
PHYSICAL REVIEW FLUIDS 8, 014701 (2023)

Flow separation from polygonal cylinders in an incident flow
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In this paper, we carry out large eddy simulation of incident flow around polygonal
cylinders of side number N = 5−8 at Reynolds number Re = 104. In total, six incidence
angles (α) are studied on each polygon between the face and the corner orientations,
thus covering the entire α spectrum. It is found that the separated shear layers behind
the cylinders are highly dynamic, manifesting a flapping motion with frequency matching
the Strouhal frequency and strength varying significantly at different incidence angles. The
energy of the flapping motion is found to be a significant factor influencing the dynamic
flow separation behavior, the distribution of the separation points, and features of the time
mean shear layer, such as characteristic length and width. Equations for the separation
points are analytically derived and are found to be consistent with available experimental
results. The time mean penetration distance of the separated shear layers on the top and
bottom of the cylinders is found to be a robust scaling factor for the aerodynamic forces
and the near-wake length scales. Based on this, a wake deflection angle is proposed, which
is demonstrated to be a universal scaling factor for lift, drag, and Strouhal number, working
for all available polygonal and circular cylinder data. Finally, the critical separation angle
is empirically derived for the condition at which the Strouhal number is a maximum and
drag is minimized.

DOI: 10.1103/PhysRevFluids.8.014701

I. INTRODUCTION

Flow around a single stationary bluff body has been studied extensively for more than 200 years,
especially since the discovery of Kármán vortex streets. Previous research has mostly focused on
the flow around circular cylinders and a few other regular-shaped bluff bodies such as triangular,
rectangular, and square cylinders; see Williamson [1], Zdravkovich [2], Matsumoto [3], Thompson
et al. [4]. In addition to the effect of the Reynolds number, special attention has been paid to the
periodic vortex shedding process, usually quantified by Strouhal number St, the aerodynamic forces
including the time mean drag coefficient CD, and the fluctuating lift coefficient, as well as the
evolution of the vortex driven wake. The Reynolds number is usually defined by the streamwise
projected characteristic length scale of the bluff body D, the incoming free stream flow velocity
U∞, and the kinematic viscosity of the working fluid ν, i.e., Re = U∞D/ν. The behavior of these
physical processes are all fundamentally determined by the flow separation from the surface of the
bluff body and hence the roll-up into vortex streets from the separated shear layers [2].

Flow past polygonal cylinders of side number N generally resembles the flow around circular
cylinders, especially in terms of the formation of Kármán vortex streets for Re � O(102). However,
because of their quasiaxisymmetric shape, the local boundary layer separation behavior exhibits
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significant N dependence. For small N , the flow typically separates from a particular corner (edge
along the spanwise direction) on the top and bottom side of the cylinder, due to the abrupt change of
local pressure. These separation points are relatively insensitive to Re. In some cases, the separated
flow may reattach and then separate again from a downstream corner. Even though the corner angle
and the length of the face (for a given cylinder diameter) are both a monotonic function of N , the
exact pressure gradient and the associated boundary layer reattachment behavior (that determine
the overall aerodynamic performance and the near-wake flow structure) are strongly nonmonotonic
with side number N .

Until recently, studies on flow around polygonal cylinders of N > 4 remained scattered, even
though cylinders of N = 3 and 4 (triangular and square cylinders) have been well investigated
([5–12]). Tian and Li [13] studied a cylinder of N = 24 in a low-speed wind tunnel and found
a much lower critical transitional Reynolds number and a 40% lower drag with a lower level
of fluctuation compared to a circular cylinder under similar flow conditions. Tian and Wu [14]
theoretically investigated inviscid flow and low-Reynolds number (Re < 200) viscous flow around
two-dimensional polygonal cylinders at corner orientation for even values of N . Using conformal
mapping, they showed that for the inviscid flow case, the global pressure difference along the surface
is inversely proportional to the side number for sufficiently large values of N . For the viscous flow
case, however, by deriving the relation between the first critical Re and N , they found that this Re
monotonically decreases for steady flows and increases for unsteady flows as a function of N . Using
direct numerical simulations at Re = 100, 500, 1000, Khaledi and Andersson [15] studied flow past
hexagonal cylinders (N = 6) in principal orientations, viz. either a surface or a corner faces the
incoming flow direction. They found that St is slightly higher in face orientation. They further
explained that the Kármán vortices roll up closer to the body in the case of face orientation which
results in a shorter formation region and a higher St. They concluded that the wake behind the face
or corner oriented hexagonal cylinders resembles that of the square cylinder in the same orientation
and therefore the aft-body plays a minor role. Lee et al. [16] conducted two-dimensional numerical
simulations to investigate flow over regular and isotoxal-star polygonal cylinders at Re = 150 and
suggested that isotoxal-star polygons exhibit higher lift and drag compared to regular polygons.

In a wind tunnel experiment, Xu et al. [17] systematically studied the aerodynamic performance
and flow separation characteristics on polygonal cylinders of N = 2 ∼ 8, 12, 16 at their principal
orientations over 104 � Re � 105, utilising a combination of force measurement, flow visualisation
and planar particle image velocimetry (PIV). They found that flow transition to turbulence does
not occur for polygons of N � 8, reflected by Re insensitive CD and St values, as well as the
flow separation point location. They also proposed a formula for the corrected separation angle
ξ measured from the windward stagnation point (WSP), in the absence of the flow transition effect,
as

ξ = 180

π
×

{
π
2 − (

p − 1
2

)(
2π
N

)
, corner orientation

π
2 − (q − 1)

(
2π
N

)
, face orientation,

(1)

where p = �(N − 2)/4� and q = �N/4�, �·� being the nearest larger integer.
Xu et al. [17] further suggested that, for polygons of N � 12, flow transition to turbulence does

occur in the tested Re range, and the flow dynamics starts to approach that of the circular cylinder
asymptotically. As the number of corners is large in these cases, the difference between the corner
and the face radii is small, hence the corners could be treated as roughness elements on the surface
of a circular cylinder. Re dependence then becomes important, similar to the critical Re effect on a
rough surface circular cylinder. They also showed that, at the two principal orientations, St and CD

values are inversely related (similar to the case for circular cylinders).
In a subsequent PIV investigation of the wake flow behind polygonal cylinders, Wang et al. [18]

showed that the vortex formation mechanism is well reflected by the characteristic length scales
in the near-field wake, which includes but is not limited to the length of the reversed flow zone,
the recirculation bubble width, the classical vortex formation length, and the characteristic wake
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width. Based on empirical relations between these length scales and various kinematic and dynamic
quantities, they suggested that the behavior of the wake behind the polygonal cylinder could be
unified to that behind the circular cylinder. In a continuing wind tunnel PIV experiment, Wang
et al. [19] further presented detailed data of the wake of polygonal cylinders 3 � N � 16 with face
and corner orientations at Re = 1.6 × 104, and studied the dependence on N and the orientation
of the mean velocity and Reynolds stress distribution, as well as coherent vortex structures in the
near wake. They showed that the circulation of each shed vortex grows to their maximum value at
the vortex formation point measured by formation length and then decays downstream due to the
combined effect of viscous dissipation and vortex cancellation.

In a recent study, Masoudi et al. [20] investigated the aerodynamic forces and near wake flow
fields behind polygonal cylinders of N = 5 ∼ 8 subjected to the effect of incidence angle α with
respect to (w.r.t.) U∞ at a fixed Reynolds number of Re = 104 using three-dimensional large eddy
simulation (LES). Based on the time mean spanwise vorticity fields, they defined a mean shear layer
length Lω considering an arbitrary intensity threshold, and found it to be a reasonable scaling factor
for the investigated aerodynamic properties including St, CD, and base pressures. Furthermore, they
showed that due to the asymmetric nature of polygonal cylinders in off-principal orientations, the
time mean wake is also asymmetric, resulting in a nonzero mean lift. The well-established empirical
relationship between St and CD for general bluff body shapes that has been proposed by many
researchers including but not limited to Hoerner [21], Ahlborn et al. [22], Alam and Zhou [23], and
for polygons at principal orientations Xu et al. [17], is found to be valid for polygonal cylinders in
incident incoming flows.

