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1 Introduction

Holography provides large classes of examples of strongly coupled field theories where exact
computations can be carried out [1, 2]. In a certain limit, non-trivial questions about field
theory can be mapped to well defined problems in Einstein’s classical theory of gravity in an
asymptotically Anti de-Sitter spacetime (AdS) of dimensionality larger by one. The fall-off
conditions of the classical gravitational fields close to the conformal boundary of AdS set
the sources of local operators on the field theory side. In the classical limit, the holographic
principle states that the partition functions of the two sides are equal, providing a powerful
tool to compute expectation values of local operators.

In thermal equilibrium, the geometric dual of the thermal state is a black hole geometry
with the temperature set by the Hawking temperature of the Killing horizon. Moreover,
the holographic dictionary suggests that global U(1) symmetries on the field theory side are
gauged in the bulk. The asymptotic flux of the corresponding gauge fields set the electric
charge density of the field theory making holography an invaluable laboratory to study
large classes of strongly coupled systems at finite temperature and number density [3].
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An interesting application of holography concerns the study of systems exhibiting
spontaneous breaking of a global symmetry. In general, continuous phase transitions are
driven via perturbative instabilities of black holes against fluctuations of classical bulk
fields. The first examples of symmetry breaking were due to bulk fields which are charged
under continuous internal symmetry groups, leading to superfluid phases of holographic
matter [4, 5]. Spontaneous breaking of spacetime symmetries were realised later in [6–9]
making holography even more appealing for applications in condensed matter systems.

Holographic systems reach local thermal equilibrium with their long wavelength excita-
tions obeying the laws of hydrodynamics. This has been a very active area of research over
the past years [10–14] from which new lessons about low energy effective field theory have
been learned [3, 15]. The hydrodynamic limit of broken symmetry phases where the stan-
dard hydrodynamic degrees of freedom of charged fluids combine with gapless Goldstone
modes has also been considered in holography [16–18]. More recently, the amplitude mode
which becomes gapless at continuous phase transitions has been realised holographically
in [19]. This is a first step towards constructing effective theories which include fluctuations
of the amplitude of the order parameter apart from its phase.

The hydrodynamic limit of holographic superfluids has been studied extensively since
their first discovery. As standard in hydrodynamics, the stress tensor of the theory and
the electric current admit a derivative expansion in terms of the local temperature, the
normal fluid velocity, the chemical potential and the phase of the order parameter. The
inequivalent terms that can appear in the first few orders of the hydrodynamic series of
relativistic superfluids have been classified in [16–18]. This is an necessary step in order
to extract the number of the transport coefficients that parametrise the different terms
in the expansion series. These numbers are essentially the invariants that one can have
under different choices of a fluid frame. For an isotropic relativistic fluid, the coefficients
that need to be specified in the small superfluid velocity limit are the incoherent electric
conductivity σ, the shear viscosity η and three bulk viscosities ζi. Similarly to normal
fluids, conformal symmetry constrains the form of the bulk viscosities allowing only one of
them to be non-zero [16, 17]. By introducing scales through relevant scalar operators, we
will retain as many independent transport coefficients as in any relativistic superfluid.

A number of previous works have considered various aspects of the hydrodynamic
limit of holographic superfluids. However, most of them have either resorted to numerical
techniques [20–23] or they have focused on specific models where analytic solutions for the
gravitational problem can be obtained infinitesimally close to the transition [16, 24]. In this
paper, we will employ the techniques developed in [19, 25], based on the Crnkovic-Witten
symplectic current [26], to derive the first dissipative corrections in the hydrodynamic limit
of holographic superfluids. A significant advantage of this approach is that an explicit
solution of the gravitational fields is not required. Instead, it focuses on the universal
aspects of the black holes dual to the thermal states.

As a by-product of our derivation, we will be able to fix the five non-trivial dissipative
transport coefficients that we expect to have. The expressions we will obtain will be in
terms of horizon data of the black holes dual to the thermal states of our system. Our results
reproduce a well known result for the shear viscosity η to entropy density s ratio which is
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proportional to 1/4π [10, 16, 27]. However, our results for the incoherent conductivity and
the bulk viscosities are new. In particular, our formula for the bulk viscosity ζ1 generalises
the results of [28] and [29] to include the bulk massive vector on the horizon. Moreover,
as we will see our expression for ζ3 generalises the result of [25] which was obtained for
holographic superfluids at zero chemical potential.

Given our analytic expressions in terms of horizon data, we are able study the be-
haviour of the first dissipative corrections close to the phase transition. By following
general arguments about the behaviour of our bulk fields near the phase transition, we are
able to show that the shear viscosity and the electric conductivity are continuous functions
across the transition. At the same time, we show that all three bulk viscosities diverge at
the critical point.

As one might anticipate, the hydrodynamic modes of our system consist of the two
longitudinal sound modes and the transverse shear mode responsible for the diffusion of
momentum density. Taking the limit of the dispersion relations close to the critical tem-
perature we find that the speed of the first sound mode remains finite while the speed
for the second sound vanishes. These results can be shown through general considerations
of ideal superfluid hydrodynamics. More interestingly, using the explicit expressions for
the dissipative coefficients we show the attenuation of the first sound diverges. This is in
contrast to the second sound whose attenuation part remains finite.

Our paper is organised in six sections which are further divided in subsections. In
section 2 we present the class of holographic models we wish to study along with the ther-
modynamic properties of the geometries dual to the field theory thermal states. In section 3
we discuss perturbations around our black holes and present the static perturbations which
are the infinite wavelength and zero frequency limits of our hydrodynamic expansion. In
section 4 we extract the leading dissipative corrections to the ideal superfluid based on the
techniques we developed in [19, 25]. We conclude our analytic results in section 5 where
we consider the limit of our hydrodynamic expansion close to the critical point. We also
take the limit of zero chemical potential and compare our results with those in [25].

2 Setup

To model a holographic superfluid phase at finite density, we will consider a bulk theory
which contains a Maxwell field Aµ, a neutral scalar φ and a complex scalar ψ which is
charged under the local U(1) symmetry. The neutral scalar φ is not a necessary ingredient
but we will use it in order to introduce additional scales into the system. This will allow
all the bulk viscosities we expect to find to be non-zero.

The system is described by the bulk action,

S =
∫
d4x
√
−g

(
R− V (φ, |ψ|2)− 1

2∂µφ∂
µφ− 1

2(Dµψ)(Dµψ)∗ − 1
4τ(φ, |ψ|2)FµνFµν

)
,

(2.1)
with the covariant derivative Dµψ = ∇µψ + iqeAµ ψ and the field strength F = dA. It
is easy to see that the above action is invariant under the local gauge transformations
A→ A+ dΛ and ψ → e−iqeΛ ψ.
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Our focus will be on the superfluid phase of our system corresponding to backgrounds
with a non-trivial profile for the complex bulk scalar ψ. In this case, the field redefinition
ψ = ρ eiqeθ is well defined bringing the action to the form,

S =
∫
d4x
√
−g

(
R− V (φ, ρ2)− 1

2(∂φ)2 − 1
2(∂ρ)2 − 1

2q
2
e ρ

2B2 − 1
4τ(φ, ρ2)FµνFµν

)
,

(2.2)
where we have set B = A+ ∂θ and F = dB. The equations of motion which extremise the
bulk action are,

Rµν −
1
2gµνV −

τ

2

(
FµρFν

ρ − 1
4gµν F

2
)

−1
2∂µφ∂νφ−

1
2∂µρ ∂νρ−

1
2q

2
eρ

2BµBν = 0 ,

∇µ∇µφ− ∂φV −
1
4∂φτ F

2 = 0 ,

∇µ∇µρ− ∂ρ2V ρ−
1
4∂ρ2τ ρF 2 − q2

e ρB
2 = 0 ,

∇µ
(
ρ2Bµ

)
= 0 ,

∇µ(τ Fµν)− q2
e ρ

2Bν = 0 . (2.3)

We will consider electrically charged black brane solutions which are dual to thermal states
of the deformed CFT by the relevant operator Oφ dual to the bulk field φ. Moreover, we
will assume that below a critical temperature Tc, the system exhibits spontaneous breaking
of the field theory global U(1).

