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1 Introduction

Our understanding of quantum field theories (QFTs) has been considerably advanced by
the study of integrable models. In a pioneering paper [1] Zamolodchikov and Zamolod-
chikov explained how to conjecture exact expressions for the S-matrices of many massive
integrable quantum field theories through an axiomatic approach: the so-called (exact)
S-matrix bootstrap. However, a direct connection with standard perturbation theory is in
most cases ill-understood. In the review paper [2], the fact that integrability should man-
ifest itself in a priori surprising cancellations between Feynman diagrams contributing to
production processes in perturbation theory was emphasised, and a systematic approach
to the problem at the tree level was undertaken in [3–6], where constraints on masses
and couplings necessary for the absence of production were given. Though the problem
of classifying all the possible bosonic quantum field theories satisfying these constraints
remains open, a universal proof of the absence of production for the entire class of affine
Toda field theories was found in [5], thereby providing a tree-level proof of their pertur-
bative integrability. In the following, we move to loop level, and consider a subclass of
these models, the simply-laced affine Toda theories. The S-matrices of these models have
been bootstrapped [7–17] and have a beautiful universal structure in terms of the roots and
weights of their underlying Lie algebras [15–17].1 At tree level, this geometrical structure is
the reason for the absence of production [5], and all the integrability requirements emerge

1Results for the S-matrices of more subtle cases such as non-simply laced theories [18–20] and super-
symmetric models [21, 22] have also been found, though a geometrical interpretation of their S-matrices in
terms of Dynkin diagrams is less straightforward.
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from the geometry of the underlying root system. Even though the bootstrap program
has been able by itself to generate expressions for the S-matrices that have passed many
different perturbative checks [7, 23–26], the underlying mechanism at all loops remains
unclear. Since in the ADE series of affine Toda models the absence of production at the
tree level completely constrains the masses and the Lagrangian couplings, these theories
look to be good first candidates to address the general problem of perturbative quantum
integrability.

In this paper, we consider the specific problem of finding the coefficients of the S-
matrix expansion of a generic simply-laced affine Toda theory around an arbitrary pole of
order 2N , located at relative rapidity θ = iθ0 with 0 < θ0 < π. In simply-laced affine Toda
models the mass ratios do not renormalize at one loop [7], and we will assume that this
holds to all orders, so that the fusing angles do not depend on β and therefore the pole
position iθ0 is independent of the coupling. We can then write a double expansion of the
singular part of the S-matrix at θ = iθ0 as

S
(sing)
ab (θ) =

2N∑
p=1

1
(θ − iθ0)p

(
β2

2h

)p(
ap + bpβ

2 +O(β4)
)

(1.1)

where, for each term of order p in the Laurent expansion in θ − iθ0, ap is the leading, and
bp the subleading, coefficient in the expansion in the coupling β. The constant h, included
for convenience, is the Coxeter number of the Lie algebra associated with the model un-
der consideration. The expansion (1.1) can be easily derived from the conjectured exact
S-matrices of the simply-laced affine Toda theories, written as products of certain building
blocks [7]. First, we need to expand the bootstrapped S-matrix in small β; this is indeed
the regime in which Feynman diagrams make sense and the comparison is reasonable. Sec-
ond, we take the limit to the pole position. More challenging is to reproduce the values
for the coefficients yielded by this procedure from perturbation theory. For example, the
direct computation of the leading coefficients aP and bP for poles of high orders P = 2N
would require the summation of huge numbers of multiple-loop Feynman diagrams [23].
Nevertheless, the expansion (1.1) also contains lower-order terms in β, which should be
reproduced from diagrams with smaller numbers of loops and therefore can be more eas-
ily computed.2 Partial information on higher-order singularities is therefore contained in
reasonably simple one-loop computations, and these will be our focus below.

It turns out that the double expansion of the bootstrapped S-matrices at pole positions
yields simple and indeed universal (that is, algebra-independent) results. For example, it
is shown in appendix A that the coefficients a1 and b1 are always zero no matter the order
of the even order pole, while a2 = N . In this paper, we show how to derive these three
coefficients for a generic simply-laced affine Toda model using perturbation theory. The
result for a1 is easily understood. It corresponds to an order β2 contribution to a simple
pole in the perturbative expansion, which for a two to two process can only come from
on-shell tree-level diagrams with two three-point couplings. However it is easily seen from

2In a two to two scattering process, diagrams with L loops contribute to order β2(1+L). This will become
clear in the next section when we will introduce the Lagrangian of the model.
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the fusing rule of [15, 16] that such diagrams are never on shell, neither in the direct nor in
the crossed channel, at an even order pole position θ = iθ0. More difficult to derive from
Feynman diagram computations are the coefficients a2 and b1, corresponding to one loop
results in perturbation theory. The coefficient a2 for N = 1 was computed in [23], in all
the ADE series of models, while b1 was determined, again for N = 1, in [26] though only
for the A(1)

r models. Making use of tree-level properties common to all the ADE series of
models we extend these results to any simply-laced affine Toda theory and arbitrary N .
To do this we study Landau singularities in one-loop Feynman diagrams since, as pointed
out many years ago by Coleman and Thun [27], higher-order poles in the S-matrices of
(1+1)-dimensional theories are due to the presence, for particular values of the rapidity, of
multiple simultaneously on-shell propagators inside loop diagrams (in higher dimensions
Landau singularities lead to branch points, but in two dimensions they give poles). We
show how to determine the coefficients of the Laurent expansion at the pole by properly
cutting the loops and transforming the loop integrals into products of particular tree-level
diagrams presenting internal on-shell bound state propagators. In this manner, we recover
the coefficients a2 and b1 using tree-level integrability properties of the theory. The choice
of propagators to be cut inside the loop is determined by the on-shell geometry of the
diagrams and is a key point to evaluating the coefficients of the Laurent expansion.

The rest of this paper is organised as follows. In section 2 we review the mechanism
responsible for the cancellation of 4-point tree-level non-elastic processes in perturbation
theory with a particular focus on the cancellation of poles in Feynman diagrams con-
nected by flips of type II, according to the convention used in [5, 23]. These cancellations
are particularly useful to understand the simplification mechanism that manifests itself at
one loop. In section 3 we compute, using perturbation theory, the coefficients a2 and b1
in equation (1.1) showing the emergence of a universal behaviour not depending on the
simply-laced theory studied. Section 4 gives our conclusions, discussing the results ob-
tained and presenting possible generalizations and open problems. Appendix A reviews
the building block structure of the bootstrapped S-matrix; in particular, we extract from
the bootstrapped result the coefficients a2 and b1 of the Laurent expansion (1.1) showing
a perfect match with the quantities obtained from perturbation theory. Finally, in ap-
pendix B, we justify why the spatial components of the loop momenta have to be purely
imaginary when we integrate in the neighbourhood of the Landau singularities.

2 Pole cancellation at tree level

Simply-laced affine Toda models comprise r bosonic scalar fields φ1, . . . , φr, in 1+1 dimen-
sions, interacting through a Lagrangian

L = 1
2∂νφa∂

νφa −
µ2

β2

r∑
i=0

nie
βαa

i φa , (2.1)

where {αi}ri=1 is a set of simple roots belonging to a simply laced Dynkin diagram, and α0
is the corresponding lowest root. Here r is the rank of the associated Lie algebra and we
choose to normalize all roots to have length

√
2. The real numbers µ and β set the mass

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
2
2
0

and the interaction scales of the model, while the integers {ni}ri=1, called the Kac labels of
the algebra, are such that with n0 = 1 we have

r∑
i=0

niαi = 0.

