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Abstract

Occupancy models are a vital tool for ecologists studying the patterns and

drivers of species occurrence, but their use often involves selecting among

models with different sets of occupancy and detection covariates. The

information-theoretic approach, which employs information criteria such as

Akaike’s information criterion (AIC) is arguably the most popular approach

for model selection in ecology and is often used for selecting occupancy

models. However, the information-theoretic approach risks selecting models

that produce inaccurate parameter estimates due to a phenomenon called

collider bias, a type of confounding that can arise when adding explanatory

variables to a model. Using simulations, we investigated the consequences of

collider bias (using an illustrative example called M-bias) in the occupancy

and detection processes of an occupancy model, and explored the implications

for model selection using AIC and a common alternative, the Schwarz crite-

rion (or Bayesian information criterion, BIC). We found that when M-bias was

present in the occupancy process, AIC and BIC selected models that inaccu-

rately estimated the effect of the focal occupancy covariate, while simulta-

neously producing more accurate predictions of the site-level occupancy

probability than other models in the candidate set. In contrast, M-bias in the

detection process did not impact the focal estimate; all models made accurate

inferences, while the site-level predictions of the AIC/BIC-best model were

slightly more accurate. Our results show that information criteria can be used

to select occupancy covariates if the sole purpose of the model is prediction,

but must be treated with more caution if the purpose is to understand how

environmental variables affect occupancy. By contrast, detection covariates

can usually be selected using information criteria regardless of the model’s
purpose. These findings illustrate the importance of distinguishing between

the tasks of parameter inference and prediction in ecological modeling.

Furthermore, our results underline concerns about the use of information

criteria to compare different biological hypotheses in observational studies.
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INTRODUCTION

The patterns and drivers of species occurrence are of fun-
damental interest to ecologists. Predicting where species
occur enables ecologists to tackle key problems such as
understanding the spread of invasive species (Gormley
et al., 2011), assessing the distributions of key species
within protected areas (Midlane et al., 2014), and estimat-
ing the range size of populations and species to evaluate
their extinction risk (Breiner & Bergamini, 2018) and
recovery (Akçakaya et al., 2018). Understanding the
drivers of occurrence is also important; interventions to
mitigate the factors that threaten species must be informed
by the diagnosis of those factors (Caughley, 1994). Many
studies have aimed to infer how occurrence is driven by
factors including forest degradation (Zimbres et al., 2018),
wildfires (Hossack et al., 2013), and anthropogenic noise
pollution (Chen & Koprowski, 2015).

A key challenge in studying species occurrence is that
experimental manipulations of ecological systems may be
physically impossible, logistically unfeasible, or unethical;
consequently, ecologists are often constrained to the use of
observational data. One approach to this challenge is to use
a model that relates observed variation in species occur-
rence to one or more environmental covariates. The model
can then be used to predict, or to explain (Shmueli, 2010):
we can predict species occurrence at new sites, or examine
the effect of each covariate to explain the drivers of occur-
rence. Occupancy models are often used because they deal
with imperfect detection (MacKenzie et al., 2002). They do
so by modeling the probability that a species occupying a
site is detected, often including environmental covariates to
explain variation in detectability among sites (MacKenzie
et al., 2002). Occupancy models therefore contain one set
of covariates for occupancy probability, and a second
set for detection probability; the challenge is to select
suitable sets of covariates to include in the model. This
challenge can be framed as a problem of model selection
(Burnham & Anderson, 2004; Forster, 2000; Johnson &
Omland, 2004; Robins & Greenland, 1986).

The information-theoretic approach
to model selection

The information-theoretic approach (Anderson et al., 2000;
Burnham et al., 2011; Burnham & Anderson, 2001, 2004;

Lukacs et al., 2007) compares models in terms of their rela-
tive Kullback–Leibler (KL) divergence, the relative distance
between each model and “full reality,” in units of informa-
tion entropy (Burnham & Anderson, 2001; Forster, 2000;
McElreath, 2021, p. 207). Information criteria, of which
Akaike’s information criterion (AIC; Akaike, 1973) is the
most commonly used, estimate the relative KL divergence
of each model using the sample data (McElreath, 2021,
p. 219). AIC is calculated by taking the in-sample
deviance (a measure of how well the model fits the data),
and adding an overfitting penalty proportional to the num-
ber of parameters in the model (Akaike, 1973; Burnham
et al., 2011). Consequently, AIC favors parsimonious
models that balance underfitting and overfitting, with
the aim of producing better out-of-sample predictions
(McElreath, 2021, p. 192).