The corresponding ansatz for the background fields is,

ds2 = −U(r) dt2 + dr2

U(r) + e2g(r)
(
dx2 + dy2

)
,

B = a(r) dt, φ = φ(r), ρ = ρ(r) . (2.4)

The above choice of coordinates fixes the radial coordinate apart from a global shift. We
will use this freedom to always have the event horizon sitting at r = 0. Near the horizon,
regularity implies the Taylor expansions

U(r) ≈ 4πT r +O(r2), g(r) ≈ g(0) +O(r), a(r) ≈ r a(0) + · · · ,

φ(r) ≈ φ(0) +O(r), ρ(r) ≈ ρ(0) +O(r) , (2.5)

where T is the Hawking temperature. Moreover, it will be useful to introduce the notation
τ (0), the horizon value of the function τ that appears in the bulk action (2.1).

Close to the conformal boundary at r →∞ we impose the expansions,

U(r) ≈ (r +R)2 + · · ·+
g(v)
r +R

+ · · · , g(r) ≈ ln(r +R) +O(r−1) ,

a(r) ≈ µt −
%

r +R
+ · · · ,

φ(r) ≈ φ(s) (r +R)∆φ−3 + · · ·+ φ(v) (r +R)−∆φ + · · · ,
ρ(r) ≈ ρ(s) (r +R)∆ψ−3 + · · · ρ(v) (r +R)−∆ψ + · · · , (2.6)
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where we have defined the scalar operators sources φ(s) and ρ(s) for the neutral and complex
operators correspondingly. Moreover, we have defined the chemical potential µt and as we
will see in the next section, the field theory charge density is given by the constant of
integration %. In this paper we will consider spontaneous breaking of the global U(1) and
we will be setting the non-perturbative complex scalar source ρ(s) equal to zero. Finally,
the global shift in the radial coordinate which fixes the horizon at r = 0 is reflected by the
constant of integration R.

In general, when the complex scalar source ρ(s) is set to zero, a perturbation of the
bulk vector will admit the UV expansion [25],

δBα =
∂αδθ(s)

(r +R)3−2 ∆ρ
+ · · ·+ δmα + · · ·+ δjα

r +R
+ · · · , (2.7)

where mα = ∂αθ(v) + µα is a gauge invariant combination of the superfluid velocity ∂αθ(v)
and the source µα for the U(1) current. As we will explain in the next section, the constant
of integration θ(s) is essentially a source for the complex scalar operator and the constants
δjα correspond to perturbations of the U(1) electric current. As we will see these in the next
section, these constants of integration are subject to a scalar constraint which is equivalent
to the Ward identity satisfied by the electric current.

From the above we see that the phase θ of the complex scalar ψ has become part of
the massive vector B. It will useful for us to note that, in the absence of a background
source ρ(s) the asymptotic expansion for the bulk phase close to the conformal boundary
is given by,

δθ ≈ (r +R)2∆ψ−3 δθ(s) + · · ·+ δθ(v) + · · · , (2.8)

allowing us to write the expansion for the complex scalar perturbation,

ψ ≈ (r +R)∆ψ−3 eiqe θ(v) (iqe ρ(v) δθ(s) + δρ(s))
+ · · ·+ (r +R)−∆ψ eiqe θ(v) (δρ(v) + iqe ρ(v) δθ(v)) + · · · . (2.9)

From the above, we can read off the perturbative source for the complex operator to be,

δλ = eiqe θ(v) (iqe ρ(v) δθ(s) + δρ(s)) . (2.10)

2.1 Thermodynamics and Ward identities

In order to extract quantities which are relevant to the field theory living on the boundary,
our bulk action (2.1) needs to be supplemented with appropriate counterterms that will
render it finite on-shell [30]. Apart from regularisation, the appropriate counterterms make
the variational problem well defined [31]. For the bulk action we are interested in, a set
universal terms are contained in,

Sbdr = −
∫
∂M

d3x
√
−γ (−2K + 4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ

[
(3−∆φ)φ2 − 1

2∆φ − 5 ∂aφ∂
aφ

]

− 1
2

∫
∂M

d3x
√
−γ

[
(3−∆ψ)|ψ|2 − 1

2∆ψ − 5 DaψD
aψ∗

]
+ · · · , (2.11)
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where γαβ is the induced metric on the asymptotic hypersurface ∂M of constant radial
coordinate r.

The grand canonical free energy density wFE for the thermal states captured by the
geometries of equation (2.4) coincides with the value of the total action Stot = S + Sbdr
after a Wick rotation to Euclidean time t = −i τ . This yields the total Euclidean action
Itot such that wFE = T Itot and,

wFE = ε− T s− µt % . (2.12)

In the expression above, ε is the conserved energy density, % is the electric charge density
and,

s = 4π e2 g(0)
, (2.13)

is the Bekenstein-Hawking entropy density of the system. Another horizon quantity we can
define and which will become useful later is related to the flux of the one-from Bµ through
the black hole horizon. We will can this the horizon charge density %h and by using our
near horizon expansion (2.5) we can write,

%h = e2g(0)
τ (0)a(0) . (2.14)

In our analysis, we are aiming to use the set of techniques that were developed in [19,
25, 29] in order to extract holographic information for the perturbations in real time. For
this reason, we will perform an integration by parts in the Einstein-Hilbert term in order to
obtain a Lagrangian density that will only contain first order partial derivatives of the met-
ric. As we argued in [29], the boundary counterterms δS′bdr for that action will be given by,

δS′bdr = −
∫
∂M

d3x
√
−γ (4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ

[
(3−∆φ)φ2 − 1

2∆φ − 5 ∂aφ∂
aφ

]

− 1
2

∫
∂M

d3x
√
−γ

[
(3−∆ψ)|ψ|2 − 1

2∆ψ − 5 DaψD
aψ∗

]
+ · · · . (2.15)

After integrating by parts, the total action is given by,

S′ =
∫
d4xL

(
gµν , ∂λgµν , ϕ

I , ∂λϕ
I
)

+ S′bdr . (2.16)

As we explained in [29], this action is suitable to extract real time boundary quantities as
we drop a term that can potentially arise on the black holes horizon. Notice that dropping
this term is standard within the holographic dictionary. However, for the Euclidean
solutions this term is responsible for the entropy term in the expression (2.12) for the
grand canonical free energy.
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The VEV of the boundary stress tensor Tµν , the electric current Jµ and the scalar
operators Oφ and Oψ are obtained via the variations,

〈Tµν〉 = lim
r→∞

2 r5
√
−γ

[
∂L

∂(∂rgµν) + δS′bdr
δγµν

]
,

〈Jµ〉 = lim
r→∞

r5
√
−γ

[
∂L

∂(∂rBµ) + δS′bdr
δBµ

]
,

〈Oφ〉 = lim
r→∞

r3
√
−γ

[
∂L

∂(∂rφ) + δS′bdr
δφ

]
,

〈Oψ〉 = lim
r→∞

r3
√
−γ

[
∂L

∂(∂rψ∗)
+ δS′bdr

δψ∗

]
, (2.17)

This form will be particularly useful to us as we will be able to read off directly the
dissipative parts of the VEVs for the stress tensor and the electric current by using the
techniques developed in [19, 25, 29].

In our analysis, the gravitational and vector field constraints in the bulk will be the
last set of equations to be imposed. From the field theory point of view, when imposed on
a hypersurface close to conformal boundary, they are equivalent to the Ward identities of
diffeomorphism and gauge invariance for the sources,

∇a〈T ab〉 = F ba〈Ja〉+∇bϕI(s) 〈OI〉+∇bλ 〈Oψ∗〉+∇bλ∗ 〈Oψ〉 ,

∇a〈Ja〉 = qe
2i (λ 〈Oψ∗〉 − λ∗ 〈Oψ〉) . (2.18)

In the above we have defined the field strength F = dm = dµ of the external source of the
current operator. Our main aim is to first obtain a set of constitutive relations for the stress
tensor and electric current in terms of an appropriate set of hydrodynamic variables by
solving the radial equations. The Ward identities (2.18) will play the role of conservation
laws in the theory of hydrodynamics.

The background geometries of equation (2.4) yield the stress tensor,

〈Ttt〉 = ε , 〈Txx〉 = 〈Tyy〉 = p , 〈J t〉 = % , (2.19)

where the energy density ε is given by,

ε = −2 g(v) − ϕ(s) 〈Oφ〉 , (2.20)

with 〈Oφ〉 = (2∆φ−3)φ(v). Moreover, due to the translational invariance of the background
thermal states under consideration, the pressure p is related to the free energy density
according to p = −wFE .

