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ABSTRACT. In this article, a six-parameter family of highly connected
7-manifolds which admit an SO(3)-invariant metric of non-negative sec-
tional curvature is constructed and the Eells-Kuiper invariant of each is
computed. In particular, it follows that all exotic spheres in dimension
7 admit an SO(3)-invariant metric of non-negative curvature.

A manifold M of dimension 2n + 1 or 2n is called highly connected if it
is (n — 1)-connected, that is, if the homotopy groups m;(M) are trivial for
all i < n— 1. As the topology of such manifolds is relatively simple, they
have received much attention: see, for example, [3, O, [10, 12], 38|, 50, B7, 54,
55, 58]. In fact, it was Milnor’s quest to understand such manifolds which
led to the discovery of 7-dimensional manifolds which are homeomorphic,
but not diffeomorphic, to the standard sphere S7 [43, [45]. Just as in the
case of S7, these exotic spheres occur as the total spaces of S3-bundles over
S%. By a combination of the work of Milnor [44] (cf. [37]), Smale [49] and
Eells and Kuiper [19], it was subsequently shown that there are 28 possible
oriented differentiable structures on the 7-dimensional (topological) sphere,
16 of which are Milnor spheres, that is, obtained as S®-bundles over S*. If
one forgets the orientation, there are 15 possible diffeomorphism types, 11
occurring as Milnor spheres.

Theorem A. All exotic T-spheres admit an SO(3)-invariant Riemannian
metric of non-negative sectional curvature.

In [28], Gromoll and Meyer showed that one of the exotic Milnor spheres
can be written as a biquotient and, hence, admits a Riemannian metric with
non-negative sectional curvature. Furthermore, by exploiting the biquotient
structure, it was demonstrated in [21I} 57] that the Gromoll-Meyer sphere can
be equipped with a metric of non-negative curvature such that all sectional
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curvatures are positive on an open, dense set, while a further deformation of
this metric to globally positive curvature has been proposed in [46]. Unfortu-
nately, the Gromoll-Meyer sphere is the only exotic sphere in any dimension
which can be written as a biquotient [35, [52]. Nevertheless, the remain-
ing Milnor spheres were shown to admit non-negative curvature by Grove
and Ziller [31], as a consequence of their investigation of cohomogeneity-one
manifolds. On the other hand, the fact that all exotic 7-spheres admit a met-
ric of positive Ricci curvature was established by Wraith [59], while Searle
and Wilhelm [48] recently demonstrated that each admits a metric having,
simultaneously, positive Ricci curvature and almost-non-negative sectional
curvature.

Despite not being biquotients, Durdn, Piittmann and Rigas [18] (see also
[56]) have shown that all exotic spheres in dimension 7 can be constructed
in a similar way to the Gromoll-Meyer sphere. They tried, without success,
to equip the four non-Milnor exotic spheres with a metric of non-negative
curvature. In the present work, we achieve this via a different construction.

Theorem B. For all triples a = (a1, a2, a3), b = (b, b2, b3) € Z3 of integers
congruent to 1 mod 4 and satisfying ged(a, as £+ as) = ged(by, by £+ b3) =
1, there is a 2-connected, T-dimensional manifold Mgb which admits an

SO(3)-invariant metric of non-negative sectional curvature and for which
HY(M] ;) = Zy,|, whenever

a,b’
1 a2 v
n—8det<a%_a§ b2_b2 #O

Ifn=0, then H3(M[ ;Z) = HY(M ,;Z) = Z.

ab’ a,b’

The manifolds M 97 b with a1 = by = 1 are diffeomorphic to those studied

by Grove and Ziller [31] and consist of all S*>-bundles over S*. By choosing
the parameters appropriately, one obtains the Milnor spheres. Grove and
Ziller constructed metrics of non-negative curvature by first showing that
there is a four-parameter family of non-negatively curved, 10-dimensional,
cohomogeneity-one manifolds consisting of all principal (S* x S%)-bundles
over 8%, and then taking the associated S?-bundles over S* with their in-
duced metrics.

By observing that, in the Grove-Ziller case, the associated-bundle con-
struction is equivalent to taking a quotient by a free S? action, it is natural
to look for a more general collection of examples. As it turns out, there
is a larger six-parameter family of non-negatively curved, 10-dimensional
cohomogeneity-one manifolds Palg which, under the gcd conditions of Theo-

rem admit a free, isometric action by S2. The manifolds M g , are precisely
the quotients of the P;% by this action, and are each equipped with the in-
duced metric. In general, the M g » are not S3-bundles over S* in any obvious

way. For appropriate choices of the parameters a, b € Z?3, it is clear that
one obtains 7-dimensional manifolds which are homotopy spheres.
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The major difficulty in this project is to determine the diffeomorphism
type of the manifolds M7 b+ By the work of Crowley [9], it suffices to compute
the Eells-Kuiper invariant p(MT,) [19] and g-invariant [9] of these spaces. In
particular, for the homotopy spheres the Eells-Kuiper invariant determines
the diffeomorphism type. In Theorem the general formula for (M Z,b)
below has been computed via a modification of the methods of [26], in which
the first named author determined the diffeomorphism type of a recently
discovered example with positive curvature, see [14} 29]. For ¢, p1,p2,ps € Z
with ged(q,p;) =1 for all i = 1,2, 3, let

lal-1 14 cos(BY + cos(Pm) cog( Lamt

D(q pl’p27p3 26 7 2 Z sz( (pﬂrl) pj(ﬂ'lq ) pk(ﬁlq )>

I m sin? (B)s n(q)sm(q)
O(1a273)

denote the corresponding generalised Dedekind sum. In particular, if ¢ = 1,
then D(g; p1,p2,p3) = 0. Moreover, D(q;p1,p2,ps3) is invariant under per-
mutations of the p; and satisfies D(q; p1,p2, —p3) = —D(q; p1, p2, p3). Note
also that the generalised Dedekind sum of [26] Definition 3.6] corresponds
to D(p;4,q,q), with p,q € Z odd and relatively prime.

Theorem C. Let Mgb and n # 0 be as in Theorem@ and set

m = ! det ai b
8a2b? a3 +aj+8 b3+bi+8)
Then the Fells-Kuiper invariant of M;Q s given by
22 m?
p(Mg,) = W —D(a) + D(b) mod 1 €Q/Z,
== . -n

where D(a) = D(a1;4, a2 + as,az — az) and D(b) = D(b1;4, ba + bs, by — b3)
are generalised Dedekind sums as defined above.

For some simple subfamilies it is easy to compute the generalised Dedekind
sums D(a) and D(b) (see Example ; leading to a closed form for p (M, )
in these cases. Recall that, following [19], the non-Milnor exotic spheres have
28 - p(M],) € {2,5,9,12,16,19, 23, 26}.

Corollary D. Suppose a = (—3,12k—3,121+1), b= (1,4r+1,4s+1) € Z3.
Then | 202, 2 l

- 4141

M) = A Z.

HMap) = o5 w <Y

Moreover, the subfamily given by (k,l,r,s) = (0,0,7,7) has H4(Mgb;Z) =
0, hence consists of homotopy spheres, and the oriented dzﬁeomorphism

types of the non-Milnor exotic spheres are attained, for example, at r €
{-3,-1,1,2,4,8,11,15}.

The paper is organised as follows: In Section [I} there can be found re-
views of cohomogeneity-one manifolds, orbifolds and orbi-bundles, the Eells-
Kuiper invariant and adiabatic limits. Section [2] begins with a review of the
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construction of Grove and Ziller, followed by the definition of the new non-
negatively curved manifolds M Z}b, before ending with the computation of

the cohomology ring of M Z b In Section [3| a new metric is defined on Mgb

to facilitate the computation of the Eells-Kuiper invariant of M ;b. With
respect to this metric, various Chern-Weil characteristic forms and numbers
are computed, as well as the individual terms in the adiabatic limit of the
Eells-Kuiper invariant.
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1. PRELIMINARIES

1.1. Cohomogeneity-one manifolds and principal bundles.

Because of their importance in the construction of the manifolds M ;b,
this subsection is devoted to a brief review of cohomogeneity-one manifolds.
A more elaborate discussion can be found in, for example, [31].

Let G be a compact Lie group acting smoothly on a closed, connected,
smooth manifold M via G x M — M, (g,p) — ¢ - p. For each p € M, the
isotropy group at p is the subgroup G = {g € G | g-p = p} C G, and the
orbit through p is the submanifold G-p={g-p€ M | g € G} C M. Since
G acts transitively on G - p, there is a diffeomorphism G - p = G/G), and
there is a foliation of M by G-orbits.

The action G x M — M is said to be of cohomogeneity one if there is
an orbit of codimension one or, equivalently, if dim(M/G) = 1. In such
a case, the manifold M is called a cohomogeneity-one (G-)manifold. If, in
addition, m1(M) is assumed to be finite, then the orbit space M/G can
be identified with a closed interval. By fixing an appropriately normalised
G-invariant metric on M, it may be assumed that M/G = [-1,1]. Let
7 : M — M/G = [-1,1] denote the quotient map. The orbits 7= 1(#),
t € (—1,1), are called principal orbits and the orbits 7!(&1) are called
stngular orbits.

Choose a point pg € 7~ 1(0) and consider a geodesic ¢ : R — M orthogonal
to all the orbits, such that ¢(0) = po and 7 o ¢[_y,;) = id[_1 ;. Then, for
every t € (—1,1), one has G.;) = Gy, € G, and this principal isotropy group
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will be denoted by H C G. If py = ¢(+1) € M, denote the singular isotropy
groups G, by K4 respectively.

By the slice theorem, M can be decomposed as the union of two disk
bundles, over the singular orbits G/K_ = 7~ !(~1) and G/K, = 7 (+1)
respectively, which are glued along their common boundary G/H = 7~1(0):

M = (G xx_ D) Ug/n (G xx, DH).

In particular, since the principal orbit G/H is the boundary of both disk
bundles, it follows that Ky /H = S'+—1 where I1 are the respective codi-
mensions of G/K4 in M.

Conversely, given any chain H C Ky C G, with K /H = S%, one can
construct a cohomogeneity-one G-manifold M with codimension dy + 1 sin-
gular orbits. For this reason, a cohomogeneity-one manifold is conveniently
represented by its group diagram:

In [31], the authors determined a sufficient condition for a cohomogeneity-
one manifold to admit non-negative curvature.

Theorem 1.1 ([31]). Let G be a compact Lie group acting on a manifold
M with cohomogeneity one. If the singular orbits are of codimension 2, then
M admits a G-invariant metric of non-negative sectional curvature.

Given a cohomogeneity-one G-manifold M, let j+ : Ky — G and i1 :
H — K4 denote the respective inclusion maps. Suppose that L is a compact
Lle group and that there are homomorphisms ¢+ : K+ — L such that ¢_ o

_ = @4 0iy. Then, by [31l Prop. 1.6], one can construct a cohomogeneity-
one (G x L)-manifold P with group diagram

G x L

(JV &m)
RN e

such that the subaction by {e} x L C G x L is free and induces a principal
L-bundle L —- P — M. In particular, under this construction the co-
dimensions of the singular orbits in M and P are equal.
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1.2. The Eells-Kuiper invariant.

When Milnor discovered exotic spheres in [43], he used an invariant based
upon the Hirzebruch Signature Theorem (see [34]) to establish that the 7-
manifolds he had constructed could not be diffeomorphic to S7. Soon after-
wards, Eells and Kuiper [19] found an invariant, based upon the integrality
of the A-genus for spin manifolds [8, Cor. 3.2], which completely determines
the diffeomorphism type of 7-dimensional homotopy spheres. For simplicity,
the following review of the Eells-Kuiper invariant will focus on dimensions
7 and 8.

Suppose X is a closed, smooth, 8-dimensional manifold which is, in addi-
tion, oriented and spin, that is, the first and second Stiefel-Whitney classes
w1 (X) € HY(X;Z2) and wo(X) € H?(X;Zs) vanish. Let py(X) € H*(X;Q)
and pa(X) € H8(X;Q) denote the rational Pontrjagin classes of (the tan-
gent bundle of) X, and let [X] € Hg(X;Z) denote the fundamental class of
X. Finally, let 0(X) denote the signature of the quadratic form a + a? on
H*(X;Q). From the Signature Theorem [34] and Corollary 3.2 of [§], it is
known that both the signature

1

U(X):£

(=p1(X)? + 7pa(X)) [X]

and the A- genus

P

AX) = g (T (X)? — Apa(X))IX]

are integers. By taking an appropriate linear combination, one can easily
deduce that

(1.1) A(X) (p1(X)*[X] ~ 40(X)) € Z.

1

217

Suppose now that M is a 7-dimensional, closed, oriented, smooth, 2-
connected manifold with H*(M;Z) finite. Notice that, in particular, M
is spin. Since the spin cobordism group in dimension 7 is trivial, one can
always find a compact, oriented, smooth, 8-dimensional, spin coboundary
W, that is, a manifold with boundary OW = M.

From the long exact sequence in cohomology for the pair (W, M), one
obtains an isomorphism

j HY (W, M;Q) — HY(W;Q).
Therefore, the rational Pontrjagin class py(W) € H*(W;Q) can be pulled
back to define a Pontrjagin class j~1(py(W)) € H*(W, M;Q) on (W, M).
Moreover, there is a well-defined fundamental class [W, M| € Hg(W, M; Q)
for the pair (W, M), and one can define the signature o(W, M) to be the
signature of the quadratic form o — a2 on H*(W, M;Q). By analogy with

the expression for the A—genus in (1.1)) above, this motivates the following
definition.
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Definition 1.2 ([19]). Let M be a 7-dimensional, closed, oriented, smooth,
2-connected manifold with H*(M;Z) finite, and W be a compact, oriented,
smooth, 8-dimensional, spin coboundary. Then the FEells-Kuiper invariant
of M is given by

(12) p(M)=

In particular, the Eells-Kuiper invariant measures the defect of the right-
hand side from being the A-genus of a closed, spin manifold, and has the
following properties:

(G pr(W))? W, M] — 40(W, M)) mod 1 € Q/Z.

(a) p(M) is independent of the choice of coboundary W.
(b) p(M) respects orientation, i.e. u(—M) = —u(M).
(c) u(M) is additive, i.e. pu(Mi#Msy) = p(My) + u(Ms).

Although it is quite simple to define, the Eells-Kuiper invariant is difficult
to compute in practice. One approach is to appeal to the generalisation by
Atiyah, Patodi and Singer of the Atiyah-Singer Index Theorem to manifolds
with boundary [2].

In brief, equip M with a Riemannian metric gs, with Levi-Civita connec-
tion VM | and extend gj; to a Riemannian metric on W which is product
near the boundary. Let ® and B be the spin-Dirac operator and odd signa-
ture operator on (M, gpr) respectively, that is, ® is the usual Dirac operator
on the spinor bundle of (M, gps) and B is the restriction of the operator
+(*d — dx) to differential forms on M of even degree, where % denotes the
Hodge-* operator. Then, by applying the Atiyah-Patodi-Singer Index The-
orem to both ® and 98 and following the scheme laid out in [39, Prop. 2.1]
(cf. [16]), one obtains

(1.3)
h+n 1

p(M) = “20(0) + ()
1

- 277/ o1 (TM, VM) A (TM, VM) € Q/zZ.
’ M
The terms in this formula require some explanation. The first term, h(D),

is simply dim Ker(®), the dimension of the space of harmonic spinors. The
terms under the integral are differential forms, namely,

1
pu(TM,VIM) = s tr((Q1M)?2)

is the Pontrjagin 4-form on M obtained from the curvature 2-form QT via
Chern-Weil theory, while p1 (T M, VT™) is a 3-form on M such that

d(pr (TM, VM) = py (TM, V™M),

Such a 3-form exists, since Hiz(M) = H*(M;R) = 0 by assumption.
The terms 7n(®) and n(B) are the n-invariants of the operators ® and
B. Recall that, if D is a Dirac operator (that is, a first-order, self-adjoint
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differential operator, such that D? is a Laplacian), then its eigenvalues are
real numbers and the n-invariant of D is defined by

2D) = (0), where () = 3 "5,
A£0

z€C,

the sum being over the non-trivial eigenvalues of D (counting multiplicities).
Therefore, (D) measures the asymmetry of the eigenvalues of D about 0.
The invariant n(D) can also be thought of as the defect in the corresponding
Atiyah-Singer Index Theorem due to W not being a closed manifold.

The primary benefit of the formula for p(M) is that the right-hand
side is written entirely in terms of the geometry of M, that is, the cobound-
ary W no longer plays a role. Thus, for an appropriate choice of metric gy,
it is reasonable to expect that can be used to compute p(M).

1.3. Orbifolds, orbi-bundles and invariants.

As orbifolds will play a significant role in the rest of the article, it is useful
to recall some definitions and notation (cf. [26]).