Causal inference

An alternative approach to model selection that has
gained recent traction in ecology and evolution
(e.g., Arif & MacNeil, 2022; Laubach et al., 2021) is causal
inference. Causal inference is concerned with predicting
the consequences of intervening in a system, as well as
inferring counterfactual outcomes, events that might
have happened, under hypothetical unrealized conditions
(Pearl et al., 2016, p. 89). Importantly, causal inference is
not about “inferring causation from correlation”; conclu-
sions about causality cannot be made from the data
alone, but require causal assumptions about the process
that generated the data (Pearl et al., 2016, p. 5). To illus-
trate the key concepts and terminology of the causal
inference approach we will discuss a hypothetical exam-
ple, in which the goal is to infer how the density of an
invasive plant affects the occupancy of a native animal
(Figure 1).

In the causal inference approach, the first step is to
employ subject expertise and the literature to identify
variables that could be important in the system. This step
closely resembles the “hard thinking” which is an essen-
tial part of the information-theoretic approach (Burnham
et al., 2011). In our hypothetical example, we know of a
native food plant that is regularly consumed by the
animal species, and may therefore influence the animal’s
occupancy. Furthermore, there is evidence to suggest that
the invasive plant tends to outcompete the native food
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plant, particularly on certain soil types. Finally, as our
hypothetical study is conducted along an urban–rural
gradient, the degree of urbanization is likely to be
important.

The next step is to make assumptions about how these
variables might be related to one another; these are
known as “causal assumptions” (Pearl et al., 2016, p. 5). A
key principle of causal inference is that these assumptions
should be communicated clearly so that they are open to
scrutiny, debate, sensitivity analysis, and verification
(Pearl, 1995). Consequently, it is common to express
causal assumptions graphically, usually as a directed
acyclic graph (DAG; Pearl, 1995). In a DAG, variables are
represented as nodes. The edges (arrows) linking each
node represent the assumed mechanistic links between
the variables (Greenland et al., 1999; Pearl, 1995). The
sequence of edges linking one variable to another, regard-
less of which direction these edges are pointing in, is
called a path (Pearl, 1995). In our example (Figure 1), we
have assumed that the invasive plant, the native food
plant, and urbanization all exert direct influences on the
animal’s occupancy. We have also assumed that the inva-
sive plant affects the density of the native food plant
through competition. Furthermore, we have assumed that
urbanization also influences the densities of both the inva-
sive and native plants. Finally, we have assumed that soil
type does not influence occupancy directly, but that it does
affect the densities of both the invasive and native plants.

Once we have specified a DAG, we must identify which
effects we are interested in estimating. In our example, we
could estimate the direct effect (invasive plant ! animal
occupancy) or the total effect (invasive plant ! animal
occupancy and invasive plant ! native food plant !
animal occupancy) of the invasive plant; in our example,
the focal effect will be the direct effect. Once we have
decided on a focal effect, we can analyze the DAG directly
to identify a set of variables to condition on (i.e., include as
covariates) that will allow us to estimate the effect. One
strategy is to condition on the variables that satisfy the
“back-door criterion,” in which the aim is to “close all
back-door paths” linking the focal explanatory and

response variables (Pearl, 1995). A back-door path is
defined as any path that has an arrow entering the focal
explanatory variable (Pearl, 1995). Our example contains
four back-door paths: (1) invasive plant  soil type !
native food plant! animal occupancy; (2) invasive plant 
soil type ! native food plant  urbanization ! animal
occupancy; (3) invasive plant  urbanization ! animal
occupancy; (4) invasive plant urbanization! native food
plant! animal occupancy.

Whether a path is open or closed depends on the
direction in which arrows along the path are pointing.
Paths that are a “fork” (e.g., X Z! Y) or “pipe”
(e.g., X! Z! Y) are open by default, and conditioning
on the middle variable (Z) closes them (Greenland, 2003;
McElreath, 2021, pp. 184–185; Pearl et al., 2016, p. 46). In
contrast, paths that are a collider (e.g., X! Z Y) are
closed by default, and conditioning on the middle vari-
able (Z) opens the path (Greenland, 2003; Greenland
et al., 1999; McElreath, 2021, p. 185; Pearl et al., 2016,
p. 46). A path with more than three variables only
needs to be closed in one place to be closed overall
(e.g., X W! Z Y is closed by the collider at Z).

