we can form from the static mode δρ(0) and
the above hydrodynamic expansion, it is easy to show that the dispersion relation of the
critical mode is diffusive with,

ω = −i 4π
sc

1(
δρ

(0)
(0)

)2

∫ ∞
0

dr
(
δρ(0)

)2
k2 . (5.4)

Even though our computation was purely in the normal phase, it will be useful to write
this as a limit coming from the broken phase after observing that,

1(
δρ

(0)
(0)

)2

∫ ∞
0

dr
(
δρ(0)

)2
= lim

ε→0

γ(
ρ(0))2 , (5.5)

yielding,
ω = −i4π

sc
k2 lim

ε→0

γ(
ρ(0))2 = −i 4π

q2
e sc

k2 lim
ε→0

χJJ(
ρ(0))2 , (5.6)

where we have used the relation (2.25) which holds close to the phase transition.
In fact, we don’t only have one such diffusive modes but two. This comes from the

fact that above the critical temperature we can decompose the complex scalar into a real
and a complex part. Each one of those satisfies exactly the same equation of motion at a
perturbative level. The above analysis shows that right above the critical temperature we
have three diffusive modes.
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5.2 Large gap limit

In this subsection we will consider the limit in which the module of the wavevector is much
smaller than the expected gap of the amplitude mode. Since we are working in a probe
limit, the expectation is that we will recover the regular hydrodynamics of the supercurrent.
This should happen after integrating out the amplitude mode which will acquire a large
gap. Before doing that we will examine what happens with the modes of our effective
theory in the large gap limit.

In order to do this we perform a Fourier decomposition of our modes and recast the
linearised equations of motion (4.15) in matrix form,

M (ω, ki)

 δa0
δθv0
δ%̃0

 = 0 . (5.7)

In order for the perturbation to admit non-trivial solutions, the matrix M must be non-
invertible and it should therefore have zero determinant. This condition becomes a third
order algebraic equation for ω, that fixes the dispersion relations ω(ki) of our quasinormal
modes.

The general solution of this system is quite complicated but we will consider the
two limits of small and large wavevectors in this and the next subsections. For small
wavevectors, we perform the expansion,

ki = λ qi ,

ω = ω[0] + λω[1] + λ2 ω[2] + · · · , (5.8)

and solve the equation order by order in λ. As one would expect, the three modes we find
consist of two sound and one gapped diffusive mode. The first few terms in a wavevector
modulus expansion are,

ωH = iReΓ0
8 ∆E|%,φs
(∆〈Oψ〉)2

− i

w0 ReΓ0 −
(∆%)2 λm0

2
(
χ#
QQ

)2
∆E|%,φs

− w0
ReΓ0

ImΓ0 + qe ∆% (∆〈Oψ〉)2

4χ#
QQ ∆E|%,φs

2
 k2 ,

ω± = ±
√
χJJ
χ?QQ

k2

− i

2

w0 ReΓ0 + λm0
χ?QQ

+ w0
ReΓ0

ImΓ0 + qe ∆% (∆〈Oψ〉)2

4χ#
QQ ∆E|%,φs

2
 k2 . (5.9)

In order to obtain the above result, we have used the non-obvious relation,

∆E|%,φs =
χ?QQ

χ#
QQ

∆wFE , (5.10)

which we prove in appendix A.
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It is reassuring to note that the gap of the first dispersion relation, corresponding to the
Higgs/Amplitude mode, agrees with the expression of [22] even though we are only in the
probe limit. Moreover, the diffusion constant of the same mode is not positive definite and
it remains finite as we approach the critical point. Finally, as we will see in subsection 5.4.
in more detail, its limiting value agrees with the diffusion constant of (5.6) only in the case
of zero charge density.