In the present paper, we address the dependence on incidence angle of the instantaneous separa-
tion dynamics of shear layers from polygonal cylinders of N = 3 ∼ 8 and its signature in the time
mean manifestation and the corresponding vorticity field in the near wake. In particular, we focus
on the effect of an observed strong flapping motion of the separated shear layers and its impact on
fundamental aerodynamic forces through a proper scaling parameter associated with the wake flow.
The critical separation angle is also empirically derived to predict the minimum CD and maximum
St condition.

II. COMPUTATIONAL MODELING AND NUMERICAL SETUP

A. Computational domain and boundary conditions

We perform three-dimensional LES for polygonal cylinders of side number N = 5, 6, 7, 8 in
an incident incoming flow directions. Six equal-spaced angles of attack α are considered for each
cylinder rotating clockwisely w.r.t. the incoming flow from the corner (α = 0◦) to the face (α =
180◦/N) orientation. This effectively covers all possible orientations for a given polygon. Since
in this way the absolute step size �α decreases for increasing N , a scaled incidence angle α∗ =
α/(180/N ) is utilized. Following this definition, α∗ = 0 and α∗ = 1 correspond to corner and face
orientations, respectively. The scaled step size �α∗ is thus fixed at 0.2 between the two principal
orientations.

The computational domain is sketched in Fig. 1. Rc and Ri denote the circum-circle and in-circle
radius of the polygon and the corresponding diameters are Dc and Di. In this paper, Ri is chosen
to be constant for all the polygonal cylinders, which results in a constant Re = 1 × 104 based on
Di. To investigate the effect of α, a body-fitted O-type structured grid is applied to ensure grid
orthogonality, which is commonly adopted for similar problems [24–32, among others]. The domain
outer boundary is set at 20Di from the cylinder center, where the origin of the coordinate system is
placed. The cylinder axis is aligned with the z axis and the incoming flow velocity U∞ is set at the
desired α w.r.t. the x′ axis.

The number of cells in the radial and circumferential directions are denoted as Nr and Nθ ,
respectively, with 216 � Nr = Nθ � 224. The exact integer for Nθ depends on N , so the number
of cell divisions on each edge of a given polygon is the same. The grid size grows exponentially
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FIG. 1. Computational domain and problem configuration. Not to scale. The coordinate system x′ − y′ is
fixed in space, which bisects the outer surface to the inlet and the outlet and sets the inflow components, x − y
is aligned with the incidence angle α dependent U∞ direction.

in the radial direction (r) from the body surface and is uniformly spaced in the circumferential
direction (θ ) and the spanwise direction (z). The growth rate in the r direction is set such that the
maximum y+ value is below unity, where y+ = yuτ /ν with uτ = √

τw/ρ and τw being the wall shear
stress.

Following a number of previous three-dimensional LES studies of cylinders at various Re [see
Refs. 26,31–37, for example], a spanwise length of Lz = πDc, and the number of cells Nz ≈ 48 ×
Dc/Di are utilized, with periodic boundary conditions applied at both end surfaces of the domain.
This is to achieve satisfactory accuracy of the resulting aerodynamic forces and the wake flow
patterns and at the same time to minimize unrealistic topology associated with the application of
the periodic boundary conditions and to prevent periodic artifacts. The inlet and outlet surfaces
are indicated in Fig. 1. At the inlet surface, constant and uniform free stream flow velocity U∞ is
imposed accordingly to the α condition. At the outlet surface, a Neumann boundary condition is
imposed to avoid flow reflection.

B. The LES solver

The governing equation for the current constant Smagorinsky (SMG) LES simulations, with
kernel G = G(x,�) and � being the grid filter width, is:

∂ ūi

∂xi
= 0, (2)

∂ ūi

∂t
+ ∂ ūiū j

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ∂

∂x j

[
ν

(
∂ ūi

∂x j
+ ∂ ū j

∂xi

)
+ τi j

]
, (3)

where ū and p̄ are the filtered velocity and filtered pressure, respectively. In the spatially filtered
Navier-Stokes equations, the stress term τi j = uiu j − ūiū j is modeled using the eddy-viscosity type
subgrid scale (SGS) model of SMG [38], which is based on Boussinesq’s assumption,

τi j − 2

3
ktδi j = −2νt

(
S̄i j − 1

3
S̄kkδi j

)
, (4)

S̄i j = 1

2

(
∂ ūi

∂x j
+ ∂ ū j

∂xi

)
, (5)

where S̄i j is the rate of strain tensor computed from the resolved scales; νt and kt are SGS viscosity
and turbulent kinetic energy respectively; see Fureby et al. [39] for a comprehensive review of all
SGS models.
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FIG. 2. Instantaneous fully developed wake over the full span Lz of the N = 7 cylinder at α∗ = 0. Iso-
surface is based on Q criterion at an arbitrary level and is colored by the spanwise vorticity. (a) and (b) are
at t∗ = tU∞/Di = 325 and t∗ = 329, roughly corresponding to arbitrarily defined wake phase angle φ = π/2
and φ = 3π/2, respectively. The highlighted separation lines are the edges where primary (PSP) and secondary
flow separation (SSP) occur in each case.

In the algebraic SMG model [38], νt and kt are calculated explicitly under the assumption of
local equilibrium balance between production and dissipation of kt . The SMG coefficient Cs = 0.1
is adopted based on several validated studies of flow around circular cylinders [25,26,28–30, among
others], and a near-wall damping function suggested by Van Driest [40] is implemented to improve
SGS near-wall behavior [27,28,30],

� = min

(
kv

C�

,�

)
y

[
1 − exp

(−y+

25

)]
, (6)

where the Von Kármán constant kv = 0.4187 and model constant C� = 0.158. No wall function is
used in grid scale and y+ < 1 effectively imposed on the cylinders with appropriate grid growth rate
as described earlier.

In this paper, LES simulations were implemented in OPENFOAM with backward second-order
time integration scheme. The predictor-corrector PISO (pressure-implicit with splitting of operators)
loop is used to decouple and iteratively solve the pressure and velocity fields. Three PISO correctors
are used for each time step to minimize uncertainty of the final results. The pressure is solved
by a geometric agglomerated algebraic multigrid solver. A dynamic time step is utilized to keep
the maximum Courant number of unity all over the domain. Simulations were carried out by a
supercomputer with 120 processors.

A mesh sensitivity study and validation of the simulation results with experimental data ([17]) are
detailed in Masoudi et al. [20]. Analysis also shows that the adopted mesh and numerical scheme in
this study resolve more than 90% of the turbulent kinetic energy (except near the separation points,
at which it is roughly 80%) and therefore the current LES is considered well resolved [41]. For all 24
cases (four polygons, six α∗ each), simulation continued past the transient period and ensured that
at least 30 fully developed vortex shedding cycles are acquired for evaluating time mean quantities.