In our example, the back-door paths 1 and 2 are
closed by default because native food plant is a collider.
However, as we are interested in the direct effect invasive
plant ! animal occupancy we need to close the indirect
path, invasive plant ! native food plant ! animal occu-
pancy, by conditioning on native food plant. This opens
paths 1 and 2, but we can close both paths again by
conditioning on either soil type or urbanization. If we
condition on urbanization, then doing so also closes
paths 3 and 4, meaning that all four back-door paths
will be closed. Consequently, we can use the model:
animal occupancy ~ invasive plant + native food plant +
urbanization because it closes all of the back-door
paths, satisfying the back-door criterion. We could also
condition on soil type, but doing so is not required to esti-
mate the direct effect. As DAG-based approaches
are nonparametric in the sense that the forms of the
functions represented by edges do not have to be
specified (Greenland et al., 1999; Pearl, 1995), we would
also be free to incorporate linear interactions between
these covariates, or model their effects as nonlinear
functions.

Finally, we can explore the consequences of changing
the assumptions embodied in our DAG, to see whether
our inferences hold under different sets of assumptions.
For instance, we could ask “what if urbanization does
not affect the density of the invasive plant?”, remove the
arrow urbanization ! invasive plant, and re-analyze
the DAG. Doing so, we see that our model still satisfies
the back-door criterion; our conclusions are robust to
altering this assumption. We can also modify the DAG to

F I GURE 1 Directed acyclic graph for a hypothetical example

in which we are interested in estimating the direct effect of the

density of an invasive plant on animal occupancy.
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answer questions such as “what if there was an
unmeasured confounding variable affecting the densities
of both the invasive and native plants?”. By adding a new
variable invasive plant  unmeasured variable ! native
food plant and re-analyzing the DAG, we can see again
that the same model structure is supported because it
satisfies the back-door criterion, and thus our conclusions
still hold. Where a modified DAG supports a
different model structure, we can run the new model
and compare the effect estimates with those of the origi-
nal model.

Collider bias and the information-theoretic
approach

Proponents of the information-theoretic approach have
argued that each model in the candidate set should
represent a different biological hypothesis, and that the
models’ relative AIC scores indicate the strength of evi-
dence for each hypothesis (Burnham et al., 2011). However,
insights from causal inference reveal a potential problem:
collider bias. Collider bias arises when back-door paths are
opened due to conditioning on collider variables
(Greenland, 2003), and is a form of included-variable bias
or “bad control” (Cinelli et al., 2022). This is in contrast
with the classical notion of confounding (Figure 2A), which
is a form of omitted variable bias (Clarke, 2005). As collider
covariates and classical confounds exhibit a similar degree
of correlation to the focal explanatory variable (Figure 2D),
and these correlations may be masked or otherwise
distorted by the action of other variables or nonlinear rela-
tionships between the covariates, it is not possible to avoid
collider bias by checking the explanatory variables for
multicollinearity.

As AIC and other information criteria select models
based on their expected predictive performance, they are
vulnerable to collider bias: including a collider covariate
tends to improve a model’s AIC score, while simulta-
neously resulting in an estimated effect that is far
from the true value (Figure 2A–C; Luque-Fernandez
et al., 2019). Consequently, recent studies have argued
that it is essential to consider whether the purpose of a
model is inference (i.e., explanation) or prediction when
deciding on a model selection strategy (e.g., Arif &
MacNeil, 2022; Laubach et al., 2021). However, the impli-
cations for models like occupancy models, which contain
multiple submodels, are unclear.

To address this topic, we investigated the conse-
quences of a form of collider bias (using an illustrative
example known as “M-bias”; Cinelli et al., 2022;
Greenland, 2003) in an occupancy modeling framework,
and explored the implications for model selection using

the information-theoretic approach (using AIC). We also
examined the performance of a common alternative to
AIC, the Schwarz criterion (or Bayesian information
criterion, BIC; Schwarz, 1978). BIC is built upon different
philosophical foundations to AIC, and is not based
upon information theory (Johnson & Omland, 2004);
some authors have suggested BIC can be used for
selecting the “true” model from the candidate set
(Aho et al., 2014). In our simulation-based approach, we
generated datasets where M-bias was present in the occu-
pancy process, the detection process, or both. We then
fitted occupancy models with different sets of covariates
to these datasets, and evaluated them on the accuracy of
their parameter inferences, the accuracy of their site-level
occupancy predictions, and their level of support from
AIC and BIC.