After having diagonalised the mass matrix coming from the second-order expansion of the
potential in (2.1), all non-zero 3-point couplings respect the following area rule [7]

Cabc = fabc∆abc with fabc = ± 4β√
h
. (2.2)

A universal proof of this relation was given in [28], building on previous results of Free-
man [29]. In (2.2) ∆abc is the area of the triangle with sides the masses of the fusing
particles a, b and c. The positive integer h depends on the Lie algebra considered and
is called the Coxeter number. The 4- and higher-point couplings can then be found by
expanding the potential (2.1) to higher orders. They satisfy various relations which allow
them to be fixed in terms of the masses and 3-point couplings [30], relations which turn
out also to be necessary conditions for the tree-level integrability of the models [3, 5]. The
sign, plus or minus, entering (2.2) is not the same for all the 3-point couplings. The dif-
ferent signs, one for each non-zero 3-point coupling, depend on the structure constants of
the underlying Lie algebra and respect particular relations that prevent the presence of
non-diagonal two to two processes. These relations emerge from the constraints of tree
level integrability as we now explain, following the discussion in [5]. Let us consider the
following process at tree level

a(p1) + b(p2)→ c(p3) + d(p4), (2.3)

in which we start with two initial particles of types a, b and momenta p1, p2 and we finish
with two outgoing particles of different types {c, d} 6= {a, b}. We define the Mandelstam
variables in the usual way as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2. (2.4)

If the scattering is kinematically allowed but forbidden by integrability, all potential poles
in the amplitude must cancel. In simply-laced affine Toda theories, these singularities,
coming from the propagation of intermediate bound states, cancel in pairs. This means
that any time one Feynman diagram diverges due to the presence of an on-shell propagating
particle, we find another diagram containing another on-shell propagator cancelling that
singularity. The resulting connection between Feynman diagrams that are singular for the
same choice of external momenta is known as the ‘flipping rule’ [23]. In [5] three different
types of flip were distinguished, depending on whether the cancellation is realised between
a pair of diagrams with particles propagating in the s- and t-channels, in the s- and u-
channels or in the t- and u-channels. In the present paper we consider the last situation,
called a type-II flip in [23] and [5]. We consider the particular situation in which the poles
cancelling each other are due to two particles, say j and k, propagating in the t- and
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u-channels respectively.3 A simplification arising from working in two dimensions is that
only one of the three Mandelstam variables is independent. Therefore if in terms of the
Mandelstam variable s the potential pole is at s = s0, in such a position we have t(s0) = m2

j

and u(s0) = m2
k. Expanding the Mandelstam variables around the pole position s = s0

we have

t−m2
j = dt

ds

∣∣∣
s=s0

(s− s0) + 1
2
d2t

ds2

∣∣∣
s=s0

(s− s0)2 + . . .

u−m2
k = du

ds

∣∣∣
s=s0

(s− s0) + 1
2
d2u

ds2

∣∣∣
s=s0

(s− s0)2 + . . . ,

(2.5)

so that the sum of the corresponding divergent tree-level Feynman diagrams is
Cac̄j̄Cjcd̄
t−m2

j

+ Cad̄k̄Ckbc̄
u−m2

k

=

1
s− s0

(Cac̄j̄Cjcd̄
dt
ds

∣∣
s0

+ Cad̄k̄Ckbc̄
du
ds

∣∣
s0

)
− 1

2

(
Cac̄j̄Cjcd̄

d2t
ds2

∣∣
s0(

dt
ds

∣∣
s0

)2 + Cad̄k̄Ckbc̄

d2u
ds2

∣∣
s0(

du
ds

∣∣
s0

)2
)
. (2.6)

Terms having positive powers of s − s0 have been omitted in the expression above since
they vanish at s = s0.

Poles corresponding to stable bound states lie on the physical strip, and are purely
imaginary. After a possible overall Lorentz boost, this means that the rapidities θ of the
interacting particles can also be taken to be purely imaginary, with θ = iU and U real.
The on-shell particle momenta p = m(cosh θ, sinh θ) = m(cosU, i sinU) can be represented
as complex numbers m(cosU + i sinU) whose absolute values the masses of the particles
and whose phases are given by the real numbers U , with the plane of real energies and
purely imaginary spatial momenta in which they lie inheriting a Euclidean metric. The
duals of Feynman diagrams for two to two processes can also be drawn in this plane, as
tiled quadrilaterals whose external sides have lengths equal to the masses of the interacting
particles. For the particular process we are studying, such a description at the value s = s0
corresponding to the potential pole is shown in figure 1, where the lengths of the red,
blue and orange diagonals correspond to √s0, mj and mk respectively. This illustrates the
fact that in disallowed 4-point processes such as this one, the flipping rule translates into
the statement that any time one diagonal is on-shell (i.e. its length is equal to the mass
of the associated propagating particle), corresponding to a singular propagator in one of
the s-, t- or u-channels, then for the same values of the external kinematics exactly one
other diagonal is on-shell, so that the sum of the two diagrams can be finite. This re-tiling
property can be proved in a universal fashion by considering alternative projections of
tetrahedra in root space [15].

The flipping rule means that it is possible for the coefficient of (s−s0)−1 in (2.6) to be
zero; that it does actually vanish can be proven using the following geometrical identities

dt

ds

∣∣∣
s0

= −∆acj∆bdj

∆abi∆cdi
,

du

ds

∣∣∣
s0

= ∆adk∆bck

∆abi∆cdi
(2.7)

3We distinguish between t- and u-channel assuming that the dual description of the former is a convex
quadrilateral while the dual description of the latter is concave (see figure 1).
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a

b

c

d

j

t-channel

a

b

c

d

j

k

a

b

d

c

u-channel

a

b

c

d
k

Figure 1. Simultaneous poles connected by a type II flip.

connecting the derivatives of the squared diagonals (performed keeping the lengths of the
external sides {a, b, c, d} fixed at the values {ma,mb,mc,md}) to the areas of the fusing
mass triangles [5]. Substituting this expression into (2.6) and using the area rule (2.2) we
find that the singular part in (2.6) is proportional to

−fac̄j̄fjcd̄ + fad̄k̄fkbc̄.

This expression is indeed zero for all the pairs of Feynman diagrams connected by a type
II flip. This follows from properties of the structure constants of the Lie algebra associated
with the model; a general proof is given in [5]. This is a fundamental requirement for the
cancellation of the singularity in the amplitude. We can therefore say that type II flips
preserve the sign of the product of the f -functions entering in 3-point couplings.

On the other hand, the finite term in (2.6) is not zero but is instead equal to minus
the sum of all the remaining tree-level Feynman diagrams evaluated at s = s0, in such a
way that after having summed over all the Feynman diagrams the result is zero. This is an
interesting fact that must be true given that the total amplitude at the tree level is zero,
independently of the choice of the external kinematics [5]: the geometry of the singular
graphs depicted in figure 1 also encodes the value of the sum of all the remaining Feynman
diagrams. This fact will be of great importance at the moment we will break loop integrals
into products of tree-level diagrams to compute the residues at the poles, as we will discuss
in the next section.

3 Singularities from Feynman diagram cuts

Higher-order poles in two dimensional S-matrices have an interpretation in terms of Landau
(or anomalous threshold) singularities according to the Coleman-Thun mechanism [27]. For
particular values of the external momenta, it is possible that multiple internal propagators,
at a particular value of the loop integration variable l, go on-shell simultaneously, generating
divergences. In [23] a technique to obtain the residues of such singularities was explained,
through which second- and third-order Landau singularities were computed for the ADE
series of models. In this section we show how to calculate the singular part of one-loop
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pa

pb

pa

pb

C

B

B′
C′ s→ s0

pa

pb

pa

pb

C

B

B′

C′

pb

pa

pb

pa

C

B′
B

C′

s→ s0

pb

pa

pb

pa

C

B′
B

C′

Figure 2. Box diagram contributing to the pole (bottom row) and its dual description (top row).
The loop integration variable l is chosen so that B2 = m2

B and C2 = m2
C when l = (0, 0). For

general external kinematics (the left hand column) the momenta B′ and C ′ are off-shell at this
point; they become on-shell when s = s0, the pole position (the right hand column). On-shell
momenta are coloured black, off-shell red.

Feynman diagrams in an alternative way. The purpose is to show that on the pole position
loop diagrams are nothing but products of one or more different tree-level graphs in which
on-shell bound states propagate. How the loop can be cut into such tree-level graphs is
determined by its on-shell geometry.