Finally, the VEV of our complex scalar operators is given by the constants of integra-
tion appearing in the asymptotic expansions (2.7) and (2.10) according to,

〈Oψ〉 = 1
2(2∆ψ − 3) ρ(v)e

i qe θ(v) , (2.21)

which after we perturb yields,

δ〈Oψ〉 = 〈Oψ〉b i qe δθ(v) + ei arg(〈Oψ〉b) δ|〈Oψ〉| . (2.22)
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The thermal states we are considering in equation (2.4) are parametrised by tem-
perature T , the chemical potential µt and the neutral scalar deformation parameter φ(s).
However, superfluids are also characterised by a non-trivial electric current susceptibility
χJJ allowing for thermal states which have a persistent electric with no heat current flow.
This leads to a form of the first law,

dwFE = −s dT − ja dma − 〈Oφ〉 dφ(s) , (2.23)

where once again we have the gauge invariant combination ma = µa+∂aθ(v). Even though
we are not considering thermal background states with a persistent current, their perturba-
tive form will become important in the construction of our hydrodynamic modes, through
the supercurrent susceptibility. We will come back to this point in the next subsection
when we discuss our static, thermodynamic perturbations.

For later reference, we will also define the thermodynamic susceptibilities through the
variations,

ds = T−1 cµ dT + ξ dµt , d% = ξ dT + χQQ dµt . (2.24)

3 Perturbations

In this section we will discuss the various perturbations around the black hole geome-
tries (2.4) that will be relevant to our construction. In subsection 3.1 we discuss properties
of general space-time dependent perturbations before considering any hydrodynamic limit.
In subsections 3.2 and 3.3 we discuss static perturbations that we can obtain through vari-
ations of the thermodynamic variables parametrising our background geometries as well as
perturbations that we can obtain through large coordinate transformations. As we will see,
these will play a dual role in obtaining the constitutive relations. Finally, in subsection 3.4
we present our hydrodynamic expansion along with the leading dissipative corrections we
are after.

3.1 Real time perturbations

Before discussing the derivative expansion of hydrodynamics, it will be beneficial to consider
space-time dependent fluctuations from the boundary theory point of view. Due to the
translational symmetry in both space and time, we find it convenient to perform a Fourier
mode expansion of the general form,

δF(t, xi; r) = e−iw (t+S(r))+ikixi δf(r) , (3.1)

where δF represents perturbations of the scalars as well as the metric field components.
Moreover, by choosing the function S(r) to approach S(r)→ ln r

4πT + · · · close to the black
hole horizon at r = 0, we are guaranteed to the correct in-falling boundary conditions
provided that δf(r) admits a Taylor series expansion there. Finally, in order to for the
holographic dictionary to be solely dictated by the asymptotics of δf(r), we will choose
S(r) to behave as S(r)→ O(1/r3) close to the conformal boundary.

– 8 –
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Close to the conformal boundary, the radial functions that parametrise our space-time
dependent perturbations will have to behave according to,

δgab(r) = (r +R)2
(
δsab + · · ·+ δtab

(r +R)3 + · · ·
)
,

δgra(r) = O
( 1
r3

)
, δgrr(r) = O

( 1
r4

)
,

δBa(r) = δma + δja
r +R

+ · · · , δBr(r) = O
( 1
r3

)
,

δφ(r) =
δφ(v)

(r +R)∆φ
+ · · · , δρ(r) =

δρ(v)

(r +R)∆ψ
+ · · · . (3.2)

Notice that we do not choose to work in a particular coordinate system, we will only our
coordinates asymptotically through the decays of the metric components δgrµ. Moreover,
the above stated decay for the one-form field components δBr is correct provided that we
impose the Ward identity for the electric current in equation (2.18).

Close to the black hole horizon at r = 0, we need to impose ingoing boundary conditions
which we can achieve through the asymptotics,

δgtt(r) = 4πT r δg(0)
tt + · · · , δgrr(r) = δg

(0)
rr

4πT r + · · · ,

δgti(r) = δg
(0)
ti + r δg

(1)
ti + · · · , δgri(r) = δg

(0)
ri

4πT r + δg
(1)
ri + · · · ,

δgij(r) = δg
(0)
ij + · · · , δgtr(r) = δg

(0)
tr + · · · ,

δBt(r) = δb
(0)
t + δb

(1)
t r + · · · , δBr(r) = δb

(0)
r

4πT r + δb(1)
r + · · · ,

δBi(r) = δb
(0)
i + · · · ,

δφ(r) = δφ(0) + · · · , δρ(r) = δρ(0) + · · · . (3.3)

In order to achieve regular in-falling boundary conditions, the above need to be supple-
mented by additional conditions,

−2πT (δg(0)
tt + δg(0)

rr ) = −4πT δg(0)
rt ≡ δTh ,

δg
(0)
ti = δg

(0)
ri ≡ −δui ,

δb(0)
r = δb

(0)
t ≡ δµh . (3.4)

In the above equations we have defined some horizon quantities which can be thought of as
local temperature, fluid velocity and chemical potential and which can be defined on the
black hole horizon. These will not be directly relevant to us since we will study the fluid
from the boundary theory point of view.

3.2 Thermodynamics perturbations

In this subsection we will consider all static perturbations which can be realised as small
variations of thermodynamic variables and the Goldstone mode. As such, these will be the
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starting point of our hydrodynamic expansion which we will have to correct by using the
techniques introduced in [19, 25, 29].

The first perturbation we will consider is generated by a variation in the temperature
T of the background black holes of equation (2.4). However, in order to achieve the regular
in-falling boundary conditions of equations (3.3) and (3.4), we need to accompany the
temperature variation with an infinitesimal coordinate transformation,

t→ t− ∂TS δT , (3.5)

yielding the fluctuation,

δT gtt = −∂TU , δT grr = −∂TU
U2 , δT gtr = U ∂TS

′ ,

δT gij = 2 δij e2g ∂T g , δTBt = ∂Ta ,

δTφ = ∂Tφ , δTρ = ∂Tρ . (3.6)

Another thermodynamic variation which we wish to consider is with respect to the
external field source δµa and superfluid velocity ∂aδθ. These two variables are packaged
in the gauge invariant quantity ma = µa + ∂aθ. In order to generate the variations with
respect to mt, we can simply consider the derivative of our backgrounds with respect to
the chemical potential to obtain,

δmtgtt = −∂µtU , δmtgrr = −∂µtU
U2 , δmtgij = 2 δij e2g ∂µtg

δmtBt = ∂µta , δmtφ = ∂µtφ , δmtρ = ∂µtρ . (3.7)

In contrast to the case of the temperature variation, we don’t need to shift the time coor-
dinate here. The derivative of U with respect to the chemical potential results in a pertur-
bation such that δgtt and δgrr exhibit a regular behaviour near the horizon, as can be seen
from the asymptotics (2.5). In the notation of equations (3.3) and (3.4) it leads to δTh = 0.

The perturbation with respect to the spatial components mi will result in a static
solution representing a static, isotropic current flow captured by,

δmjgti = δji δfg , δmjBi = δji δfb . (3.8)

Since this solution is not directly generated through a derivative of our backgrounds (2.4),
it is worth discussing it in more detail. An important point is that in order to define the
current-current susceptibility χJJ through this fluctuation, we have to fix a frame where
there is no heat current flow. This is necessary in order to obtain a unique solution since in
the opposite case, we would be able to perform a Lorentz boost an still have a solution with
a different current and heat flow. From a physics point of view, this is simply the fact that
we want to consider a frame where only the superfluid component carries electric current.
In this situation, there cannot be a heat current as the superfluid cannot transport it.