It is nice to see that the modes behave as we would expect them to in our limit.
However, it is important to understand how to reduce the theory of section 4 to regular
hydrodynamics and reproduce the two sound modes that we derived from the full theory.
An appropriate limit to take is,

∂t → λ ∂t , ∂i → λ ∂i , δa→ λ δa , δµ̃→ λ δµ̃ , (5.11)

with λ a small dimensionless parameter. By doing this we can find the local expression for
the amplitude,

δã = − 1
8 ∆wFE

(
2 ∆% δµ̃+ χJJ

q2
e λ1

(
qeλ2 + q2

e ∆%
4 ∆wFE χ?QQ

)
∂2θv

)
, (5.12)

where we have included corrections up to order O(λ2). Moreover, the Josephson relation
for the redefined chemical potential δµ̂ becomes,

δµ̂ = ∂tδθv − χJJ ζ3 ∂
2δθv

= ∂tδθv − w0

ReΓ0 + 1
ReΓ0

(
ImΓ0 + qe ∆% (∆〈Oψ〉)2

4 ∆wFE χ?QQ

)2
 ∂2δθv , (5.13)

where we have also used the definition of the third bulk viscosity ζ3 for a superfluid. This
is true since the new chemical potential δµ̂ is chosen so that we are in the transverse frame
with,

δJt = −χ?QQ δµ̂ ,
δJi = −χJJ ∂iδθv − λm0 ∂i δµ̂ . (5.14)

Given the above, the resulting dispersion relation,

ω± = ±
√
χJJ
χ∗QQ

k2 − i

2χ?QQ

(
λm0 + χ?QQ χJJ ζ3

)
, (5.15)

matches equation (5.9). Finally, it is worth noting that the expression for the bulk viscosity
ζ3 in (5.13) agrees with the one we recently reported in [20] when we take its limit near
criticality.

5.3 Small gap limit

In this subsection we would like to understand the behaviour of our modes in the limit
where we keep the wavevectors fixed but we approach the critical point from the side of
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the broken phase. In this limit, the gap becomes small or equivalently, the wavevector is
large. The equations of our effective theory become,

∂tδ%̃ = λm0

χ#
QQ

∂i∂
iδ%̃ ,

∂tδã = w0
(
ReΓ0 ∂i∂

iδã+ qe ImΓ0 ∂i∂
i δθv

)
+ 2 ReΓ0 ∆%
χ#
QQ (∆〈Oψ〉)2 δ%̃ ,

∂tδθv = w0

(
ReΓ0 ∂i∂

iδθv −
1
qe

ImΓ0 ∂i∂
iδã

)
+ 1
χ#
QQ

(
1− 2 ImΓ0 ∆%

qe (∆〈Oψ〉)2

)
δ%̃ . (5.16)

The Jacobi form of the system immediately gives that there is a charge diffusion modes
with dispersion relation,

ω = −i λ
m
0

χ#
QQ

k2 , (5.17)

which matches exactly the charge diffusion mode of equation (5.2) of the normal phase
given the matching of the parameters of equation (4.16). It is worth noting that apart
from the charge density, the phase and the amplitude will also be involved in this mode
in the broken phase. This is true even in the limit close to the critical point since the
constants Γ0 and w0 remain finite.

The second mode involves only the order parameter as in order to satisfy the first
equation of the system we have to necessarily set the charge density fluctuation equal to
zero. A quick computation shows that the order parameter fluctuations yields two modes
obeying the dispersion relations,

ωr = −i w0 Γ0 k
2 , ωr = −i w0 Γ̄0 k

2 , (5.18)

which remain finite close to the critical point. It is worth comparing with the diffusive
modes (5.6) of the order parameter that we find in the normal phase. Using the matching
of equation (4.16), and the definitions (4.13) we see that this pair of modes matches the
modes of oscillation of the order parameter in the normal phase (5.6), only at zero chemical
potential. At finite density the dispersion relations are discontinuous since Γ0 remains
complex and finite in the near critical limit.

5.4 Zero chemical potential

It is easy to see that at zero chemical potential, the matching conditions (4.16) suggest
that,

ImΓ0 = γ0 = ρc = 0 . (5.19)

In this case, the equation of motion for the amplitude of the order parameter is not sourced
by fluctuations of the phase and the charge density leading to the pseudo-gapped mode
with dispersion relation,

ωH = iΓ0

(
8 ∆E|%,φs
(∆〈Oψ〉)2 − w0 k

2
)
. (5.20)
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Note that this dispersion relation agrees exactly with the dispersion (5.6) of the complex
scalar coming from the normal phase in the limit of zero gap. This is reassuring but we
are still missing one more mode with the same diffusion constant. As we will see, this will
come from the sector of charge density and phase.