Definition 1.3. Let G be a compact Lie group acting effectively on R™. An
n-dimensional smooth G-orbifold is a second-countable, Hausdorff space B
such that:
(a) For each point b € B there exists a neighbourhood U C B of b, an
open subset V' C R" invariant under the effective action p : I' —
G — GL(n,R) of a finite group I', and a homeomorphism
Y :p(D\V = U with ¢(0) =b.
The homeomorphism ¢ is called an orbifold chart, I' the isotropy
group of b € B and p the isotropy representation at b. Let ¢ : V — U
denote the composition of ¢ with the projection V' — p(I")\V.
(b) Let b € U C B and ¢ : p(I')\V — U be as above. For i/ € U, let
' p/(TV)\V' — U’ denote the corresponding orbifold chart. Then
there exists a smooth, open embedding ¢ : (¢/)"{(UNU’) — V and
a group homomorphism ¢ : I — I" such that, for all ' € T,

pop () =p(())oe
and, for all v € (¢/)"{(UNU’) C V',
D) = ' (v).

The map ¢ is called a coordinate change and ¥ an intertwining ho-

momorphism.
If G C O(n), then the term n-orbifold will be used for brevity. If G C SO(n)
and all coordinate changes are orientation preserving, then the n-orbifold B
is called oriented.
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Notice that if ¢ is a coordinate change as above with intertwining homo-
morphism ¥, then, for each v € T', the map p(7) o ¢ is another coordinate
change with intertwining homomorphism ~-9J, where (y-9)(y") = y9(7" )y~ L.
Moreover, the assumption that isotropy representations are effective ensures
that intertwining homomorphisms are unique.

Definition 1.4. Let B be a smooth G-orbifold and F' a smooth manifold.
An orbi-bundle with fibre F' is a map 7 from a topological space M to B
such that:

(a) For each b € B, there exists an orbifold chart ¢ : p(I')\V — U C B
around b, a fibre-preserving, smooth action p of I' on V' x F such
that the projection pry : V. x F — V is I'-equivariant, and a homeo-
morphism 1 : (I)\(V x F) — 7~1(U) such that the diagram

V x F—— 3O\(V x F) —= 71U

‘e

14 p(D\V u

commutes.

(b) Let ¥ : p(T)\V — U and ¢’ : p/(I")\V’ — U’ be orbifold charts
in B as in Definition [I.3] with associated coordinate change ¢ and
intertwining homomorphism 9. Let p, p’ be the corresponding actions
and 12, 12’ the corresponding homeomorphisms as above. Finally, let
q:VXF = pID\V xF)and ¢ : V' x F — p(I")\(V' x F)
denof\e the quotient maps. Then there is a smooth, open embedding
P: (W oqd) Y (UNU'") = V x F (a coordinate change) such that, for
all v/ e TV,

Gop'(y)=p(0(7)) 0@
and, for all (v, f) € (' o¢/)"{(UNU') C V' x F,
W)@V, f)) = (W o d )V, f).

If all of the fibre-preserving actions p are free, then the space M carries the
structure of a smooth manifold. In this case, the map 7 : M — B is called
a Seifert fibration.

If the fibre F' is a vector space and if, in addition, all actions p and all
coordinate changes @ are linear, then 7 : M — B is called a vector orbi-
bundle.

If Fis a Lie group G and all actions p and all coordinate changes @
commute with the right action of G on F', then G actson M and 7: M — B
is called a principal G-orbi-bundle.

Note that, given a principal G-orbi-bundle and a right action of G on a
manifold F', one can construct an associated orbi-bundle with fibre F' and
structure group GG with the properties above.
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As discussed in [26, Rem. 1.3], a Seifert fibration can, equivalently, be
described as a regular Riemannian foliation of M with compact leaves. The
leaf space B naturally has the structure of a smooth orbifold, while the
generic leaves (which form an open, dense set in M) are each diffeomorphic
to some fixed smooth manifold F'. The exceptional leaves are each finitely
covered by F', and the projection map w : M — B has the properties listed
in Definition [.4

Remark 1.5. If a compact Lie group G acts almost freely on a manifold
M such that the sub-action of a closed subgroup H C G is free, then the
quotient M /G naturally inherits the structure of a smooth orbifold, the
quotient M/H is a smooth manifold, and the projection = : M/H — M/G
is a Seifert fibration with fibre G/H.

Using the local definitions above, an orbifold B possesses a natural tan-
gent orbi-bundle 7B — B and can always be equipped with an (orbifold)
Riemannian metric.

Furthermore, as all leaves of a Seifert fibration 7 : M — B are manifolds
of a fixed dimension, it makes sense to talk about the vertical sub-bundle
V of the tangent bundle T'M, that is, the vector bundle given by vectors
tangent to the leaves. If M is equipped with a Riemannian metric gas, the
horizontal sub-bundle H is defined as the bundle of all vectors orthogonal to
the leaves. Given a vector w € T, M, the vertical and horizontal components
of w will be denoted by wY and w* respectively.

At each point p € M, the differential dm|3,, : Hp — Tr(p) B is an isomor-
phism. If dmpl3, is, in addition, an isometry at each p € M with respect
to the metrics gj; and gpg, then, by a slight abuse of terminology, one may
refer to 7 : (M, gp) — (B, gp) as a Riemannian submersion.

For vector orbi-bundles, it is possible to use the language of Definition
to define Whitney sums, tensor products, dual bundles and exterior
products. Similarly, spin vector orbi-bundles can be defined in a natural
way analogous to that for vector bundles.

There is also a natural notion of Dirac orbi-bundle over a Riemannian
orbifold that is analogous to the notion of a Dirac bundle over a Riemann-
ian manifold (M, gas), which consists of a complex vector bundle E — M
equipped with a Hermitian metric gg and compatible connection V¥, as well
as a Clifford action ¢ : TM — End(FE) that is skew-symmetric with respect
to g¥ and satisfies a Leibniz rule with respect to V¥ and the Levi-Civita
connection V™ of (M, gar).

Just as for manifolds, Chern-Weil theory can be applied to vector orbi-
bundles. Suppose that £ — B is a vector orbi-bundle with connection
1-form w? and curvature 2-form QF = dw? + wf AwF. Let VF and RF =
(VE)? denote the induced connection and curvature, respectively. Recall
from Chern-Weil that the first Pontrjagin form and Euler form of (E,VF)
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are defined by
1 1
EN _ EN2Y _ EN2
p1(E,V¥) = @tr((g )°) = @tr((R %),
1 1
E,VE) = — Pf(QF) = — Pf(R¥
respectively, where Pf denotes the Pfaffian, that is, Pf = det!/2,
Associated to the base of a Seifert fibration 7 : M — B there is a further

orbifold A B, which will be important in the computation of the Eells-Kuiper
invariant.

Definition 1.6. The inertia orbifold AB of an orbifold B is the orbifold
consisting of points (b, [7]), where b € B and [y] denotes the I'-conjugacy
class of an element v of the isotropy group I' of b.

(1.4)

In general, the inertia orbifold consists of several components. In partic-
ular, the component of AB corresponding to the identity element of each
isotropy group is simply a copy of B itself. Other components are often
called twisted sectors.

The orbifold charts for AB are obtained from those of B. Suppose 1 :
p(T)\V — U is an orbifold chart around b = ¢(0) € B. For each v € T,
let V7 denote the fixed-point set of the action of 4y on V' and let Zp(v) C T
denote the centraliser of 7. Then Zr(vy) acts on V7 via the restriction of
p, although this action need not be effective. The ineffective kernel of this
action is a finite subgroup of Zr () of order

(1.5) m(y) = #{o € Zr(v) | p(o)ly~ = idv~}.

In this way, m(vy) defines a locally constant function on AB and is called
the multiplicity of (b,[y]) € AB. An orbifold chart for AB around the point
(b, []) is given by the homeomorphism

Uy 2 Ze(V\VT = (V) x {[4]} € AB.
Note that the orbit space Zr(y)\V7 is the same as that obtained by consid-
ering the effective action on V7 of the quotient of Zp(y) by its ineffective
kernel.

Suppose from now on that B is an oriented Riemannian orbifold (as will
be the case in the applications to follow). Let N, — V7 denote the normal
bundle to V7 in V. Since B is oriented, N, has even rank, say 2k,. Since
the action of v is effective on V, but trivial on V7, it follows that v must
act effectively on the fibres of N, via (abusing notation) an element y €
SO(2ky). Let 4 € Spin(2k,) denote a lift of v under the natural projection
Spin(2ky) — SO(2k,). If the orbifold B is also spin, such a lift is part of
the orbifold spin structure. Otherwise, the lift 4 is determined uniquely up
to sign. Consequently, the inertia orbifold AB has a natural double cover

AB = {(b,[3]) | 7 is a lift of v} — AB,
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where orbifold charts for AB are constructed as for AB and given by

U s Zr(y\VT = (V) x {[3]} € AB.

In generalisations of index theorems to the orbifold setting, one has to
take into account the local structure of the orbifold, that is, the action of the
isotropy groups. This is achieved by defining equivariant forms. Recall that,
for a Hermitian vector bundle E with connection V¥ and equipped with a
parallel, fibre-preserving automorphism g, the equivariant Chern character
is classically defined as

QE
chy(E,VF) = tr <g exp<—2m>> :

By the discussion above, the normal bundle N, — V7 is spin, hence
has a principal Spin(2k,)-bundle Spin(N,) — V7 associated to it. There
is a unique (complex) Spin(2k,)-representation S of (complex) dimension
2kv the spinor module, which decomposes into irreducible, inequivalent
Spin(2k.)-representations ST of dimension 257~! such that S = St & S~.
Thus, there is a complex (local) spinor bundle S(N5) — V7, where

S(N,) = Spin(Ny) Xspin(2k,) S
and, given a local orientation of A, a natural splitting S(N,) = ST(N,) &
S~ (N5) of the spinor bundle, where S*(A/,) = Spin(\) X Spin(2k-) S,
The Levi-Civita connection on V induces a connection VN7 on N5, hence a
connection VSY) on the spinor bundle. For a choice of lift 4 and compatible

orientations on V7 and N, it follows from [4], Sec. 6.4] that the equivariant
Chern character for (S(N), VSM2)) is given by

(1.6)  chy(SIN;), VWD) = chs (ST(N,) — S™(N;), VW)
= :|:ik7 det (1(:1'/\/’W — yexp < (VN’Y)2>>2 '

21

Notice that, since 1 is not an eigenvalue of the action of v on N, the identity
yields that the form chs (St(N;) =S~ (N,), VSN on V7 is invertible.
The equivariant A-form on V7 is now defined as

ATV, vV
chs(ST(N,) = S=(N,), VW) 7
where the A-form for (TV?, VTV") is given by

(L7) ATV, V) = (-1)k

X 1TV 2
ATV, VTV = det A .
( ) sinh (£ Q7V")
Remark 1.7. The equivariant form /Ly(TV, VTV has the following prop-
erties:

(a) A@(TV, VTV depends only on the conjugacy class of 7.
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(b) Choosing the other lift —3 instead of 4 leads to a change of sign in
As(TV,VTV).

(c) If the orientation of TV |y~ is fixed, then changing the orientation
of V7 leads to a change in the orientation of A, and, hence, the
subbundles ST (N) and S~ (N,) being swapped. This in turn yields
a sign change in A:Y(T V,VTV). On the other hand, the integral of
flﬁ(TV, VTV) over the corresponding stratum of AB depends only
on the orientation of V', not on that of V7.

The oriented orbifold B admits an open cover by orbifold charts com-
patible with its orientation. The induced open cover of the inertia orbifold
AB by orbifold charts is compatible with the induced orientation on AB.
Hence, the local equivariant forms /l@(TV, VTV can be used to construct a
well-defined form Ayp(TB,VT?) on AB such that

1
m(y)

where ¢ : V7 — Zp(v)\V"? denotes the quotient map and m(y) is the mul-
tiplicity of the point (¢(0), [v]) € AB.

In a similar way, one can define a generalisation Ly B(TB,VT8) of the L-
class (i.e. the rescaled L-class) on the inertia orbifold AB, where the L-form

for (TV7,VTV") is given as usual by
(1.9) LTV, VTV = ATV, VTV eh(S(VY), v )
_ 2(dim V“Vfdeg,y)/2L(TV'y, VTVV)’
where deg, : Q*(V7) — NU {0} denotes the map taking a form § € Q*(V7)
to its degree deg(&) € NU {0}, often called the number operator.
In particular, on the component B C AB the forms Axp(TB,VTB)

and Lag(TB,VTB) on AB coincide with the usual version of the forms
A(TB,VTP) and L(TB,VTF) on B, defined via charts for B.

1.4. Adiabatic limits.

(1.8) (Y 0 @)  Anp(TB,VTP) = A5 (TV, VTV,

The computation of the Eells-Kuiper invariant p(M) of a 7-manifold M
via sometimes becomes more tractable if M is the total space of a fibre
bundle. As established in [26], the same is true in the more general setting
of Seifert fibrations.

Given the intended application of these methods to the manifolds M;b,
assume from now on that the following condition is satisfied: o

The 7-dimensional Riemannian manifold (M, gys) is 2-connnected,
smooth, closed and oriented with H*(M;Z) finite, and there is a Rie-
mannian submersion 7 : (M, gy) — (B,gp) onto a 4-dimensional
Riemannian orbifold (B, gg) with (generic) fibre F = S3.

(A)
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By blowing up the base (B, gp) by a factor €72, ¢ > 0, one obtains a

family of metrics gare on M with the same horizontal sub-bundle H and
given by
(1.10) gmely = guly and garely = e gurln-
Of course, up to a global rescaling, this is equivalent to the often-used trick
of shrinking the fibres by a factor 2. The limit of any geometric object on
(M, gme) as € — 0 is called the adiabatic limit. In particular, it is natural
to investigate the adiabatic limit of geometric invariants; for example, the
n-invariants of a family of Dirac operators Dy compatible with the metrics
9Me-

In order to understand the adiabatic limit of the formula (1.3) for the
Eells-Kuiper invariant, it is necessary to establish quite a bit of notation. A
more complete and more general treatment can be found in [26].

Let e1,...,eq and fi,..., f3 denote local orthonormal frames for T'B and
the vertical sub-bundle V respectively. Let © € H denote the horizonal lift

of a vector field v € TB. A local orthonormal frame for the metric gasc
defined in ([1.10)) is, therefore, given by

(111) €le = fl) ceey €3 = f37 €4 = Eél) ceey €7 = 664'
According to Definition 1.6 of [26], an adiabatic family of Dirac bundles
for the Riemannian submersion 7 : (M, gy) — (B, ¢gp) in (A) consists of
a Hermitian vector bundle (E,gg) over (M, gyr), a Clifford multiplication
c:TM — End(E), and a family (V¥¢).5q of connections such that:

(a) For all ¢ > 0, the quadruple (E,V¥* gg,c.) is a Dirac bundle on
(M, gnre), where the Clifford multiplication c. is given by c.(e;c) =
c(ein).

(b) The connection V¢ is analytic in ¢ around e = 0.

(c) The kernels of the fibrewise Dirac operators

3
E0
Dgs = _c(f:)Vy,
i=1
acting on E| -1, b € B, form a vector orbi-bundle Kp — B.
The associated family (Dps¢)e>0, with
7
Dure = Z ca(ei,a)veEi::
i=1
is called an adiabatic family of Dirac operators for .
By Condition (]ED above, there exists an g > 0 such that the dimension of
the kernel of Dy is constant for all € € (0,¢¢). Furthermore, by Theorem
1.5 of [13] (cf. [26, Sec. 2.g]), there are finitely many very small eigenvalues

of Dase, that is, eigenvalues A, (), counted with multiplicity, such that
A () = O(2) and M\, (g) # 0, for all £ € (0, ).
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Associated to the fibrewise Dirac operators Dgs there is an orbifold n-
form, denoted nyp(Dg:) by an abuse of notation. Although nxp(Dss) can
be defined in a similar way to the forms AAB and LAB and, consequently,
depends only on the conjugacy class and sign of the (hfted) isotropy ele-
ments, the usual analytic definition will not be used in the computations to
follow, hence will be omitted. Instead, assume that the fibres of the Rie-
mannian submersion m : (M, gar) — (B, gp) in (A) are totally geodesic and
recall that the isotropy groups act freely on the S fibres of the Seifert fibra-
tion M — B. Moreover, let W — B denote the rank-4 vector orbi-bundle
associated to M — B.

The horizontal sub-bundle H on M determines a unique fibre-bundle con-
nection 1-form w™ € Hom (7'M, V), which acts as the identity on the vertical
sub-bundle V and vanishes on H. Let V" be the connection induced on W
by w™, and let R be its curvature.

As before, let 1y, be an orbifold chart around (b, [7]) € AB and ¢ : V7 —
Zr(v)\V7 be the quotient map. Finally, let RY/V denote the restriction of

the curvature R of w™ to the bundle given by the restriction of TM to
7 (b 0 @)(V)) C M.