The absence of a heat current flow on the boundary imposes that the constant term
in δfg(r) will vanish in the near horizon expansion,

δfg(r) = δf (1)
g r + · · · , δfb(r) = δf

(0)
b + · · · . (3.9)
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This can be justified through either earlier works relating the horizon data of static pertur-
bations to boundary quantities [32, 33] or by following the techniques used in the present
paper. By using our techniques, we can show this statement by e.g. considering the sym-
plectic current constructed from the perturbation (3.8) and δsti discussed in the next sub-
section. This is also the reason that we don’t need to include a perturbation for the metric
component δgri since this produces a perturbation which has δui = 0, in the notation of
the boundary conditions (3.3) and (3.4). Asymptotically we must have,

δfg(r) = 1
3
µt χJJ
r +R

+ · · · , δfb = 1− χJJ
r +R

+ · · · , (3.10)

which imposes the zero heat current condition.
The final static solution we would like to consider is generated by boundary by infinites-

imal Lorentz boosts with parameter δvi. As one can easily see, at finite chemical potential
this can be generated by a combination of a metric and a constant current source,

t→ t− δvi xi , xi → xi − δvi t , δmi = µt δvi , (3.11)

which will guarantee the absence of a net current source in the boundary theory. In order
to obtain a regular solution in the bulk, we need to see the above as the asymptotics of a
large coordinate transformation which is otherwise regular everywhere in the bulk. This is
achieved by the coordinate transformation,

t→ t− δvi xi , xi → xi − δvi (t+ S(r)) , (3.12)

combined with the static solution (3.8) with the appropriate sources to cancel the external
gauge field source. This leads to the bulk perturbation,

δvjgtt = δvjgrr = δvjgtr = 0 , δvjϕ = 0 ,

δvjgti = δji

(
U − e2g + µt δfg

)
, δvjgri = −δji

(
e2g S′ + µt δfc

)
,

δvjBi = δji (µt δfb − a) , δvjBt = 0 , δvjBr = 0 . (3.13)

The perturbations discussed in this section will be the building blocks for the zero
frequency, infinite wavelength limit of the hydrodynamic perturbations we will start con-
structing in section 3.4. From the boundary point of view, the perturbations we discussed
here give rise to the stress tensor and electric current fluctuations of the ideal superfluid,

δ〈T tt〉 = ∂T ε δT + ∂µtε δmt = (cµ + µt ξ) δT + (T ξ + µt χQQ) δmt ,

δ〈T ij〉 = δij (∂T p δT + ∂µtp δmt) = δij (s δT + % δmt) ,

δ〈T ti〉 =
(
ε+ p− µ2

t χJJ
)
δvi − µt χJJ δmi ,

δ〈J t〉 = ∂T% δT + ∂µt% δmt = ξ δT + χQQ δmt ,

δ〈J i〉 = (%− µt χJJ) δvi − χJJ δmi . (3.14)

It is also useful to check the heat current,

δ〈Qi〉 = δ〈T ti〉 − µt δ〈J i〉 = (ε+ p− µt %) δvi = Ts δvi , (3.15)
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is indeed transferred by the normal fluid component which contributes to the entropy
density of the system. Moreover, it will be useful to define the normal and superfluid
charge densities,

%n = %− µt χJJ ,
%s = µt χJJ , (3.16)

respectively.

3.3 Static perturbations from diffeomorphisms

Another class of static perturbations we will find useful are simply generated by large
diffeomorphisms. Similarly with the thermodynamic perturbations of the previous sub-
section, their role in our construction will be twofold. Firstly, they will later be used in
order to introduce sources in our hydrodynamic expansion as they will be part of the zero
frequency, infinite wavelength limit. Secondly, they will be used in the construction of the
symplectic current. As described in [29], this will help us read off the leading dissipative
corrections to the stress tensor.

Similarly to [29], we will consider the combination of large coordinate transformations
along with constant sources for the electric current sources,

xa → xa + δsab (xb + δbt S(r)) ,
δµa = −µt δsta , (3.17)

where the term involving S(r) takes care of regular, in-falling boundary conditions on the
black hole horizon at r = 0. It is easy to see that from the boundary theory point of view,
this coordinate transformation induces a change in the metric,

δgab = ηac δs
c
b + ηbc δs

c
a = 2 δs(ab) , (3.18)

while the explicit current sources of equation (3.17) combine with the transformation of
the background source to give zero.

From the bulk point of view the bulk perturbation corresponding to the source δstt is
realised by,

δsttgtt = 2U − µt ∂µtU , δsttgtr = U (S′ + µt ∂µtS
′) ,

δsttgrr = −µt
∂µtU

U2 , δsttgij = 2 δij µt e2g ∂µtg ,

δsttBt = −a+ µt ∂µta , δsttBr = −aS′ ,
δsttφ = µt ∂µtφ , δsttρ = µt ∂µtρ . (3.19)

For the rest of the perturbations generated by (3.17) we have,

δstjgti = δji (U + µt δfg) , δstjBi = δji (−a+ µt δfb) ,

δsjtgti = δji e
2g , δsjtgri = δji e

2g S′ ,

δsijgkl = 2 δ(i
k δ

j)
l e2g . (3.20)
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It is a simple matter to combine variations and transformations the VEVs of the
background stress tensor and electric current to obtain the perturbations,

δ〈T tt〉 = (2 ε+ µt (T ξ + µt χQQ)) δstt ,

δ〈T ij〉 = δijµt % δs
tt − 2 p δs(ij) ,

δ〈T ti〉 = ε δsit −
(
p− µ2

t χJJ
)
δsti ,

δ〈J t〉 = (%+ µt χQQ) δstt ,
δ〈J i〉 = % δsit + µt χJJ δs

ti . (3.21)

The above variations with respect to the sources, along with the ones coming from thermo-
dynamics in equation (3.14), will become the constitutive relations for the ideal superfluid.

3.4 Hydrodynamic perturbations

In this subsection we will construct the hydrodynamic modes in the bulk. In order to do
this, we think of them as finite frequency and long wavelength deformations of the static
modes we discussed in subsections 3.2 and 3.3. To make things technically more tractable,
we will consider the Fourier decomposition (3.1) with ki = ε qi and w = ε ω.

Our hydrodynamic perturbation can be expanded in ε according to,

δHf = ε δf (1) + ε2 δf (2) + · · ·

= δT f δT + δvif δvi + δmaf δma + δsabf δsab + ε2 δf (2) + · · · , (3.22)

where δf (1) is a linear combination of the static modes that we discussed in subsections 3.2
and 3.3. After dressing this linear combination with the exponential of the Fourier modes,
we expect that the radial function will admit an ε expansion which after writing back in
position space, we can think of as derivative corrections. In order to have this interpre-
tation, we will need to show that the VEV corrections induced by the leading correction
δf (2) can be indeed expressed in terms of derivatives of the local temperature δT , fluid
velocity δvi and superfluid velocity ∂aδθ.

To organise the expansion of the boundary stress tensor and electric current, we can
write,

δ〈T tt〉 = (cµ + µt ξ) δT + (T ξ + µt χQQ) δµ+ 2 ε δstt + ε2 δ〈T tt〉(2) + · · · ,
δ〈T it〉 = δ〈T ti〉 = (Ts+ µt %n ) δvi − %s δmi + ε δsit + ε2 δ〈T ti〉(2) + · · · ,

δ〈T ij〉 = δij (s δT + % δµ)− 2 p δs(ij) + ε2 δ〈T ij〉(2) + · · · ,
δ〈J t〉 = ξ δT + χQQ δµ+ % δstt + ε2 δ〈J t〉(2) ,

δ〈J i〉 = %n δv
i − χJJ δmi + % δsit + ε2 δ〈J i〉(2) , (3.23)

where we have used our definitions (3.16) for the normal and superfluid charge densities.
Moreover, we have defined the variation of the new chemical potential,

δµ = δmt + µt δs
tt , (3.24)
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which as we will later see in section 4.2, it will receive dissipative corrections. In the
above, the corrections δ〈T ab〉(2) and δ〈Ja〉(2) are precisely the corrections due to δf (2)

in the expansion (3.22). Already at leading order, the O(ε) terms in the constitutive
relations (3.23) are enough to yield the equations of motion of the ideal superfluid, when
combined with the Ward identities (2.18),

(Ts+ µt%n) ∂tδvi + %n ∂tδmi + s ∂iδT − Ts ∂iδstt = 0 ,

ξ ∂tδT + χQQ ∂tδµ+ %n ∂iδv
i − χJJ ∂iδmi + %

(
∂iδs

it + δij∂tδs
ij
)

= 0 ,

(cµ + µt ξ) ∂tδT + (Tξ + µtχQQ) ∂tδµ+ (Ts+ µt%n) ∂iδvi

−%s ∂iδmi + (ε+ p)
(
∂iδs

it + δij∂t δs
ij
)

= 0 . (3.25)

The task of the next section will be to employ the techniques of [29] and express
these corrections in terms of δT , δvi and ∂aδθ. As a by-product, we will obtain specific
expressions for the shear and the three bulk viscosities, along with the two independent
dissipative coefficients that enter the currents or the Josephson relation, depending on the
frame one would like to use. For completeness we will express our constitutive relations in
the transverse frame [16, 17].