In order to find the quasinormal modes of this sector, it is illustrating to write down
their equations of motion,

∂tδ%̃ = λm0

χ#
QQ

∂i∂
iδ%̃+ χJJ ∂i∂

iδθv ,

∂tδθv = w0 Γ0 ∂i∂
iδθv + 1

χ#
QQ

δ%̃ , (5.21)

and note once again that the amplitude decouples entirely. The corresponding dispersion
relations are,

ω± = ±

√
4 k2 χJJ χ

#
QQ − k4

(
λm0 − w0 Γ0 χ

#
QQ

)2

2χ#
QQ

− i
λm0 + w0 Γ0 χ

#
QQ

2χ#
QQ

k2 . (5.22)

The limit we want to examine is the small k limit in which we find the approximate
dispersion relation,

ω± ≈ ±
√
χJJ

χ#
QQ

k2 − i
λm0 + w0 Γ0 χ

#
QQ

2χ#
QQ

k2 , (5.23)

which agrees with the dispersion relations of [23] when taking the nearly critical limit.
These are therefore the standard sounds modes of neutral superfluids in the broken phase.

The second point we would like to make comes from thinking of this dispersion relation
as the position of poles of Green’s functions in the complex frequency plane. Using our ana-
lytic formula (5.22) we see that the two sound-like poles collide on the imaginary axis when,

k2
c =

4χJJ χ#
QQ(

λm0 − w0ReΓ0χ
#
QQ

)2 . (5.24)

We also see that for wavevectors with modulus squared larger than k2
c , the two modes

remain purely imaginary.
For very large value of k2 as compared to kc, we have the two approximate dispersion

relations with leading behaviour,

ω± = − i

2χ#
QQ

(
λm0 + w0 ReΓ0 χ

#
QQ ±

∣∣∣λm0 − w0 ReΓ0 χ
#
QQ

∣∣∣) k2 . (5.25)

The above shows that the collision of the two sound modes produce the, so far missing,
second diffusive mode that matches (5.6) as well as the charge diffusion mode (5.2).
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6 Numerical checks

In this section we check numerically the dispersion relations for the Higgs and Goldstone
modes close to the critical point for various values of the wavevector. First, we give an
overview of our method and then we focus on two simple cases: (i) Charged superfluids at
finite density and zero scalar deformation parameter φs and (ii) Neutral superfluids with
a non-trivial scalar deformation parameter φs.

6.1 Overview of the method

In this subsection we give a few technical details on the double sided shooting method we
have used. First, we describe the technique for the background solutions and then we move
on to discuss the quasi-normal modes we wish to construct.

6.1.1 Background solution

We are going to work in the probe limit, assuming that the matter fields don’t backreact
onto the metric, which will be of the general form (2.3) with asymptotics described by the
expressions (2.4), (2.5). As in the analytic calculation, the conformal boundary is located
at r →∞ and the black hole horizon at r = 0.

The matter action is taken to be (2.1) with:

V = 1
2m

2
ψ |ψ|2 + 1

2m
2
φ φ

2 + λψ |ψ|4 + λφ φ
4 + λψφ |ψ|2φ2 ,

τ = 1 + ζψ |ψ|2 + ζφ φ
2 . (6.1)

A background matter solution describing both the broken and normal phase of the
system involves an ansatz of the form,

B = a(r)dt , ρ = ρ(r) , φ = φ(r) . (6.2)

Plugging this ansatz in the equations of motion we find 3 second order ODEs, which implies
that we need to fix six integration constants. The behaviour of the fields near the conformal
boundary is,

a = µ− %

(r +R) + · · · ,

ρ = ρv

(r +R)∆ψ
+ · · · ,

φ = φs

(r +R)3−∆φ
+ · · ·+ φv

(r +R)∆φ
+ · · · . (6.3)

Close to the horizon, the analytic expansion yields,

a = a(0)r + · · · , ρ = ρ(0) + · · · , φ = φ(0) + · · · . (6.4)

Fixing the values of the chemical potential µ and the neutral scalar’s source φs leaves
six free integration constants %, ρv, φv, a(0), ρ(0), φ(0) that will be fixed via double-sided
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shooting. For an appropriate choice of the parameters λψ, λφ, λψφ, ζψ, ζφ we can find back-
ground solutions describing a second order phase transition. As expected, the field ρ is
going to be trivial in the normal phase of the system and non-trivial in the broken phase.