METHODS

M-bias as an illustrative example

M-bias is a common illustrative example in the causal infer-
ence literature (e.g., Cinelli et al., 2022; Greenland, 2003), in
which an “M”-shaped back-door path (e.g., Figure 3A, left
panel) is opened by conditioning on the collider variable
(D in Figure 3A), confounding the estimate of the focal
effect (X! ψ in Figure 3A). When the back-door path con-
tains latent (unobserved) variables (A and C in Figure 3A),
it is impossible to condition on them to close the path
because they are unobserved, meaning the correct approach
is to not condition on the collider.

Simulation study

To explore the effects of M-bias in both the occupancy
and detection components of an occupancy model, we
simulated three different scenarios (Figure 3) in which
the focal effect was the effect of variable X on occupancy
probability (ψ). In the first scenario (Figure 3A), ψ was
part of an M-graph while the detection probability (p)
was fixed at 0.5. In the second scenario (Figure 3B),
ψ depended only on X, and p was now part of an
M-graph. In the final scenario (Figure 3C), both the occu-
pancy and detection probabilities were part of M-graphs.

All three simulations followed the same process:
(1) generate a dataset with known parameter values,
using the relationships between variables embodied in
the relevant DAGs (Figure 3); (2) fit a number of
occupancy models to the dataset (Figure 3); (3) evaluate
each model’s accuracy in parameter estimation and pre-
diction; (4) evaluate each model’s quality under the
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information-theoretic framework. Each simulation was
repeated 1000 times. We conducted our simulations in R
(v 4.0.5; R Core Team, 2021), and provided code to repro-
duce our simulations and analyses in Stewart (2022) at
https://doi.org/10.5281/zenodo.7043335.

Generating a dataset

Data were simulated for 3000 sites with 40 surveys each.
The number of sites was deliberately high to ensure that
any inaccuracy was not primarily driven by an

F I GURE 2 Luque-Fernandez et al. (2019) presented simulations illustrating classical confounding and collider bias in a linear model.

We extended their example by conducting 10,000 iterations for each example, using effect sizes drawn from a uniform distribution between

�2 and 2. In classical confounding (A), including the variable Z reduces the absolute bias when estimating the effect of X on Y. Conversely,

in the collider example (B), including Z increases the absolute bias. However, in both cases Akaike’s information criterion (AIC) favors the

model that includes Z (C), illustrating that AIC does not always favor models that produce accurate parameter estimates. Furthermore, the

absolute correlation between X and Z is similar in both scenarios (D), meaning that checking for multicollinearity cannot reliably help to

select the model that estimates βXY more accurately, and that adding highly collinear explanatory variables can sometimes improve

inferential accuracy. Code to reproduce the simulations is available in Stewart (2022) at https://doi.org/10.5281/zenodo.7043335.
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underpowered design. Repeating the simulations with
two simulated surveys yielded qualitatively similar results
(Appendix S1: Figures S7–S9).

To generate the data, we first drew effect sizes for
each arrow in the DAG from a uniform distribution
(min = �1, max = 1). Values for explanatory variables
with no ingoing arrows on the DAG were then drawn
from a normal distribution (mean = 0, SD = 1). We
then generated values for the other explanatory vari-
ables from the appropriate variables and effect sizes
(i.e., those from ingoing arrows on the DAG; Figure 3),
plus a “disturbance term” (sensu Pearl, 1995) drawn
from a normal distribution (mean = 0, SD = 0.025). We
then calculated the log-odds of occupancy and detection
as a linear combination of the effect sizes and explana-
tory variables with ingoing arrows on the DAG
(Figure 3), and took the inverse-logit to obtain the prob-
ability. The true occupancy state of each site was then
simulated as a Bernoulli trial with the probability of suc-
cess equal to the occupancy probability. Finally, detec-
tion histories for each site were generated as a sequence
of Bernoulli trials, with the probability of success equal
to the true occupancy state multiplied by the detection
probability.