3.1 Computing the box integral

We explain the adopted method with a well-known example, the box integral. Referring
to figure 2 we consider the scattering of two bosonic particles a and b near a particular
value s0 of the Mandelstam variable s = (pa + pb)2 at which there exists a point in the
loop integration region where all the internal propagators B, C, B′ and C ′ are on-shell at
the same time. With a small abuse of notation we label in capital letters both the types of
particles propagating inside the box and their momenta. Since the loop carries two degrees
of freedom it is possible to arrange for two internal propagators to be on-shell when the
loop integration variable l = (0, 0). In our case, we fix

B2 −m2
B = 0 and C2 −m2

C = 0. (3.1)

We will comment on this in more detail in one moment. For general external kinematics
the remaining two propagators, corresponding to the particles B′ and C ′, are off-shell at
this point and only become on-shell in the limit s→ s0, as shown on the r.h.s. of figure 2.
In the top row of figure 2 we see that the lengths of the two black diagonals (B and C) are
fixed as s varies, maintaining their on-shell values. On the other hand, away from s = s0,
B′ and C ′, coloured red, have lengths different from their masses and assume these values

– 7 –
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only when s = s0, i.e. at the singularity. In the neighbourhood of s = s0, we can expand
B′2 and C ′2 in terms of s− s0 as

B′2 −m2
B′ = dB′2

ds

∣∣∣
B,C

(s− s0) + 1
2
d2B′2

ds2

∣∣∣
B,C

(s− s0)2 + . . .

C ′2 −m2
B′ = dC ′2

ds

∣∣∣
B,C

(s− s0) + 1
2
d2C ′2

ds2

∣∣∣
B,C

(s− s0)2 + . . . .

(3.2)

The subscripts B and C in (3.2) mean that we are taking the derivatives with the squared
momenta B2 = m2

B and C2 = m2
C held fixed. Using the relations in (3.1), (3.2) and scaling

l = (s− s0)l̃ we see that the integral near the pole can be written as

I =
∫

d2l

(2π)2
1

(B + l)2 −m2
B + iε

1
(C + l)2 −m2

C + iε

× 1
(B′ + l)2 −m2

B′ + iε

1
(C ′ + l)2 −m2

C′ + iε

∼ 1
(s− s0)2

∫
d2 l̃

(2π)2
1

2B · l̃ + (s− s0)l̃2 + iε

1
2C · l̃ + (s− s0)l̃2 + iε

× 1
dB′2

ds + 2B′ · l̃ + 1
2
d2B′2

ds2 (s− s0) + (s− s0)l̃2 + iε

× 1
dC′2

ds + 2C ′ · l̃ + 1
2
d2C′2

ds2 (s− s0) + (s− s0)l̃2 + iε

(3.3)

where we have omitted the factors coming from the 3-point couplings, and dropped second
and higher powers of (s− s0) from the last two denominators in the second expression.

To have a better idea of the surface we are integrating over we should highlight that,
just as discussed following equation (2.6) in the context of tree-level diagrams, the external
momenta at which the box diagram yields a pole can be taken to have purely imaginary
rapidities, and the same is true of all internal momenta which go on-shell at the singularity.
This implies that they lie in the Euclidean plane of real energies and imaginary momenta,
on which Lorentz boosts act as simple rotations. It is therefore not restrictive to depict
the dual configuration as in figure 3, where we choose the axis of real energy to be aligned
with C. The on-shell box is then contained in the orange plane of figure 3. The integration
variable l0 takes values on the axis Re(E) and has to be performed between −∞ and +∞.
As discussed in appendix B, for these values of the external momenta the variable l1 should
instead to take values on the imaginary momentum axis Im(P ) and be integrated between
+i∞ and −i∞. This means that the integration over l has to be performed in the same
plane where the box lives and we can always translate l in this plane so that, at the point
l = (0, 0), B and C are on-shell. If we choose the centre of the space as in figure 3, this
configuration is reached at the value l0 = mC and l1 = 0. We can therefore translate l0
along the energy axis so to have the pole at the position l0 = l1 = 0, as assumed in (3.1).

Continuing our computation, in (3.3) the residue is isolated and we can simply compute
the leading contribution by setting s = s0 in all the terms apart from the overall factor
(s− s0)−2. If we expand the integral in powers of (s− s0) the singular part of (3.3) can be

– 8 –
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Re(E)

Im(P )

Re(P )

pa

pb

pa

pb

C

B

B′

C′

Figure 3. The box diagram lying in the Euclidean slice of the space of complex energy and
momentum.

split into two terms, one (I2) presenting a second order singularity of the form (s− s0)−2,
the other (I1) presenting a simple pole in (s− s0)

I(sing) = I2 + I1. (3.4)

Here and elsewhere, for a function f with Laurent series

f(s) =
P∑

p=−∞

fp
(s− s0)p

around a pole s0 of order P , we define its singular part as

f(s)(sing) =
P∑
p=1

fp
(s− s0)p . (3.5)

The same definition was used in (1.1) to give the S-matrix expansion around higher-
order poles.

The leading order term in (3.4) is given by

I2 = 1
(s− s0)2

∫
d2 l̃

(2π)2
1

2B · l̃ + iε

1
2C · l̃ + iε

1
dB′2

ds

∣∣
B,C

+ 2B′ · l̃ + iε

1
dC′2

ds

∣∣
B,C

+ 2C ′ · l̃ + iε
.

(3.6)
A feature of our choice of on-shell momenta (B and C), around which we are expanding the
integral, is that each other momentum can be expressed as a negative linear combination
of them

B′ = −∆B′C

∆BC
B − ∆B′B

∆BC
C and C ′ = −∆C′C

∆BC
B − ∆C′B

∆BC
C. (3.7)

In the expressions above ∆XY indicates the area of a triangle having for sides the two
vectors X and Y . (Since two vectors are sufficient to identify a triangle uniquely we can
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omit the third side of the triangle; for example, referring to figure 2, we just write ∆B′C

instead of ∆B′Cb.) The relations in (3.7) are not a surprise if we look at the on-shell
Feynman diagram in figure 2. We note indeed that both the vector B′ and C ′ (the red
arrows in the figure) belong to the region of the plane spanned by −B and −C. The fact
that all the coefficients in (3.7) are negative makes the integration particularly simple, as
we will see in one moment.

Changing integration variables

2B · l̃ = u and 2C · l̃ = v (3.8)

and taking into account the Jacobian of the transformation

d2 l̃ = du dv

8i∆BC
(3.9)

the integral can be written as

I2 = 1
(s− s0)2

∫
du dv

(2π)28i∆BC

1
u+ iε

1
v + iε

× 1
dB′2

ds

∣∣
B,C
− ∆B′C

∆BC
u− ∆B′B

∆BC
v + iε

1
dC′2

ds

∣∣
B,C
− ∆C′C

∆BC
u− ∆C′B

∆BC
v + iε

.
(3.10)

Since l̃0 was integrated between −∞ and +∞, and l̃1 was integrated between +i∞ and
−i∞, the variables u and v are both integrated on the real axis between −∞ and +∞.
The result can be obtained by closing both the u and v contours in the lower half complex
plane. Since all the coefficients in (3.7) are negative, the B′- and C ′-propagators have poles
on the opposite side of the real axis compared to B and C and using Cauchy’s theorem
we have

I2 = 1
(s− s0)2

i

8∆BC

1
dB′2

ds

1
dC′2

ds

. (3.11)

We note that the area ∆BC (or if we prefer ∆aBC) does not depend on s and is fixed along
the limit s → s0. This is because all three sides pa, B and C are on-shell – the small
triangle ∆aBC is the same on the l.h.s. and the r.h.s. of the top row of figure 2. Similarly,
at the bottom of the figure, we see that the fusing angles at the vertex CaBC̄ stay fixed
along the limit. In this case, the Jacobian factor does not present any further s-expansion,
since it is constant in s, and the I2 term does not contain any subleading power of (s− s0).