III. RESULTS AND DISCUSSIONS

Figure 2 shows the isosurfaces of fully developed instantaneous velocity fields in the wake of
the heptagonal cylinder (N = 7) at corner orientation (α∗ = 0). Here, PSP stands for the primary
separation point, which is defined as the corner at which the flow separates for the first time, and
SSP the secondary separation point, which is the corner from which the reattached flow separates.
The exact reattachment location of the shear layer, if it occurs, usually is somewhere on the surface
between the PSP and SSP, rather than exactly at the SSP itself. The Kármán vortex shedding pattern
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FIG. 3. Instantaneous spanwise vorticity fields at midspan of N = 7 α∗ = 0. (a) t∗ = 325, matching
Figs. 2(a) and 2(b)–2(e) correspond to t∗ + 1, t∗ + 2, t∗ + 3, t∗ + 4, and t∗ + 5, respectively. It covers 5/8 of
a shedding cycle, i.e., 0 � φ � 5π/4. The region around the leading corner is magnified to assist visualization
of the location of the windward stagnation point (WSP), which is fluctuating approximately in phase with
the vortex shedding. The sign of the instantaneous lift coefficient CL and the separation points (PSP, SSP and
PSP+SSP) are depicted for each case.

is evident and the high level of turbulence is reflected by the irregular isosurface pattern. The flow in
the wake also manifests strong inhomogeneity along the spanwise (z) direction. However, owing to
the low N number and the subcritical Re condition investigated in the current paper (see Ref. [17]),
over the spanwise range Lz, flow separation is found to always occur along the same edge. The
local vortex shedding is always in phase and the local separated shear layer (unsteady) deflection
angle is fairly constant along the span. That is, the separation behavior is largely spanwise invariant,
especially for the time mean quantities over the near-field wake region, which are constant in the
spanwise direction. This observation is consistent in all the 24 cases studied. It is for this reason
that in this paper we concentrate on the observations in the midspan location, unless it is stated
otherwise, which reasonably approximates the separation behavior along the entire cylinder span.

A. Flapping motion of the separated shear layers

Figure 3 shows the instantaneous spanwise vorticity (ωzDi/U∞) contours at midspan for the case
shown in Fig. 2 for six continuous time steps at �t∗ = �tU∞/Di = 1, where the classical turbulent
Kármán vortex shedding can be observed. Perhaps a distinctive feature of the shear layer behavior
is the stronger up-and-down flapping motion around the PSP compared to a circular cylinder at a
similar Re [42,43], which is also reflected by strong oscillation of the shear layer deflection (or
shooting) angle. This flapping motion is accompanied by an oscillatory detachment-reattachment
and the temporary appearance of a SSP.

As can be seen in Fig. 3(a) at t∗ = 325 (phase φ ≈ 0, arbitrarily defined), the flow separates
from the PSP corner on the lower surface, reattaches to the body, and separates once again from the
next corner SSP; while on the top surface, the shear layer flaps away from the surface, without an
SSP to appear. Approximately half a shedding cycle later, at t∗ + 4 (e, φ � π ), the separation point
distribution flips. At t∗ + 2 (c, φ ≈ π/2) and t∗ + 5 (f, φ ≈ 5π/4), the shear layers are temporarily
at a position in between the maximum flapping amplitude, and only one PSP occurs on each side of
the cylinder.

The influence of such shear layer flapping motion extends all the way up to the WSP in a
synchronous manner. As shown in Fig. 3, the position of the WSP moves around the windward
corner, viz. in cases Figs. 3(a)–3(c) it is on the top half of the cylinder while in Figs. 3(d)–3(f) it is
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FIG. 4. Space-time contours of the dimensionless spanwise vorticity ωzDi/U at x = 0.6Di and −1 �
y/Di � 1 for the case of N = 7 at midspan. Here (a) corresponds to α∗ = 0 and (b) corresponds to α∗ = 0.2.

on the lower half, even though this is a symmetric case where α∗ = 0. At face orientation α∗ = 1,
WSP also oscillates around the geometric centreline on the windward surface (figure not shown).

The strength of the flapping motion and the induced synchronous oscillatory motion of the WSP
is a universal observation for all the tested cases and is nonlinearly dependent on N and α∗. Not
surprisingly, this flapping motion is also in phase with the pressure distribution and therefore the sign
of the instantaneous lift coefficient CL(t ), as indicated in Fig. 3. Based on this figure, in cases where
the WSP is on the top half of the cylinder, CL(t ) < 0 and vice versa. The strength of this flapping
motion, however, varies in different cases. Figure 4 shows the space-time contours of the midspan
vorticity ωzDi/U for the case of N = 7, at α∗ = 0 and α∗ = 0.2, respectively. Data is sampled
temporally over the range after the wake is fully developed, and spatially over −1 � y/Di � 1,
and at x = 0.6Di the streamwise distance before vortices roll up and detach from the shear layer
in a time mean sense for both cases [20]. Figure 4 clearly reveals the amplitude of the shear layer
flapping motion, being stronger for α∗ = 0 [Fig. 4(a)] than for α∗ = 0.2 [Fig. 4(b)].

The strength of this flapping motion behavior of the separated shear layer can be quantified by
the spectrum X ( f ) of the fluctuating streamwise velocity u′(t ):

X ( f ) =
∫

u′(t ) exp (− j2π f t )dt . (7)

u′(t ) is probed at x = 0.5Di and the y coordinate at the center of the time mean shear layer where
the magnitude of the spanwise vorticity ωz maximizes, which varies for different N and α∗. Thus,
the y coordinate is approximately at the mean location of the flapping trajectory for each shear layer
at x = 0.5Di. This x coordinate (x = 0.5Di) is chosen for all cases such that X ( f ) mostly accounts
for the shear layer flapping motion strength (in the y direction) without the direct influence from the
alternative and organized vortex shedding. This will be justified further in Sec. III D.

The result is shown in Fig. 5, together with the dependence of CD and St on α∗ and N . At each
α∗, the primary peak of X ( f ) always occurs at the Strouhal frequency, fd , which suggests that the
behavior of the separated shear layer is primarily associated with the Kármán vortex shedding. The
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FIG. 5. Shear layer flapping motion strength quantified by the energy spectrum X ( f ) (arbitrary unit) of
fluctuating streamwise velocity component u′(t ). Signal is probed at x = 0.5Di and y coordinate corresponding
to the maximum time mean vorticity intensity in the top and bottom shear layers. (a)–(d) are for N = 5−8,
respectively, in each of which dependence of CD and St on α∗ is also presented.

time mean drag and lift coefficients and Strouhal number are defined as

CD = Fx
1
2ρU 2∞(LzDi )

, CL = Fy
1
2ρU 2∞(LzDi )

, St = fd Di

U∞
, (8)

where Fx and Fy are the total time mean drag and lift force, respectively; ρ is the density of the
working fluid. fd is determined from the fluctuating lift coefficient. For convenience purposes, in
Eqs. (8) the universal constant Di is used instead of the more conventional projection width in the
streamwise direction, which is an α and N-dependent quantity.

The intensity of the primary peak in the spectra, denoted as X ( fd ), is proportional to the strength
of the flapping motion, since the characteristic velocity is universal. In particular, we observe that
X ( fd ) is dramatically low in some cases, e.g., α∗ = 0.6 for N = 6 and α∗ = 1 for N = 5. In these
cases, the separated shear layers are relatively stable in the sense that the flapping motion is at very
small amplitude compared to the other cases, confirmed by the time history of the instantaneous
vorticity fields such as Fig. 3. Results of CD and St show that for a given N , α∗ having the
minimum CD and the maximum St (except N = 6) also has the minimum X ( fd ). This suggests
that the strength of the shear layer flapping motion has a direct impact on these two fundamental
aerodynamic quantities. Taking a closer examination of X ( fd ), we observe in Fig. 5 that X ( fd )
behaves nonlinearly with respect to both N and α∗. For N = 5 cases, X ( fd ) in general inversely
depends on α∗, while for N = 6, it decreases first until a minimum value is reached at α∗ = 0.6
before increasing again. N = 7 and N = 8 cases display a similar variation as N = 6, but with the
minimum X ( fd ) value occurring at α∗ = 0.2.