Then, by exploiting [24, Thm. 1.14, Thm. 3.9] and [26, Thm. 1.11], for
the case of the spin-Dirac operator ©, define npp(®g3) to be the form on
AB such that

— L _()*e(W,VV), ~=id,
(112) (¢['y] o q)*nAB(SSB) — {1 27.3.5 (¢) ( ) Y .
anexp(—R,‘;V/Qwi) (DS?’): v #id,
and, for the case of the odd signature operator B, define npp(Bgs) to be
the form on AB such that

— e () e(W,VV),  y =id,
(113) (Q;Z)['y] o q)*nAB(%SB) — {1 22.3.5 (¢) ( ) Y ‘
anexp(—R,‘;V/Qwi) (%53)7 v # id.
In particular, the form 7, q,— RW /2ri)(Dss3) is the classical equivariant 7-
form as defined by Donnelly [I7] and, in the current special situation of
totally geodesic S3 fibres, formulae to compute this form for the operators
Dgs and Bgs can be found in [32] and [2, Proof of Prop. 2.12] respectively.

In the expression given in Theorem 0.1 of [26] for the limit of an adi-
abatic family of Dirac operators, there is a term involving the n-invariant
of a self-adjoint operator D%ﬁ, called the effective horizontal operator. By
definition, D%ﬂ is trivial whenever the fibrewise Dirac operators Dgs are in-
vertible. Moreover, if the fibrewise Dirac operators Dgs are invertible, then
Dy is invertible for sufficiently small € > 0 and, hence, there are no very
small eigenvalues. In the case of the spin-Dirac operator ®, the Weizenbock
formula for its fibrewise Dirac operator ®gs ensures invertibility whenever
the fibres have positive scalar curvature.

On the other hand, since the orbifold B is 4-dimensional, Corollary 1.10
of [26] ensures that for the odd signature operator B one has n(B) = 0.
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Additionally, by the work of Dai [13] (cf. [42]), the very small eigenvalues of
B are related to the higher differentials of a natural differentiable Leray-
Serre spectral sequence (E,,d,) for M — B. Indeed, given that M is a
2-connected 7-manifold, it follows that ) sign(\,(¢)) = 7, where 7. € Z is

the signature of the quadratic form on Eg,s given by
(1.14) (a,B) = (a - dyf)[M].
In light of these remarks, it is now possible to write down the adiabatic

limits of the families 7. and B .. Let VTB be the Levi-Civita connection
for the orbifold (B, gp).

Theorem 1.8 ([26, Thm 0.1, Cor. 1.10)). If (M, gnr) is a Riemannian 7-
manifold satisfying Condition (A), such that the fibres of the Riemannian
submersion 7 = (M, gnr) — (B,gg) are totally geodesic and have positive
scalar curvature, then

(1.15) lim n(Dase) _/ App(TB,VTB) 210 5(Dgs).
e—0 AB

(1.16) lim n(Bpre) = / Lag(TB,VTB)2n)p(Bgs) + lim 7.
e—0 AB e—0

In Section 2.a of [26], it has been shown that the adiabatic limit of the
family VM of Levi-Civita connections of the metrics gM,e is given by
lim VIMe = vY @ m* VT8,
e—0

where VY denotes the connection on the vertical bundle V induced by VM.

Using this, it can be shown that the adiabatic limit of the Pontrjagin forms
p1(TM,VTMe) is given by

(1.17) lim py (TM, V) = pr(V, VY) + 7p1 (TB, V'),
E—
where the Pontrjagin forms on the right-hand side of (1.17)) are those ob-

tained from the respective curvature 2-forms of the bundles. As Hjp(M) =
0, there are 3-forms p1(V, VY) and py(7*TB,VTB) on M such that

dﬁl(va VV) =D1 (Vu VV)7
dpy(7*TB,VTB) = py (*TB,V'P) = 7*p) (T B, VP).
From the variation formula for Chern-Weil classes, it then follows that
(1.18)

lim | py(TM, VM)A p (T M, VM)
e—0 M

- /M (m(V.9") + 7 p(TB, V"))

A (p1(V,VY) + o1 (7T B, VT E)).

Finally, if the fibres of 7 : (M, gar) — (B, gp) are totally geodesic and have
positive scalar curvature, recall that (M, gar.) has positive scalar curvature
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for ¢ sufficiently small. Hence, the Weizenbock formula applied to Dz
ensures that h(Dy.) = dimKer(Dy.) = 0 for ¢ sufficiently small. This
fact, together with Theorem and (|1.18)), yields another expression for

the Eells-Kuiper invariant.

Corollary 1.9. If (M, gpr) is a Riemannian 7-manifold satisfying Condition
(A), such that the fibres of the Riemannian submersion © : (M,gn) —
(B, gB) are totally geodesic and have positive scalar curvature, then

1 .
p(M) = 2//\3 Aprp(TB,VTB) 2, 5(Dgs)

1 n
+ 7 /AB Lap(TB,VTP)2n\5(Bgs)

+ o5y e

1

- 2777 /M (pl(V, VV) + W*pl(TB, VTB))
A (Br(V,VY) + i1 (7 TB,VTE)) € Q/Z.

The formula in Corollary will be used in Section [3] to compute the
Eells-Kuiper invariant given in Theorem [C]

2. CONSTRUCTION, CURVATURE AND COHOMOLOGY

2.1. The Grove-Ziller construction.

In order to construct the manifolds M ;b, recall first the method employed
by Grove and Ziller [31] in their construction of metrics with non-negative
sectional curvature on all S3-bundles over S%. There is an effective action of
SO(3) on S* of cohomogeneity one, such that the double cover S of SO(3)
acts (Zs-)ineffectively on S* with cohomogeneity one and group diagram:

83
) Pjn(2)
Q
where S3 is taken to be the group Sp(1) of unit quaternions and
Q = {£1, +i, +j, £k},
Pin(2) = { | e R} U {e"} | 6 € R},
Pin(2) = {? |0 e RY U {ie!? | € R).

Pin(2
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The notation Pjn(2) is intended to be suggestive since, clearly, the groups
Pin(2) and Pjn(2) are isomorphic, the only difference being that the roles
of i and j are switched. In particular, the singular orbits S?/Pin(2) and
S3/Pjn(2) are both diffeomorphic to RP? = SO(3)/0(2) and are of codi-
mension 2 in S%,
Now, for as,as,bs,bs € Z with a;,b; = 1 mod 4, i = 2,3, consider the
homomorphisms
_:Pin(2) - 8% x 83 and ¢, : Pjn(2) —» 83 x §3

with images

(o) = {(£2%, %) | 0 € R} U {(c"%5, ) | 6 € R},

Tim(p4) = {(e0, ) | 9 € R} U {(ie,1e/) | 6 € B)

in S3 x 83 respectively. Let a = (1,a2,a3) and b = (1,b2,b3). Then, as
described in Subsection the homomorphisms ¢ give rise to a manifold
P;’% admitting a (Za-ineffective) cohomogeneity-one action by S? x 83 x 83
with group diagram

(2.1) S3 x S3 x S3

Pin(2 / \PJn
\ /

where the principal isotropy group AQ denotes the diagonal embedding of
Q into S3 x S3 x S3, and the singular isotropy groups are given by

Pin(2)g — {(ezﬂ,eiaﬁ?eiag@) | = R} U {(eiﬁj’ za20] ezag@ ) ‘ = R}
Pin(2), = {(e/?, 7029 e%39) | 9 € R}y U {(i 7%, €729 i eI%3%) | 6 € R}.
Note that the restriction a;,b; = 1 mod 4 is to ensure only that AQ is a
subgroup of both Pin(2), and Pjn(2),. Furthermore, since the singular orbits
of the cohomogeneity-one action on P1% are of codimension 2, it follows from
Theorem [1.1] that each Plb admits an (S? x 8% x S3)-invariant metric ggz

of non—negatlve sectional curvature.

By construction, the action of the subgroup {1} x S? x 8% on P1% is free,
meaning that P1 is the total space of a principal (S? x S3)-bundle over S*.
Grove and Ziller [31] showed that all principal (S? x S?)-bundles over S* are
attained in this way.

Since every S3-bundle over S* arises as an associated bundle to a principal

(S3 x 83)-bundle, the above construction also yields a metric with non-
negative curvature on all S3-bundles over S*. Indeed, by the associated
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bundle construction, an S3-bundle over S* can be written as
(2.2) PpY xgixgs S° = Py xgxss ((S* x 8%)/AS?).
If P10 b 1S equipped with the Grove-Ziller metric ggz as above and S? with the

round metric, then the product metric on Pal’% x 83 is non-negatively curved.
By the Gray-O’Neill formula for Riemannian submersions, the quotient map

Pglgxs?’—)P bXssxsss

induces a metric of non-negative curvature on P9 wb XS3x83 S?, as claimed.
In particular, Grove and Ziller [31] conclude that all Milnor spheres admit
a metric with non-negative sectional curvature.

The point of departure from the Grove-Ziller construction just discussed
comes from the following

Key Observation. The subgroup {1} x AS3 C {1} x 8 x S3 acts freely on
(the left of) Plb such that the quotient ({1} x AS?’)\PI% is diffeomorphic

to the corresponding S3-bundle over S*, namely, P, b Xgaygs S5

This observation, also noted in Section 5 of [31], follows from and
the simple, often-used fact that, if G is a Lie group acting on itself by left
multiplication and on an arbitrary manifold P via a left action ¢ : G x P —
P; (g,p) — g - p, then there is a diffeomorphism P x5 G — P induced by
the smooth map P x G — P; (p,g) — ¢(g~',p) = g~ p, where G acts
diagonally on P x G. Now, if H C @ is any closed subgroup, the action of
H on G via right multiplication commutes with the diagonal action of G' on
P x G, hence induces a diffeomorphism

Pxg(G/H)— (P xgG)/H — H\P.
2.2. The manifolds M;b'

In light of the final observation above and the suggestive notation for a

and b used in the description of Pal%, it is natural to investigate the action

of the group {1} x AS3 C S3 x S3 x S3 in a more general setting, namely,
when the first entry of either or both of the triples a and b is different to 1.
For the sake of notation, from now on let G = 83 x S% x S3.

For a = (ay,a2,a3), b = (by,be,b3) € Z3, with a;,b; = 1 mod 4 and
ged(aq, ag, as) = ged(by, ba, bs) = 1, define Pal’% to be the cohomogeneity-one
G-manifold with group diagram , where the singular isotropy groups
are now given by

Pin(?)g _ {(eiale’eiaQG’eia;gH) ‘ = R} U {(eiale me] eza59 ) ‘ = R}
Pin(2), = { (/17,7720 ¢%30) | g € R} U {(i €9 i e/ je/%0) | 6 € R}.

The gcd conditions on the triples a and b ensure simply that the homomor-
phisms Pin(2) — Pin(2), and Pjn(2) — Pjn(2), into G are injective.
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Lemma 2.1. The subgroup {1} x AS? C G acts freely on Pglg if and only if
(2.3) ged(ar,ap £ a3) =1 and ged(by, by £03) = 1.

Proof. First, suppose that the action is free and that one of the ged con-
ditions does not hold, say ged(ai,a2 —a3) = d # 1. This implies that
e?mia/d — 1 and e?mi(02-a3)/d — 1 and, furthermore, since ged (a1, ag, az) = 1,
that d divides neither as nor as.

As the action of {1} x AS? on an G-orbit in P,$ is via

(1,4,9) - [a1, 92, 93] = [1, 9 g2, q q3),
it follows that the non-trivial element g = (1, e272/d, ¢2miaz/d) ¢ {1} x AS3
fixes the point [1,1,1] € G/Pin(2), C P(}’%. This contradicts the freeness
assumption, hence d = 1. The arguments for the other ged conditions in

(2.3) are similar.
On the other hand, suppose now that ged(ai,a2+ag) = 1 and ged(by, b £

b3) = 1. Since the action of {1} x AS? on a principal orbit G/AQ is clearly
free, it is sufficient to establish freeness of the action on the singular orbits.

Suppose that (1,q,q) € {1} x AS? lies in the isotropy subgroup of some
[Q1,QQ, Q3] S G/Pin(?)g, that is, that

(1,¢,9) - la1, 42, 43] = (a1, 9 92, 9 g3] = [a1, a2, g3]-
Therefore, there is some a = (1, a2, a3) € Pin(2), such that

(2.4) (91,9 G2,993) = (q1 a1, 92 a2, g3 @3).

The identity ¢; = q1 a1 implies that a; = 1, hence that « lies in the identity
component of Pin(2),. In other words, there is some 6§ € R such that
a = (el it piasly — (1 giaz0 ¢iasd) To conclude that the action on the
orbit G/Pin(2), is free, it suffices now to show that e = 1, because it can
then be deduced from that ¢ = 1.

From it is clear that q2_1q3 = ozz_lqglqg as. As q2_1q3 € S3, there

exist z,y € C with |z|? + |y|? = 1 such that ¢ '¢3 = = + yj. Hence,
r+yi = oy (@ +yj)ag = @70 4 lazta)ly;
Since z and y cannot vanish simultaneously, it follows that either e?(22—3)¢ —
1 or e@2+a3)0 — 1 Together with €'*? = 1 and gcd(ay,as & az) = 1, one
concludes that e = 1, as claimed.
The argument for freeness along the other singular orbit is analogous. [
By Lemma whenever ged(ag,as + ag) = 1 and ged(by, by + b3) = 1,
there is a smooth, 7-dimensional manifold M g , defined via

M;Q = ({1} x As3)\Pglg.

Lemma 2.2. The manifold M, admits an SO(3)-invariant Riemannian
metric of non-negative sectional curvature.
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Proof. By Theorem the cohomogeneity-one manifolds P;g admit a G-
invariant metric ggz of non-negative curvature. Since the free action by
{1} x AS? C G is isometric, it follows from the Gray-O’Neill formula
for Riemannian submersions that ggz induces a metric § of non-negative
curvature on the quotient Mg’b. Moreover, the action of the subgroup
S? x {(1,1)} € G on Pal% is isometric and commutes with the action of
{1} x AS?, hence descends to an isometric S3 action on (M a7,b’ g) with inef-
fective kernel {(£1,1,1)}. The effective action on (ijb,g) is, therefore, an
SO(3) action. o O

For the topological computations to follow, it is important to remark
that, by construction and just as for a cohomogeneity-one manifold, there
is a codimension-one singular Riemannian foliation of M aib by biquotients,
such that the leaf space is [-1,1] and M a77b decomposes as a union of two-
dimensional disk bundles over the two singular leaves, glued along their
common boundary, a regular leaf. This follows easily from the Slice Theorem

applied to Pé%. Indeed, the action of {1} x AS? preserves the G-orbits of
Pgl’%, and the image of an orbit G/U, U € {AQ,Pin(2),, Pjn(2)}, is a leaf

given by
(2.5) ({1} x AS*\G/U = (S* x $?*) U,
where this diffeomorphism is induced by

(q1u1, g2 ug, g3 uz) — (q1u1,uy ' gy g3 uz),
for (q1,q2,q3) € G and (uy,uz,u3) € U. Viewing M(Z,b in this way, the ged
conditions required in the definition are simply the conditions ensuring
that each of the biquotient actions on S3 x S3 is free.
In contrast to the Grove-Ziller situation, where a; = b; = 1 and the
manifold M Z » is naturally the total space of a fibre bundle, the quotient

)

({1} x S3 ><7S73)\P91% is not a manifold, in general.

Lemma 2.3. The action by the subgroup {1} x 8% x 83 C G has trivial
isotropy at points on principal orbits, while the isotropy group at a point
(91,92, q3) on a singular orbit, that is, on either G/Pin(2), or G/Pjn(2)y, is
given by
Zyy) = {(1, 026702, q3£%33) | € €S} € Pin(2),£" =1},
or Zppy = {(1,0267 %, 0567 ) | € € 8] € Pin(2), 6" =1}
respectively, where S} = {¢ | § € R} and Sjl = {e/? | 0 € R}.
Hence, for (a1,b1) # (1,1) the quotient
Bé,b = ({1} x 83 x S3)\Pg1’%

is a 4-dimensional, smooth orbifold. In this case, the singular set consists
of at most two copies, RPi, of RP? for which the normal bundles in ng
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have cone angles 27 /|a1| and 27 /|by| respectively. Moreover, the projection
T M;b — Bib is a Seifert fibration with fibre 83 = (S? x S3)/AS3.
Orgi}old charts can be chosen on Bi,b such that the action of the corre-
sponding isotropy group at a point of RP?,E 1s trivial tangent to RP?E, equiv-
alent to the action generated by multiplication by e3™/* normal to RP2,
and generated by multiplication by e3™/" normal to RP%_.
The actions of the isotropy groups on the fibre S are equivalent to

(€,9) = €2q€™™  and  (&,q) = E2q 7™,
where ¢ € S* and € € Zjay|s § € Ly, respectively.

Proof. As in the proof of Lemma [2.1] it suffices to restrict attention to the
{1} x S3 x S3 action on the G-orbits in P;%. It is a simple exercise to show
that the action on the principal orbits is free.