The subleading order in the integral expansion, I1, does not present substantial diffi-
culties in the computation. It is obtained by expanding the quantities linear in (s− s0) in
the denominators of (3.3), i.e. the terms containing l̃2 and the second-order derivatives of
the momenta. For example in the case of the B′-propagator we obtain

1
dB′2

ds + 2B′ · l̃ + 1
2
d2B′2

ds2 (s− s0) + (s− s0)l̃2 + iε

= 1
dB′2

ds + 2B′ · l̃ + iε
− (s− s0)

1
2
d2B′2

ds2 + l̃2(
dB′2

ds + 2B′ · l̃ + iε
)2 + . . . (3.12)
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where the second term on the r.h.s. is the quantity we are interested in. The part propor-
tional to l̃2 at the numerator gives a zero result after the integration. This is not surprising
since from the change of variable (3.8) we see that l̃2 needs to be a homogeneous poly-
nomial of degree two in the u and v integration variables. Inverting (3.8) we find that
l̃2 ∼ 2uvB · C − u2m2

C − v2m2
B. When we evaluate the integrand at the pole positions

u = −iε, v = −iε in the integration path, we obtain l̃2 ∼ ε2 → 0. For this reason, we only
consider the expansion coming from the second-order derivatives of the momenta that,
expressed in terms of the u and v variables, is given by

I1 =− 1
(s− s0)

∫
du dv

(2π)28i∆BC

1
u+ iε

1
v + iε

× 1
dB′2

ds −
∆B′C
∆BC

u− ∆B′B
∆BC

v + iε

1
dC′2

ds −
∆C′C
∆BC

u− ∆C′B
∆BC

v + iε

× 1
2

[
d2B′2

ds2
1

dB′2

ds −
∆B′C
∆BC

u− ∆B′B
∆BC

v + iε
+ d2C ′2

ds2
1

dC′2

ds −
∆C′C
∆BC

u− ∆C′B
∆BC

v + iε

]
.

(3.13)

Once again the integration is simple and can be performed by closing the u and v contours
in the lower half complex plane

I1 = − 1
(s− s0)

i

8∆BC

1
dB′2

ds

1
dC′2

ds

× 1
2

[
d2B′2

ds2

dB′2

ds

+
d2C′2

ds2

dC′2

ds

]
. (3.14)

Following the convention (3.5), by summing the leading and subleading terms (3.11)
and (3.14), we see that the singular part of the box integral is

I(sing) = i

8∆BC

 1
dB′2

ds

∣∣∣
B,C

(s− s0) + 1
2
d2B′2

ds2

∣∣∣
B,C

(s− s0)2

× 1
dC′2

ds

∣∣∣
B,C

(s− s0) + 1
2
d2C′2

ds2

∣∣∣
B,C

(s− s0)2


(sing)

. (3.15)

In performing the integration we have broken the loop. The B- and C-propagators, having
poles in the u- and v-variable inside the complex contour, have disappeared leaving only
a flux term i

8∆BC
coming from the Jacobian in (3.9). The propagators with respect to

which we took the residues have been cut and what remains is the product between a
3-point vertex and a 5-point diagram where the particles B′ and C ′ propagate, as depicted
in figure 4. The Landau singularity corresponds exactly to the singular part of such a
tree-level graph. The problem of computing the loop reduces then to a classical problem
of evaluating the derivatives of the momenta around s = s0 in a tree-level diagram. The
correspondence is illustrated in figure 4.

We now show how to find the derivative of B′2 with respect to s; the remaining
computation can be performed similarly. We label by ŪbC the angle between the sides pb
and C in the on-shell dual diagram in figure 2 and by Ūab the angle between the incoming
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pa

pb pa

pb

C

B′
C′

B

∼

∼

pb

pa

pb

pa

C

B′
B

C′

Figure 4. Singular part of the box integral written as the product of a vertex and a tree-level 5-
point diagram. The Jacobian i

8∆BC
is omitted in the picture. Note that, both here and in figure 2,

the faces of the dual diagram are mapped to the vertices of the Feynman diagram only after the
former has been rotated by 90◦ anticlockwise.

momenta pa and pb. Then we can write

B′2 = m2
b +m2

C − 2mbmc cos ŪbC
s = m2

a +m2
b − 2mamb cos Ūab.

(3.16)

Since all the sides of the triangle ∆aBC (the small triangle on the top part of the parallel-
ogram in figure 2) are fixed we have dŪab = d(ŪaC + ŪbC) = dŪbC , therefore the derivative
of B′2 respect to s at the pole is given by

dB′2

ds
=

dB′2

dŪbC

ds
dŪab

= 2imbmc sin ŪbC
2imamb sin Ūab

= ∆B′C

∆ab
(3.17)

Similarly, it is possible to obtain

dC ′2

ds
= −∆BC′

∆ab

d2B′2

ds2 = d2C ′2

ds2 = p2
b

8
∆BC

∆3
ab

.

(3.18)

To get the Feynman diagram result we still need to multiply by the remaining 3-point
couplings, one for each vertex entering into the box. We split the Feynman diagram, as we
did for the box integral, into a second-order singularity and a first-order one

D(sing) = D2 +D1.
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Then using the area rule in (2.2) and the expressions in (3.17), (3.18), after having checked
that the product of the 3-point couplings is positive (this will be proved in the next section),
we obtain

D2 = −32i
(
β√
h

)4 ∆2
ab∆B′C′

(s− s0)2

D1 =
(
β√
h

)4 i

s− s0
× 2∆BC∆B′C′

∆B′C∆BC′
(∆BC′ −∆B′C)p2

b .

(3.19)

The formulae in (3.19) give the second- and first-order poles of the box diagram depicted
in figure 2 at order β4. This result, however, is not universal; in particular, it involves
the different triangle areas appearing in the on-shell diagram and therefore depends on the
theory and process under consideration. We are still far from a general formula similar
to the bootstrapped result of (A.5). To get the full answer we need to sum over all the
singular graphs of a bigger network [23] to which the box diagram so far studied belongs.

3.2 The second-order pole network

Given one Feynman diagram contributing to the second-order pole, as is the case of the
box graph previously studied, a network of four singular diagrams can be generated via
the flipping rule. These diagrams are shown in figure 5 and are connected by changing
internal propagators with type II flips. Suppose we start from diagram (1) in figure 5,
which is exactly the box diagram studied in the previous section. If we look at the r.h.s.
part of the on-shell description of the box, we note that it involves a 4-point non-allowed
process having for external states particles with momenta B, B′, pa and pb, and for internal
propagator C ′. Since this sub-process contained in the loop is forbidden, we can apply a
flip of type II, in which we cross the order of B and B′ and we change the propagator from
C ′ to C. In this manner, we obtain a new singular diagram, (2) in figure 5. This is the same
type of flip that connects the two tree-level diagrams in figure 1. This type of flipped move
can be repeated until we obtain the full network composed of four on-shell diagrams (1),
(2), (3) and (4). The reason why only flips of type II enter into the network, and not the
other types discussed in [5], is that, as remarked earlier, at the second-order pole position
no on-shell bound states propagate in the direct or crossed channels. Therefore in the
parallelogram with sides equal to the external on-shell momenta, the two diagonals, which
have lengths √s0 and

√
2m2

a + 2m2
b − s0, do not correspond to any propagating on-shell

bound states. This holds for all rapidity values corresponding to even order poles.
Each diagram can be computed in a similar way to that explained in the previous sec-

tion. Given a generic diagram, we only need to understand what are the internal momenta
with respect to which all the others are negative linear combinations, in such a way to have
a complex contour enclosing nicely the poles in the u and v integration variables. As we
have shown in (3.7) such momenta are B and C in diagram (1), and also in diagram (3)
since it is a rotation of (1). This means that the two diagrams are equivalent and both are
obtained by cutting the B and C propagators, and inserting a flux factor coming from the
Jacobian of the transformation of variables. They return, up to extra three-point vertices,

– 13 –
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Figure 5. A network of singular Feynman diagrams (on the left) and their on-shell dual descriptions
(on the right).

the expression in (3.15), which is proportional to a singular tree-level diagram with five ex-
ternal legs. Similarly in diagram (2) the momenta with respect to which all the remaining
vectors are negative linear combinations can be read from its on-shell description on the
r.h.s. of figure 5. They are B and B′ with respect to which C is given by

C = −∆B′C

∆BB′
B − ∆BC

∆BB′
B′.