With the background solutions at hand, we can construct the functions %(µ, φs) and
φv(µ, φs) numerically. By taking the appropriate partial derivatives of these functions we
can calculate the static susceptibilities χQQ, νφ, νµ that appear in our analytic results. To
calculate the current susceptibility χJJ we need to construct a static perturbation for the
one-form field of the form

δB = δbx(r) dx , (6.5)

yielding a second order ODE for the function δbx(r) which requires fixing of two constants
of integration in order to find a unique solution. This is the bulk dual of a field theory
perturbation involving the supercurrent.The expansion near the conformal boundary at
r →∞ is,

δbx = δbsx + δbvx
r +R

+ · · · . (6.6)

Close to the black hole horizon we have the analytic expansion,

δbx = δb(0)
x + · · · . (6.7)

In total we have three free integration constants (δbsx, δbvx, δb
(0)
x ) and because the equa-

tion for δbx is linear and homogeneous we can set one of them to unity. This argument
shows that there are indeed two free constants of integration and we can find a unique
solution. Then we are able to find χJJ using the definition:

χJJ = −δb
v
x

δbsx
. (6.8)

At this point, we remind the reader that this static perturbation is part of our black hole
thermodynamics. However, we only consider perturbations of it as we wish to study the
hydrodynamics of superfluid thermal states with zero supercurrent.

6.1.2 Quasinormal modes

Our ultimate goal is to calculate the dispersion relations ω(k) of the hydrodynamic modes
and for this reason we need to study black hole perturbations which are source free from
the boundary point of view. To achieve this, we consider perturbations of the form,

δF(r, t, x) = e−iω(t+S(r))+ikxδf(r) , (6.9)

with the choice,
S(r) =

∫ r

∞

dy

U(y) . (6.10)

The longitudinal sector that we are interested in involves the fields δbt, δbx, δbr, δρ, δφ.
The radial component equation for the gauge field allows us to eliminate δbr in terms of
δbt and δbx. This leaves us with four second order ODEs which require the fixing of eight
constants of integration. Once again, we will achieve this by implementing a double-sided
shooting method.
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In order to find identify the constants of integration, we consider the asymptotic be-
haviour of our functions close to the boundaries of our computational domain. In the IR
we impose in-falling boundary conditions and solving the equations of motion we find the
expansions,

δbt = ct + · · · , δbx = cx + · · · , δρ = cρ + · · · , δφ = cφ + · · · , (6.11)

where the constants ct, cx, cρ, cφ are unfixed at this stage. On the other side of our domain,
in the UV, we have the expansions,

δbt = δbst − iωδc+ δbvt
r +R

+ · · · ,

δbx = δbsx + ikδc+ δbvx
r +R

+ · · · ,

δρ = δρs

(r +R)3−∆ψ
+ · · ·+ δρv

(r +R)∆ψ
+ · · · ,

δφ = δφs

(r +R)3−∆φ
+ · · ·+ δφv

(r +R)∆φ
+ · · · , (6.12)

where the constant δbvx is fixed in terms of the others, due to the current conservation (2.16).
In order to compute the quasinormal modes we have to set the sources to zero,

δρs = δφs = δbst = δbsx = 0 . (6.13)

In total, for fixed a fixed value of k, we have 4 independent constants from the IR
(ct, cx, cρ, cφ) and 4 independent constants from the UV (δbvt , δρv, δφv, δc). Because the
equations of the perturbations are linear and homogeneous we can set one of those con-
stants to unity, so we are left with 7 free constants plus the frequency ω, which match
exactly the 8 constants of integration that we need.

6.2 Results for charged superfluids

In this model we take the metric to be AdS-Schwarzschild with unit radius. In this case,
the background geometry (2.3) is specified by the functions,

U(r) = (r +R)2 − R3

r +R
, g(r) = log(r +R) . (6.14)

which give Hawking temperature is given by T = 3R
4π and entropy density s = 4πR2. For

our charged superfluids, we have chosen to set the neutral scalar’s background source φs to
zero which allows us to consistently set the bulk scalar φ equal to zero in our equations of
motion. Moreover, we will choose m2

ψ = −2, ζψ = 0, λψ = 0 and also set T = 3
4π , without

loss of generality. For these parameters the system exhibits a second order phase transition
with critical chemical potential µc ≈ 4.06371366.