Consider the action of (1,29, 23) € {1} x S x S3 on the singular orbit
G/Pin(2),. If

(1,22, 23) - [q1, 92, 93] = a1, 22 @2, ©3 ¢3] = [q1, q2, 3],
then there is some a = (a1, a2, a3) € Pin(2), such that

(a1, %2 q2,23g3) = (q1 01, g2 2, g3 O3).
Therefore, a; = 1, z9 = ¢ a2 §2 and x3 = g3 a3 g3. The condition a; = 1
ensures that « is in the identity component of Pin(2),, hence 1 = a; = el
In other words, ¢ e S! is an atlh root of unity. The description of the
isotropy group at [¢1, g2, g3] now follows from the definition of Pin(2), and
the fact that all entries in a are 1 mod 4.

An entirely analogous argument yields the isotropy group at points on
G/Pjn(2),.

When (a1, b1) # (1,1), the non-trivial isotropy groups of the {1} x S x S3
action are finite, hence the action is almost free. The quotient of a smooth
manifold by an almost-free action is always a smooth orbifold.

The singular set of the orbifold B;{b consists of the image of those points of
Pgl’% at which there is non-trivial isotropy, namely, the image of the singular
orbits G/Pin(2), and G/Pjn(2)p.

Since the {1} x 3 x S3 action on G commutes with the action of Pin(2),,
it follows that

({1} % 8% x $Y\(G/Pin(2)) = ({1} x S* x $\G)/Pin(2),
= 8% /Pin(2)u,
where Pin(2),, = {!1? | § € R}u{e!®?;j | § € R}. The action of Pin(2),, on
S? is free up to the ineffective kernel T' C {& € S} C Pin(2) | £ = 1} = Zy,|.
Since S}/I' 2 S!, the group Pin(2),, /T = Pin(2) acts freely on S* with
quotient RP2.

Notice that the ({1} x S? x S3)-orbit of a point [q1,q2,q3] € G/Pin(2),
contains the point [g1,1,1]. For € > 0 sufficiently small, the intersection
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of the set {[z,1,1] € G/Pin(2), | z € S*} C G/Pin(2), with the e-ball
B:([q1,1,1]) C P10 projects diffeomorphically onto a chart of RP2. As the
isotropy group Z‘al‘ at [q1, 1, 1] fixes all nearby points of the form [g,1,1] €
G/Pin(2),, the isotropy representation can be non-trivial only on the normal
2-disk to G/Pin(2), C Plb at [q1,1,1]. However, the action of {1} x 83 x 83
on P1% is free away from the singular orbits, hence the Z,,| action on the
normal e-circle at [g1, 1, 1] must be free. Therefore, the normal space at any
point in RP? C B4b must have cone angle 271/\@1] as it is the quotient of
the normal 2-disk to G//Pin(2), by the Z,,| isotropy action.

On the other hand, since the restriction to the unit circle of the Pin(2),
slice action on the normal 2-disk at [g,1,1] € G/Pin(2), has isotropy AQ,
it must be equivalent to the action N
P

€4i92, o = 619]

Pin(2) x D? = D?; (a, 2) — {
of Pin(2) on the standard 2-disk D? C C. Therefore, the free Zyq,|-1s0tropy
action on the normal disk at [g1, 1,1] € G/Pin(2), is generated by multipli-

cation by €8/ ag claimed.

The action of Z,,| on the fibre S? follows from the description of
the leaves of M 7b as biquotients.

Similar arguments deliver the corresponding conclusions for the normal
bundle to the image RP% C B2 b Of G/Pin(2)p.

The fact that = : M/ 7 p = B4 ap 18 @ Seifert fibration with fibre S3 follows
immediately from Remark - O

Note, in particular, that the orbifold B;1 , inherits an (ineffective) action
of 83 of cohomogeneity one with principal isotropy subgroup @ and singular

isotropy groups Pin(2),, and Pjn(2),

Corollary 2.4 ([26, Prop. 4.1]). The inertia orbifold AB associated to Béb
is described by a disjoint union

AB:B;bu(S?x{1,...,|‘”’2_1}>u<six{1,...,“7”;1}),

where S%. denotes the orientable double cover of RP2 respectively. If b €
RP2 C B4b and v+ denotes the generator of the isotropy group at b, then

the pre-images of b in the twisted sector S1 x {s} are given by the two points

(b,[v4]) € AB, where ¢ € { ,...,MTl} with £ = £s mod ¢, for c = aj or
c = by respectively.

Moreover, the twisted sectors S x {s} have multiplicity m(v*) = |a1| and
m(y5) = |b1] respectively.

Proof. The four-dimensional component of AB consists, by definition, of all
points fixed by the the identity in {1} x S? x S3.
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For the remaining components, it suffices to find a curve in 8% x {s}
joining (b, [y4]) with (b, [(v£)™']), that is, a loop in RPZ along which the
generator of the isotropy group at b changes from v+ to v ! Indeed, this is
the only non-trivial change that can occur. Consequently, there can be only
‘ClT_l additional components for each of ¢ = a; and ¢ = b;. Without loss of
generality, assume ¢ = ay.

Consider the curve g : [0, 5] — S3 given by g(t) = e/, with endpoints
9(0) =1, g(%) = j € Pin(2). Let b: [0,%] — G/Pin(2), be the loop in
G/Pin(2), defined by b(t) = [q19(t),9(t), 9(t)], where b(3) = [q1],J,5] =
[q1,1,1] = b(0). Since g(t) ¢ Pin(2) for t € (0, %), the projection of b to
RP? is also a non-trivial loop. By Lemma passing around this loop
yields a path v_(t) = g(t)y_g(t) of generators of the isotropy groups at l;(t),
with endpoints v (0) = v_ and v_(5) = vt

Finally, the multiplicity statements follow directly from the definition
, together with the facts that the isotropy groups are abelian and, via

Lemma act trivially on local charts of RPZ. O
2.3. The cohomology of Mgb'

Unfortunately, Lemma implies that the manifold M Z,b is, in general,

not the total space of an S>-bundle over S* in any obvious way, if at all. In
[31, Prop. 3.3], being associated to a principal bundle over S* with total
space of cohomogeneity one, was an important part of the authors’ cohomol-
ogy computations. On the other hand, in [30] Sec. 13] the cohomology rings
for a particular family of 7-dimensional cohomogeneity-one manifolds was
computed. Although these manifolds are foliated by homogeneous spaces
instead of biquotients, they strongly resemble the manifolds M(Z,b' In order
to compute the cohomology ring of the manifolds M ;b, ideas from both [30]
and [31] will be used, although it is necessary to work quite a bit harder.

It will be useful in the sequel to consider the following manifold: Given
Pgl,%, let ]3212 be the cohomogeneity-one (G x S3)-manifold given (as in
Subsection by the homomorphisms ¢_ : Pin(2) — S3; a — «, and
@4 : Pin(2) — S3; B+ B. In other words, and in analogy with the descrip-
tion of Palg, the singular isotropy groups (= Pin(2)) for ﬁalgb are described
by the 4-tuples (a1, as,as, 1) and (b1, be, b3, 1) respectively.

It is clear that, by construction, the action of the subgroup {(1,1,1)} x
S? C G x 83 is free, inducing a principal S3-bundle

(2.6) s® — B — Pl
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Notice, however, that the action of G x {1} C G x 83 on ﬁ;% is also free,
and that the quotient is S*. Therefore, ]3;% is, in addition, the total space
of a principal bundle

(2.7) G — P} — st

Lemma 2.5. The manifolds Pglg and M;b are 2-connected.

Proof. From the long exact homotopy sequence for the bundle ({2.6]), Pal% is

2-connected if and only if P!3 is. However, P!3 is 2-connected because of

[2.7), since both G and S* are 2-connected.

As Pglg is a principal S3-bundle over M 9779 ,

ing long exact homotopy sequence that M ;g is 2-connected. U

it follows from the correspond-

In the argument to compute the cohomology of M;b’ it will be im-
portant to understand the cohomology of the singular (biquotient) leaves
(S? x S3) /Pin(2), and (S? x S3)/Pjn(2),.

Lemma 2.6. If X = (S? x 83)/K, K € {Pin(2),,Pjn(2),} is a singular
leaf of M;b’ then X has the same cohomology groups as S® x RP?, that is,

z, j=0,3,
HI(X;Z)={0, j=1,4,
Zo, j=2,5.

Moreover, if X = (S3 x S3) JK°, where K° = S! is the identity component
of K, letp: X — X be the projection given by taking the quotient by the free
action of K/K° = Zs. Then the two-fold covering p induces an isomorphism
p*: H3(X;Z) — H3(X; Z).
Proof. Consider again the cohomogeneity-one (G x S3)-manifold ﬁc}% By
construction, a singular orbit Y of ﬁal% is a principal (S? x S3)-bundle over
a singular leaf X = (S3 x S3) /K of Mlb, where the principal 8 x 3 action
is that of the subgroup {1} x AS3 x 83 C G x S®. On the other hand, Y
is also a principal G-bundle over a copy of RP? C S*. Therefore, since the
classifying space Bg = (HP>)3 for principal G-bundles is 3-connected, Y is
trivial as a principal G-bundle, that is, Y is G-equivariantly diffeomorphic
to G x RP2.

Associated to the principal bundle 8% x 83 — Y -5 X there is a homo-
topy fibration
(2.8) Y %5 X — Bgsygs = HP™ x HP™.

The identities H(X;Z) = Z, H'(X;Z) = 0 and H*(X;Z) = Zy follow
immediately from the corresponding Serre spectral sequence (E,,d,). From
the differential

dy: EY® = H3(Y;2) = 7° — E}° = H*(Bgsygs; Z) = 72
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on the 4 page, one obtains
H3(X;Z) = Ker(dy : E3° — E°),
HY(X;Z) =~ H(Bgsygs; 2))/Im(dy : EY® — E}°).

As dy : Eg’g — EZ"O cannot be injective, it follows that H3(X;Z) = Zb3(X)
for b3(X) € {1, 2, 3}.

On the other hand, consider the two-fold covering

p: X =(S*xS%)JK° = X = (S x $*) /K.
Since K° 22 8!, the Gysin sequence for the fibration
K°—58S*x8* 5 X
yields H? ()~( ;Z) = Z. In fact, although it is not important here, X is always
diffeomorphic to S? x S2 (see [I5, 22]). Therefore, from Smith Theory one
obtains
HY(X;Q) = HY(X; Q) = Q™.

This clearly implies that b3(X) < 1, hence, that H3(X;Z) = Z.

Moreover, since Ker(dy : E2’3 — Ei’o) & 7, it is apparent that there are
generators x1,xo, 23 € H3(Y;Z) = Z3 and ay,00 € H*(Bgsygs;Z) = 7
such that

dy(r1) =101 + 5102,
(2,9) d4($2) =7roa] + SyQ9,

d4($3) == 0,
for some 11,79, 51,50 € Z with C' = det (5! 2) # 0. In particular, since
H5(X;7Z) = Ker(dy : EY° — E}?), it is easy to deduce from that
H5(X;7Z) = Zs.

The fact that H*(X;Z) = 0 will follow from the surjectivity of the differ-
ential dy : E2’3 — Eﬁ’o, which is equivalent to the identity C = +1. As X is
a five-dimensional manifold, it is clear that H®(X;Z) = 0. In particular, no
terms on the diagonal Eff’l, k + 1 =8, of the spectral sequence for can
survive to the F, page. Therefore, as all other differentials with range Eff’o
are trivial, the differential dy : EZ"?’ — Eff’o is necessarily surjective. This is
the case if and only if the ged of the determinants of all (3 x 3)-minors of a
matrix representation of dy : Eff’g’ — Ef’o is 1. This latter equivalence can
be proven by reducing such a matrix to Smith normal form via integral row
operations. With respect to the bases {zja; | 1 < ¢ < 3,1 < j < 2} and
{a%, alag,ag} for Ei’g and Ei’o respectively, the matrix representation of
dy : Eff?’ — Ei’o is

rr 0 7o 0 0 O
s1 1 S2 ro 0 O
0 S1 0 59 0 0
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Then the ged of the determinants of all (3 x 3)-minors is divisible by C, from
which it follows that C' = £1, as desired. N

It remains to show that p* : H3(X;Z) — H3(X;Z) is an isomorphism.
To this end, recall that, by definition, there is an injective homomorphism
K — G x S3, such that Y = (G x S%)/K. Define, therefore, p: Y — Y to
be the two-fold covering of Y induced by the free action of Zy = K/K° on
Y = (G x S3)/K°. By the same arguments as for Y, it follows that Y is G-
equivariantly diffeomorphic to G x S?. Moreover, since the actions of G and
K/K° commute, there is a commutative diagram of homotopy fibrations

Y S2 Ba

Tk

Y —= RP?—— B¢

Let (g’r,gr) and (&, 0,) denote the Serre spectral sequences for the upper
and lower homotopy fibrations respectively. It is clear from these spectral
sequences that the differentials

81:E0° = H3(Y;Z) — £° = HY(Bg; 2),

64:EYP = H3(Y;2) — £;° = HY(Bg; Z)
are isomorphisms. By naturality, one has

5409 = (Biq) 0y : £ — £,
where (Biq)* : H*(Bg Z) — H*(Bg;Z) is the isomorphism induced by the
identity id : G — G. Hence,
(210)  p* =0, 0 (Bi) 0ds: HY(Y;Z) = E)° — £9° = H3(YV; )
is an isomorphism. N N
Furthermore, note that there is a principal (S® x S3)-bundle 7 : Y — X,

hence a homotopy fibration Y -5 X — Bgsy g3, such that the following
diagram commutes:

(2.11)

YL>X*>Bssxs3
N

Y #X 4>Bs?,><s3

Now, from the argument to determine H?(X;Z), it is clear that the edge
homomorphism ¢* : H3(X;Z) = Z — H3(Y;Z) = Z3 from the spectral
sequence (E,, d,) for the lower homotopy fibration is injective and maps the
generator x of H3(X;7Z) to a generator of H3(Y;Z).
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On the other hand, an identical argument for the Serre spectral sequence
of the upper homotopy fibration in (2.11) shows that the edge homomor-
phism ¢* : H3(X;Z) = Z — H3(Y;Z) = Z3 is injective and maps the
generator 7 of H3(X:7Z) to a generator of H3(Y;Z).

Finally, suppose that p* : H3(X;Z) — H3(X;Z) is given by p*(z) = A7,
for some A\ € Z. By the commutativity of (2.11]),

A (z) = o (p"(x)) = p* (0" (x)).

Together with (2.10)), this implies that A&*(Z) is a generator of H3(Y;Z).
However, o*(Z) is itself a generator and o* is injective, hence A = =+1.
Therefore, p* is an isomorphism, as asserted. O

It is also possible to understand the topology of the regular (biquotient)
leaves (S x S3)/AQ.
Lemma 2.7. The regular leaf (S3 x S3)JAQ of M;b is diffeomorphic to
(S3/Q) x S? and has cohomology groups

Z, 7 =20,6,

0, =14

Ly @ Ly, j=2,5,

7267, =3

Moreover, the homomorphism 7 : H3((S3 x S3) JAQ;Z) — H3(S? x S3;7Z)
induced by the eight-fold covering T : 82 x S3 — (S3 x %) JAQ is injective
with image a lattice of index 8 in H3(S? x S3;7Z). Indeed, there is a basis
{21, 22} of H3(S? x S3;7Z), such that Im(7*) is generated by 8x1 and x2.

H((S° x 8%) ) AQ; Z) =

Proof. Recall that the regular leaves of M(Z » are quotients of principal orbits
of P19 that is,

a,b’
({1} x AS\G/AQ = (8° x §)/AQ.
The subaction by {1} x 83 x 83 C G on a principal orbit G/AQ of P is

@2

free with quotient S?/Q, hence yields a principal bundle
S3x 8% = G/AQ — S?/Q.

As the classifying space Bgs,gs is 3-connected, it follows that G/AQ is
trivial as a principal (S x S3)-bundle. In other words, the orbit G/AQ is
({1} x S x S3)-equivariantly diffeomorphic to (S?/Q) x (S? x S3). Therefore,
the free subaction of {1} x AS? C {1} x S? x S3 yields a diffeomorphism

(8% x §%) JAQ = (S7/Q) x (ASP\(S x §%)) = (5/Q) x S°.

The classifying space Bg for @ has m1(Bg) = Q. As the (free) action
of Q on S? is orientation preserving, it follows that the induced action on
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H*(S3;7) is trivial. Therefore, there is a Gysin sequence for the homotopy
fibration S3 — S3/Q — Bg. Now, from [I} p. 59], it is known that

Z, J =0,
- Zo B L =2 d4
HI(Bgiz) =425 T = mod
7Zs, 7 >0, 7=0 mod 4,
0, otherwise,

where the periodicity is generated by taking cup products with the generator
in degree 4. From the Gysin sequence for S* — S3/Q — By, the cohomology
groups of S3/Q are computed to be

Z, J=0,3,
HY(S°/Q;Z) = 1 0, i=1
Lo® Lo, j=2.
The cohomology groups of (S? x S?)/AQ can now be computed from the
Kiinneth formula applied to the product (S*/Q) x S3.