4 Constitutive relations

In this section we will derive the constitutive relations for the stress tensor and electric
current relevant to the hydrodynamic fluctuations of our system. We will achieve this in
two steps which we discuss in detail in the following subsections. The first step is to extract
the constitutive relations in terms of our hydrodynamic variables. As we will see, we will
land in an unusual fluid frame which will include bulk integrals as part of its artefacts.
In the second step we will change our description to the so called transverse frame from
which we will be able to read off the shear viscosity η, the three bulk viscosities ζi and the
incoherent conductivity σ.

4.1 Constitutive relations in terms of horizon data

The aim of this section is to write the dissipative corrections of the constitutive rela-
tions (3.23) in terms of derivatives of the hydrodynamic variables δT , δvi and δθ. In order
to achieve this, we will follow closely the logic developed in [29].

The main tool in our construction will be the Crnkovic-Witten symplectic current
defined for any classical theory of a collection of fields φI whose equations of motion can be
obtained from a first order Lagrangian density L(φI , ∂φI). For any two perturbations δ1φ

I

and δ1φ
I around a background φIb which solve the Euler-Lagrange equations of motion, the

vector density,

Pµδ1,δ2
= δ1φ

I δ2

(
∂L

∂∂µφI

)
− δ2φ

I δ1

(
∂L

∂∂µφI

)
, (4.1)

is divergence free,
∂µP

µ
δ1,δ2

= 0 . (4.2)
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For completeness, we write list the contributing terms to (4.1),

∂L
∂∂µgαβ

=
√
−g Γµγδ

(
gγα gδβ − 1

2 g
γδgαβ

)
−
√
−g Γκκλ

(
gµ(α g β)λ − 1

2 g
µλgαβ

)
,

∂L
∂∂µBν

= −
√
−g τ Fµν , ∂L

∂∂µφ
= −
√
−g ∂µφ , ∂L

∂∂µρ
= −
√
−g ∂µρ , (4.3)

through the derivatives of the first order bulk action (2.16).
Following very similar arguments with [29], one can show that the asymptotic be-

haviour of the radial components of the symplectic current is,

P rδ1,δ2 = 1
r3

(
δ1φ(s) δ2

(√
−γ 〈Oφ〉

)
− δ2ϕ(s) δ1

(√
−γ 〈Oφ〉

))
+ 1
r3

(
δ1ρ(s) δ2

(√
−γ 〈Oρ〉

)
− δ2ρ(s) δ1

(√
−γ 〈Oρ〉

))
+ 1
r3
(
δ1ma δ2

(√
−γ 〈Ja〉

)
− δ2ma δ1

(√
−γ 〈Ja〉

))
+ 1
r3

1
2
(
δ1γab δ2

(√
−γ 〈T ab〉

)
− δ2γab δ1

(√
−γ 〈T ab〉

))
+ · · · , (4.4)

with the VEVs being correct up to second derivatives of the sources. This is useful to us as
we are interested in obtaining the VEVs of the stress tensor and the electric current up to
order O(ε2). The above expression shows that by using appropriate combinations of our
hydrodynamic mode (3.22) and the static solutions of subsections 3.2 and 3.3, we can read
off the VEVs of our system.

By introducing the Fourier decomposition (3.1) of the symplectic current itself and by
integrating the condition (4.2) we can express,

P rδ1,δ2

∣∣∣
r=∞

= P rδ1,δ2

∣∣∣
r=0

+Bδ1,δ2 , (4.5)

where we have set,

Bδ1,δ2 = i

∫ ∞
0

dr
(
−w

(
S′ P rδ1,δ2 + P tδ1,δ2

)
+ ki P

i
δ1,δ2

)
, (4.6)

where w and ki are the frequency and wavevector as defined in the Fourier decomposi-
tion (3.1). This shows that when e.g. one of the two perturbations δ2 is chosen to be
hydrodynamic mode δH we can expand in ε to obtain,

Pµδ1,δH
= ε P

µ(1)
δ1,δH

+ ε2 P
µ(2)
δ1,δH

+ · · · . (4.7)

The leading term P
r(1)
δ1,δH

is the symplectic current formed by the ε terms in the hydrody-
namic expansion (3.22). As such, it will not offer us additional information apart from
facts about the static perturbations since δ1 always refers to static perturbations of the
background. At second order in the ε expansion, we have,

P
r(2)
δ1,δ2

∣∣∣
r=∞

= P
r(2)
δ1,δ2

∣∣∣
r=0

+B
r(2)
δ1,δ2

, (4.8)

with,
B

(2)
δ1,δ2

= i

∫ ∞
0

dr
(
−ω

(
S′ P

r(1)
δ1,δ2

+ P
t(1)
δ1,δ2

)
+ qi P

i(1)
δ1,δ2

)
. (4.9)
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We therefore see that bulk integrals will in principle be present in our final expressions.
However, after moving to a fluid frame in which the transport coefficients are of physical
significance and using properties of the static perturbations, the bulk integral will disappear
from the final constitutive relations.

Before we embark on our journey to fix the dissipative parts of the constitutive rela-
tions (3.23), we would like to point at some piece of information that will be useful and
that we can obtain from the symplectic current formed entirely from our static solutions.
By considering the symplectic current Pµ

δvi,δmj
and applying equation (4.5) we obtain,

δf (1)
g = −4π%h

s
δf

(0)
b + 4π%n

s
. (4.10)

In appendix A we list all the constraints we can obtain by forming the symplectic current of
all possible combinations of the static perturbations in subsections 3.2 and 3.3. In contrast
to the case of normal fluids that were studied in [29], these bulk constraints will be used
in order to show all the transport coefficients are fixed by the event horizon of our thermal
states (2.4).

The static perturbations of subsection 3.3 which contain sources for the asymptotic
metric, will let us express the boundary stress tensor in terms of horizon data and bulk
integrals of the perturbation. Similarly, the perturbation δma discussed in subsection 3.2
will let us do the same for the electric current. As we will see, this will leave us with
constants of integration on the horizon which still need to be expressed in terms of our
hydrodynamic variables. Similarly to [29], we will achieve this by considering the symplec-
tic current formed by using the hydrodynamic mode (3.22) along with the temperature
variations δT and boosts δvi of subsection 3.2.

In order to read off the corrections δ〈T ab〉(2), we will consider the symplectic current
Pµδsab,δH to obtain,

ε δ〈T tt〉(2) = i

4π

(
−qis

(
δsit + δvi

)
+ ω (s− µt ξ) δijδsij + ω

cµ
sT

(s− µt ξ) δT

+ ω
ξ

s
(s− µt ξ) δµ+ ωµt ξδs

tt + ε 4πi ∂µt%h µt δb
(2)(0)
t − ε 8i π2 T δijδg

(2)(0)
ij

+ ε 2πi T µt ξ
(
δg(2)(0)
rr + δg

(2)(0)
tt

)
+ sµt ω

(
∂Tρ

(0)∂µtρ
(0) + ∂Tφ

(0)∂µtφ
(0)
)
δT

+sµt ω
((
∂µtρ

(0)
)2

+
(
∂µtφ

(0)
)2
)
δµ

)
+ εB

(2)
δstt ,δH

,

ε δ〈T ti〉(2) = −ε 4π
s

(µt%n + Ts) δg(2)(0)
ti + iωµt(δf (0)

b )2
(
δmi + µtδv

i
)

+ εB
(2)
δsti ,δH

,

ε δ〈T ij〉(2) = − is4π
(
2
(
q(iδsj)t + q(iδvj)

)
− δijqk

(
δskt + δvk

))
− iω

4π

(
δij
(

2 s δklδskl − s δstt + cµ
T
δT + ξ δµ

)
− 2s δs(ij)

)
− ε δij s T2

(
δg(2)(0)
rr + δg

(2)(0)
tt

)
− ε %hδij δb

(2)(0)
t + εB

(2)
δsij ,δH

. (4.11)

– 16 –



J
H
E
P
1
1
(
2
0
2
2
)
0
5
3

By considering the symplectic current Pµδsit,δH , we can obtain the form,

εδ〈T ti〉(2) =− i

4πT
(
qi
(
sTδklδskl+cµδT +Tξδµ

)
+ωδvi (sT +µ%n)

)
− i

4πT
(
ω%n δm

i−δf (0)
b %h

(
δmi+µδvi

)
ω
)

+ε
s

4πδ
ij
(
δg

(2)(1)
tj −2δg(2)(0)

tj g(1)
)

+ε
is

4πω
(
δmi+µδvi

)
δf (1)
c +ε%hδ

ijδb
(2)(0)
j +εB

(2)
δsit ,δH

, (4.12)

This form for δ〈T ti〉(2) is equivalent to the one we listed in (4.11) because Pµδsit,δH and
Pµδsti,δH linearly combine to Pµδvi,δH which is source free.