This means that the B and B′ propagators are cut once we perform the loop integral and
the singular part of the crossed box diagram (2) is broken into the product of two equal
4-point processes having as external on-shell momenta pa, pb, B and B′. It is given by

I(2) = i

8∆BB′

 1
dC2

ds

∣∣∣
B,B′

(s− s0) + 1
2
d2C2

ds2

∣∣∣
B,B′

(s− s0)2

× 1
dC2

ds

∣∣∣
B,B′

(s− s0) + 1
2
d2C2

ds2

∣∣∣
B,B′

(s− s0)2


(sing)

. (3.20)

Similarly, the singular part of the integral associated with the fourth diagram is

I(4) = i

8∆CC′

 1
dB2

ds

∣∣∣
C,C′

(s− s0) + 1
2
d2B2

ds2

∣∣∣
C,C′

(s− s0)2

× 1
dB2

ds

∣∣∣
C,C′

(s− s0) + 1
2
d2B2

ds2

∣∣∣
C,C′

(s− s0)2


(sing)

. (3.21)
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Now we have to pay attention to one thing. When expand these last two expressions in
(s − s0) we need to take into account that the areas ∆BB′ and ∆CC′ , coming from the
Jacobian of the change of variables, depend on s. Indeed the sides composing the triangles
∆BB′ and ∆CC′ are respectively mB, mB′ ,

√
s and mC , mC′ ,

√
2m2

a + 2m2
b − s. Since

we want to evaluate the s-expansion of the integrals we also need to Taylor expand such
Jacobian factors. In the case of ∆BB′(s) we note that

∆BB′(s) = 1
2mBmB′ sin ŪBB′(s)

where ŪBB′(s) depends on s through

s = m2
B +m2

B′ − 2mBmB′ cos ŪBB′(s),

where we follow the convention used previously to define the angle. Therefore we obtain

d∆BB′(s)
ds

=
d∆BB′
dŪBB′
ds

dŪBB′

= 1
4 cotan ŪBB′(s)

and the expansion of the flux factor in front of (3.20) is given by

1
∆BB′(s)

= 1
∆BB′(s0)

[
1− (s− s0)

4∆BB′(s0) cotan ŪBB′(s0) + . . .

]
.

A similar relation can be found for ∆CC′(s). Expanding the expressions in (3.20), (3.21)
with these further considerations, inserting additional 3-point vertices as given in (2.2) and
substituting the correct values of the momentum derivatives we obtain that the contribu-
tions to the double and single poles in (s− s0), given by the diagrams in figure 5, are

D
(1)
2 = D

(3)
2 = −32i

(
β√
h

)4 ∆2
ab∆B′C′

(s− s0)2

D
(2)
2 = 32i

(
β√
h

)4 ∆2
ab∆BB′

(s− s0)2

D
(4)
2 = 32i

(
β√
h

)4 ∆2
ab∆CC′

(s− s0)2 .

(3.22)

and

D
(1)
1 = D

(3)
1 =

(
β√
h

)4 i

s− s0
× 2∆BC∆B′C′

∆B′C∆BC′
(∆BC′ −∆B′C)p2

b

D
(2)
1 =

(
β√
h

)4 i

s− s0
×
[
−4∆B′C∆BC′

∆BC
p2
a − 4∆BC∆B′C′

∆B′C
p2
b − 4∆abpa · pb

]

D
(4)
1 =

(
β√
h

)4 i

s− s0
×
[
4∆B′C∆BC′

∆BC
p2
a + 4∆BC∆B′C′

∆BC′
p2
b − 4∆abpa · pb

]
.

(3.23)

In these two sets of expressions the subscript index (2 or 1) indicates the order of the pole
in (s− s0), a superscript index ((1),(2),(3) or (4)) labels the contributing diagram, and all
triangle areas ∆ are evaluated at s = s0.
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A necessary ingredient to reproduce the correct sign in each term in (3.22) and (3.23) is
to know the products of the different 3-point couplings. To understand, for each Feynman
diagram, what sign results from multiplying the different couplings together we note that
the graphs in figure 5 are connected by type II flips. This implies that the product between
the f -functions, defined in (2.2), does not change passing from one diagram to one other:

fBaC̄fCbB̄′fB′āC̄′fC′b̄B̄ = |fBaC̄ |2|fCbB̄′ |2 = fB̄āCfC̄b̄B′fB̄′aC′fC̄′bB

= |fB̄āC |2|fC̄′bB|2 =
( 4β√

h

)4
.

(3.24)

Since the common value is certainly positive in diagrams (2) and (4), we conclude that
the product of the different f -functions, entering in the 3-point couplings, is positive and
satisfies (3.24).

The sum of the double pole contributions in (3.22) simplifies once we note that ∆B′C′−
∆BB′ = ∆BC′ , ∆B′C′ − ∆CC′ = ∆B′C and ∆BC′ + ∆B′C = ∆ab. Summing the four
contributions in (3.22) we obtain

4∑
n=1

D
(n)
2 = −32i

(
β√
h

)4 ∆3
ab

(s− s0)2 . (3.25)

Similarly the sum of the quantities in (3.23) returns a simple expression given by

4∑
n=1

D
(n)
1 = −8i

(
β√
h

)4 ∆ab

(s− s0)pa · pb. (3.26)

It is worth noting that in contrast to the tree level situation, where singularities in sums
of Feynman diagrams connected by one flip cancel in two to two non-diagonal processes,
here the sums of the poles appearing in the different contributions in (3.22) do not sum
to zero. The reason this happens is that when we cut loop diagrams into products of
tree-level graphs, the loops are broken in different ways from one diagram to one other.
For example, diagram (2) in figure 5 is cut into two non-diagonal 2 to 2 tree-level graphs,
having removed the propagators B and B′ thorough the cut. However, diagram (1) is cut
into one 3-point vertex and a 5-point tree-level diagram. Therefore the values of diagrams
(1) and (2) on the pole do not differ by two different on-shell 4-point Feynman diagrams of
the form in 1, since in diagram (1) the tree-level diagram appearing after the cut contains
5 external on-shell particles. We will investigate how to recover possible simplifications in
the evaluation of loop diagrams connected by flips, similarly to what we observe at the tree
level, in a companion paper [31].

The expressions in (3.25) and (3.26) arise by summing just one network of singular
diagrams. Even though we do not have a universal proof of this fact, it turns out that if the
highest order pole in (1.1) is 2N there are a total of N different (and disconnected) networks
of the type depicted in figure 5 that are on-shell at the pole location.4 Each network

4Related observations about the counting of subtilings can be found in [23].
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contributes to the double and single poles with factors (3.25) and (3.26) respectively so
that, for a pole of highest order P = 2N , we obtain

N

[
−32i

(
β√
h

)4 ∆3
ab

(s− s0)2 − 8i
(
β√
h

)4 ∆ab

(s− s0)pa · pb
]
. (3.27)

Before writing (3.27) in terms of the rapidity to compare it with the Laurent expan-
sion (1.1), we need to consider all the remaining Feynman diagrams yielding simple poles
in (s− s0) at one loop.