Considering the top and bottom shear layers individually, it is clear in Fig. 5 that their spectra
both dominate at the Strouhal frequency, notwithstanding the asymmetric distribution of separation
point locations, local free stream velocities, and pressure gradients. This asymmetric distribution
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FIG. 6. Normalized midspan instantaneous wall shear stress τ ∗
w (t ) on N = 7 at α∗ = 0. For sign convention,

see Fig. 7. (a)–(d) are for corners G-F-E-D as marked in Fig. 3(a); (e)–(h) are the corresponding power spectrum
density Pf of τ ∗

w (t ) in arbitrary units.

is a result of the asymmetric local geometries and separated shear layer deflection angles at off-
principal orientations (0 < α∗ < 1). It is thus unequivocally evident that the global interactive vortex
roll-up process in the near wake imposes this synchronization. The intensity of the dominant peak
X ( fd ), however, is also clearly asymmetric, which reflects the asymmetric strength of the separated
shear layer flapping motion. Such flapping motion is further affected by the reattachment and the
consequent occurrence of the temporary SSPs, which will be discussed next.

B. Separation mechanism and separation points

The shear layer separation and reattachment behavior may be well revealed by examining the
wall shear stress τw = μ(du‖/dy⊥) at y⊥ = 0; where μ is the dynamic viscosity, u‖ is the flow
velocity parallel to the local wall, and y⊥ is the normal distance to the wall. This is calculated by the
interior product of the shear stress symmetric tensor and the local polygon surface normal vector.
Figure 6 presents the time dependence of normalized wall shear stress τ ∗

w(t ) = τw(t )/ρ f 2
d D2

i at the
corners for the case of N = 7, α∗ = 0, matching the instantaneous vorticity visualization shown in
Fig. 3. Owing to the geometrical symmetry of this particular case, the statistical characteristics of
τ ∗
w(t ) on corners A-B-C are identical to corners G-F-E but with opposite signs.

Evidently, τ ∗
w(t ) signals display distinctive features at different corners as shown in Figs. 6(a)–

6(d). At corner D, τ ∗
w(t ) fluctuates in a sinusoidal manner at a very small amplitude around zero,

confirmed by the clear single peak at the Strauhal frequency in its spectrum Pf shown in Fig. 6(h).
This is a clear reflection of the oscillation of the windward stagnation point around corner D
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FIG. 7. (a) Distribution of the normalized time mean wall shear stress τ ∗
w = τw/ρ f 2

d D2
i for N = 7, α∗ = 0.

τw is considered positive in clockwise direction and is marked by red; negative in counterclockwise direction
in blue. (b) Schematic drawing of the recirculation bubble boundaries following the mean streamline pattern.
The direction of τw on the cylinder surface is marked by arrows; color code follows (a).

highlighted in Fig. 3, supporting the observation that this oscillation stems from the organized vortex
shedding in the wake. Corner E in Fig. 6(c) displays a similar neat oscillatory pattern, also supported
by the single peak Pf at the Strouhal frequency in Fig. 6(g). However, on the one hand, τ ∗

w(t ) is
consistently negative, fluctuating around −3.4 instead of zero; on the other hand, the magnitude
of Pf is doubled compared to Fig. 6(h), which is a clear manifestation of the shear layer flapping
motion, cf. Fig. 5(c). That is, τ ∗

w(t ) intensity is strongly influenced by the shear layer deflection
angle under oscillatory motion. This is a unique feature for PSP.

The τ ∗
w(t ) signals in Fig. 6(a) and Fig. 6(b) exhibit a clear difference to a sinusoidal one,

confirmed by the superharmonic peak and the relatively broad band spectra shown in Fig. 6(e) and
Fig. 6(f), respectively. Nevertheless, both fluctuate around zero. The ones associated with corner F
Fig. 6(b) and Fig. 6(f) are probably related to the temporary reattachment of the separated shear
layer. In contrast, corner G shows a similar signal pattern but at higher fluctuating strength. This is
due to its location, which is close to the base area and is strongly influenced by the turbulent roll-up
of the coherent vortices; see Fig. 3. It is therefore reasonable to postulate that the superharmonics
and the relative broad band are a possible result of the combined effect of vortex roll-up and the
shear layer flapping motion.

The τ ∗
w(t ) signal characteristics at WSP, PSP, (temporary) SSP, and the corner in the base region

described above can be used to classify any corner in other cases. Furthermore, the fluctuating nature
of the signal at any SSP can be used to quantify the fraction of time κ for which the shear layer
stays reattached at this point. For the particular example of corner F shown in Fig. 6(b), which is
an SSP, reattachment occurs when two conditions are simultaneously considered. That is, τ ∗

w(t ) < 0
and the phase of the τ ∗

w(t ) synchronizes the phase of the corner upstream. This is due to the fact
that instantaneously, τ ∗

w < 0 can also occur on account of the recirculated flow adjacent to corner F
[Fig. 3(e)], instead of shear layer attachment. Calculation of κ is also validated by close examination
of the instantaneous vorticity field. It shows that in the fully developed regime, κ ≈ 1/4 for corner
F. This is significantly below 1/2, as one might expect in a simple harmonic flapping motion. The κ

value depends on the strength of the flapping motion as well as the exact location of the SSP corner
relative to the separated shear layer.

Figure 7(a) presents the distribution of the normalized time mean wall shear stress τ ∗
w for the

case in Fig. 6, together with the boundaries of the recirculation bubbles around the cylinder surface
in Fig. 7(b). First, the strong main recirculation bubbles originating from the PSPs (corners C and
E) induce secondary inner bubbles on B-A and F-G; second, due to the relative small time fraction
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TABLE I. Reattachment time fraction κ values for SSPs; cf. Fig. 8. Entries marked by + are PSPs, − are
not separation points.

Corner α∗ = 0 α∗ = 0.2 α∗ = 0.4 α∗ = 0.6 α∗ = 0.8 α∗ = 1

N = 5 B + + + 1 1 0.25
E – – – – – 0.25

N = 6 C + + + + + 1
F – – – 0.02 1 1

N = 7 B 0.25 – – – – –
F 0.25 0.08 0.99 1 1 +

N = 8 C 1 0.35 0.09 – – –
G 1 1 1 + + +

of the SSPs, the time mean effect reflects subtle inward deflection of the main recirculation bubble
outer boundary at B and F. The complex recirculation bubble shape leaves their footprint clearly on
the distribution of τ ∗

w, which also appears complex.
As expected, at corner D, τ ∗

w = 0 since the WSP oscillates around it (see Fig. 3). The distribution
of τ ∗

w is symmetric about the centerline going through corner D; see Fig. 7(b). From corner D to
C and D to E, τ ∗

w magnitude increases abruptly due to rapid acceleration of the local free stream
flow outside the boundary layer, which always is attached; see the thin shear layers on these edges
in Fig. 3. Corners C and E experience sharp τ ∗

w change, which is a feature of PSPs. Along the
edges behind, on C-B and E-F, the magnitude of τ ∗

w stays low with the sign changed, owing to the
reversed flow inside the main recirculation bubble. The formation of the secondary inner bubbles
on edges A-B and G-F causes the sign of τ ∗

w to change again. In this particular case, these inner
bubbles separate from corner A and G, reattach at about 6◦ away from B and F, respectively, in time
mean sense, reflected by τ ∗

w sign change over a very small edge length near B and F. The behavior
of τ ∗

w in the vicinity of A and G is similar to that at C and E, albeit at much lower intensity and
opposite directions. This is because of the similar role these corners played in the local flow. There
is a further change of sign for τ ∗

w in the middle of A and G, which represents the leeward stagnation
point.