In figure 1 we plot the quantity 1
2
∂2ImωH
∂k2 for the Higgs mode as a function of k, for

three different values of the chemical potential above µc. We plot the results coming from
the numerical calculation (dashed lines) together with the analytic results (solid lines) that
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k

T
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∂2Im[ωH]
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-0.8
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-0.4

Figure 1. Plot of 1
2
∂2ImωH

∂k2 for the Higgs mode as a function of k for three values of the chemical
potential µc

µorange
= 0.99999999, µc

µgreen
= 0.999998932, µc

µred
= 0.9991919498. The dashed lines corre-

spond to the numerical results and the solid lines to the analytic predictions.

we can find for the frequency as a function of the wavevector. The latter is one of the roots
of the cubic polynomial resulting from demanding that (5.7) has non-trivial solutions.

As we can observe, sufficiently close to the critical point the Higgs mode interpolates
between two regions where it is diffusive, in accordance with the discussion in sections 5.2
and 5.3. In particular, for k much smaller than the gap, the first equation of (5.9) yields for
our model: ωH ≈ ωgap − 0.43374 i k2 and for k much greater than the gap equation (5.17)
gives ωH ≈ −i k2.

The authors of [16], working with exactly the same setup, argued that this mode is
diffusive with ω = ωgap− i k2. As we showed here, this is indeed the correct behaviour but
only for values of momentum much larger than the gap. The reason they didn’t find the
interpolation is that their numerical calculation was done only for k larger than the gap,
as we can see from figure 9 of their paper.

In figure 2 we plot ∂Reω+
∂k , 1

2
∂2Reω+
∂k2 and 1

2
∂2Imω+
∂k2 for the Goldstone mode as a function

of k for µc
µ = 0.999998932. We present the results coming from the numerical calculation

(dashed lines) together with the analytic results (solid lines). The latter is the second root of
the cubic that also fixed the dispersion relation of the Higgs mode. Apart from showing the
agreement with the full solution, these plots also confirm the asymptotic behaviour given
by equations (5.9) and (5.18). In particular these tell us that for k much smaller than the
gap the dispersion relation approaches the behaviour ω+ ≈ 0.001748k−0.3541 i k2 while for
k much larger than the gap: ω+ ≈ (0.218982− 0.07098 i) k2. Overall, for both modes there
is a very good quantitative agreement with the analytic predictions, for all values of k

T � 1.

6.3 Results for neutral superfluids

Here we will study the quasi-normal modes of neutral superfluids which undergo a phase
transition driven by the scalar deformation parameter φ(s). We will one again choose the
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T

Figure 2. Plots of ∂Reω+
∂k , 1

2
∂2Reω+
∂k2 and 1

2
∂2Imω+
∂k2 for the Goldstone mode as a function of k for

µc

µ = 0.999998932. The dashed lines correspond to the numerical results and the solid lines to the
analytic predictions.

background metric (2.3) to be AdS-Schwarzschild with the functions given by (6.14) and
Hawking temperature T = 3

4π . For the backgrounds we will set µ = 0 and we will also
choose m2

ψ = −2, m2
φ = −2, ζψ = 1, ζφ = 1, λψ = 1

2 , λφ = 1
2 and λψφ = −3

2 . For this
choice of parameters we find a second order phase transition with the critical value of the
neutral scalar source being φ(s)c ≈ 2.5646887676. An important observation is that for
neutral superfluids we have two decoupled sectors, namely (δbt, δbx) and (δρ, δφ). As one
might expect, the first sector will capture the two quasinormal modes with relevant to the
Goldstone mode while the second sector will capture the gapped Higgs mode. This is in
accordance with the discussion in section 5.4

In figure 3 we plot our numerical results for the Higgs mode ωH as a function of k for
φ(s)c
φ(s)

= 0.999999519. In addition to that, we plot the corresponding analytic result that we
find using equation (5.20). The dashed horizontal line shows the gap of the Higgs mode,
which is ωgap

T ≈ −6.01 · 10−6 i.