3.3 The first-order pole network

In the previous section we have evaluated, in (3.27), the sum of Feynman diagrams con-
tributing to the pole at order (s−s0)−2 , and their subleading expansion of order (s−s0)−1.
In order to reproduce the correct value of b1 in (1.1), we still need to add to (3.27) all the
loop diagrams having simple singularities at s = s0, i.e. diagrams which have only three
internal on-shell propagators when s = s0. We remark that the possibility of having order
one singularities generated by on-shell bound states in the direct or crossed channel is
excluded since, as already remarked in the introduction, the coefficient a1 in (1.1) is null,
meaning that the tree-level S-matrix is non-singular at the pole rapidity value. Due to this
fact, the only possible graphs contributing to the first order pole in the Laurent expansion
of the S-matrix are anomalous threshold diagrams: they are the configurations where we
can find a point ‘o’ internally to the parallelogram defined by the on-shell momenta pa, pb,
such that three of the four segments obtained by connecting ‘o’ with the vertices of the
parallelogram have lengths equal to the masses of the propagating particles. Graphs of this
type are all candidates to yield a pole of order one. However this is a necessary, but not
sufficient, condition for a diagram to contribute to the singularity. At this point, we need
to exclude all the diagrams that, due to their geometry, have zero residue at s = s0. This
is the case if the graph is of the type depicted in the first row of figure 6. As explained
in section 3.1, since the loop integration variable carries two degrees of freedom, we can
choose two among the three propagators which diverge at s = s0, and have them on-shell
at l = (0, 0) also away from the pole position. Referring to figure 6 we can set F 2 = m2

F

and G2 = m2
G. Since all the freedom has been already used to fix such momenta, now E is

completely determined; it is not on-shell for s arbitrary but it reaches its mass-shell value
only on the pole

E2 −m2
E = dE2

ds

∣∣∣
F,G

(s− s0).

After rescaling l = (s− s0)l̃ and adopting the usual change of variables

2F · l̃ = u , 2G · l̃ = v , 2E · l̃ = ∆EG

∆FG
u+ ∆EF

∆FG
v,

the residue at the pole is given by

1
8i∆FG

∫
dudv

(2π)2
1

u+ iε

1
v + iε

1
dE2

ds + ∆EG
∆F G

u+ ∆EF
∆F G

v + iε
× FDabGF (s0),
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pa

pb pa

pb
F

E

G

o = 1
(s−s0)

1
8i∆F G

∫
dudv
(2π)2

1
u+iε

1
v+iε

1
dE2

ds + ∆EG
∆F G

u+ ∆EF
∆F G

v+iε
× FDabGF (s0)

pa

pb pa

pb
F

E

G

o = 1
(s−s0)

1
8i∆F G

∫
dudv
(2π)2

1
u+iε

1
v+iε

1
dE2

ds −
∆EG
∆F G

u−∆EF
∆F G

v+iε
× FDabGF (s0)

Figure 6. On the first row is an example of a diagram that could in principle contribute to the
pole at order (s− s0)−1 but it is zero. This is because all the simple poles in the u- and v-variable
lie in the same half-plane, since E is a positive linear combination of F and G. The diagram on the
second row instead contributes to the pole with a result different from zero. In both the expressions,
FDabGF (s0) represents any tree level diagram with external insertions pa, pb, G and F which is
finite at the position s = s0.

where we have labelled with FDabGF (s0) the part of the loop which is finite at the pole,
whatever combination of vertices and propagators it corresponds to. We see that in the
expression above there exists a (u, v)-path in the complex plane which does not contain any
poles and the integral is trivially equal to zero. This is because the vector E is a positive
linear combination of F and G. To find the Feynman diagrams which do contribute to
the pole at order (s − s0)−1 with non-zero integrals the following condition needs to be
satisfied: if A1, A2 and A3 are the internal momenta becoming on-shell at the pole they
need to satisfy

3∑
i=1

γiAi = 0 with γi > 0 ∀ i = 1, 2, 3. (3.28)

In other words, any momentum can be expressed as a negative linear combination of the
other two. This condition is satisfied only if the angles defined between the arrowheads
pointing towards ‘o’ are all less than or equal to 180◦, as shown in the diagram in the second
row of figure 6. In this situation, we see that E is indeed a negative linear combination
of F and G. Therefore, the problem of finding graphs contributing to the simple pole
amounts to finding all the Feynman diagrams whose internal on-shell momenta respect the
condition (3.28).

For a pole of maximal order 2N in (1.1), we can organise the Feynman diagrams
contributing with anomalous simple poles at the order β4 into N separate sets, one for
each network of the type in figure 5. Let us suppose that the graph in the second row in
figure 6 contributes to the pole at order (s−s0)−1, having a point in the integration region
where the internal particles {E,F,G} are on-shell. In such a situation it has to be possible
to tile the r.h.s. part of the diagram, as we did for the l.h.s. , with the same particles
{E,F,G}, generating a graph of the same type of diagram (2) in the network 5. Therefore
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∑
j

pa

pb pa

pb

C

B′

B

FD(j) =

∑
j

pa

C

pb

B

B′

F D(j)

pb

pa

=

−

pa

pb

B′

B

C ×

pa

pb

B′

B

C′

−

pa

pb

B

C

B′

×

B

B′

C′

pb

pa

+

pa

pb

B

B′

C

+
B′

B

C

pb

pa

Figure 7. Sum over diagrams contributing to the pole at order (s− s0)−1 and containing on-shell
momenta B, B′ and C (on the left-hand side). The blob FD(j) is any finite tree-level graph having
for external states B, B′ pa and pb. Since in a tree-level non-allowed 4-point process the sum
over all the finite Feynman diagrams plus the pair of singular ones, in which on-shell bound states
propagate, is zero, the sum over the FD(j)s yields the two singular diagrams in square brackets on
the right-hand side.

the existence of the diagram in the second row of figure 6 implies the existence of a diagram
of the same form of diagram (2) in one of the N disjoint networks of type in 5. Since all the
N networks have the same structure it is not restrictive to assume that {E,F,G} belong to
the network in figure 5, and therefore are {C,B,B′}. The same argument can be repeated
identically for the situation in which the on-shell internal particles are {C,C ′, B}.

Focusing on the case in figure 7, where the internal on-shell propagators are {B,B′, C},
we define as integration variables 2B · l̃ = u and 2B′ · l̃ = v. Then 2C · l̃ is a negative linear
combination of them:

2C · l̃ = −∆B′C

∆BB′
u− ∆BC

∆BB′
v.

The sum over all the loop integrals presenting such internal propagating particles can
therefore be written as∑
j

1
(s− s0)

1
8i∆BB′

∫
dudv

(2π)2
1

u+ iε

1
v + iε

1
dC2

ds

∣∣∣
B,B′
− ∆B′C

∆BB′
u− ∆BC

∆BB′
v + iε

FD
(j)
abBB′(s0)× 2

= 1
(s− s0)

i

8∆BB′

1
dC2

ds

∣∣∣
B,B′

∑
j

FD
(j)
abBB′(s0)× 2. (3.29)

On the right-hand side of the equality, we have simply computed the integral by closing the
u and v contours in the lower half complex plane. The multiplicity factor 2 at the end of
the equation is because, for any j, there are exactly two copies of such diagrams, connected
by inverting the direction of the arrows and rotating the on-shell parallelogram by 180◦.
The term FD

(j)
abBB′(s0) is any tree-level diagram having as external states pa, pb, B and

B′ which is finite at the pole position s = s0 in such a way to not generate higher-order
singularities. At this point, we need to sum over all of these finite tree-level diagrams
contributing to the scattering of pa, pb, B, B′. In doing this an important property of

– 19 –



J
H
E
P
0
9
(
2
0
2
2
)
2
2
0

the tree level integrability of the theory comes to our aid. Since the process involving
the scattering of pa, pb, B, B′ is inelastic, and therefore forbidden, the sum over all the
Feynman diagrams contributing to such process needs to be null. Such a sum contains all
the diagrams that are finite at the value s = s0, i.e. the terms FD(j)

abBB′ in (3.29), plus two
singular contributions in which the on-shell bound states C and C ′ propagate. Since the
total sum is null, the term ∑

j FD
(j)
abBB′(s0) is equal to minus the two diagrams in which C

and C ′ propagate and the expression in (3.29), after having inserted the 3-point couplings,
can be written as

R(1) = − 1
(s− s0)

i

8∆BB′

CaBC̄CCbB̄′
dC2

ds

∣∣∣
B,B′

[
CB̄b̄C′CC̄′B′ā
C ′2 −m2

C′
+ CB′b̄C̄CCB̄ā

C2 −m2
C

]
× 2. (3.30)