The above expressions express the first dissipative correction to the ideal superfluid
as functions of the hydrodynamic variables as well as the horizon constants of integra-
tion δijδg(2)(0)

ij and δb(2)(0)
t for the correction δf (2) in our hydrodynamic expansion (3.22).

Moreover, we have the appearance of integrals over the bulk which, as we will later see,
are artifacts of the fluid frame. Moreover, the appearance of the constants of integration
δg

(2)(0)
tt + δg

(2)(0)
rr and δg(2)(0)

ti should not bother us as they can be considered as corrections
to the local temperature δT and fluid velocity δvi respectively. In other words, we will be
able to absorb them in the definition of δT and δvi via a change of fluid frame.

In order to obtain similar expressions for the leading dissipative corrections δ〈Ja〉 of
the electric current, we will apply equation (4.8) for the symplectic current Pµδma ,δH . This
allows us to write,

ε δ〈J t〉(2) = − iω4πξ
(
δklδskl − δstt

)
− iω

4πsξ
(
cµ
T
δT + ξδµ

)
+ iωs

4π

((
∂Tρ

(0)∂µtρ
(0) + ∂Tφ

(0)∂µtφ
(0)
)
δT +

((
∂µtρ

(0)
)2

+
(
∂µtφ

(0)
)2
)
δµ

)
− ε ∂µt%h δb

(2)(0)
t − ε Tξ2

(
δg(2)(0)
rr + δg

(2)(0)
tt

)
+ εB

(2)
δmt ,δH

,

ε δ〈J i〉(2) = iω
(
δf

(0)
b

)2 (
δmi + µtδv

i
)
− ε 4π

s
%nδ

ijδg
(0)
tj + εB

(2)
δmi ,δH

. (4.13)

Once again, the above expressions contain constants of integration for the perturbation
which need to be fixed in terms of our hydrodynamic variables.

To achieve this, we will consider equation (4.8) for the symplectic currents Pµ
δvi,δH

and
PµδT,δH which don’t contain any sources. Moreover, we will examine the radial component
of the vector field equation of motion in (2.3) close to the black hole horizon. This step
was also necessary in [25] and in [29] in order to eliminate the horizon degree of freedom.

By considering the symplectic current Pµ
δvi,δH

, we obtain the equation,

iω
(
δf

(0)
b

)2
µt (δmi + µtδvi)− ε %hδb

(2)(0)
i − ε 4π

s
(s T + µt%n) δg(2)(0)

ti

+ i

4πT
(
qi
(
s T δklδskl + cµδT + Tξ δµ

)
+ ω (sT + µt%n) δvi

)
+ i

4πT
(
ω%n δmi − δf (0)

b %h ω (δmi + µtδvi)
)

− ε s

4π
(
δg

(2)(1)
ti − 2δg(2)(0)

ti g(1)
)
− is

16π2T
ω δf (1)

c (δmi + µtδvi) = εB
(2)
δvi ,δH

. (4.14)
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The above can used to show the equivalence between the expressions (4.12) and the one
given in (4.11) after noting that,

B
(2)
δvi ,δH

= B
(2)
δsti ,δH

−B(2)
δsit ,δH

. (4.15)

Our next step is to consider equation (4.8) for the symplectic current PµδT,δH yielding,

c2
µ

sT 2 ω δT + cµξ

sT
ω δµ+ cµ

T
ω
(
δijδsij − δstt

)
− ε 2πi cµ

(
δg(2)(0)
rr + δg

(2)(0)
tt

)
− ε 4πi ∂T%h δb

(2)(0)
t − ε 8 i π2 δijδg

(2)(0)
ij − sω

((
∂Tρ

(0)
)2

+
(
∂Tφ

(0)
)2
)
δT

− s ω
(
∂Tρ

(0)∂µtρ
(0) + ∂Tφ

(0)∂µtφ
(0)
)
δµ = ε πiB

(2)
δT ,δH

. (4.16)

The above equation in combination with the radial component of the vector equation
in (2.3) evaluated on the horizon,

ε δb
(2)(0)
t = 4πi

s q2
e

(
ρ(0))2 (%hqi (δsit + δvi

)
− ω

(
%hδ

ijδsij + ∂T%hδT + ∂µt%hδµ
))

, (4.17)

can be used to eliminate the constants δijδg(2)(0)
ij and δb

(2)(0)
t from the constitutive rela-

tions (4.11) and (4.13). By eliminating those we can express all our constitutive relations
in terms of the hydrodynamic variables δT , δvi and δθ(v). However, there is still a set of
bulk integrals which are not equal to zero. By performing the change of frame given by,

δT → δT − ε

cµ + µt ξ

(
B

(2)
δstt ,δH

− T B(2)
δT ,δH

)
,

δvi → δvi − ε

s T + µt %n
B

(2)
δsti ,δH

, (4.18)

we can eliminate the bulk integrals from the dissipative corrections δ〈T ti〉(2) and δ〈T tt〉(2).
However, the change of fluid frame will make them appear in the dissipative corrections
δ〈T ij〉(2), δ〈J t〉(2) and δ〈J i〉(2). The important observation is that the combinations,

− s

cµ + µt ξ

(
B

(2)
δstt ,δH

− T B(2)
δT ,δH

)
δij +B

(2)
δsij ,δH

= 0 ,

− ξ

cµ + µt ξ

(
B

(2)
δstt ,δH

− T B(2)
δT ,δH

)
+B

(2)
δmt ,δH

= 0 ,

− %n
s T + µt %n

B
(2)
δsti ,δH

+B
(2)
δmi ,δH

= 0 , (4.19)

that would appear, are actually equal to zero. This is a non-trivial result which in order
to be shown, requires the use of the constraints that we list in appendix A along with
equations of motion of the ideal fluid (3.25).

After cancelling out the bulk integrals, we land in a non-standard fluid frame which we
need to change in order to bring our constitutive relations to a more conventional form. In
the next subsection we will rewrite our theory of hydrodynamics in the so called transverse
frame. This will help us read off the transport coefficients without resorting to the relevant
Kubo formulae.
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4.2 The transverse fluid frame

In this subsection we wish to bring our constitutive relations to a form compatible with a
well established frame in the literature. In the transverse frame that we wish to consider,
the constitutive relations of our system can be decomposed to ideal and dissipative pieces
according,

〈T ab〉 = 〈T ab〉ideal + 〈T ab〉diss ,

〈Ja〉 = 〈Ja〉ideal + 〈Ja〉diss , (4.20)

with the perturbations of the ideal parts being given by the O(ε) terms of equations (3.23).
The constraints that fix the transverse frame that we wish to consider are,

ua 〈T ab〉diss = 0 , ua 〈Ja〉diss = 0 . (4.21)

In a spacetime of d + 1 spacetime dimensions, the above equations constitute d + 2 con-
straints. These can be achieved by transforming the local temperature δT , chemical po-
tential δµ and fluid velocity δva. Given the fact that the normal fluid velocity, ua satisfies
the normalisation condition u2 = −1, we have exactly d + 2 variables to achieve the con-
ditions (4.21).