For the Goldstone mode, we plot Reω±
k and T Imω±

k2 , as a function of k for φ(s)c
φ(s)

=
0.9999996754 in figure 4. We also include plots of the analytic predictions (solid lines)
of equation (5.22). The dashed lines on these plots mark the point of collision for the
two Goldstone modes at momentum kc

T = 0.0212842, as computed from equation (5.24).
These plots clearly show that for k

kc
� 1 we can observe the usual second sound modes of

superfluids, whereas for k
kc
� 1 these modes become purely diffusive. As we explained in

section 5.4 one of these two diffusive modes pairs nicely with the Higgs mode of figure 3
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k
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Figure 3. Plot of ωH

T as a function of k for φ(s)c

φ(s)
= 0.999999519. The dots are the numerical results

and the solid line is the analytic result. The dashed horizontal line marks the analytic prediction
for the gap of the Higgs mode.

k

T

Re[ω±]

k

5.×10-4 0.001 0.005 0.010 0.050 0.100
-0.002

-0.001

0.000

0.001

0.002

k
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T Im[ω±]

k2
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-0.20
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Figure 4. Plots of Reω±
k and Imω±

k2 as a function of k for φ(s)c

φ(s)
= 0.9999996754. The dots are

the numerical results and the solid lines are the analytic predictions. The dashed lines are at
k
T = 0.0212842.

agreeing with the doublet or modes of the charged scalar in the normal phase. Once again
we find very good quantitative agreement with our analytic predictions.

7 Discussion and outlook

In this paper we have analysed the low energy dynamics of holographic superfluids close to
their critical point. As part of our analysis, we have constructed an effective theory for the
collective degrees of freedom in involved in the problem. For the standard description of
superfluids away from the critical point, the hydrodynamic degrees of freedom are captured
by the phase of the order parameter and the local chemical potential [10, 11]. Close to the
critical point, the amplitude mode driving the transition becomes gapless and has to be
included in the description.
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By using analytic techniques developed in e.g. [20, 21] we have constructed an effec-
tive consisting of the conservation law (2.16), the Josephson relation (4.6) and the equation
governing the amplitude dynamics (4.8). By performing a change of variables, we managed
to show that our system is equivalent to Model F in the classification of Hohenberg and
Halperin [24]. This allowed us to give explicit expressions for the various constants that
appear in that description including the dissipative kinetic coefficient. With this informa-
tion in hand, we carried out a somewhat detailed analysis of our modes in different limits
for the gap of the Higgs mode. Moreover, given the analytic understanding of the modes in
the normal phase, we have revealed interesting discontinuities in their dispersion relations.

Our work can be extended in several different directions. An obvious direction would be
to enlarge our minimal description to accommodate for the temperature and fluid velocity
of the normal component of our system. In order to do this, we would need to move away
from the probe limit and include the backreaction of the background metric along with
the coupling of the complex scalar one-form field fluctuations with the metric. In such a
more complicated scenario our techniques would still produce usable results. In a sense
that would our recent analysis [20] would need to be extended with the inclusion of the
Higgs mode that we discussed in the present simplifying case.
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A Susceptibility relations

The aim of this appendix is to prove equation (5.10). In order to do this, we remind
the reader a couple of facts about the free energy difference between the normal and
broken phases ∆wFE(µ, φs). Since we don’t vary temperature in our probe model, we have
suppressed the dependence on it. The basic property that this function satisfies is that it
vanishes on the critical hypersurface (µc(φs), φs),

∆wFE (µc(φs), φs) = 0 . (A.1)

Moreover, with the transition being second order, the normal derivative with respect to
the hypersurface also vanishes. These two statement imply that we indeed have,

∇∆wFE (µc(φs), φs) = 0 , (A.2)

and that the points (µc(φs), φs) are not extrema.
This shows that the Hessian matrix of ∆wFE(µ, φs) evaluated on the critical surface

should only have one non-zero eigenvalue which should also be positive. As a consequence,
the determinant of the Hessian should vanish showing the relation,(

ν?µ − ν#
µ

)2
=
(
ν?φ − ν

#
φ

) (
χ?QQ − χ

#
QQ

)
. (A.3)
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Using this relation, it is then easy to show that,

∆wFE = − 1
χ?QQ − χ

#
QQ

(∆%)2

2 , (A.4)

which is equivalent to (5.10) given equation the relation (4.12).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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