Fitting models

Occupancy models were fitted to each dataset using
the occu function in the R package unmarked (v.1.0.0;

Fiske & Chandler, 2011), which implements the
single-season occupancy model developed by MacKenzie
et al. (2002). The models used the logit link function. We
fitted models with various combinations of observed vari-
ables (i.e., excluding latent variables) for each scenario
(Figure 3).

Evaluating model performance

In each scenario, all models were evaluated on the accu-
racy of their parameter inferences and predictions. To
quantify how accurately each model estimated the effect
of covariate X on the occupancy probability ψ, we calcu-
lated the bias and absolute bias:

Bias¼bβXψ�βXψ,

Absolute Bias¼ jbβXψ�βXψj,

where bβXψ and βXψ are the estimated and true effects of
X on ψ, respectively. Additionally, we checked whether
the true value, βXψ, was found within the 95% CI sur-
rounding the bβXψ estimate, and then checked whether
the sign (positive or negative) of bβXψ was the same as that
of βXψ.

To evaluate each model’s predictions, we used the
predict function in R to predict the occupancy probability
value for each site in two datasets. We first made

F I GURE 3 Data-generating processes and model structures for the three scenarios: (A) M-bias in the occupancy process, (B) M-bias in

the detection process, (C) M-bias in both the occupancy and detection processes. Data-generating processes are represented as directed

acyclic graphs (DAGs). ψ is the occupancy probability, p is the detection probability, X is the focal explanatory variable, and A, C, D, Q, U, R,

and V represent other explanatory variables. Circled variables are latent. All models included intercept terms for occupancy and detection.
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predictions for the data to which the model was fitted, to
examine how the model retrodicted the sample. We then
examined the model’s performance in out-of-sample pre-
diction by making predictions for a new dataset (also
3000 sites), which was generated using the same true
parameter values as the original dataset. To assess the
accuracy of the model retrodictions and predictions, we
calculated the mean absolute error:

Mean absolute error¼ 1
n

Xn
i¼1
jbψi –ψj,

where bψi and ψi are the estimated and true occupancy
probabilities for site i, respectively, and n is the number
of sites. Additionally, we calculated the proportion of
sites for which the true occupancy probability was within
the prediction’s 95% CI.

Evaluating models under the
information-theoretic framework

To examine the degree of support for each model under
the information-theoretic framework we obtained the
AIC value for each model from the model’s summary
table. Proponents of the information-theoretic approach
have advocated for multimodel inference (e.g., Burnham
& Anderson, 2004), in which inferences are made using
the entire candidate set of models, each weighted using
Akaike weights derived from AIC. We calculated Akaike
weights (w) for each model m as:

wm¼ exp �0:5�ΔAICmð ÞPR
r¼1 exp �0:5�ΔAICrð Þ ,

where ΔAICm is the difference between the AIC of model
m and the lowest AIC value for the set of models in the
scenario, and R is the number of models in the scenario.

We also considered BIC (Schwarz, 1978) as an
alternative to AIC. We calculated BIC and BIC weights
for each model using the R package AICcmodavg
(Mazerolle, 2020).

RESULTS

Scenario 1: M-bias in the occupancy
process

When M-bias was present in the occupancy process,
model 1 (ψ ~ X) estimated the true effect of X on ψ much
more accurately than model 2 (ψ ~ X + D) (Figure 4A,B;

Appendix S1: Table S1). However, comparing the models’
predictive accuracy showed the opposite picture; model 1
generally produced worse predictions than model 2
(Figure 5A,B; Appendix S1: Table S1), and similar
results were observed for retrodictive accuracy
(Appendix S1: Figure S1). AIC and BIC both showed
clear support for model 2 in the majority of simulations
(Figure 6A,B); in 80.4% of simulations model 2 received
an Akaike weight of >0.99, and in 52.2% of simulations
it received the entire weight (Figure 6B). The few simu-
lations in which model 1 received more weight were
mostly those in which βCψ was small (Appendix S1:
Figure S2). A similar pattern of results was observed for
BIC (Appendix S1: Figure S2), although when BIC
assigned weight to model 1 it generally assigned more
weight than AIC (Figure 6A).

Scenario 2: M-bias in the detection process

When M-bias was present in the detection process, both
models 1 (ψ ~ X, p ~ U) and 2 (ψ ~ X, p ~ U + R) accu-
rately estimated the effect of X on ψ (Figure 4C,D;
Appendix S1: Table S1). Both models also made accurate
predictions, although those of model 2 were more accu-
rate (Figure 5C,D; Appendix S1: Table S1). Similar results
were observed for retrodictive accuracy (Appendix S1:
Figure S1C,D). Both AIC and BIC assigned more weight
to model 2 in most simulations (Figure 6C,D).