Instantaneously, the shear layer flapping motion results in temporary detachment and attachment
to corners B and F (Fig. 3), manifesting very different instantaneous recirculation bubble shapes and
τ ∗
w distribution to the time mean ones shown in Fig. 7. As α∗ increases (cylinder rotates clockwisely

w.r.t. U∞), time fraction for the bottom shear layer to stay attached to corner F increases, which
eventually becomes fully reattached (κ = 1) at α∗ � 0.4, and then becomes a PSP at α∗ = 1; while
for corner B on the top, κ decreases rapidly from about 1/4 to zero before α∗ reaches 0.2. Such κ

variation trend is qualitatively consistent for all the other cylinders.
It must be stressed that the κ effect of a SSP originated from the shear layer flapping motion can

only be captured and quantified in a time-resolved study, at sufficiently high spatial resolution. If
κ is small, temporary SSPs can easily be missed in a flow visualisation or a measurement at low
speed, i.e., from examining the instantaneous or the time averaged flow field. This explains why
the SSP [corner B and F; see Fig. 7(b)] is not captured in the low speed experiments of Xu et al.
[17] for N = 7 corner orientation case but is captured for N = 5, α∗ = 1 and N = 8, α∗ = 0. The
observed oscillation of the separation point location on N = 12 and 16 cylinders at the principal
orientations in their flow visualisation (albeit at transitional Re) is reasonably expected to be related
to the flapping motion of the separated shear layer which is discussed here.

The time-averaged PSP and SSP distribution on all the tested cylinders is summarized in Fig. 8,
based on the analysis of the mean and the instantaneous wall shear stresses at each corner. The
time fraction κ of each SSP is summarized in Table I. It shows that the κ value varies rapidly at
the current orientation step �α∗ = 0.2. For instance, κ increases from 0.01 at α∗ = 0.6 to 1 (fully
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FIG. 8. Time-averaged separation points on polygonal cylinders. Primary separation points (PSPs) are
marked by ©; secondary separation points (SSPs) for attachment time fraction κ > 0 are marked by �. Curved
arrows denote the angle of the separation points θs.

reattached) at α∗ = 0.8 for corner F on N = 6. For a given N , the variation of κ on α∗ is, in general,
monotonic except for N = 7 corner F. The lowest κ value at α∗ = 0.2 is associated with the weakest
shear layer flapping motion strength (smallest X ( fd )) of N = 7; see Fig. 5(c). It may also be noted
that the smallest X ( fd ) case for each N is also associated with a low κ value.

Figure 8 shows that for all the cases presently studied, separation points always occur on
corners (edges) of the cylinder and never on a flat surface. This is consistent with the experimental
observations in Xu et al. [17]. The SSP, if it appears, is always at the immediate downstream corner
of a PSP. This is reassured by τ ∗

w(t ) and is also confirmed by the instantaneous vorticity fields ωz(t ),
as well as the mean vorticity fields and the shape of the recirculation bubbles around the cylinders.

The distribution of the PSPs presented in Fig. 8 is plausibly valid for all subcritical Re, since
primary separation is insensitive to Re in this regime. However, the subtlety of the SSP and the
corresponding κ value may not be, as the strength of the shear layer flapping motion could be Re
sensitive.

According to Fig. 8 and Table I, dependence of the separation point distribution on α∗ can be
categorized into two types. As cylinders rotate from α∗ = 0 clockwisely, the SSP starts to appear
on N = 5, 6 at α∗ ≈ 0.6, which then remains until the symmetric distribution of PSPs and SSPs at
α∗ = 1. In contrast, for N = 7 and 8, cylinders start (at α∗ = 0) with both PSPs and SSPs, and end
(at α∗ = 1) with PSPs only. The total number of separation points (PSP + SSP) increases with α∗
from 2 to 4 for N = 5, 6, but decreases from 4 to 2 for N = 7, 8. This suggests that there exist two
α∗s for each N around which the separation behavior changes appreciably. Comparing with Fig. 5,
it could be noted that the total number of separation points is weakly correlated with the general
behavior of St and inversely correlated with CD, which infers the important role separation points
played in the general flow characteristics in the near wake. In the next section, their properties will
be investigated.

C. Separation angles

To facilitate discussion, we denote T0 to be the corner on the polygon corresponding to the
maximum height and T1 the corner upstream of T0; see Fig. 9. The associated angle of the edge
T0 − T1 w.r.t. U∞, denoted by θ0, can be calculated analytically, for the top (+) and bottom surfaces
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FIG. 9. Definition of T0, T1 and θ0 for (a) an arbitrary incidence angle where T0 is unambiguous and (b) case
N = 6, α∗ = 0 where T1 and T0 have the same height. The other case is N = 8, α∗ = 1 (not shown here). All
the angles are measured from the horizontal axis, viz. the incoming flow direction.

(−), respectively, as

θ
(◦)
0 = ±γ

(
180

N

)
+

{
0 0 � γ < 2

360/N otherwise,
(9)

where

−γ = ±α∗ −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 N = 4n − 2

0.5 N = 4n − 1

1 N = 4n

1.5 N = 4n + 1,

(10)

in which n is an arbitrary integer. γ is categorized into four conditions because of the observed
periodic behavior of θ0 in every four counts of N . After θ0 is found, the separation angle θs, viz. the
angular position of corner T0 and T1 (see Fig. 9), can be determined analytically as

θ (◦)
s = (α∗ ± 2p)

(
180

N

)
−

{
0 0 � γ < 2

360/N otherwise,
(11)

where (+) and (−) are for the top and bottom surfaces, respectively. p = �(N − 1)/4� for T0 and
p = �(N − 1)/4� − 1 for T1. The ceiling function �·� denotes the nearest larger integer. This is
similar to Eq. (1). In the present paper, we use degree to quantify θ0 and θs and radian for the shear
layer deflection angle to be discussed in Sec. III D.

Equations (9)–(11) are plausibly valid for 2 � N � ∞. For the asymptotic circular cylinder case
(N → ∞), θ0 is supposed to be the angle of the tangent line at the separation point, which is ≈12◦
according to the flow visualization in Xu et al. [17], while α∗ = 0 yields θ0 = 0◦ from Eq. (9) and
θs = ±90◦ from Eq. (11). Note that in the absence of the transition at the present Re, θ0 is equivalent
to ξ in Eq. (1), which is a robust scaling parameter for CD and St, also accounting for the transition
effect. However, unlike ξ , θ0 is asymmetric at an off-principal α.

Utilizing the denotations in Fig. 9, similar for the bottom half of the cylinder, three scenarios
could be identified in Fig. 8:

(i) Flow only separates from T0.
(ii) Flow only separates from T1.
(iii) Flow separates from T1, but reattaches to the cylinder and then separates again from T0.

Shear layer flapping motion further categorizes it, based on κ values in Table I, as κ = 1 and 0 <

κ < 1.
From θ0 calculated in Eq. (9), we can empirically predict the occurrence of each scenario, hence

the separation angle θs of each separation corner with Eq. (11), also for intermediate incidence
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TABLE II. Evaluation of separation angles based on Eqs. (11) and (12) for
N = 5 cases. †, ‡ indicate the angles where switch of separation from T0 to T1

occurs following the arrows.

angles which are not presently studied, as

θs =

⎧⎪⎪⎨
⎪⎪⎩

θs(T0) only
∣∣θ (◦)

0

∣∣ � 36 (i)

θs(T1) only
∣∣θ (◦)

0

∣∣ � 12 (ii)

θs(T1) → θs(T0) 12 <
∣∣θ (◦)

0

∣∣ < 36 (iii).

(12)

The thresholds θ0 = 12◦ and 36◦ are associated with the case N = 6, α∗ = 0.4 corner E, and α∗ =
0.8 corner C, respectively; see Fig. 8.

Taking N = 5 cases as an example, Table II summarizes how Eqs. (9)–(12) predict the separation
behavior and the corresponding separation angles. Starting from N and α∗ values, θ0 for top and
bottom surfaces can be calculated from Eq. (9) (rows 1 and 2). The condition in Eq. (12) predicts
where the flow will separate (T1 and/or T0) and the exact location (θs) is calculated in Eq. (11) (rows
3–6). The corner characteristics are presented in the last four rows; see also Figs. 8 and 10, which
also mark the θ0 values tabulated in rows 1 and 2.