Finally, consider the Serre spectral sequence (E,,d,) for the homotopy
fibration S% x S* 5 (8% x S?) JAQ — Bg. Since H*((S®* x S%)/AQ;Z) = 0,
the differential

dy: EY* = H3(S*x 8%2) =202 — Ey° = HY(Bg; Z) = Zs
must be surjective. Hence, there is a basis {z1, 72} of H3(S? x S3;Z) such
that dy(z1) is a generator of H*((S? x S3)/AQ;Z) and dy(x2) = 0. Clearly,
this implies that the kernel of dy is generated by 8z; and z2. Consequently,
the edge homomorphism 7% : H3((S® x S3)JAQ;Z) — H3(S3 x S3,Z) is
injective with image generated by 8x; and xs. ([
Theorem 2.8. For a = (a1,az,a3),b = (b1, bs,b3) € Z3, with a;,b; = 1 mod
4 and satisfying (2.3)), define
1 a? b?

Ifn #0, then H*(M]

s Z) 1s cyclic of order |n|. In contrast, if n =0, then

a,b’
H3 (M i 7) = HY(M] ;7) 2 Z.

Proof. Since, by Lemma. M 7b is 2-connected, the Hurewicz and Univer-
sal Coefficients Theorems, together with Poincaré Duality, imply that the
only interesting cohomology groups are H?’(M;b; Z) and H4(M(Z’b; Z), with
H3(Mgb; Z) being isomorphic to the free part of H*(MT,;Z). In order to
compute these, a Mayer-Vietoris argument will be used. o

Recall, from the discussion following Lemma that M, 7 , decomposes as
the union of two 2-disk bundles M_ and M, over the smgular (biquotient)
leaves (S3x S?) /Pin(2), and (S* x S?) /Pjn(2), respectively, which are glued



30 S. GOETTE, M. KERIN, AND K. SHANKAR

along their common (biquotient) boundary (S? x S3)/AQ. In particular,
there are circle bundles

S!' = Pin(2),/AQ — (S® x §%)JAQ = (S® x §%) JPin(2), ,
S' = Pjn(2),/AQ — (S® x S?) JAQ =5 (S® x 8%) /Pjn(2),,

obtained via the identifications
OM_ = (S x 8%) X pin(2), (Pin(2)qe/AQ) = (82 x 8% /AQ,
OMy = (S® x S%) Xpin(2), (Pin(2)s/AQ) = (8 x 8%) JAQ.

Since the circle-bundle projection maps 7w+ respect deformation retrac-
tions of M_, M, and M_ N M, onto the respective leaves, the relevant part
of the Mayer-Vietoris sequence (with integer coefficients) becomes

0 — H*(Mg,) — H*((S® x 8%)[Pin(2),) & H*((S® x S) /Pin(2)y)

(2.12)

(2.13) T B3((SP % 87 JAQ) — HAMT,) — 0,

where Lemmas and have been applied. In particular, H*(M Z pi L) is
given by the cokernel of the homomorphism 7* — 7% : Z®Z — Z YA

Following the proofs of [31, Prop. 3.3] and [30, Thm. 13.1], let X = (S3 x
S3) /K be a singular leaf (as in Lemma, p: X =(S3xS8¥JK° — X its
two-fold cover and 7 € {m_, 7} the corresponding circle-bundle projection
map 7 : (S3 x S?)/AQ — X. Then there is a commutative diagram

$Bxsd Y X
Tl lp

(S3 x83)JAQ =X

given by the respective projection maps. The induced diagram in integral
cohomology is

(2.14) H3(S? x 8%,2) < H3(X;7)

4 )

H3((S? x %) JAQ; Z) <=~ H3(X;Z)

Using the procedure laid out in [20], one can compute the homomorphism
Y* explicitly. Let ¢ = {c1,c2,¢3) € {a,b} be the triple describing the iso-

morphism S! — K° C G. As X is a biquotient and K° = S!, there is a
smooth map

8= (83 %82 2 ((1,292), (2, 2%))
defining the free action of K° on S®x 83, that is, 2-(q1, g2) = (12, 22q223).

If T = S! x S! is the standard maximal torus of S3 x S3, then 72 is
a maximal torus of (S3 x $3)2 and Im(f) C T?. Let H*(Bg1;Z) = Z[u]
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and H*(Br;Z) = Z[t1,t2]. Then H*(Bgsygs; Z) = H*(Br; Z)V = Z[j1, 92,
where W is the Weyl group of S3 x S and ¢; = t2, i = 1,2. From the Serre
spectral sequence (E,,d,) for the universal principal bundle S? x S§% —
Egsygs — Bgaygs, generators y1,y2 € H3(S? x S3;7Z) can be chosen such
that d4(y;) = ¥;, @ = 1,2. Moreover, from the Kiinneth formula, it follows
that H*(B(Ssxss)z;Z) = Z[gl RLYPYRK1L,1®1y,1® gg]

Consider the following commutative diagram of (homotopy) fibrations:

Sl o833 Y ¥ = (83xs¥) K — s By

I .

(53 X 83)2 ——= 83 x 83 BA(S3><S3) B(S3><S3)2

In the Serre spectral sequence (E,,d,) for the homotopy fibration s, the
differential dy : Ey® = H3(S® x 8%,2) — E}° = HY(B(gs.s3)2; Z) is given
by di(y;) = 7:®1—1®%;, i = 1,2. By naturality, the differential &, : 52’3 =
H3(S3 x S%,7Z) — 511’0 = H*(Bg1;7Z) in the Serre spectral sequence (&, 6,.)
for the homotopy fibration £ is given by 04(y;) = (Bf)*(7: ® 1 —1® ;) for
i=1,2.

On the other hand, from the methods in [20] and the definition of f : S! —
(S? x S?)2, the homomorphism (Bjf)* : H4(B(Ss><ss)2; Z) — H*(Bg1;7Z) can
be shown to be given by

(Bp)*(1h ®1) =0, (B)* (72 ® 1) = 342,
(Bp)*(1@m) = Eu?, (By)*(1®75) = cEu’.

Therefore, 64(y1) = —c3u? and d4(y2) = (3 — c3)u?. By the freeness

conditions , the coefficients of u? are relatively prime. Hence, Ker §; C
H3(S3 x $3:7) is generated by (c3 — 2) y1 + 2 . Since ¢* : H3(X;Z) —
H3(S3 x S3;7Z) is an edge homomorphism for (&, 6,), it follows that there
is a generator 7 of H3(X;Z) = Z such that

(2.15) VH(T) = (3 — B) 1+ Ay

Recall that, by Lemma p*: H3(X;Z) — H*(X;Z) is an isomorphism.
Thus, there is a generator z of H3(X;Z) = Z such that p*(x) = Z. Now,
since the diagram is commutative, ¢*(Z) lies in the image of 7 :
H3((S? x S%)/AQ;Z) — H3(S? x S%;Z). However, 7 is independent of
the choice of triple ¢ € Z3. Hence, by considering the triples ¢ = (1,1, 1)
and ¢ = (1,-3,1), respectively, it is clear that yo and 8y; + ya lie in the
image of 7* (compare the proof of [30, Thm. 13.1]). From this, together with
Lemma it can be concluded that 8y; and y, are generators of Im(7*) C
H3(S3 x S3;7Z), and that there is a basis {v1,v2} of H3((S? x S3)/AQ;7Z)
such that 7*(v1) = 8y and 7*(v2) = ya.
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It is now possible to compute the homomorphism 7* : H3(X;Z) —
H3((S* x 8*)/AQ;Z). By (2.14) and (2.15),
(" (x)) = P (p"(2))
= ¢*(x)
= (3 — )y + iy
= C%8C§ 8y1 + i v

1
= r* (8(03 — c%) v1 + C% v2> .

Since 7* is injective, by Lemma it follows that

1
(2.16) () = g(cg —A) v+ Gy,

Note that, since 7% and the basis {y1,y2} of H3(S3 x S3;7Z) are inde-
pendent of the choice of singular leaf X, the basis {vi,va} of H3((S? x
S3)/AQ;Z) is independent of the choice of X. Therefore, there are gen-
erators z, and z;, of H3((S® x S3)/Pin(2),) and H3((S* x S?)/Pjn(2),)

respectively, such that (2.16)) can be applied to each of the singular leaves
and the homomorphism

H3((S? % 8%) /Pin(2)a) & H3((S? x $%) /Pin(2),) T H3((S?x $%) /AQ)
is given by
1

(n2 = 7})(wa) = 72 (2a) = (a3 — af) v1 +afvs,

* * * 1
(m2 = 7} )(20) = =7 (2p) = (b5 = b3) v1 — bl va.

In order to compute the cokernel of 7* —7% , note that the freeness conditions
ensure that (7* — 77%)(z,) is a generator of H3((S* x S*)/AQ;Z) and
that there exist r, s € Z such that 7 a?+s (a3 —a3) = 1. Then a new basis for
H3((S? x S%)/AQ; Z) is given by wy = (7* — 7% )(2,) and wy = r vy — 85 va.
With respect to the basis {wi,wa}, (7% — 7% )(xp) has the form

*

(7" =) (wp) = (5 (b5 — b3) — rb) wy — nws,

where n = n(a,b) is as defined in the statement of the theorem. Therefore,
if n # 0,

HY(M],;7) = H((S* x 8%)/AQ; Z)/ Im(n* — %)

2 ((wr) @ (wa))/ (wr, (s (b5 — b3) —7b]) w1 — nws)
= (wa)/(nwa)
= Zyn)
as desired. Finally, it is clear that HS(M;Q; Z) = H4(MQ7’Q; Z) = 7 whenever

n = 0. O
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Proof of Theorem[B, Clearly, the statement follows immediately from The-
orem together with Lemma O

Corollary 2.9. If n = £1, then M(Zb is homeomorphic to S”. In particular,
this is the case whenever a = (k,—3,1) and b= (1,1,1), with k,l = 1 mod 4.

Proof. Since n = +1, M;b has the cohomology ring of a sphere, hence is a
homology sphere. As any closed, orientable manifold admits a degree 1 map
onto S™ (by collapsing the complement of a disk to a point), there is a map
inducing an isomorphism on homology. It follows now from the homology
version of the Whitehead Theorem that M va is a homotopy sphere. By [49],

M Z » is then homeomorphic to S7. O

3. THE EELLS-KUIPER INVARIANT OF M,

3.1. A smooth metric on M;Q.

In order to compute the Eells-Kuiper invariant of M;b by applying Corol-
lary it is necessary to define a suitable metric on M va. This metric can
be written down explicitly and is not the same as the metric of non-negative
sectional curvature obtained in Lemma 2.2

Recall that the manifold M a77b decomposes as the union of two-dimensional
disk bundles M_ and M over the biquotients (S® x S?) /Pin(2), and (S? x
S3) /Pin(2), respectively, which are glued along their common boundary,
the biquotient (S3 x S?) /AQ. In particular, there is an action of Pin(2),
Pin(2) on the disk D? := {z € C | |2] < 1+¢}, € > 0, such that the disk
bundle over (S? x S?)/Pin(2), is given by

D2 — M_ = (S° x 8%) Xpiy(2), DZ = (S* x 8%) /Pin(2), .

As seen in Lemma by making use of the identifications given in
(as in (2.12)), it turns out that the action on D? is nothing more than the
slice representation for the isotropy group Pin(2), of the cohomogeneity-
one manifold Palg. As such, this action is determined by the (ineffective)
transitive action of Pin(2), on the boundary circle S! 2 Pin(2),/AQ of the

normal disk to the singular orbit G/Pin(2), C PL9, and is equivalent to the
action o

(3.1) Hmmxshﬁy;wﬁwﬁ{

of Pin(2) on the unit circle in C with isotropy subgroup @ at 1 € C. Clearly,
there is an analogous action of Pjn(2), on D? which yields an analogous
description of M, .

Furthermore, the (equivariant) diffeomorphism

DA\ {0} = 8! x (0,1 +¢); 2z (2/]2], |2])
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and the transitive action induce a diffeomorphism
(3.2)
©_ 1 (8% x 8%) Xpin(), DI\{0}) = (S* x S?) Xpinz), (S! x (0,1 +¢))
— (8* x 8% /AQ x (~1,¢),
given by mapping a point [g1,q2,]2]] € (S* x 8?) Xpiy(2), (D2\{0}) to the

point ([q1,q2], |2] — 1) € (S? x S3) JAQ x (—1,¢).
Similarly, there is a diffeomorphism

@ : (8% x S?) X Pin(2), (D2\{0}) — (S* x 8%) JAQ x (—¢,1)
[91, g2, [2]] = (lq1, q2], 1 — |2]) -

Assume now that ¢ € (0,%) and let 7: M, — [—1,1] be the projection
onto the leaf space of the codimension-one foliation by biquotients, such that

T’M_([QLQQJ']) =r—1 )

(3.3)

(3.4)
T‘M+([CI17Q277']> =1-r.

Then 771([~1,¢)) = M_, 77Y((—¢,1]) = My and 77 (—¢,e) = M_ N My,
where M_ and M, are glued along neighbourhoods of their boundaries via
the diffeomorphism
P lod_ 7 (—e,e) = 7 N —¢,0)

[q1a Q%T] = [q17q2a 2-— T] .
In particular, there is a diffeomorphism

(3.6) @ M\ {-1,1}) = (8? x %) JAQ x (—1,1)

such that @[y \,—1_1) = - and @y \;-1(1) = P4. Given (3-6), points in
M Z,b will often be conveniently represented as equivalence classes [q1, ¢2, ],
with (q1,q2) € S® x 8% and t € [-1,1].

The manifold M ;b can now be equipped with a smooth metric by pulling
back via @ a smooth metric g; + dt? on (S® x S3)/AQ x (—1,1) defined
such that g; is a one-parameter family of smooth metrics on the biquotient
(S3 x 83) / AQ which deforms to smooth metrics on the singular biquotients
(S? x S3)/Pin(2), and (S? x S3) /Pjn(2), smoothly as ¢t tends to —1 and 1,
respectively.

By an abuse of notation in what follows, although the intended meaning
should be clear, the symbols «, 8 and v will be used to denote both the
indices 1,2, 3 and the imaginary unit quaternions 4, j, k, where 1 is identified
with 4, 2 with j and 3 with k. With this convention, define é,3 to be the
Kronecker delta,

(3.5)

1 OZZB 17 if (a7577):©(17273)7
(3.7) €qp = {_1’ o+ 5’ and €y =4 —1, if (o, 8,7) =0(2,1,3),

0, otherwise.
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Consider now the left-invariant vector fields E,, and F,, on S x S3 defined
via

d
Eo(q,q2) := *S(Ch exp(sa), ¢2)|s=0 = (1, 0) ,

(3.8) Cﬁz
Folqr, q2) = %(QMQQ exp(sa))|s=o = (0, g2v) ,
and let X, denote the right-invariant vector field given by
d
(3.9) Xo(q1,q2) = £(Q1,€XP(304)Q2)!5:0 = (0,q2) .

Equip S? x 8 with the standard, bi-invariant product metric (, )¢ so that
the six vector fields E, and Fj describe a global orthonormal basis. As the
right-invariant vector fields X, can be written in terms of the basis Fj, there
are smooth coefficient functions

(3.10) Pap 1 S x 8% 5 R (q1,¢2) = (Xa. Fg)o = (Adg, o, B)o s

such that the (3 x 3)-matrix (pas(q1,92))a,s is an element of SO(3). The
derivatives of the functions ¢,g are given by E,(¢a5) = 0 and

(Fy(pap))(q1,q2) = —([v, Adg, , B)o

= <Ad¢72 «, [% BDO
(3.11) 3

=2 a5 %as(q1,q2) -
6=1

Recall from (2.5 that the free (right) action of AQ on S? x S3 is given
by the anti-homomorphism

p:Q — Diff(S? x 83),
where
p(£1)(q1.q2) = (£q1,92) and p(xa) = (£qra, aga) .

Although the vector fields E,, F, and X, are not () invariant, it is easy
to describe their behaviour under the () action.

Lemma 3.1. The vectors fields E, F,, and X, satisfy the identities
p(£1)Ey = Eq, p(£1).Fy = Fy, p(£1). Xy = Xa,
and
p(£8)+Eq = € Ea, p(£B)«Fo = €qp Fua, p(£8)« Xa = €ap Xa-
Furthermore, the functions @ag satisfy

©ap 0 P(EL) = pap and a0 p(E£Y) = €ary€py Pas-
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Proof. Since 32 = —1 and p is an anti-homomorphism, all non-trivial cases
follow from the case p(8).. For E, one has

((3)+ B (p(8)(a1, 0)) = (5 (ar exp(50), 02) =0

d —
= %(ql exp(sa)f, Bq2/3)]s=0

= % (@B(Bexp(s0)8), Faa)lso

d —
= £(Q1I3 exp(s AdB 04)1 BQQﬂ) ’s:O

d —
= %mlﬁ exp(s eap @), Bg23)|s=0

= €ap Ea(q18, Bg2).