A pictorial representation of the identity is shown in figure 7. Even though the expression
in square brackets in (3.30) may seem to contain a further pole, since when s = s0 the C
and C ′ momenta are on-shell, as we explained in section 2 that is not the case. The pair
of diagrams indeed have singularities that cancel each other, and what remains is a finite
contribution given by Taylor-expanding C2 and C ′2 to second order in (s− s0)

R(1) = 1
(s− s0)

i

16∆BB′

CaBC̄CCbB̄′
dC2

ds

[
CB̄b̄C′CC̄′B′ā

d2C′2

ds2(
dC′2

ds

)2 +CB′b̄CCC̄B̄ā
d2C2

ds2(
dC2

ds

)2
]
×2. (3.31)

In the expression above the derivative needs to be performed keeping the lengths of the
momenta pa, pb, B and B′ fixed on their respective on-shell values. The products of the
3-point couplings are the same as those appearing in the second-order pole network: they
are always positive and after some computations, it is possible to check that

R(1) = i

(
β√
h

)4 2∆ab

s− s0

[
p2
a

∆B′C∆BC′

∆BC∆B′C′
+ p2

b

∆BC∆B′C′

∆B′C∆BC′
+ 2pa · pb

]
× 2. (3.32)

A similar computation for the set of diagrams with internal on-shell propagators {C,C ′, B}
yields

R(2) = i

(
β√
h

)4 2∆ab

s− s0

[
−p2

a

∆B′C∆BC′

∆BC∆B′C′
− p2

b

∆BC∆B′C′

∆B′C∆BC′
+ 2pa · pb

]
× 2. (3.33)

Summing (3.32) and (3.33) we obtain

R(1) +R(2) = 16i
(
β√
h

)4 ∆ab

s− s0
pa · pb. (3.34)

If there are N disjoint networks of the form in figure 5 the computation needs to be
repeated N times so that the sum of all the diagrams contributing to the order one pole
in (1.1) is

N

[
16i
(
β√
h

)4 ∆ab

s− s0
pa · pb

]
. (3.35)

Summing (3.27) and (3.35), the singular part of the amplitude at the order β4 is

M
(sing,β4)
ab = N

[
−32i

(
β√
h

)4 ∆3
ab

(s− s0)2 + 8i
(
β√
h

)4 ∆ab

s− s0
pa · pb

]
. (3.36)
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Figure 8. Two networks which contribute to a 4th-order pole in the e(1)
8 affine Toda theory.

The pole is at θ0 = 13π
30 where the S-matrix element is S45(θ) ∼ {12}2{14}2 in the notation of

appendix A. Only the lightest six of the eight particles present in the model contribute to these
networks; they are labelled in increasing order of mass m1 < m2 < . . . < m6. Bullets have been
added inside the triangles and parallelograms that can be subtiled.

Before comparing with the bootstrapped S-matrix we should divide this expression by
the proper normalisation factor coming from the Dirac delta function of overall energy-
momentum conservation, to obtain

S
(sing,β4)
ab (θ) = 1

4mamb sinh θM
(sing,β4)
ab = 1

8i∆ab

[
1 + i cotan θ0(θ − iθ0) + . . .

]
M

(sing,β4)
ab .

Noting that pa · pb = mamb cosh iθ0 = 2∆ab cotan θ0, and writing the Mandelstam variable
s in terms of the rapidity difference θ so that

1
s− s0

= 1
2mamb

(
cosh θ − cosh iθ0

) = 1
4i∆ab

(
θ − iθ0

)[1 + i

2 cotan θ0
(
θ − iθ0

)
+ . . .

]
,

the simple pole terms in (θ − iθ0) cancel and we end up with

S
(sing,β4)
ab (θ) =

(
β√
2h

)4 N

(θ − iθ0)2 . (3.37)

This implies the values a2 = N and b1 = 0 for the order β4 coefficients of the expan-
sion (1.1). They have a universal form, not depending on the simply-laced theory under
consideration, and match perfectly with the bootstrapped result (A.5).

To illustrate some of the issues that arise when extending this result to higher orders,
figure 8 shows the two copies of the network discussed above that appear in the e(1)

8 affine
Toda model at one particular 4th-order pole. Since in this case N = 2 there are two
networks, both contributing to the double and single pole coefficients at order β4. However
the two networks, that appear separated at one loop, are connected if we look at higher
loop orders. Some of the tiles composing the parallelogram corresponding to the on-shell
process can be additionally tiled into sub-pieces, and the networks that look disjoint at one
loop can be connected by flipping internal propagators. This means that even finding all
the on-shell diagrams contributing to the coefficient a4 in the Laurent expansion of the S-
matrix is a very difficult task. To achieve the goal, we should further tile all the constituents
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of figure 8 containing a bullet. The Feynman diagrams generated in this way contain three
loops, and from them, by flipping propagators, we should try to generate the full network
of singular diagrams. The total number of these singular diagrams is very large and is
connected with the concept of the depth of a diagram, introduced in [23]. Investigating
the higher loop structure of the diagrams is necessary to capture all the coefficients of
the Laurent expansion, up to order (θ − iθ0)−2N in formula (1.1), but we leave further
discussion of this point for a companion publication [31].

It is also important to remark that is possible to add further vertices to the on-shell
diagrams in figure 8 which do not increase the order of the pole. This corresponds to
evaluating higher powers of β contributing to the coefficient at order p = 2 in (1.1).

4 Conclusions

The mechanism responsible for the generation of first- and second-order singularities present
in the Laurent expansion of the S-matrix around a generic even-order pole has been in-
vestigated up to order β4, which is one-loop in perturbation theory, for the entire class of
ADE affine Toda models.

Once all relevant diagrams were summed, the results we found became universal, not
depending on the particular theory or process considered. In all cases we have shown that
the loop integrals in the neighbourhood of the Landau singularity can be broken into the
product of tree-level graphs and the expected pole residues are recovered by exploiting the
tree-level integrability properties of the model. The additional multiplicity factor N found
in the bootstrapped formula (A.5) at a 2N th order singularity is reproduced in perturbation
theory noting that at the value of the rapidity θ = iθ0 there are exactly N copies of the
network in figure 5 contributing to the final result. Through our study we have shown that
the low-order coefficients of the Laurent expansion of the S-matrix at a general even-order
pole (as given in equation (1.1)) are a1 = b1 = 0 and a2 = N .

The knowledge of all the coefficients of the Laurent expansion at the poles is a necessary
ingredient to reconstruct the scattering using the so-called dispersion relation, that connects
the S-matrix evaluated at a generic point of the Mandelstam variable s to its values at the
poles and cuts. A further study of higher-order singularities and how to reduce bigger
networks of Feynman diagrams contributing to Landau singularities to simple expressions
will be the subject of a companion paper [31].

The axiomatic procedure used in the past to determine the S-matrices of a variety of
(1+1)-dimensional integrable theories, though passing many non-trivial tests, relies on a
sequence of conjectures, and its connection with the usual perturbative approach remains to
be fully understood. For example, the mechanism by which Feynman diagrams contributing
to non-elastic processes sum to zero is still unknown, apart from at tree level [5], as is a
full understanding of the emergence of higher-order singularities. It would be interesting
to recover the perturbative integrability of these models entirely from the underlying Lie
algebra in a universal way; in this light, this work represents a further step in that direction.
We expect that the answers, at least for the class of ADE affine Toda models, should be
hidden in the root system underlying the theory [15], from which the on-shell momenta at
the pole positions are projected.
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A Even order singularities in the bootstrapped S-matrix

The S-matrices of simply-laced affine Toda theories can be written in terms of building
blocks [7]

{y} = (y + 1)(y − 1)
(y − 1 +B)(y + 1−B) (A.1)

where

(y) ≡
sinh

(
θ
2 + iπy

2h
)

sinh
(
θ
2 −

iπy
2h
) and B ≡ 1

2π
β2

1 + β2

4π
.