For 0 � α∗ � 0.4, flow separates from T0 (as PSPs) symmetrically (rows 7 and 8; see also
Fig. 10). Within 0.4 < α∗ < 0.6, the PSP switches to T1 on the top surface. The top T0 becomes
a SSP for α∗ � 0.6 (row 9) while reattachment does not occur on the bottom surface until α∗ = 1
when T0 becomes a SSP symmetrically (row 10). This switch is indicated by the arrows.

θs calculated from Eqs. (11) and (12) are shown in Fig. 11. Cases included are 3 � N � 20. It
has been shown in Xu et al. [17] that at Re = 104, cylinders of N � 16 do not undergo transition,
at least in their principal orientations, and the critical Re where the transition occurs increases with
N . It thus is reasonable to expect that this pattern is valid for a polygonal cylinder having arbitrary
N at subcritical Re, where the PSP is fixed at a predictable corner.

A pattern emerges if the data points at the same α∗ are connected. For a given N , shear layer
reattachment and the occurrence of the SSP is reflected by two markers at the same α∗, one for
T0 and the other for T1. From this pattern, one could possibly predict with reasonable accuracy the
primary separation and also the reattachment behavior for polygons of not too large N at arbitrary
α. Reattachment behavior, hence the occurrence of the SSP, is less certain because of the unknown
flapping motion strength at large N . However, it successfully predicts N = 16 at α∗ = 0, 1 verified
by experiment. For the case of N = 12, PSPs at the two principal orientations are captured, but the
SSP at α∗ = 0 is not reported in the experiment. This is likely owning to the experiment of Xu et al.
[17] being done in a low-speed manner, where reattachment was missed as mentioned above. In
particular, θ0 = 15◦ in this case, calculated from Eqs. (9) and (10). This is very close to θ0 = 18◦ in
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FIG. 10. Switch of corner characteristics for N = 5 cases.

N = 5, α∗ = 1; see Fig. 10. According to Table I, the former case is likely to have κ < 0.25, which
is a small fraction of reattachment time.

The data points are clearly clustered in two regions enveloped, subjected to uncertainty from the
present resolution �α∗ = 0.2. Notwithstanding the asymmetric pattern of data points about θs = 0

FIG. 11. The pattern of the separation angles θT,B
s and the associated envelope curves for the separated

region at Re = 104. The θs values are calculated by Eqs. (11) and (12); filled markers are for PSPs and open
markers for SSPs. Data points for N = 12, 16 for corner and face orientations are taken from Xu et al. [17],
which are PSPs symmetrically distributed about the θs = 0 axis. Data points for the circular cylinder are taken
from Jiang [44]. Dashed curves approximate the envelopes of the data points.
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FIG. 12. Time mean and spanwise averaged ωz for the hexagonal cylinder. xT,B
δ is the characteristic shear

layer penetration distance.

(complete symmetry follows −α∗ cases), the envelopes appear symmetric. The enveloped regions
are separation angles, including PSPs and SSPs, that most likely will occur for a polygonal cylinder
of arbitrary N at Re = 104 or a subcritical Re. As might be expected, the θs range covered by the
envelope boundaries diminishes as N increases and eventually converged to the circular cylinder
case at the far end. The inner boundaries of the two regions collapse at N = 2, θs = 0, i.e., the flat
plate at the streamwise (or corner) orientation which is well predicted.

D. Signature in the time mean separated shear layer

The instantaneous shear layer flapping motion leaves a clear signature in the mean vorticity field
and leads to interesting consequences. The mean field is time and spanwise averaged. Figure 12
shows the ωz contours for the hexagonal cylinder at all α∗. The ωz contours for all cases studied
can be found in Masoudi et al. [20]. They reveal that the penetration distance of the shear layer
into the wake in the streamwise direction, as well as their thickness, vary with α∗ in a nonlinear
way. It can also be noted that, in general, these two quantities are inversely correlated. That is, a
thinner shear layer tends to penetrate further downstream. At α∗ = 0.6, it penetrates the furthest.
This is a universal observation for all other cylinders (figure not shown). Since every phase of the
instantaneous shear layer flapping motion contributes to the time mean, it suggests that when the
flapping motion is less strong, the shear layer is more stable, leading to a further vortex roll-up
distance, viz. a larger formation length [20].

Figure 13 presents the development of the mean shear layer thickness δT,B based on a properly
chosen threshold ωzDi/U = 3, where the penetration distances for the top (T) and bottom (B) shear
layers are examined separately. As can be seen, δT,B > 0 at x = 0, which indicates that the PSPs
of all tested cases are at x < 0. For a number of cases, the SSP occurs within 0 < x � 0.2Di (the
maximum value 0.2Di being for N = 5, α∗ = 1; see Fig. 8), where δT,B over this range measures
the thickness of either the separated boundary layer before reattachment or the reattached boundary
layer. This implies that at x = 0.5Di, the characteristic base point location, shear layers in all cases
are finally separated with no further reattachment. At the same time, Fig. 13 shows that dδ/dx > 0
at x = 0.5Di, where shear layer is developing before vortex shedding in a statistical sense. It thus
reassures that the flapping motion strength measured by X ( f ) at x = 0.5Di, presented in Fig. 5,
largely excludes the effect of coherent vortex roll-up.

Figure 13 shows that δT,B increases rather smoothly until the maximum value, denoted as δT,B
max,

is reached with a similar pattern through all the cases. For small x within the range of dδ/dx > 0,
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FIG. 13. Streamwise development of the mean shear layer thickness δT,B based on vorticity threshold
ωzDi/U = 3; Solid lines are for the top and dashed lines for the bottom.

as N increases, dependence of δT,B on α∗ is appreciably weaker. Weak waviness of δT,B can also be
observed in this range in some cases, e.g., the top shear layer of N = 5, α∗ = 0.6 at x ≈ 0.4Di, in
between the PSP and SSP (cf. Fig. 10). This is the footprint of the separation bubble between the
separated shear layer and the surface of the cylinder directly underneath. The distance at which δT,B

max

occurs is denoted as xT,B
δ . Downstream of xT,B

δ , the thickness δT,B drops in steep slopes, indicating
that xT,B

δ is the time mean location where the rolled-up vortices start to detach from the separated
shear layer. This characteristic distance for N = 6, α∗ = 0.6 is marked in Fig. 12.

It is also evident in Fig. 13 that at off-principal orientations, for a given α∗ the asymmetric
geometry about the flow direction results in asymmetric shear layer thickness δT,B, its growth
rate dδ/dx, and the corresponding penetration distance xT,B

δ . The variation of xT,B
δ is presented in

Fig. 14(a), which shows that the dependence of xT
δ and xB

δ on α∗ for a given N is consistent, under
the effect of mutual interaction between the top and bottom shear layers. It can also be observed in
this figure that in principal orientations, the variations of xT,B

δ on N are opposite at α∗ = 0 and 1
[dotted lines in Fig. 14(a)].

In most cases and for both top and bottom surfaces, the shear layer is thicker when the PSP locates
further upstream. In cases having SSPs, particularly temporary SSPs, the shear layer appears thinner
as a result of reattachment. This also is a reflection of the flapping motion amplitude, as stronger
flapping leaves a thicker time mean footprint.

As might also be expected, as N increases, δT,B becomes less α∗ dependent, since the data range
becomes appreciably smaller in the dδ/dx > 0 range. For N → ∞ (the circular cylinder), δ would
lose the α effect and be symmetric for the top and bottom.