Scenario 3: M-bias in the occupancy and
detection processes

When M-bias was present in both the occupancy
and detection processes, models 1 (ψ ~ X, p ~ U) and
3 (ψ ~ X, P ~ U + R) estimated the effect of X on ψ much
more accurately than models 2 (ψ ~ X + D, P ~ U) and
4 (ψ ~ X + D, P ~ U + R) (Figure 4E–H; Appendix S1:
Table S1). In general, the 95% confidence interval around
the estimate in models 2 and 4 only contained the true
value when βAD and βCψ (and to a lesser extent βAX) were
relatively small (Appendix S1: Figures S4, S5). In con-
trast, models 2 and 4 made more accurate predictions
than models 1 and 3 (Figure 5E–H; Appendix S1:
Table S1), and similar results were obtained for retrodic-
tive accuracy (Appendix S1: Figure S1E–H). Both AIC
and BIC showed clear support for model 4 in the majority
of simulations (Figure 6H); the model received an Akaike
weight of >0.99 in 63.0% of the simulations. While
model 3 did occasionally receive weight, this mostly
occurred when βCψ was small (Appendix S1: Figure S6)
and it still never received the entire weight (Figure 6G).
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BIC weights were similar to the Akaike weights, although
BIC assigned more weight to model 3 in some simula-
tions (Figure 4G), again generally when βCψ was small
(Appendix S1: Figure S6).

DISCUSSION

We investigated the consequences of M-bias (a specific
form of collider bias) for occupancy modeling, and
explored the implications for model selection using AIC
and BIC. In our simulations, we observed that when
M-bias was present in the occupancy process, AIC and
BIC favored a model that produced a highly inaccurate
estimate of the focal effect but produced more accurate
predictions and retrodictions of the site-level occupancy
probability. This reflects the fact that AIC and BIC aim
to select models that produce better out-of-sample predic-
tions (McElreath, 2021, p. 192). In contrast, M-bias in the
detection process did not result in inaccurate estimates of
the focal effect. However, the AIC/BIC-best models made
better predictions and retrodictions. We observed the

same results when M-bias was present in both the occu-
pancy and detection processes: the model favored by AIC
and BIC produced inaccurate inferences but more accu-
rate predictions, while models made similarly accurate
inferences regardless of M-bias in the detection process.
These results have important implications for model
selection in occupancy models, as well as for how the
information-theoretic approach is applied in ecological
modeling more generally.

Information criteria select models that
produce poor parameter inferences, but
good predictions

When M-bias was present in the occupancy process, the
model that received the greatest support from AIC and BIC
produced highly inaccurate estimates of the effect of the
variable of interest (X) on the occupancy probability (ψ).
The models that received the majority of the AIC and BIC
weight were only able to estimate the direction of the focal
effect correctly in 65.8% of cases at best, little better than

F I GURE 4 True versus estimated effect of X on occupancy probability (ψ), for the following occupancy models: (A) scenario 1, model 1;

(B) scenario 1, model 2; (C) scenario 2, model 1; (D) scenario 2, model 2; (E) scenario 3, model 1; (F) scenario 3, model 2; (G) scenario 3,

model 3; (H) scenario 4, model 4. Each point represents the result from one simulation, with 1000 simulations in total. The y-axis is truncated

at �10 and 10; plots (B), (F), (G) and (H) omit 34, 33, 1, and 45 points respectively that lay outside this range. Blue points indicate that the

true value was contained within the estimate’s 95% CI, while unfilled circles indicate that the true value was not contained within the interval.

The dashed black line indicates equality between the true and estimated effect. Each model’s covariates for ψ and the detection probability (p)

are shown above their respective plot.
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the accuracy we would expect from guessing. Such biased
estimates are not informative about the drivers underlying
the observed pattern, nor do they accurately predict the
consequences of intervening in the system; in a real
conservation problem in which decisions are informed
by occupancy models (e.g., Chen & Koprowski, 2015;
Hossack et al., 2013; Zimbres et al., 2018), the results could
be disastrous.