It can be shown that the most general form for the constitutive relations after imposing
these constraints takes the form [16–18],

〈Tab〉diss = −η σnab − ζ1 Pab∇cuc − ζ2 Pab∇c (%snc) ,

〈Ja〉diss = −σ Pab
(
∇b
(
µ

T

)
− 1
T
F bc uc

)
, (4.22)

where we have defined,

σnab = Pa
cPb

d (∇cud +∇duc)− Pab P cd∇cud ,

na = − 1
µs
Pa

bmb ,

µs = uama , (4.23)

and the projection operator is as usual Pab = gab+ua ub. In order to transform to this frame,
we need to perform a redefinition of the local chemical potential to obtain a Josephson
relation,

µ = uama + µdiss , (4.24)

with dissipative corrections given by,

µdiss = ζ3∇c (%s nc) + ζ2∇cuc . (4.25)

Notice that even though the components 〈Ttt〉diss and 〈Jt〉diss are trivial, the fact that the
chemical potential (4.24) contains dissipative terms it is enough for the ideal parts to lead
to dissipation.
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By linearising the expression we have in fluid and source perturbations, we obtain the
constitutive relations,

δ〈T ij〉diss = η
(
−2
(
∂(iδsj)t + ∂(iδvj)

)
+ δij∂k

(
δskt + δvk

)
− 2 ∂t δs(ij) + δij δkl∂tδskl

)
− ζ1δ

ij
(
∂k
(
δskt + δvk

)
+ ∂tδsklδ

kl
)

+ δijζ2 χJJ ∂k
(
δmk + µt δv

k
)
,

δ〈J i〉diss = σ

T

(
∂i (δmt − δµ) + µt

T
∂iδT − ∂tδmi

)
, (4.26)

with the linear piece of the dissipative part of the chemical potential reading,

δµdiss = ζ2
(
∂i
(
δsit + δvi

)
+ ∂tδ

ijδsij
)
− ζ3 χJJ ∂i

(
δmi + µt δv

i
)
. (4.27)

In order to compare to the above form for the constitutive relations, we can use the
relations (4.16) and (4.17) to express the constitutive relations (4.11) and (4.13) entirely in
terms of our hydrodynamic variables. The relations (4.19) guarantee that the bulk integrals
are a frame artifact and that they can be removed from our constitutive relations. After
transforming to the transverse frame, our constitutive relations take the form (4.20) with
dissipative parts (4.26) and (4.27) fixed by the incoherent conductivity and shear viscosity,

σ = s2T 3

(sT + µt%n)2 (δf (0)
b )2 τ (0) ,

η = s

4π . (4.28)

In order to express the three bulk viscosities ζi in terms of horizon data and thermodynamic
quantities, it is convenient to make the change of background thermodynamic variables
(T, µt)→ (s, %). For any quantity F , using the chain rule, the thermodynamic derivatives
are connected through,

∂µtF = χQQ ∂%F + ξ ∂sF , (4.29)

∂TF = ξ ∂%F + cµ
T
∂sF . (4.30)

After performing this change of variables, the three bulk viscosities take the form,

ζ1 = s

4π

((
s ∂sφ

(0) + % ∂%φ
(0)
)2

+
(
s ∂sρ

(0) + % ∂%ρ
(0)
)2
)

+ 4π
s q2

e

(
ρ(0))2 (%h − % ∂%%h − s ∂s%h)2 ,

ζ2 = s

4π
(
∂%φ

(0)
(
s ∂sφ

(0) + % ∂%φ
(0)
)

+ ∂%ρ
(0)
(
s ∂sρ

(0) + % ∂%ρ
(0)
))

− 4π
s q2

e

(
ρ(0))2∂%%h (%h − % ∂%%h − s ∂s%h) ,

ζ3 = s

4π

((
∂%φ

(0)
)2

+
(
∂%ρ

(0)
)2
)

+ 4π
s q2

e

(
ρ(0))2 (∂%%h)2 , (4.31)

where %h is the horizon charge density we defined in equation (2.14). From these expressions
obviously ζ1 > 0. Also, using the Schwarz inequality we can show that1 ζ1ζ3 ≥ ζ2

2 .
1This corrects a typo in the relation previously given in [16] which was based on the positivity of entropy

production.
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5 Limits

In the following subsections we will consider the limit of our hydrodynamic fluctuations
close to the phase transition as well as at zero chemical potential. This is possible because
of our explicit expressions for the five transport coefficients in terms of horizon data.

5.1 Near critical point

Here, we wish to consider the limit of the hydrodynamic modes close to the phase tran-
sition as we approach it from the broken phase. This is certainly possible since we have
the holographic expressions (4.28) and (4.31) for the transport coefficients in terms of
thermodynamics and horizon data.

In order to take the limit close to the critical point, we can vary either the background
chemical potential µt, the temperature T or the scalar deformation parameter φ(s). For
simplicity, we will only consider variations of the temperature away from its critical value
Tc for fixed chemical potential and scalar deformation. Setting δλ = Tc − T , we can write
the expansion,

ρ = δλ ρ0 + δλ3 ρ1 + · · · , (5.1)

for the bulk scalar dual to the amplitude of the complex order parameter. A simple analysis
of the gauge field equation of motion in (2.3) reveals that close to the transition we can
write,

χJJ = cJJ
δλ2 + · · · , %h = %+ δλ2 %h1 + · · · , %n = %+ δλ2 %1 + · · · . (5.2)

The above relations yield the singular limit for the bulk viscosities,2

ζi = ci
δλ2 + · · · , (5.3)

with ci remaining finite at the transition.
The first task is to find the hydrodynamic modes of our superfluid away from the

critical point and then take the limit. More concretely, we would like to turn of the sources
δsab for the metric and the gauge field δµa and solve the Ward identities (2.18) given the
constitutive relations in the transverse frame that we discussed in section 4.2. Without loss
of generality, we can take the wavevector of the fluctuation to lie entirely on the x1 axis
with components k1 = ε q and k2 = 0 with ε the hydrodynamic expansion parameter. The
goal is to fix the dispersion relations of the relevant quasi-normal modes whose frequency
we can expand according to,

ω = ω[1] ε+ ω[2] ε
2 + · · · . (5.4)

2For earlier works studying the behaviour of the bulk viscosity close to a phase transition see e.g. [34]
for normal fluids and [16] for superfluids in their probe limit. They find a similar behaviour with what we
have found for ζ1 and ζ3 respectively.
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In order to find the modes we are after, we Fourier expand our hydrodynamic variables
according to,

δT = e−iω t+iεqx
1
ε (δT0 + ε δT1 + · · · ) ,

δθ(v) = e−iω t+iεqx
1 (δθ0 + ε δθ1 + · · · ) ,

δvi = e−iω t+iεqx
1
ε
(
δvi0 + ε δvi1 + · · ·

)
. (5.5)

The leading part of the modes along with ω[1] are determined by the ideal superfluid
equations of motion (3.25). This leads to a linear algebraic system for the constants δT0,
δθ0 and δvi0 which is trivial unless the frequency satisfies the zero determinant condition,

ω[1]
(
(s T + µt %n)

(
T ξ2 − cµ χQQ

)
ω4

[1] − s
2 T χJJ q

4

+ (cµ % %n + s T (s χQQ + (cµ + µt ξ)χJJ − (%+ %n) ξ))ω2
[1] q

2
)

= 0 . (5.6)

By solving the above equation for ω[1], we fix the leading piece of the dispersion relations
we are after. The first solution trivially yields,

ωshear
[1] = 0, (5.7)

which is a transverse mode with δv1
0 = 0. This is essentially the shear mode describing the

diffusion of momentum along a transverse direction.
The remaining four modes come in two pairs corresponding to the first and the second

sounds modes of the superfluid. Here, we will only be interested in the limit of the dispersion
relations near the critical point. For the first sound we have the asymptotic behaviour,

(ωf.s.[1] )2 = Z

(s T + µt %) (cµ χQQ − T ξ2) q
2 + · · · , (5.8)

where for convenience we have defined the quantity,

Z = s2 T χQQ + cµ %
2 − 2s T ξ % . (5.9)

leading to a finite speed of sound in the small δλ limit. In contrast, for the second sound
we have the leading piece of the dispersion relation,

(ωs.s.[1] )2 = χJJ s
2 T

Z
q2 + · · · (5.10)

with a speed of sound approaching zero close to the critical point.
After imposing the vanishing of the determinant of the leading order linear system of

equations, the allowed modes are determined by the kernel of the linear operator multiply-
ing the vector with components δ0, δθ0 and δvi0. By expanding the Ward identities up to
order ε3, we can determine the higher order constants in the hydrodynamic expansion (5.5).
However, in order for this to be possible we find that the ω[2] part of the frequency expansion
needs to satisfy an algebraic condition which completely fixes it in terms of ω[1].

More specifically, for the shear mode we have the correction,

ωshear
[2] = −i η

T s+ µt %
q2 , (5.11)
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leading to a purely diffusive mode, as expected. For the leading correction to the first
sound mode we obtain,

ωf.s.[2] = − i2
ζ1

s T + µt %
q2 + · · · , (5.12)

showing the attenuation blows up close to the critical point for fixed wavenumber. This is
due the fact that the bulk viscosity of relativistic fluids blows up close to the critical point
when approached from the broken phase. This has been discussed before in the context of
simpler systems [29] with scalar order parameters.