The computations in the cases of F,, and X, are analogous. The identities
for the functions ¢, follow from those for the vector fields since () is bi-
invariant and, for example,

Pap 0 p(7) = (Xa o p(7), Fg o p(7))o = €ay €5y (p(7)xXas p(7)F)0 -
0

Consider finally a local basis e, f, of vector fields on a neighbourhood of
a point [q1, q2] € (S? x S3)/AQ given by the projections under the quotient
map of the restrictions of the vector fields E, and F, to a neighbourhood
of a fixed representative (qi,q2) € S® x S2. In particular,

callan, ) = o lor exp(sa),a2lomo
(3.12)

Follar ]) = < fan, a2 exp(s0)]l oo,

Similarly, let z, denote the vector field given near [q1, g2] € (S3 x S?) JAQ
by projection of X, restricted to a neighbourhood of (g1, ¢2), so that

(3.13) alla a]) = - [a1, exp(s0)a:] oo

Observe that near a different representative p(¢)(q1,q2) € S x 83, £ € Q,
the pre-images of e,, fo, and z, are given by the vector fields (p(¢).FE,),
(p(0)«Fy) and (p(¢). X, ) respectively. That is, repeating the above construc-
tion of ey, fo using instead the representative p(¢)(q1,g2) would produce a
local basis €/, f/ near [q1, g2] € (S® x S3)/AQ which differs from the previ-
ous one at most by a sign.

It is perhaps important to emphasise at this point that, when compared
with the notation used in [26], the roles of e, and f, have been switched.
In the present article, the notation f, is intended to suggest that the vector
field is tangent to the fibre of the Seifert fibration.
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With the chosen representative (q1,g2) of [¢1,¢2] in mind, it is convenient
to abuse the notation in (3.10) and define

(3.14) Pap : (8% x %) JAQ = R; [q1, q2] — wap(ar, 2) -
Then z, = 22:1 ©ap fp and, moreover, the derivatives of the functions ¢,z
on (S? x 83)/AQ are given by e,(¢as3) = 0 and

3

(3'15) fw(@aﬁ) =2 Z €vB5 Pas -
6=1

Proposition 3.2. For ¢ € (O,i), let 0 : R — R denote a smooth func-
tion such that o|(_soc—1) = 1, 0|(—c00) = 0 and o'(x) < 0 for all x € R.
Furthermore, let
A L1 =R t— (14t)o(t) —|-|CZ£1|(1 —o(t)),
b
A L] =Rt (1—t)o(—t)+ ’41(1 —o(—t)),

and let ho,uy,vs : (S3 x 8%) JAQ x (—1,1) — R be defined by

4 4
hoi=—Xo70® ! hi:=—X o700},
a1 b
b
u_ =N or0d o u+::f—2)\’+o7'o<l> o
aj bl
b
v_ :Z:g)\',OToqfl, v+::—b—3)\'+ov-ocl> L
1 1

Then the metric g; + dt? on (S x S3) JAQ x (—1,1) given by

( )= s (1+51a(h2_+u2_2uv 9011+U31)>
gi(ea,€3) = ’
1\Car CB B\ 4 020 (h3 +uf — 2ujvy g +vi — 1)
gt(faafﬁ) = 50&5’

gt(eas f5) = 01a(u— 15 — v—d18) + 020 (u+ Pap — v+ dap),
with respect to the local basis ey, fo of vector fields on a neighbourhood of a
point [q1,q2] € (S3 x S3)JAQ constructed above, is well defined and smooth.
Moreover, ®*(g; + dt?) extends to a smooth metric gy on Mgb'

Some remarks on the metric gps are in order. By an abuse of notation,
define vector fields eg := @;1(%), ea = P 1 (en), fo = P71 (fa) and x4 =
o, 1(x,) on Mlb . By a further abuse of notation, let hy, u4+ and vy denote
the smooth functions on M ;b given by hLo®, uy o® and vy o P respectively.
For r € (0,¢), the vector fields tangent to the fibres of the radius-r circle
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bundles over the zero sections of M_ and M, are given by

0 1
3. = Z(alel — agz1 + as f1),
0

1
- = —(biea = b
90, 1 (brez = baxz + b3 f2),
respectively, with lengths gM(%i, %i) = (1 +t)?2 = r2. The vanishing of
these vector fields for r going to 0 corresponds to the roles of Pin(2), and
Pjn(2), at the singular biquotients.
A (local) orthonormal frame of vector fields on (M ;,é’ gar) is described by

1

€p = ey, ey = hf(el —U_ T +V_ f1),
1
(3.16) ey = h—(ez —uy T2 + vy fa), €3 = €3,
+
fa = fa
away from the singular leaves 7=1{#£1}. Notice that
_ la1| O _ b1 0O
1 - = _ S bt L
(3 7) 61’7’ 1(—1e-1) CL1(1—|—t) 90" 62|‘r I(1—e,1) bl(]_—t) 0904’

so the singularity in e; and é; along 7 1{—1} and 7 !{1}, respectively,
comes only from the normalisation by ﬁ Moreover, note that [y, = e;
and és|p;_ = eg. For convenience, define also Z,, := z,.

In addition, since h |y =1, ut|p, = 0 and v4|p,. = 0, the metric on
M_N My =771(—¢,¢) is quite simple: it is the product of a normal biquo-
tient and an interval, where the vector fields ey, e, and f, are orthonormal.

Finally, the minus sign in the definition of uy and vy is to ensure that
the isometry ¥ in Remark [3.3] below is compatible with Lie brackets.

Proof of Proposition[3.3 The strategy of the proof is to define a smooth
AQ-invariant metric § = §; + dt? on S x S3 x (—1,1) and equip (S? x
S3)/JAQ x (—1,1) with the induced smooth submersion metric g = g; + dt?.
The smoothness as t — +1 will be obtained by defining a smooth quotient
metric on My which coincides with ®% (g|az, ) near the zero section.
Consider S? x S? x (—1,1) equipped with the metric § := §; + dt?, where

9t(Ea, Eg) = (Ea, Eg)o
+ (B2 +u? — 2u_v_ 11 +v2 — 1)(E1, Ea)o (E1, Eg)o
+ (B3 + vl — 2us vy oo + 07 — 1)(Ea, Ea)o (Ea, Eg)o,
9t(Fa, Fg) = (Fa, Fp)o,
Gt(Ea, F) = §:(Fp, Eo) = (E1, Ea)o (u-X1 — v—F1, Fg)o
+ (B2, Eq)o (uy Xo — v Fo, Fg)o .
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It is clear that § is a smooth metric on 83 x 83 x (—1,1), since it is a
positive-definite, symmetric, bi-linear form and all terms used to define §;
are smooth functions on 83 x S? x (—1,1).

Observe now that AQ acts on (S3 x S3 x (—1,1),§) by isometries. This
follows from Lemma and the bi-invariance of (). For example, from

(B, p(7)xEa)o o p(7) = €17(p(7)+E1, p(7)xEa)o © p(7)
= e17(E1, Ea)o,
together with

(uX1 —vFL, p(7)+Fp)oop(y) = €1y (p(7)«(uX1 — vEL), p(7)+F)oop(7)
= 617<UX1 — UFl, Fg)o y

follows g¢(p(7)«Ea, p(7)+F38) © p(7) = G¢(Ea, Fg). Consequently, the metric
¢ induces a smooth metric g := g; + dt? on (S® x S3)/AQ x (—1,1) such
that the quotient map is a Riemannian submersion.

It remains, therefore, to show that the metric ®*g extends to a smooth
metric at ¢ = £1. It is sufficient to concentrate on t = —1, since the
arguments for ¢ = 1 are completely analogous and involve only replacing
the triple @ with b, and the functions h_, u_ and v_ with hy, uy and v
respectively.

Let E,, F,, and X, be the vector fields on the S x 82 factor of S x 83 x Dg
defined as in and , and let % and % denote the polar-coordinate

radial and angular vector fields on the Dg factor respectively, that is,

7(q17Q27r€7’9) = 7((]17 q2, (’I” + S)ew)|s=0 = (07 07 629> )

or ds
9 i0 d i(0+5) i
@(QbQQare ) = £(Q1,QQ,7"€ )|s:0 = (0,0,me )

Choose the same representative (qi,q2) € S® x S3 of [q1,¢2] € (S? x
S3)/AQ as in and . Notice that E,, F, and X, are tangent
to the set Z of points in S® x S? x D? with # = 0. Define vector fields in
a neighbourhood of [g1, g2, 7] € M_ as the projections of the restrictions of
E,, F, and X, to the intersection of Z with a neighbourhood of (q1, g2, ) €
S3 x 83 x D2. By an abuse of notation, denote these projections again by e,
fa and z,, respectively, since they are ®_-related to the previously defined
vector fields ey, fo and z, on (S? x S3)JAQ x (—1,¢).
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If gp := dr? + r2df? denotes the standard metric on D? in polar coordi-
nates, let g, + dr? be the bi-linear form on S? x S3 x D? defined by
gT(EOn EB) = <Ea7EB>O

1
+ ?(167“2 + a3 — 2asa3 11 + a3 — ai + 1)|(Er, Ea)o(E1, Eg)o,
1

gr(FocaFB) = <Fo<7F,B>07

~ - a a
3r(Ba, F) = §-(Fg, Eo) = (E1, Ea)o <a—jX1 - a—j’Fl,Fmo,

- 0 ., 0 4 a 0
gr(Eaa 8(9) gr (69 E ) ;1<E17EQ>OQD(%7%%
N 0 ., 0

gT(FOH 80) g (60 F) 07

., 0 9. o 0

The bi-linear form §,+dr? is symmetric and positive definite. By reverting
to Cartesian coordinates on D2, it is easily verified that g, 4+ dr? describes
a smooth metric on S? x S3 x D2 for all r € [0,1 + ¢).

Let V' be the vector field on S3 x 83 x D? tangent to the free Pin(2),
action and given by -
(318) V =—a1F1 + as X1 — aslF + 4%

Notice that g,.(V,V) = 1 and that, near (qi,qo,7) € S* x S3 x D2, the
vector fields Es, F3, F,, 2 5, and a are all orthogonal to V with respect
to g, + dr?, hence horizontal. Observe, however, that the horizontal vector
field which projects to e is given by

1 40
Bit -V = Lx -8R+
al ay ai 00

and is of length (167“ —|—a2 2a2a3 p11+a3). Therefore, as Aty =T,
if the action of Pln( Ja on (S* x 83 x D2, g, + dr?) is by isometries, the
induced smooth submersion metric on M_ will coincide with the metric
®* (g)|a_ for r € (0,¢), as desired. (For the t = 1 case, note in addition
that (&7 ) (8t) = —Q)
From and , the Pin(2), action on S? x S3 x D? is given by
p: Pin(2) — Diff(S® x S* x D?),

which is completely determined by

pe) (a1, g2, 2) = (™™, e gae

p(i) (a1, a2, 2) = (a1, —jq2d, Z) -

aiit

e a37,t’ e4ztz) ,
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The invariance under p(j) of the first three expressions in the definition
of g, follows via Lemma precisely as for the corresponding terms in the
case of §;. As j acts by conjugation on D2 it follows that 5(j )* = % and
o )*% = —%, which, together with the identities in Lemma, yield that
the remaining terms in the definition of g, are invariant under p(j).

On the other hand, the transformation rules under j(e®) are given by

I a=1,
p(e") By = { cos(2a1t)Ey — sin(2a1t)Fs, a =2,
sin(2a;t)Es + cos(2a1t)Es, o =3,
Fy, a=1,
p(e)uFy = { cos(2ast)Fy — sin(2ast)F3, « =2,
sin(2agt) F5 + cos(2ast)Fs3, o =3,

it *% = a and, in particular, p(e®), X1 = Xj.

= 11 and, moreover, that

Q..

as well as p(e )*60 89, plet
It then follows that ¢11 o p(e’

(X1, p(e")«Fa)o 0 ple™) = (p(e") X1, p(e")Fg)o o ple”)

)
")

= (X1, Fp)o,
Similarly, (Fy,p(e®).Fg)o o p(e®) = (F1, Fz)o. The Pin(2), invariance of
gr + dr? is now a simple consequence of these identities. ([l

Remark 3.3. Consider the manifold M g ., given by swapping a and b. Equip
Mg , With a metric gy defined in the same way as gy by simply switching
the roles of ¢ and b in A4, h4, us and vy. Let £ := %(z +j) € S3. Then,
since the diffeomorphism
83 X S3 — S3 X Sg; (ql,qg) — (qulz &]QZ)

respects AQ fibres and intertwines the Pin(2), action on S® x 83 with the
action of Pjn,(2), there is an induced orientation-reversing isometry
U (Mg gar) = (Mg, )

[QIa q2, t] = [KQIZa e%ﬂ _t]

mapping 7 1(t) C M7 toT 1(—t) C M o foreach t € [-1,1]. In particular,
U, maps ey to —eg and

(3.19)

e] — eg, ey — €y, ez — —es,
fi e fo, fa = f1, 3= —fs,
T — X9, T — X1, r3 — —I3.

Furthermore, notice that Ay(—t) = Ax(t) and X, (—t) = —)\’jF(t), so that,
for example, u_, v_ on M, 7 o, correspond to uy, vy on M . The isometry
U hence ensures that the computatmns to follow need only be performed on
M_ (and that the expressions involving parentheses containing terms with
‘+’ subscripts may be ignored).
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Given that the orbifold B;“vb admits a (cohomogeneity-one) S3 action,

hence is foliated by S3-orbits, one can define vector fields eg, €1, e2 and e3
locally on B;{b exactly as in the case of M;b, that is, as the projections of
local left-invariant vector fields. In the same way as in Proposition [3.2], one
can obtain a metric on Bf;b.

Corollary 3.4. With the analogous notation as in Proposition[3.9, the met-
ric gy + dt? on S3/Q x (—1,1) given by

Gileaseq) = 6ap (1 + 1a(h2 — 1) + 2a (k3 — 1)),
is smooth and pulls back to a (globally) smooth metric gg on Bé,b‘ In par-

ticular, away from the singular orbits of B;l’b, a local orthonormal frame of
vector fields on (B2, gp) is described by

€y =€y, €1:=-—e], €9:= es, €3:=e3.

hy
Moreover, the Seifert fibration T : (M;b,gM) — (Bé"b,gB) is a Riemannian
submersion and the vector fields eg, . ..,e3 on M(Zb are the horizontal lifts of
the orthonormal vector fields ég, ..., €Es.

3.2. Chern-Weil forms for 7 : (Mgb,gM) — (Bg,b793>'

The basic tool used to determine the various invariants involved in the
computation of the Eells-Kuiper invariant is Chern-Weil theory. The nec-
essary ingredients are gathered together in this section. By Remark
only the computations for M_ need to be carried out explicitly, and all ex-
pressions in Proposition [3.2]involving parentheses containing terms with ‘+’
subscripts may be ignored.

With this in mind, and to simplify the expressions to follow, it is conve-
nient to define smooth functions A, u, v : M;b — R such that

hlve =h |y ulve =ufp s vlp =v-|u,
(3.20)
h|M+ = h+‘M+ ) u’M+ = u+’M+ ) U’M+ = v+|M+ :
For the sake of notation, the shorthand A/, v’ and v" will be used to denote
eo(h) = %, eo(u) = % and éeg(v) = % respectively. Notice, in particular,
that

3.21 1 L
(3.21) _ baba],, _ bsta|,,
h h
U|M+ - 4b1 |M+ ) U|M+ - 4b1 |M+ .
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Lemma 3.5. The vector fields &g, ...,é3 and fi,..., fs on M;b satisfy the
following Lie bracket identities:

o A T v - o 2
Co.ally. = -y e —gatgh, lev e2llar = és,
[€2,€3]|lp. =2heéer +2ur — 20 f1 [53751”]\/[_:%@27
sl =2fs, [fe folle =21, [f3 fllu- =2 f2,
(1, Al =0, 1, follnr = 2%f3 . e fallv. = —2%f2 :
(21, Zo]lm_ = =223, [22,Z3]lM_ =221, [T3,%1]|m. = 272,
eralle. =0, @l =273, [EnLEl =25 2.

All other Lie brackets of these vector fields vanish.

Proof. These identities are similar to those obtained in [26], (4.13)].

The undecorated vector fields e,, and f, are the projections of (local) left-
invariant vector fields on different factors of S* x S, hence satisfy [eq, €3] =
2e, and [fq, f3] = 2 f,, for cyclic permutations (o, §8,7) of (1,2,3), as well
as [eq, fg] = 0. On the other hand, the vector fields z, are the projections
of right-invariant vector fields and thus satisfy [z.,2g] = —2x,, for cyclic
permutations («, 3,7) of (1,2, 3).

As their flows are projections of commuting left and right actions respec-
tively, all Lie brackets of x, with eg or fz will vanish. Moreover, since eq
commutes with all eq, fo and 2, on (S? x S3)/AQ x (—1,1), the same is
true on Mlb via .

The Lie bracket identities in the lemma now follow from . [l

Observe that the Lie brackets in Lemma [3.5] are compatible with the

isometry ¥ of Remark This was the reason for the ‘—’ sign in the
definitions of u4 and v..

Lemma 3.6. The Seifert fibration m : (M

b IM) = (Bé,b,gg) has totally
geodesic fibres.