While the models supported by AIC and BIC pro-
duced biased parameter estimates, they also produced
more accurate predictions and retrodictions of the occu-
pancy probability at each site. This is because these
models include the variable D that has an open path to
ψ; including D provides additional information about the
variation in ψ, improving prediction. From the perspec-
tive of AIC and BIC, including D results in a reduced
in-sample deviance that typically outweighs the penalty
for adding the additional variable; this reduction must be
greater to outweigh BIC’s larger penalty term, which is
why BIC was more conservative in its tendency to select
confounded models in our simulations (Figure 6). This
also explains why AIC and BIC gave more weight to the

nonconfounded model (omitting D) when βCψ was close
to zero (Appendix S1: Figures S2, S6); the near-zero effect
of C on ψ meant that the path from D to ψ through
C was almost blocked (the other path from D to ψ was
blocked by conditioning on X), and therefore D explained
relatively little variation in ψ.

In contrast with the effects of M-bias in the occu-
pancy process, M-bias in the detection process did not
affect inferences about the effect of X on ψ. Additionally,
including the collider variable R in the detection
submodel improved the accuracy of the model’s predic-
tions of the site-level occupancy probability. These results
can again be explained by considering how the path
structure between variables will affect the change in devi-
ance when a variable is included; as the variable R has an
open path to p, including R explains additional variation
in the detection probability, reducing the deviance and
allowing the model to better account for imperfect detec-
tion when estimating the occupancy probability. As the
detection probability is generally regarded as a nuisance
parameter (Karavarsamis, 2015), it is inconsequential
that the effect of the other detection covariate (U) will be

F I GURE 5 Kernel density estimate contours showing two measures of predictive accuracy when predicting site-level occupancy

probability (ψ), for 1000 simulations. The x-axis shows the proportion of sites (out of 3000) for which the 95% CI around the model’s
prediction contained the true occupancy probability. The y-axis shows the mean absolute error. Thus, the bottom right of each plot indicates

higher predictive accuracy, while the top left indicates lower predictive accuracy. The density of simulations is shown by the contours, with

lighter colors indicating a higher density of simulations. Results are displayed for the following occupancy models: (A) scenario 1, model 1;

(B) scenario 1, model 2; (C) scenario 2, model 1; (D) scenario 2, model 2; (E) scenario 3, model 1; (F) scenario 3, model 2; (G) scenario 3,

model 3; (H) scenario 4, model 4. Each model’s covariates for ψ and the detection probability (p) are shown above their respective plot.
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confounded. Therefore, information criteria can be used
for selecting detection covariates.

The tendency for information criteria to favor con-
founded models with greater predictive ability is not
confined to collider bias. For example, simulations by
McElreath (2021, pp. 226–228) showed that information
criteria tend to select models that condition on the
mediator (M) in a pipe (e.g., X! M! ψ), inducing
post-treatment bias (Rosenbaum, 1984). This occurs
because adding M explains additional variation in ψ,
while also blocking the causal path that runs from X to ψ
(McElreath, 2021, p. 228). We also expect these results to
apply in other scenarios, such as case–control bias
(Cinelli et al., 2022). Finally, the M-bias example illus-
trates that latent variables can result in information
criteria favoring confounded models, and hence that
considering these variables is critical when drawing
inferences.

Inference and prediction are separate tasks

The key point supported by our results is that inference
and prediction are separate tasks that should not be

conflated in model selection (Laubach et al., 2021;
McElreath, 2021, p. 226; Shmueli, 2010). We echo
Gelman and Rubin’s (1995) criticism of selecting “a
model that is adequate for specific purposes without
consideration of those purposes.” In the context of occu-
pancy models, both explanation and prediction are
important objectives, and conflating the two does justice
to neither. Furthermore, our results emphasize the
importance of considering not only the model’s purpose,
but also the purpose of submodels within the model; the
purpose of the occupancy submodel depends on
whether we are interested in predicting the occupancy
state or inferring its drivers, while the detection
submodel’s purpose is usually prediction of the detec-
tion probability. Consequently, how occupancy
covariates are chosen depends on the purpose of the
model—information criteria are suitable if the purpose
of the model is prediction, but are unlikely to be if the
purpose is parameter inference—while detection
covariates can generally be selected using information
criteria. This advice also applies to cross-validation; the
choice of model made by AIC is asymptotically equiva-
lent to that made by leave-one-out cross-validation
(Stone, 1977).