However, for the second sound we find the limiting behaviour,

ωs.s.[2] = − i2

(
ζ3 χJJ + ζ1 χJJ (s T ξ − cµ %)2

Z2

+2T 2 ζ2 χJJ (s T ξ − cµ %) + (s T + µt %)2 σ

Z T 2

)
q2 + · · · (5.13)

for the leading attenuation part showing that it remains finite close to the phase transition
even though the bulk viscosities seem to blow up close to the transition according to (5.3).
This is in parallel to the observation first made in [25] for holographic superfluids at zero
chemical potential. In fact, by taking the zero chemical potential limit, we can match the
limiting behaviours of the attenuation (5.13) to the expression of [25].

5.2 Zero chemical potential

It is interesting to consider the zero chemical potential limit of our hydrodynamics and
compare with our results in [25]. For the classes of holographic theories we consider, it
is easy to see that the background scalar fields φ and ρ are even under changing the
sign of either the chemical potential or the charge density %. This suggests that at zero
chemical potential and therefore zero charge density, we must have vanishing ∂%φ(0) and
∂%ρ

(0). Moreover, the horizon charge density %h and the thermodynamic susceptibility ξ
are identically zero for any value of the entropy of the system. This shows that ζ2 = 0
while ζ1 becomes the bulk viscosity of relativistic holographic fluids [28, 29]. The final
expressions for the bulk viscosities in the zero chemical potential limit are,

ζ = ζ1 = s3

4π

((
∂sφ

(0)
)2

+
(
∂sρ

(0)
)2
)

= s

4π

(
Ts

cµ

)2 ((
∂Tφ

(0)
)2

+
(
∂Tρ

(0)
)2
)
,

ζ2 = 0 ,

ζ3 = 2π
s q2

e

(
ρ(0))2 (∂%%h)2 = 2π

s q2
e

(
ρ(0))2 χ2

QQ

(∂µt%h)2 . (5.14)

In order to compare with the constitutive relations of [25] for the electric current,
we will express our constitutive relations in terms of the phase δθ(v). Combining our
expressions (4.20) along with (4.22), (3.23) and (4.27) we obtain,

δ〈J t〉 = χQQ δµ = χQQ ∂tδθ(v) − χQQ χJJ ζ3 ∂i∂
i δθ(v) = χQQ ∂tδθ(v) − χ2

QQ ζ3 ∂
2
t δθ(v) ,

δ〈J i〉 = −χJJ ∂iθ(v) −
σ

T
∂i∂tθ(v) (5.15)
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where in the first line we used the ideal superfluid equations of motion (3.25). We see that
the above agrees with [25] after matching Ξ = χ2

QQ ζ3 and σd = σ/T , noting that δc =
qe δθ(v). To make the comparison more precise we note that for small chemical potential
δ%h|here = e2g(0)

τ (0)a
(0)
t δµt

∣∣∣
there

. For the thermodynamic supercurrent perturbation we

have δf (0)
b

∣∣∣
here

= a
(0)
x

∣∣∣
there

. Moreover, due to different normalisation of the bulk scalar we

have ρ(0)
∣∣∣
here

=
√

2 ρ(0)
∣∣∣
there

.

6 Discussion

In this paper we have used the techniques that were recently developed in [19, 25, 29] to
study the hydrodynamic limit of fluctuations in a holographic superfluid at finite chemical
potential. Based on general arguments, we expect the long wavelength limit of the stress
tensor and the electric current to be organised in terms of a derivative expansion of appro-
priate hydrodynamic variables which have a clear interpretation in the infinite wavelength,
thermodynamic limit. After fixing a specific fluid frame, we would then expect the leading
dissipative corrections to be parametrised by a set of independent transport coefficients.
For a relativistic fluid which preserves homogeneity and isotropy, we expect five indepen-
dent coefficients, the incoherent conductivity σ, the shear viscosity η and the three bulk
viscosities ζi.

An important by-product of our derivation was the explicit expressions for the dissipa-
tive transport coefficients in equations (4.28) and (4.31) in terms of thermodynamics and
the black hole horizon data. Our results confirm [10, 16, 27] that in the leading gravita-
tional limit and while preserving translations and isotropy, the shear viscosity η is fixed
by the entropy density of the theory according to (4.28). The results for the incoherent
conductivity and the bulk viscosities are new as far as we know.

As an application of our results, in section 5.1 we studied the limit of the hydrodynamic
fluctuations close to the critical temperature. As we saw, the bulk viscosities ζi blow up
close to the critical, signalling the breakdown of the hydrodynamic expansion. The two
longitudinal sound modes behave differently close to the critical temperature. The first
sound behaves in a way similar to the behaviour that was discusses earlier in [29]. The
speed of sound remains finite while the attenuation blows up due to the leading behaviour
of the bulk viscosity ζ1. The second sound, which is due to the superfluid component, has
a vanishing speed of sound close to the transition. However, the attenuation remains finite,
similarly to what happens in superfluids at zero chemical potential [25].

Given the fact that our expressions for the transport coefficients are determined by data
on the black hole horizon, it is possible to consider their low temperature limit for a given
ground state geometry. Large classes of holographic ground states have been considered
over the years in different works [35–37] in models which are sub cases of the general
model in equation (2.1). It would be interesting to use our results to study the effects of
dissipation in holographic superfluids at low temperatures by using these geometries.

The fact that the three bulk viscosities blow up close to the phase transition is due to
the amplitude mode of the superfluid becoming exactly gapless. Below the phase transition
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this mode becomes gapped, joining the rest of the UV modes and we can safely integrate
it out. An interesting direction to pursuit further in the future is to include this mode in
the hydrodynamic description and obtain an effective theory which is valid up to energy
scales which are equal to the gap of this universal mode and even beyond that. This is
certainly possible given the recent progress that was made in [19].
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A Constraints for static perturbations

In this appendix we will list the constraints resulting from the symplectic current when
constructed from the static pairs of perturbations discussed in subsections 3.2 and 3.3.
In particular, given that for those pairs of perturbations only the radial component is
non-trivial, the divergence free condition (4.2) yields the radial constraint,

P rδ1,δ1 = P rδ1,δ1

∣∣∣
r=0

= P rδ1,δ1

∣∣∣
r=∞

. (A.1)

The inequivalent constraints we can obtain read,

−e2ga′δfb+(aa′−U ′+2e2gg′)δfg+aUδf ′b+(U−e2g)δf ′g=−%+µtχjj ,
e2ga′δfb−2e2gg′δfg+e2gδf ′g=%−µtχjj ,

−a′∂µta+Uφ′∂µtφ+Uρ′∂µtρ+2U∂µtg′+∂µtU ′=0,

e2g
(
2(U ′−2Ug′−aa′)∂µtg−2g′∂µtU−Uφ′∂µtφ−Uρ′∂µtρ−4U∂µtg′−a∂µta′

)
=ξT ,

e2g
(
2(U ′−2Ug′−aa′)∂T g−2g′∂TU−Uφ′∂Tφ−Uρ′∂Tρ−4U∂T g′−a∂Ta′

)
=cµ ,

e2g
(
−a′∂Ta+Uφ′∂Tφ+Uρ′∂Tρ+2U∂T g′+∂TU ′

)
=s,

e2g (U ′−2Ug′−aa′
)
=sT . (A.2)

The above equations where obtained by considering the symplectic currents in the order
Pµδvi ,δmi

, Pµδsit ,δmi , P
µ
δsii ,δmt

, Pµδstt ,δmt , P
µ
δT ,2δsii−µt δmt

, Pµδsii ,δT and Pµδsit ,δvi−µt δmi
. Finally,

from the symplectic current PµδT ,δmt we obtain the bulkier constraint,

−2e2g (−a′∂Ta+ Uφ′∂Tφ+ Uρ′∂Tρ+ 2U∂T g′ + ∂TU
′) ∂µtg

+2e2g (−a′∂µta+ Uφ′∂µtφ+ Uρ′∂µtρ+ 2U∂µtg′ + ∂µtU
′) ∂T g

−e2g (2∂T g′ + ρ′∂Tρ+ φ′∂Tφ
)
∂µtU + e2g (2∂µtg′ + ρ′∂µtρ+ φ′∂µtφ

)
∂TU

+e2gU
(
∂Tρ

′∂µtρ− ∂Tρ∂µtρ′
)

+ e2gU
(
∂Tφ

′∂µtφ− ∂Tφ∂µtφ′
)

+e2g (∂µta′∂Ta− ∂µta∂Ta′) = −ξ . (A.3)
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