Proof. 1t is sufficient to show that V;;CM e is always orthogonal to the vector

fields f7 , that is, orthogonal to the fibres, since this implies that the second
fundamental form of the fibres vanishes. From the Koszul formula one has

2gM(VZZZVIéﬂ7 f'y) = gM([f_OU éﬁ]v f'y) - gM([é,Ba f’y]a fa) + gM([f’w fa]7 éﬁ)
and the result now follows from Lemma [3.5] O

Since the vector fields ég, ..., €3 on Bg , are m-related to the vector fields
€g,...,e3on M Z p» the corresponding identities on Bfl , follow immediately.
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Lemma 3.7. Let B_ :=7n(M_) C Bg,b' Then the vector fields ég, . .., €3 on
B;b satisfy the following Lie bracket identities:

. h .

[60761”37 == _ﬁel 9 [60762”37 :0 9

. . 2

[0, €3]l =0, [é1,é2]|B_. = 765
2

[é27é3”37 :2hé1 ) [é37é1”Bf = %62 .

Let €°,....&% f!,..., f3 be the local frame of the cotangent bundle 7™ M
of M;b which is dual to ég,...,es, f1,..., f3. In the computations to follow,
it will be necessary to understand the exterior differentials of these 1-forms.
Given 1-forms v®!,...,v%*, the shorthand v“!“ will be used to denote

v* A - Av® . Finally, for (a, 8,7) a cyclic permutation of (1,2,3), let
4= SDalfl + SDOQJFQ + SDanS s
7 = 9071f23 - %qug + %sf12 5

be the forms dual to Z, and Z, A Zg respectively.

(3.22)

Lemma 3.8. The exterior differentials of a function y :=yor1:M_ — R
and of the 1-forms &°,...,e3, f*, ..., f> are given on M_ by

dy:y,é()7 déOZO,
1Moo 23 a1 uon —v g 23 723
det = - &' —2ne”, df = —2(upn —v)er —2f*,
2 ! 3
dEQZEéIS, df2:%501_2u¢12523+2%61f3+2f13,
2 ! _
dé?’:—ﬁéu, d]Fg:Ls]:13 501—2U8013523—2%élf2—2f12-

Proof. The expressions for the exterior differentials follow from the Cartan
formula together with Lemma the relation ga(Z1, f3) = i1 and the

derivatives (3.15]). O

For the computation of the adiabatic limit of the n-invariants of the spin-
Dirac operator ® and the odd signature operator B, it is not necessary to de-
termine the curvature of the full Levi-Civita connection V'™ of (M Z’b, g )-
Indeed, one need only compute the Chern-Weil forms of the Levi-Civita
connection VB of (Bib, gB), and of two connections V' and VY related

to the fibres of the Seifert fibration.
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Lemma 3.9. The Ponitrjagin and FEuler forms of T B with respect to the

Levi-Civita connection VTE of (Bf;b,gB) are given by

1 h/h//
p1(TB,V"P) = = < P L 4h’> 0128
s

e(TB VTB) — i 6h/2 +3h//h_ ﬂ/l é0123
’ 472 h ’

Moreover, it follows that

/ pl(TB,VTB) = 22 — 32 and / e(TB,VTB) = 1 + L
B by aj B lar| ~ [bi]
Proof. The orbifold (B;l’b,gB) is, up to a slightly different choice of the
function h, isometric to the one considered in [26, Section 4.c|, with p_ = a;
and p; = by. Therefore, via [26], (4.16)] the curvature 2-form Q75 of TB is
given, with respect to the orthonormal basis €, ..., €z, by
(3.23)
0 _%”é01 1 oK/ B'els _plel2
OTB _ | hre™ —owe® 0 —h'e% 4 h?el? We 4 pPels |
—et B0 — p2¢12 0 21 4 (4 — 3h2)e%
h/él? _h/éOQ _ h2é13 _2h/é01 _ (4 _ 3h2)é23 0
Together with the isometry (analogous to) ¥ in , it follows that the
Euler and Pontrjagin forms have been determined in [26], (4.17)]. The cal-
culation of the integrals now follows as in [26, (4.18)]. O

Consider now the Seifert fibration 7 : (M;b,gM) — (Bfib, gB) as an orbi-
bundle with structure group SO(4). Associated to the vertical bundle V =
ker(dr) there is a fibre-bundle connection 1-form w™ € Hom(7'M, V) which
acts as the identity on V and is uniquely determined by the horizontal bundle
H = ker(w™). Recall that H = span{ép, €1, €2, €3}. The following lemma will
prove useful when computing the contribution of the twisted sectors AB\B
to the adiabatic-limit formulae in Theorem [L.8

Lemma 3.10. The curvature 2-form Q™ associated to w™ is given on M_

by
7 U o 923\ - v g 923\ 7
Oy = —he —2ue T1 — —he —2ve fi.

In particular, Q7 |y is smooth at 7~ {—1} and the two summands of ™| ps_

~

correspond to elements of the two summands of the Lie algebra so(4) =

50(3) ©s0(3).

Proof. Let pry, : TM — H denote orthogonal projection. The curvature 2-
form Q™ = (dw™) opry, is given by twice the O’Neill tensor of 7, namely, if X
and Y are vector fields on Mlbv then Q7(X,Y) = —[X*, YH]Y. The desired
expression for 97|y, now follows from Lemma while the smoothness at
771 =1} is a result of the vanishing of ' and v’ on 771(—1,e — 1). O
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By taking the cone over the fibres of 7 : M 7 b — B;L p» one obtains a vector
orbi-bundle W — B of rank 4, that is, W = P b X s3xs3 H, where the action

on the fibre is the usual one (cf. Lemma .

(83 X SS) xH—H : ((yl,yg), ) = Y1qY2.
This action is effectively an SO(4) action and is defined in such a way that the
vector fields f, (respectively, Z,) on M 7b correspond to right (respectively,
left) multiplication by « on H.

In particular, for & = 4 and the identification of H with C? via ¢ =
z4jw — (z,w), left and right multiplication on H are given by the elements

0 -1 0 O 0 -1 0 O
1 0 0 O 1 0 0 O

(3.24) L; = 0 0 o0 -1l R; = 00 o0 1 € s0(4)
0 0 1 O 0 0 -1 0

This orientation for H has been chosen to agree that of [26, (4.20), (4.21)],
where the case as = q_, b3 = ¢4+ and as = by = 0 was considered.

Lemma 3.11. If VYV denotes the connection on W induced by w™, then the
smooth Euler and Pontrjagin forms of (W,VW) are given by

uw'u — v'v
VV, vW — <0123
e( ) 7T2h €
! /
D1 1% uuw + VU 193
— (W, V") = ————— )
2 ( ’ ) w2h

The corresponding Euler and Pontrjagin numbers are

/e(WvW)— L et (L b
B 8a§b§ a3 —a3 b3-b2)°

/ (w,v") = det |, i
5 2b2 a3 +a} bi+03)°

Proof. By Lemma and (3.24)), the curvature R" € Q*(B;End(W)) of
VW is given by

/ /
RW|37 = <u e — 2y 623> L; — (U e — 2 623> R;.

h h
This is clearly smooth at 7= 1{—1}, since u’ and v’ vanish on 7~ ( l,e—1).
Given the isometry ¥ of (3.19), the definition e(W, VW) = 47r2 Pf(RW)

yields the Euler form. The expression for the Euler number follows directly

from . ) )
/e(W,Vw):/ uL vy
B -1 4

which derives from the fact that the leaf S3/Q = 7=1{t} C Bé,b has volume
hvol(S?)/8 = % with respect to gp, see [20, Section 4.c].
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To compute the half-Pontrjagin form and number of (W, V'), recall that
the elements Z; and f; act on H via L; and R; respectively. As both square
to —1 while, on the other hand, the product of the two is trace free, one
obtains the desired expressions from B (W, V") = tr((R")?) and

1672

1 / !
/M(WVW):/ wu F o
B 2 1 4

O

The Pontrjagin form pl(TB,VTB) has been computed in Lemma
In the adiabatic limit ) there is a second Pontrjagin form which must
also be computed, namely, that of the vertical bundle V — M/ 7 The

compression of the Levi-Civita connection V7™ on (M g b gn) to V ylelds
a connection VY on V defined by VXV = (VIMV)Y for V € T'(V) and
XeTM.

Lemma 3.12. The smooth Pontrjagin form p1(V,VY) is given on M_ by

! ! /
uu’ + (uv) 11 +vv 50123

m2h

1 / /
4 5 <<1;L 1 _ 9y, 523> PR (2 &1 _ 9, —23> f23>
On My, p1(V,VY) is given by replacing a with b and @11 with sa, and by
pulling back via the isometry U of (3.19).

iV, V) =

Proof. With respect to the orthonormal basis fi, f2, f3 of V, the connection
1-form is given by

= (M (fas v?}fﬁ))a,ﬁ-
On M_\771{—1} it then follows via the Koszul formula and Lemma

that _ _
T o
W=\ I

—f* e+ ! 0

By applying Lemma [3.8 one derives the curvature 2-form to be
QY = dw” +wY AwY

f12 _ i3 g01 f13 u <p12 201
h

0

f12 u’ 8015 —01

+2up362

0

_2u¢12€23
723 uenn+v 201
f ¢

—2ug013623 +2(upr1 +v) €
_f13 o 9012 701 f23 u 9011+v 701
0
+2ug012623 —2(up11 + v) €23
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Since v’ and v’ vanish on 771 (—1,e—1), it is clear that 2" can be extended
smoothly to 771{—1}, hence that the Pontrjagin form p;(V, V") is given on
M_ by

P1 (V, VV)‘J\/L = % tr((QV)z)

8
L (e dw) | vl
= 4n2 (( h (80%3 + 90%2 + 90%1) + Tgpu 4 h) 20123
o1 [ 2u ~ ) 0y
+ 601 <h (9011f23 _ (1012]013 + 8013f12) i 7 f’23>

—e” (4U (8011f23 —praf+ <P13f12) +4v ngg))

/ ! /
uu' + (uv) 11 + vv 50123
w2h

1 u' g 23\ -23 v g 23\ 723
+ﬁ 7 € —2uex” | ™ + 5 € —2we>” | f

as claimed. O

Remark 3.13. Note that 7*W is stably isomorphic to the vertical bundle V,
since w : M g b Bg » is the unit-sphere orbi-bundle associated to the vector

orbi-bundle W — Bi"b. Moreover, both the order |n| of H4(Mg7b; Z) and the
number m appearing in the expression for the Eells-Kuiper invariant given
in Theorem [Cl can be written in terms of orbifold characteristic numbers.
Indeed, from Lemma [3.11] one has

n
e(W, VW) = —,
Jae )= i
while, on the other hand, Lemmas [3.9) and yield

/“(TB@WVTB@VW) — e a i =m

B 2 ’ 8a3b? a3 +a3+8 b3+0b3+8 '

Given that both TB and W are orbi-bundles, there is no reason to expect

that GQ”W and m should be integers. However, whenever a; = b; = 1, that
171

is, whenever 7 is a classical S3-bundle over S?, these are integers.

3.3. Evaluation of the Pontrjagin term.
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Recall from (1.18)) that the adiabatic limit of the Pontrjagin term in (|1.3))
is given by

lim | py(TM, VM)A p (T M, VM)
e—0 M

- /M (m(V.9") + 7 p(TB, V"))

A (p1(V,VY) + p1 (7*T B, V15)),
where
dp1(V,VY) = p1(V, V),
dpy(7*TB,VTB) = 7*p (T B, V1P).
By Lemmas 3.9 and only the 3-form
p1=p1(V,VY) + p1(n*TB, VT B)

in the integrand remains to be determined. Given an exact form (, a form
& with d§ = ¢ will be called a primitive of (.

Lemma 3.14. On M_ one has the identity
(V. V) e = 7" o1 (W, VYV [0 +dé,

1 u' g 23\ -1 v g 23\ 7l
§_.47T2(<he —2ue>” |z — € —2we>” | fH).

In particular, £— is smooth att = —1 and §_|,—1 _ee) = 0. After swilching
the roles of a and b, and pulling back by ¥ (3.19), one obtains on M, a
stmilar smooth primitive £ of p1 (V, VV) |, — ™1 (W, VW) Iy -

where

Proof. The existence of such a form &_ follows from Remark [3.13] since
the Pontrjagin classes of stably isomorphic bundles must agree, hence their
representatives differ by an exact form.

In order to compute d§_, some further exterior differentials are needed.

Given dpas(v) = v(pag), one derives from that
dp11 = 2¢12f — 201317,
dpia = 2%901351 +2013f" — 2011 %,
dpiz = —2%%251 + 2011 % — 20121,
which, together with Lemma and , yield

/ /
_ u —venn
dil = P o1 _

- 2(u — vipy1) €23 + 2723
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Lemma now gives
(3.25)

d((l;z, 01 9, 623) i,l) _ 2(uv)'9021 — 4ud! 0123 2(1;;601 _ou éz3>a—323 ’

v o 23\ 7l dvv' —2(uv)o11 _g123 v o 23\ 723
d (Ee —2ve )f = . e —2<Ee —2ve )f ,
which, with Lemmas and yields

r ’ /
it = (uu (u;l;fn + vv > 0123

1 u' g 23\ -23 v g 23\ 723
+ﬁ 5 € —2ue>” | 7 + 5 € —2we>” | f

=p(V, V) m. — 7o (W, V) |

as desired. The smoothness of £_ at t = —1 now follows from the vanishing
of B, u' and v/ on 771 (—1,e — 1). O

Lemma 3.15. The 3-form

: L3 123
ko =&+ ﬁ(h —2h)e

2., 2
((h’)2—|—2(u2+112)—2 (‘12+‘123+8)> 5123
aj

_l’_

272h
on M_ is a smooth primitive of p1(V, VY) |y +7*p1(TB,VIP) |y, that is,

di— =p1(V, VV)]]\/L + ;1 (T'B, VTB)\]\L )

By swapping a with b and pulling back via the isometry U of (3.19), one
obtains an analogous 3-form ki on M,y which is a smooth primitive of
pl(V,VV)|M+ +7T*p1(TB,vTB)’M+.
In particular, on M_ N M, =771 (—¢,¢) one has
8m 193
H—‘Tfl(—a,a) - H+‘7—*1(—5,5) =5 ¢ .
T
Proof. The smoothness of x_ along 7~ {1} is a consequence of the smooth-

ness of the forms he' = gps(héy,-) and €2 at the singular leaf, together with
Lemma and the vanishing of the second €'?® term on 77 1(—1,e — 1).
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By Lemmas and as well as the definitions of u and v, one
has
PV, V) + 7 p1 (T B, VT P) s
= dé_ + T pr(W, V) + 7 pi(TB, VB |ar

(a3 + a3 +8)Wh"  4AW(h? — 1)\ o193
—det < 8n2h L ‘

=dé_ + % d ((h* — 2h)e'*?)

() ()

where the second-last equality follows by applying Lemma to obtain

=dk_,

As a consequence of Lemma to obtain a smooth, global primitive
p1 for py(V, VY) + 7*p1 (T B, VTP) it suffices to find closed 3-forms v_ and
vy on M_ and M, respectively, such that (k— +v_) — (k4 +v4) = 0 on
77 (—¢,¢).