For a given N , there appears to be a particular α∗ where shear layers penetrate substantially
further downstream than other α∗, e.g., α∗ = 0.6 for N = 6 and α∗ = 0.2 for N = 7, as illustrated
in Fig. 14(a). The distance of the furthest penetration, as well as α∗ at which it occurs, behave
nonlinearly upon N . The mean shear layer penetration distance can also be quantified by a chosen
vorticity threshold (ωzDi/U = 3) and is denoted as Lω [20]. Figure 14(b) demonstrates their
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FIG. 14. (a) Shear layer penetration distance xT
δ and xB

δ , (b) correlation of xT,B
δ and shear layer penetration

distance Lw based on vorticity threshold ωzDi/U = 3. The solid markers are for the top shear layer and the
open markers for the bottom.

correlation. The degree of correlation is insensitive to the vorticity threshold value, but the slope
has a weak dependence. However, it is evident that the two lengths are well correlated. These two
length scales are also linearly proportional to the vortex formation length L f , determined by the x
coordinate of the maximum turbulent kinetic energy; figure not shown.

Masoudi et al. [20] found that Lω is a proper parameter which scales negatively with CD and
the wake displacement thickness Dw calculated at x = L f , and positively with St and the mean
base pressure coefficient Cp. The scaling quality is not sensitive to the chosen vorticity threshold
value, even though the absolute value of Lω is. The correlation in Fig. 14(b) assures that xT,B

δ is
also a proper length scale in this sense, which is less dependent on a chosen threshold value. This
is confirmed in Fig. 15(a) with reasonable data collapsing, which shows that a longer shear layer
penetration distance leads to a higher vortex shedding frequency and an appreciable smaller drag.
This also verifies the inverse relation between CD and St (Fig. 5), as commonly observed in general
cylindrical-shaped bluff bodies [17,21–23].

The inverse correlation of CD with xT,B
δ , a length scale in the streamwise direction, is also

supported by its positive correlation with the weakly varying wake width Dw, which asymptotically
approaches Di at large xT,B

δ , as shown in Fig. 15(b). At x = L f , where Dw is calculated, the pressure
variation along the y direction is significant, which results in a weak correlation of CD and the
momentum wake width there; figure not shown.

In line with Bearman [45] for their bluff body in a similar Re, Fig. 15(c) confirms the linear
relation between the product StCD and

√
1 − (Cp)b, where (Cp)b here takes the averaged pressure

coefficient value over the base area, viz. the surface between the top and bottom PSP. (Cp)b is found
to be fairly constant over this area [20].

Quantifying the strength of the flapping motion by the energy content of the spectrum peak X ( fd )
in Fig. 5 as

� = 1

U∞

∫ fd +� f

fd −� f
X ( fd )df , (13)

where � f Di/U∞ = 0.02. Figure 16 suggests that stronger flapping motion induces a destabilizing
effect to the separated shear layer and results in a shorter penetration distance. Referring to
Fig. 15(a), this also corresponds to a lower vortex shedding frequency (smaller St).
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FIG. 15. Dependence on the averaged shear layer penetration distance (xT
δ + xB

δ )/2 of (a) CD and St, (b) the
wake displacement thickness Dw measured at the formation length. Solid lines are arbitrary fitting curves.
(c) Correlation of StCD and

√
1 − (Cp)b.

Since the shear layer thickness δ grows almost linearly on x before δT,B
max is reached, as shown in

Fig. 13, we could approximate the growth rate as

dδ

dx
≈ δT,B

max − δT,B|x=0

xT,B
δ

, (14)

which is insensitive to the vorticity threshold value for δ calculation. Figure 16 also suggests that the
flapping motion strength is proportional to the time mean shear layer thickness growth rate, which
is plausibly attributed to three effects: the absolute the shear layer intensity at the separation point
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FIG. 16. Dependence on the shear layer flapping motion strength � of the shear layer penetration distance
xT,B
δ and the shear layer thickness growth rate dδ/dx. Open and solid markers are for the top and the bottom

shear layer, respectively. Solid lines are arbitrary fitting curves.
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FIG. 17. (a) Dependence of (the time mean) CL on α∗. (b) Dependence of CL on the difference of the top
and bottom shear layer lengths LT

δ − LB
δ .

and the vorticity diffusion effect; the strength of the recirculated flow between the separated shear
layer and the cylinder surface, as well as the possible reattachment to SSP; and the strength of the
flapping motion. One could possibly speculate from Fig. 3 that the instantaneous dδ/dx does not
depend strongly on the first effect, and therefore the variation of the mean growth rate is flapping
motion driven but affected by reattachment. The degree of correlation in Fig. 16 is not sensitive to
the chosen � f for � calculation, as long as it focuses reasonably around fd .

According to Kelvin’s circulation theorem, the asymmetric penetration distance xT,B
δ at off-

principal orientations suggests that cylinders experience nonzero time mean lift. Indeed, this is
confirmed in Fig. 17(a). Moreover, even though all cylinders rotate clockwisely from corner
orientation (α∗ = 0) to face orientation (α∗ = 1), the sign and magnitude of CL vary nonlinearly
w.r.t. N . For instance, CL > 0 for N = 5, 8 but CL < 0 for N = 6, 7. Denoting the shear layer length
to be LT,B

δ , which is the distance between xT,B
δ and the corresponding PSP, circulation associated

with each separated shear layer �T,B
S scales with it. The contribution from the attached boundary

layer is neglected, which is a fair assumption according to the flow visualization in Fig. 3.
Figure 17(b) shows that CL ∼ (LT

δ − LB
δ )/2Di, reasonably correlated for both sign and magni-

tude, regardless of N and α∗. Considering instantaneous vortex shedding behavior (Fig. 3), this
suggests that comparing to the length difference, the instantaneous shear layer strength does not
vary significantly with α or N . For the case of N = 5, α∗ = 0.4, θT

0 (= 39.6◦, see Fig. 10) is close
to the threshold 36◦ in Eq. (12), where the boundary layer on the surface upstream the top PSP
is just about to separate (in the time mean sense). Therefore, it appears thicker than well-attached
boundary layers in other cases; figure not shown. If this thick boundary layer is taken into account,
the shifted marker would reflect a better collapse onto the fitted line. Distribution of the markers in
Fig. 17 also suggests that the shear length difference |LT

δ − LB
δ | diminishes as N increases, until it

completely vanishes with angle of attack effect and hence the time mean CL → 0 for the circular
cylinder case (N → ∞).

The above discussions suggest that the shear layer penetration distance in the streamwise
direction, associated with the averaged vortex shedding distance and the shear layer flapping motion
strength, is a reasonable length scale for CD, CL, and St. Considering that CD and St also scale with
the characteristic wake width in the transverse direction [17,46,47] (see also Fig. 15), we propose the
deflection angle βw of the mean separated shear layer to be an effective scaling parameter, which
takes into account the length scales in both streamwise and transverse directions. Denoting the y
coordinate of the maximum ωz magnitude in the two shear layers along x = xT,B

δ (see Fig. 13) to be
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FIG. 18. (a) Dependence of CD and St on the deflection angle between the top and bottom shear layers
βT

w + βB
w; also shown are data from the experiments of Xu et al. [17] and Wang et al. [18] at a similar Re, where

� is for the circular cylinder; markers +, ×, −, • are for N = 3, 4, 12, 16, respectively, which are wrapped by
� and ◦ for α∗ = 0 and 1 (principal orientations). (b) Dependence of CL on the deflection angle asymmetry
βT

w − βB
w .

yT,B
δ , we may approximate this deflection angle to be

βT,B
w = tan−1

(∣∣yT,B
δ

∣∣ − Ri

xT,B
δ

)
. (15)

The absolute value of yT,B
δ is used to characterize the magnitude of the deflection angle without

the sign effect. In all cases studied, |yT,B
δ | is always larger than the in-circle radius Ri. Although,

in reality, shear layer separates from a corner (an edge) associated with the circum-circle radius
Rc, here Ri is used instead, since it is a universal constant independent of N and α∗. Figure 18
shows that βT,B

w results in noticeably better scaling compared to xT,B
δ (cf. Fig. 15 and 17). The total

deflection angle between the top and bottom separated shear layers βT
w + βB

w is proportional to CD

and inversely proportional to St, while their difference βT
w − βB

w scales inversely with CL, which is
in line with a standard control volume analysis. It is also consistent with the averaged base pressure
coefficient Cp [20] that a larger deflection angle results in a lower (Cp)b associated with a shorter
shear layer penetration distance and a wider low pressure base area (figure not shown), hence larger
CD. Figure 18(a) also includes N = 3, 4, 12, 16 cases with CD and St values taken from Xu et al. [17]
and βT,B

w from Wang et al. [18]. For N = 3 and N = 4, α∗ = 0 cases, CD and St are calculated based
on the projected width of the cylinder instead of Di [see Eq. (8)]; values for N = 12, 16, α∗ = 0
cases are converted to be based on Di.