In this expression θ is the difference between the rapidities of the interacting particles and
β is the Lagrangian coupling present in (2.1). The S-matrix is a product over such building
blocks (also called bricks) which can be written schematically as

Sab(θ) =
h−1∏
y=1
{y}N

(y)
ab .

The exponents N (y)
ab of the different bricks are non-negative integer coefficients depending

on the point y at which they are evaluated, and also on the particles a and b scattered;
they can be expressed in terms of root system data [15]. A feature of simply-laced affine
Toda theories is that, for a given S-matrix element Sab, the non-zero multiplicities of its
building blocks are all located at even or odd values of y. In other words, one of the two
following conditions has to hold

• N
(2k)
ab = 0 ∀ k ∈ N;

• N
(2k+1)
ab = 0 ∀ k ∈ N.

This fact, already noted in [7], was explained in [15, 16] and relies on the properties of
root systems. Each building block {y} has two simple poles, at purely imaginary rapidities
θ = iπ

h (y ± 1). In this paper we are interested in studying even-order poles due to bricks
of equal multiplicity that touch each other, i.e. to the situation N

(x−1)
ab = N

(x+1)
ab = N .

This is in fact the only way that even-order poles can arise [16]. In particular we focus on
singular terms arising from the S-matrix expansion around such pole positions up to order
β4 in the coupling expansion.
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The singular expansion of the bricks around the pole position θ0 = πx
h up to order B2

(which includes all powers of β less than or equal to β4) has the following form

{x− 1} = 1 +B

(
a−

θ − iθ0
+ b− + . . .

)
+B2

(
c−

θ − iθ0
+ . . .

)
+ . . . ,

{x+ 1} = 1 +B

(
a+

θ − iθ0
+ b+ + . . .

)
+B2

(
c+

θ − iθ0
+ . . .

)
+ . . . ,∏

y 6=x±1
{y}

∣∣Nab(y)
θ=iθ0

= 1 + eB + . . .

(A.2)

where the letters a−, a+, b−, b+ and e label the coefficients of the double expansion, and
we have omitted all terms which cannot contribute to the singular part of the S-matrix at
θ = iθ0, up to order B2, in any product of these blocks. By expanding the blocks first with
respect to B and then around the pole θ = iθ0, it is easy to check the following identities:

a− = −a+ = iπ

h
,

(c− + c+) = iπ

h
(b− − b+).

(A.3)

The only way in which the term eB in (A.2) can contribute to the pole at the power of B
that we are interested in is when it multiplies the quantities proportional to a−

θ−iθ0
and a+

θ−iθ0

{x− 1}N{x+ 1}N
∏

y 6=x±1
step 2

{y}Nab(y)  N
eB2

θ − iθ0
(a+ + a−),

and this is zero by the first identity in (A.3). Taking into account that a− = −a+ = iπ
h the

singular part of the S-matrix close to the 2N -order pole, up to order B2, is then given by
Sab(θ) ∼ {x− 1}N {x+ 1}N

= B2
[
π2

h2
N

(θ − iθ0)2 + N

θ − iθ0

(
(c− + c+)− iπ

h
(b− − b+)

)]
+ . . .

(A.4)

We see that at order B no singular term appears. Moreover the coefficient of 1
θ−iθ0

at order
B2 vanishes by the second equality in (A.3). Expanding B in terms of the Lagrangian
coupling β

B = β2

2π +O(β4)

we conclude that up to order β4, the only singular term is a second-order pole, with all
simple pole contributions cancelling due to the structure of the coefficients of the building
blocks:

Sab(θ) =
(
β2

2h

)2 N

(θ − iθ0)2 + . . . (A.5)

Comparing (A.5) with the Laurent expansion (1.1) confirms that the values of the coeffi-
cients extracted from the bootstrapped S-matrix are a1 = b1 = 0 and a2 = N . Higher-order
singularities of the form (θ − iθ0)−p, with 2 < p ≤ 2N , are also present in the full Laurent
expansion of the S-matrix for N > 1, but they contain powers of the coupling greater than 4
and we exclude them from the present analysis since we are only considering contributions
generated by one-loop diagrams.
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B Deformations of integration surfaces

In this appendix, we justify why the loop integrations in section 3 must be performed
over regions with purely imaginary l1. Let us consider a generic loop propagator with a
denominator

f(l) ≡ (P + l)2 −m2
A + iε, (B.1)

where P is a vector determined by the external kinematics, mA is the mass of the propa-
gating particle and l = (l0, l1) is the loop momentum over which we need to integrate. For
purely imaginary values of the rapidities of the external particles, P will be given by

P = mP (cosu, i sin u), (B.2)

where mP is a positive quantity, corresponding to the length of the vector P , and depends
on the external momenta. The parameter u is instead a real number belonging to the
interval [0, 2π). To find the zeros of f(l), corresponding to the poles of the propagator,
we need to solve the equation f(l) = 0; we choose to solve this equation, which can be
written as

l21 + 2imP sin u l1 + (m2
A −m2

P − 2mP cosu l0 − l20 − iε) = 0, (B.3)

in the variable l1. From (B.3) we see that, for l0 real, there are no purely imaginary
solutions l1. This is evident by the fact that, if l0 ∈ R and il1 ∈ R, the only imaginary
term in (B.3) is iε. On the contrary, for l0 ∈ R, there can be in general solutions for l1 on
the real spatial axis. We show this in some more detail. The two solutions of (B.3) are
given by

l
(±)
1 = −imP sin u±

√
(mP cosu+ l0)2 −m2

A + iε, (B.4)

which expanded in small ε become

l
(±)
1 = −imP sin u±

√
(mP cosu+ l0)2 −m2

A

(
1 + iε

(mP cosu+ l0)2 −m2
A

)
. (B.5)

Let us consider the case u = 0 first; this should be imagined as the case in which the
external particles entering the loop have zero rapidities. In this case, the solutions are

l
(±)
1 = ±

√
(mP + l0)2 −m2

A ·
(

1 + iε

(mP + l0)2 −m2
A

)
(B.6)

and are depicted in figure 9 for different real values of l0. The markers close to the real
axis correspond to values of l0 at which (mP + l0)2 − m2

A is positive, while the markers
close to the imaginary axis correspond to the case in which such a quantity is negative.
The contour Γ in figure 9 does not enclose zeros of (B.1); therefore, if we integrate 1/f(l)
over Γ, we obtain zero. If we think to have a function

F (l) = 1
f1(l)f2(l) . . . ,
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Figure 9. Solutions l(+)
1 (in blue) and l(−)

1 (in orange) in the case u = 0 for different real values of
l0. The red contour Γ does not enclose poles of the propagator.

where each fj(l) is the denominator of a certain propagator, then at zero external rapidities
(where all the different angles u, one for each propagator, are zero) it holds that∮

Γ
F (l) = 0.

If we close the contour Γ at infinity so that the two arc contributions are suppressed then
it has to hold ∫ +∞

−∞
dl1F (l) =

∫ −i∞
+i∞

dl1F (l).

This implies that the Feynman diagram having as integrand F (l) can be equivalently be
written as

D =
∫ +∞

−∞
dl0

∫ +∞

−∞
dl1F (l) =

∫ +∞

−∞
dl0

∫ −i∞
+i∞

dl1F (l). (B.7)

If we continue from our starting-point to imaginary values of the rapidities of the
external particles then, at real values of l0, poles can cross the real axis of l1. For example, if
we consider the solution l(+)

1 in (B.5) for u slightly bigger than 0 and in the case (mP cosu+
l0)2−m2

A > 0, then we note that Im(l(+)
1 ) < 0. When u is turned on, the blue markers close

to the real axis in figure 9 cross the real axis and acquire a negative imaginary part. As a
consequence of this fact, if we want to analytically continue the first equality in (B.7) to
u 6= 0, integrating over real l0, the integration path of l1 cannot be real anymore. This path
has to be deformed below the positive side of the real axis in such a way to avoid the poles.
Due to this fact, the first equality in (B.7) is not true anymore. However, since the poles
never cross the imaginary axis, the second equality in (B.7) still holds and the Feynman
integral can still be consistently reproduced by integrating over purely imaginary l1.
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