Lemma 3.16. The 3-form
2

272 2

_atbim [ 2193 1 2 2 a3 —as\ _123

=— = (u® —v%) = —=5—=)eé
TN h aj

/ /
f% <<1;L 01 _ 9y, 623> 7l <1]’1 01 _ 9, é23) ]n))

on M_ is smooth and closed. Moreover, if vy is the corresponding closed 3-
form on M obtained by swapping a and b and pulling back via the isometry

U of (3.19), then

U*|T71(*E,E) - V+|7'71(*€,€) = -

8m _
5123

2

Proof. The smoothness of v_ at 77 1{~1} is clear, since v/, v’ and the coef-

ficient of €'?* all vanish identically on 771(—1,e — 1).
From Lemma [3.§ it can be shown that
/ /
(3.26) df12s = (1}2 el _ oy 623) 72— (7;1 &l _ 9y 623> 72
Together with (3.25) and the identity de'?® = %’50123’ it is now easy to
confirm that dv_ = 0. O

Proposition 3.17. The 3-form

. Jk-tv-, onM_,
b= K+ +vy, on M.

is a smooth, global primitive for p1(V,VY) + m*p (T B,VP).
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Proof. The result follows immediately from Lemmas and In par-
ticular, on the intersection M_ N M, = 77 !(—¢, &) one has

(K’* + V*)|‘r—1(75,s) - (I<;+ + V+)|‘r—1(75,5) =0.
O

It is finally possible to evaluate the Pontrjagin term in the formula for
the Eells-Kuiper invariant given in Corollary

Theorem 3.18. Ifn # 0 then, with respect to the metric gpr on M(Zb given

in Proposition the adiabatic limit of [y, p1(TM, V') /\ﬁl(TM:VTM)
18 given by

! /M (p1(V,VY) + 7*p1(TB,VIE)) A (p1 (V. VY) + b1 (7*T B, V'P))

27.7
1 [4aibim? n
277 n a2? )’

Proof. By Lemmas and together with Proposition the inte-
grand is given on 7![—1,0] C M_ by

A A (e v = (e — €) € A((ke —€) + &+ 1)
=d(k- —E )N (ko +rvo)+dE- NEZ
+dé- N (ke — & +vo)
=d(k- —E )N (ko +rvo)+dE- NEZ
+dE-N(ko =& +vo))+ENd(k- — & +vo).
Given that v_ is closed and
d(k- =€) =d(r- =& +v) =7 (W, V") |y + 7" p1(TB, VP |ar
involves only e°123 terms, it follows from Lemma that
(3.27) E-Ndhe —E-+vo)=¢_ Nd(ke =€) =0,
and from Lemmas [3.17], [3.15] and [3.16] that
Ak~ €Y A (ko +v-)

aibim . w * TB 7123
= 5= (W V) e + 7 pu(TB VP ) A F
212 N 92 ’ ’ ~
(3.28) _ aibim (Wh + AW B2 — 4N + 2(uu’ +vv') g0123 F123
min h h

On the other hand, from (3.22) it follows that z'23 = f!23 and f12%3 =
~1723 _ 123 .
zL %5 = 11 f1%3. Therefore, from Lemma one derives

uy’ — vv’ _
9 dé nE — — 20123 7123
(3.29) N
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Finally, since {_|,-1(_ o) = 0, it follows from Stokes’ Theorem that
(3.30) / dE Ak —E +v))=0.
T-1[-1,0]

Together with the fact that, with respect to the metric gy, a leaf 7=1{t} C
Mg?b has volume (”?Th) (27?) = ”%h [26, (4.33)], equations (3.27)), (3.28)),
(3.29) and (3.30) yield

/1[ }(pl(V,VV)—i-ﬂ*pl(TB,VTB))/\(ﬁl(V,VV)+ﬁ1(7r*TB,VTB))
T7—4-1,0

0 422 1 2 2y
:/ a;opm <((h/)2)/+ (h4)l _ 2(h2),+ (u2 _’_UZ)/> o (U v ) dt
—1 2n 2 8
212 2 2\ [0
atbym (1,0 N, 2 2 2 u-—-v
S (it Ry (e ) -
( n <2(h)+(h) W 4 +v) . )
_ Gy aibim (a3 +a3 +8\ a3 — a3
2n a? 8a?

where Cjy denotes the ¢ = 0 boundary term. Similarly, bearing in mind
that the isometry ¥ (3.19) is orientation reversing, on 7-1(0,1] C M, one
obtains

/1( ](pl(V,VV)—i—ﬂ*pl(TB,VTB))/\(ﬁl(V,VV)—i—ﬁl(ﬂ*TB,VTB))
70,1

:a%b%m b3+ b3 +8 _b%—b%_co

2n b? 8b? '
The result now follows from the definitions of m and n by combining the
integrals over 7-![—1,0] and 771(0, 1]. O

3.4. The contribution of the n-forms.

Given the computations in Subsection [3.2]some further terms can be com-
puted in the expression for the Eells-Kuiper invariant given by the adiabatic-
limit formula of Corollary

Theorem 3.19. If n # 0 then, with respect to the metric gy on M;b given
in Proposition[3.3, it follows that

1 ~ 1 R
L / Anp(TB,VTP) 25 5(Dge) + o / Eap(TB, VB) 20, 5(Bgs)
2 JaB 227 Ja

_ ,ﬁ (a%nb%) — D(a) + D(b).
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Proof. Recall from Corollary that the inertia orbifold AB associated to
Bik is described by the disjoint union

AB_B;{bu<S%><{1,...,““’2_1}>u<six{1,...,'51’2_1}>.

As such, the integrals in the statement can be performed over each of the
connected components separately. On B4 C AB the integrals can be com-

puted using Theorem 3.9 of [24] (as was done in [26, Prop. 4.2]), which,
following Lemma and Remark [3.13] yields

1 [ .
/AAB(TBavTB)QnAB(®S3) 55, 7/ Lap(TB, V") 2nyp(Bgs)
B

2
1 w 1 n
7 =75 ()

It remains, therefore, only to show that the contribution of AB\B;l’b
consists of the generalised Dedekind sums —D(a) and +D(b). In order
to do this, it is necessary to determine some equivariant characteristic num-
bers and the equivariant n-forms for the pullback of the Seifert fibration
™ M7 — B4b to the double covers S of the components RP% of the
smgular locus of B4 As there is an analogous orientation-reversing isome-
try on Bib to that glven on M ;b by ¥ in , only the computations for
RP? need to be carried out explicitly. Observe first that Lemma yields
Ve, €2 = Vigé3 = 0 and Vg, €3 = —Vg, €2 = héq, from which it follows that
RP? is totally geodesic in B4

Followmg the notatlon of Corollary 2.4 and recalling the discussion pre-
ceding (L.6]), let ( ) be a point in AB\B4b, let = — RP2Z be the
normal bundle of RP2 C B4 b’ and let N_ — S2 denote the pullback of N_

to S2. Since B4b is oriented by ¢°123 and the twisted sector S? is locally

oriented by ¢23, the orientation on N_ is given (in a limiting sense) by ¢°
The bundle N_ carries a natural spin structure with an associated spinor
bundle S(N_).

By Lemmaﬂ in an orbifold chart V' the elements 4%, s € {1,. |a1£_1 },
of the isotropy group Zj,,| act on N_ via multlphcatlon by 687”5/ “ ¢ gl
SO(2). As Zy,,| is an odd cyclic group, this action has a unique lift to
Spin(2), represented by

(3.31) 35 = ¢tmis/a ¢ 1 > Spin(2) .

Similarly to the arguments employed for [26] (4.22), (4.23)], the curvature

2-forms for N and T'S2 can be computed in an orbifold chart by considering
the upper and lower (2 x 2)-blocks of the curvature (3.23) and taking limits
as t — —1. It then follows that the corresponding curvatures are given by

y 81
RN_ = —ﬁ é23 and RTSQ_ = -4z é23 .
a
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In particular, using the (non-standard) convention from [26] that the Clifford
actions of ¢(ég)c(é1) on ST(N_) and of ¢(é3)c(é3) on SE(TS?) are both
given by =i, one derives (from, for example, [40, Sec. II, Thm. 4.15]) that
the curvature of the summands of the spinor bundle is given by

RSTWS) = :F|4i| e and RST(TSY) = 3262
aj

On the other hand, by (3.17) and (3.31)) the action of #° on S*(N_) is given

by
i
-y (2 47)
SE( /\77) ’a1| aj
respectively. Therefore, one deduces that

» RSV ar 4i &23
yoexp| ———F——— | =exp|xt—— |7s+ =) |,
271 la1| a1 271

which in turn, via (|1.6)), yields the equivariant Chern character

chss (ST(NL) — 8~ (M), vSW-)
_ a; 4 e ar 41 823
@99 =ew (ot (e 55 ) ) oo (S (e 5
~23
— i s (E (s Y.
laz] ai 27i

From (1.7) and (1.8)), and given that A(TS%, Vs2—) = 1 since it has degree
= 0 mod 4, it can now be concluded that the orbifold A-form on 82 x {s} C
AB is given by

s a1 4ms . .
7—|si(/\7,) = €Xp mailc(eo)c(el)

1
ai -2t sin(ai(Trs + %)) '

1

(3.33) Apnp(TB, V') = -

Similarly, since the action of v tangential to S% is trivial, one derives

chys (SH(TB) + S~ (TB), veI'D)
al 43 é23 al 44 é23
=2(exp|—— |75+ — +exp| ———— | 7s+ —
lai] a1 27i la1| a1 2mi
523
= 4 cos (4 <7TS + e)) ,
aj 211

where the additional factor of 2 is a consequence of T'S% being a rank-2

bundle. From (T.9) one concludes that the orbifold L-form on 82 x{s} C AB



56 S. GOETTE, M. KERIN, AND K. SHANKAR

is given by
(3.34)
Lap(TB, V") = Axp(TB,V"P) chyp(ST(TB) + S™(TB), vSU'™P)

o (o (o )
= —cot| —(7ms+ — .
ai ai 211

To compute the equivariant n-forms of M Z plrRP2 — RP?,
Lemma that v acts on the fibre S via

sag  —sas

(3.35) (V2,q) =2 qy = e

where ¢ = z + jw € S3. This action clearly extends to the fibres of the
associated rank-4 vector orbi-bundle W — B. Furthermore, by the proof of
Lemma the curvature of W at RP? is given by

recall from

27ri(a27a3)s/a12, +jef27ri(a2+a3)s/a1w
Y

2 2
RV = RV |gpe = ——2 B [, + “2 3 R,
- al al
which then acts on the fibres of W via

(3.36)
(-2}

27
—2(aa — 523 -9 =23
Cexp(2las @) TN L (TRla2tas) TN
al 211 al 211

On the other hand, given that the fibres of m have positive scalar cur-
vature, hence that the kernel of ®gs is trivial, explicit formulae for the
equivariant n-invariants 1.s e, gW jori) (Ds3) and N e, pW jory (Bss) of
the (untwisted) spin-Dirac operator ®gs and the odd signature operator
Bgs can be found in [32, Equs. (5), (11), (14)] and [2 proof of Prop. 2.12]
respectively, as well as in [23]. Therefore, in analogy with the result in [26,
(4.24)], on the component S2 x {s} C AB\B?;b these formulae, together

with (T.12), (T.13), (3.35) and (3.36), yield
(3.37)

277AB (CDSs) =

1
_QSin(%(ﬂs_k%))sin(a?’a;lw(ﬂ‘s—l—%)) )

=23 _ 523
277/\3(%53) = —cot az + as s+ 6—_ cot 43 — 42 s+ e—_ .
a 211 ai 27

For the sake of notation below, let

g=a1, p1=4, pr=azx+as, p3=a3z—az
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Now, by combining the expressions obtained in (3.33)), (3.34) and (3.37)),

one obtains that the integrand on 82 x {s} is given by

1 .
§AAB(T37 VIBY2nap(Dgs) + ———=Lag(TB,VIB) 2nrp(Bgs)

25 7
=23
i 14+Hg:1<:os (”;SJr%%)
4 e
20T\ sin (2 g2

The goal now is to extract the degree-two term from this expression, that
is, the term involving the volume form ¢23. By expanding the respective
formal power series and noting that (¢23)¥ = 0 for £ > 1, one obtains

([ pems | pg e [ peTs pems’ €
sm|{——+ —-—— | =sin + — — ) —,
q q 2mi q q q 27

PeTS Dy ¢23 PeTS i PeTS 2
cos| —+——— | =cos| ——
q q 2mi q 27

This observation yields, in particular, that
pems | €23
q 21
T

=23
pems | pe €23 PeTS | Ppe é
cos( p +q2m.> cos( . +q2m> s1n(
’ s\ 23
27
_ Pe
q

(
) - B cos
> b cos

sin ( B2 ) cos [ BEE2
- q q

s [ pems | pgp &2 i (pems pe 23
sm(q +q2m.> sm(q + )

&2
27

2 [ pems
S1n —_—

From this one deduces that
14+H?:1005 (% + %z%)
-y sin (25 + % 55%)
B 14 H?:o (Sin (%) - %“ coS (%) %)
= Hz sin <pe;rs)
o (1) on () 5
Hg 1 sin <p4;5>

Di piTs bims PETS .
B —Z q(l4cos(q)+cos(q)cos(q>) ﬁ
()= sin? (p%s) sin (p%;rs) sin (p’“qm) 2mi

0(1,2,3)
3 DTS
14 + [, cos ( . )
3 p (pems)
[Tes sm( q )

+
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Since S? has constant curvature 4, hence volume 7, the contribution

of the twisted sectors S2 x {1,..., m%} to the Eells-Kuiper invariant is,
therefore, given by

1 o
2/ Apnp(TB,VTB)2n)5(Dgs)
AB\B*
1 .
+5/ Lap(TB,VIP)2ny5(Bgs)
2 7 AB\B4

= (14 cos (p”rs> + cos (pj—;s) cos (pkf;rs))
T 25 Z >
s=1 (L]?k)* Sln

q
ms pims\ o [ pe7s
sin ( g >sm( : )
0(1,2,3)

1 |qz_1 Z (14 Ccos (p”rs> + cos (%) Ccos (%))
q2 .96 .7 s=1 (i,j,k)= sin <pq ) sin <pj—;rs) sin <p’“f;rs)

0(1,2,3)

= D(q; 1, P2, P3)
=D (a1;4,as + az,a3 — az) = —D(a),
where the second equality follows from the invariance of the summands under

the map s — ¢—s and the final equality from the remarks preceding Theorem
Replacing a with b and applying the isometry ¥ of (3.19) yields the

analogous contribution +D(b) of the twisted sectors S2 x {1, ..., %} O
Despite their complicated appearance, it is sometimes straightforward to
compute the generalised Dedekind sums D(q; p1, p2, p3), where ged(q, p;) = 1

fori = 1,2, 3. For example, in the case ¢ = 1, it is clear that D(1; p1, p2,p3) =
0. A non-trivial situation which arises in Corollary [D]is detailed below.

Example 3.20. Consider the case ¢ = —3 and p; = 2x;, i = 1,2, 3, where
x; € Z satisfies ged(3,x;) = 1 for all 4 € {1,2,3}. Then, for all i € {1,2,3}
and ¢ € {1,2}, one has cos (—Qméﬂe = —1 and sin (—Zxéﬂ) = —o(x;0) @,
where p : Z — {0, £1} is defined by

0, ifz=0 mod 3,
o(z) = 1, ifz=1 mod 3,
-1, ifx=2 mod 3.

Therefore, for cyclic permutations (i, 7, k) of (1,2,3) and ¢ € {1,2}, one

has 2x,;ml 27l 2xpmh 27
14 cos (— x;w ) + cos <— aiff )cos <— 33;77 > = 1

whereas

2x; 2@l 2
sin? (—T) sin <— x:];r ) sin <— xgﬂg) = Q(Cﬂjf)g(l“kg) %
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However, as the sign of o(z;¢) changes depending on the choice of ¢ € {1,2},
it follows that both expressions are independent of ¢ and, hence, that

2.3

(4,9,k)=
0(1,2,3)
1
=37 2 eae(m) .
(i,4,k)=
0(1,2,3)

Notice, in particular, that D(—3;2x1, 2x9,2x3) € QLSZ, since x; = 0 mod
3 for every i € {1,2,3} ensures that the numerator of D(—3;2x1, 2x2, 23)
is always divisible by 3.

As an application of this formula to the situation in Corollary [D] consider
D(a) = D(a1;4,a2 + as,as — a3) for a = (=3,12k — 3,121+ 1), k,l € Z. In
this case, 1 = 2, o = 6(k+1) — 1 and x3 = 6(k — ) — 2, which ensures that

o(x1) = o(xz2) = —1 and p(x3) = 1. It now easily follows that D(a) = 4[2—;1.

3.5. The contribution of the very small eigenvalues.

Recall that the term 2% lim. o7 in the formula for the Eells-Kuiper
invariant given in Corollary is the signature of the quadratic form
coming from the E4-page of a Leray-Serre spectral sequence for the Seifert
fibration 7 : (M;b,gM) — (B;l,b,gB).

Theorem 3.21. Ifn # 0 then, with respect to the metric gpr on M;b given
in Proposition the contribution of the very small eigenvalues of the
odd signature operator B to the adiabatic-limit formula for the FEells-Kuiper
invariant ,u(MZ,b) is given by
1 . In|

—— lim7r. = ———.

% . Teh0° BT
Proof. As in [26] Section 4.g.], given that the entries on the Ej-page are
trivial except for E} = R whenever i € {0,4}, j € {0, 3}, it suffices to de-
termine the sign of the integral [ au §d§ , where € € B (M Z p) is a 3-form such
that the fibrewise integral is nowhere zero, and such that d¢ € 7*Q*(B3,)
is basic. Consider the 3-form

2f123 — (% el — 2u623) 7l — (% el — 2 623>f1 on M_, and

712 (e 4 o) g (§ e 4202 on M.

It is clear that |y, = 2 f123 and that the fibrewise integral is nowhere
zero, as desired. Furthermore, from (3.25) and (3.26) it follows that

¢ = 47“‘/;4””/ g0123 2(u2h—v2)’ e e T 0Y(By,).
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Since the leaves 7 1(t) € M Z,b have volume #, the result now follows from

_ %ﬁ}éﬁ;:;gf)j 0123 7123
fcae= f e
1

= 27?4/ (u? —v?) dt
~1

167%n
aibi

3.6. The Eells-Kuiper invariant.

Combining the results of the previous sections, it is finally possible to
compute the Eells-Kuiper invariant of M g b

Theorem 3.22. Ifn # 0, then the Fells-Kuiper invariant of M;Q 18 given
by
— a2b2m?
p(aa,) = "GO by 4 D) mod 1 € Q)2
Proof. Equip M, ;b with the metric gp; given in Proposition Using the
adiabatic-limit formula in Corollary the claimed expression for ,u(Mg7 b)
now follows immediately from Theorems |3.18] [3.19| and [3.21} ([
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