All the correlations can be empirically described by relatively simple functions, i.e.,

CD ≈ 1.2 exp
(
βT

w + βB
w

)
, (16)

CL ≈ − 4
3

(
βT

w − βB
w

)
, (17)

St ≈ −0.1
(
βT

w + βB
w

) + 0.2. (18)
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FIG. 19. Critical PSP angles on top and bottom surfaces. Also shown are � for N = 3 from Huang et al.
[8] 	 for N = 4 from Iungo and Buresti [7], ⊗ for N = 12, α∗ = 0, and ⊕ for N = 16, α∗ = 0 taken from Xu
et al. [17]. Solid lines and open markers with error bars are for Eq. (20) and dashed lines Eq. (21).

In particular, the fitting constant 0.2 in Eq. (18) corresponds to St of a circular cylinder at Re = 104.
This suggests that βT

w = βB
w ≈ 0 for a circular cylinder, which also results in CD ≈ 1.2 and CL = 0

in Eqs. (16) and (17), respectively [18].
It can also be noted from Fig. 18(a) that the range between the largest (N = 5, α∗ = 0.4)

and smallest (the circular cylinder) total deflection angle βT
w + βB

w is significant. In general, as
N increases, it decreases, e.g., for N → ∞ (circular cylinder), βT

w + βB
w ≈ 0. In Eq. (15), βT,B

w

may also be approximated by the true shear layer maximum deflection distance yT,B
max, viz. the

maximum y coordinate of the mean shear layer centroid trajectory, and the associated x coordinate
xT,B

max. The resultant scaling quality is similar but slightly lower, as it is found that yT,B
δ ≈ yT,B

max,
xT,B
δ ≈ (5/4)xT,B

max, which suggests that shear layers have very small curvature.

E. Critical separation angle

It is evident from Fig. 14(a) that both the top and bottom shear layer penetration distance xδ

maximize at α∗ = 1, 0.6, 0.2, and 0.2, respectively, for N = 5 ∼ 8. From Figs. 15 and 18, it can be
concluded that this α∗ corresponds to maximum St and minimum CD, βT

w + βB
w, and �. Except for

N = 5, in other polygons α∗ occurs at off-principal orientation, and therefore xT,B
δ is asymmetric.

It is found that the side (top or bottom) with a larger xδ in these cases is associated with |θ0| ≈ 18◦
(refer to Fig. 9). It is the top side for N = 8 (θ0 ≈ 18◦) and the bottom side for N = 6, 7 (θ0 ≈
−18◦); for N = 5, it is symmetric θT

0 = θB
0 = 18◦ (Fig. 10, α∗ = 1.0). For the square cylinder,

θ0 = 15◦ [8,48]. We therefore propose an empirical equation that associates the largest shear layer
penetration distance (on a single side) with θ0 by∣∣θ c

0

∣∣ = 18◦ ± �θ◦, (19)

where �θ◦ = 180/(5N ), which quantifies the uncertainty due to �α∗ = 0.2. We can further esti-
mate the corresponding critical separation angle θs for the PSP on the same side as

θ c
s (PSP) ≈ ±

(
90◦ − ∣∣θ c

0

∣∣ − 180◦

N

)
, (20)

with (+) and (−) for the top and the bottom surfaces, respectively. Due to xT,B
δ being asymmetric

at off-principal orientations, the largest xδ is the top shear layer for N = 5n − 1, 5n − 2; bottom for
N = 5n + 1, 5n + 2; symmetric for N = 5n, n being integers. The calculated critical θs is plotted in
Fig. 19. For a given N , only the side with the larger xδ is marked. It is known from the experimental
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measurement for N = 12, 16 at their principal orientations that CD at α∗ = 0 is smaller than α∗ = 1
[17], and therefore this condition is marked in Fig. 19. Moreover, rotating clockwisely from α∗ = 0,
|θ0| approaches 18◦ from a smaller angle on the bottom surface first [17], and therefore these two
cases are marked on the bottom surface. This also suggests that the true θ c

s (PSP) would have a
slightly smaller magnitude than the marked experimental values.

Equation (20) performs less well for large N , where the effect of θ c
s fades away gradually and

xT,B
δ becomes α independent. Asymptotically, Eqs. (19) and (20) predict |θ c

s | ≈ 72◦ for the circular
cylinder (N → ∞), which is approximately ≈6◦ ∼ 8◦ less than that found by flow visualization
in Xu et al. [17] and ≈10◦ less than that reported in Jiang [44]. A recent experimental study [49]
observed subtle separation (PSP) and reattachment (SSP) behavior on circular cylinders having a
rough surface, which is equivalent to a polygon of very large but finite N . It indicates the true PSP
to be ≈20◦ smaller than the reported value, albeit at a smaller Re.

Taking the limiting circular cylinder case into consideration, θ c
s can be estimated by the empirical

equation

θ c
s (PSP) ≈ ±1.36[1 − exp (−0.12N )]

(
180

π

)
, (21)

where the last term converts radian to degree. For N → ∞, θ c
s = 78◦. Neglecting ±�θ in Eq. (19),

Eq. (12) suggests that the critical PSP is always on T1 and with an SSP on T0, whose angular
positions are related by θ c

s (SSP) = θ c
s (PSP) ∓ (360/N ). It can be seen from Table I that κ � 0.35

for all these SSPs.

IV. CONCLUSIONS

In this paper, incident flow around polygonal cylinders of side number N = 5, 6, 7, 8 is numeri-
cally studied using LES at Re = 104. In total, six equally spaced incidence angles are investigated,
covering the entire incidence spectrum. This paper focuses on the flow separation points and the
shear layer flapping motion, as well as their signature in the time mean flow fields and aerodynamic
forces.

The separation behavior is studied in terms of instantaneous and time mean vorticity fields as
well as the wall shear stress on the surface of the cylinders. An analytical formula for predicting the
separation points on the polygons is derived and is found to be in good agreement with experimental
data. A distinctive shear layer flapping motion can be observed at some incidence angles. The
flapping motion strength varies monotonically for N = 5 and nonmonotonically for N = 6, 7, 8.
It is a minimum when drag coefficient is a minimum and lift coefficient is a maximum. It is also
found that this flapping motion results in the formation of temporarily (or permanently) reattached
shear layers. It leads to the formation of SSPs on the cylinder, which can also be temporary.

It is found that the time mean shear layer penetration distance is a robust quantity with which
to scale the flapping motion strength as well as the aerodynamic forces. Based on this, a wake
deflection angle is proposed which universally scales the lift and drag coefficient and Strouhal
number. This not only works for all cases tested as well as other polygonal cylinder data available in
the literature, but also for the circular cylinder asymptotically. Finally, a universal critical separation
angle is proposed, which corresponds to the maximum vortex shedding frequency and minimum
drag and shear layer flapping motion strength. An empirical equation is provided for this critical
condition which works reasonably well for N � ∞.
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