F I GURE 6 Akaike weight (yellow area) and Bayesian information criterion (BIC) weight (blue area) for 1000 simulations of eight

occupancy models. Simulations are shown ranked by weight, with higher Akaike and BIC weights shown on the right. The panels display:

(A) scenario 1, model 1; (B) scenario 1, model 2; (C) scenario 2, model 1; (D) scenario 2, model 2; (E) scenario 3, model 1; (F) scenario 3,

model 2; (G) scenario 3, model 3; (H) scenario 4, model 4. Each model’s covariates for the occupancy probability (ψ) and the detection

probability (p) are shown above their respective plot. Dashed horizontal lines are shown for weights of 0, 0.5, and 1.
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Using information criteria to compare
biological hypotheses in observational
studies is risky

The importance of distinguishing between inference
and prediction has wider implications for how
information-theoretic model selection is applied in ecol-
ogy. Proponents of the information-theoretic approach
have argued that it is possible to compare multiple a
priori specified models, each representing a different bio-
logical hypothesis, with the relative AIC scores indicating
the strength of evidence for each hypothesis (Burnham
et al., 2011; Johnson & Omland, 2004; Richards, 2005).
However, using information criteria in this way conflates
inference and prediction; information criteria select
models that make better predictions, but these same
models can contain spurious effect sizes that hold no bio-
logical meaning, while the effects of biologically impor-
tant covariates are confounded. This is not only the case
for occupancy models; the occupancy models we used
are just an extension of logistic regression (Clark &
Altwegg, 2019), and these points apply to other forms of
linear model as well (Luque-Fernandez et al., 2019;
McElreath, 2021, pp. 226–228). The implication is that
using information-theoretic model selection to compare
biological hypotheses in observational studies carries sub-
stantial risks.

The information-theoretic approach and
causal inference are complementary

While we argue that comparing biological hypotheses
using the information-theoretic approach is risky, and that
we prefer a causal inference-based approach for this pur-
pose, we must emphasize that we are not arguing that the
information-theoretic approach is flawed or useless for
model selection. Information criteria select models from
the “predictive point of view” (Akaike, 1998), while causal
inference is concerned with estimating the effects of
covariates, so we see the two approaches as complemen-
tary. In the case of occupancy models the two approaches
may be used side by side in a single analysis, in which
occupancy covariates are chosen based on causal assump-
tions embodied in a DAG, while the detection covariates
are selected using the information-theoretic approach.

We also argue that causal inference and the information-
theoretic approach are complementary because they
share philosophical underpinnings. In the information-
theoretic approach, it is vital to employ subject expertise
and “hard thinking” to develop hypotheses that are com-
pared as models (Burnham et al., 2011; Lukacs
et al., 2007); in causal inference, subject expertise and a

priori thought are vital in making the causal assumptions
that are embodied in the DAG (Greenland et al., 1999;
Pearl, 1995). Causal inference thus provides a framework
to support the “hard thinking” required in ecological
modeling (Grace & Irvine, 2020). Proponents of the
information-theoretic approach also recognize that “a
proper analysis must consider the science context and
cannot successfully be based on ‘just the numbers’”
(Burnham & Anderson, 2004). Similarly, proponents of
causal inference argue that conclusions cannot be drawn
from the data alone, but require causal assumptions that
come from the scientific context of the model (Pearl
et al., 2016, p. 5).

Another feature of the information-theoretic approach
is that Chamberlin’s (1890) method of multiple working
hypotheses is often emphasized (Burnham & Anderson,
2004; Elliott & Brook, 2007). We argue that causal infer-
ence is very compatible with Chamberlin’s method;
constructing a causal model forces us to consider multiple
explanations for a phenomenon, guarding against the
threat of “parental affection for a favorite theory” that
concerned Chamberlin. Due to the relatively static nature
of causal models, we argue they are especially suited
to the case of multiple working hypotheses in parallel
(Elliott & Brook, 2007), in which causation operates
through multiple factors simultaneously. Moreover, the
tools of causal inference allow this parallel case to be
extended to more complex situations with indirect effects,
rather than constraining our thinking to simple additive
terms and interactions.

A caveat: Model selection is more than
selecting covariates

We have focused on the choice of covariates, which is a
key aspect of model selection, but another vital part of
model selection is selecting specific mathematical func-
tions to relate these variables to one another (Johnson &
Omland, 2004). However, as the rules of causal inference
are nonparametric (Greenland et al., 1999; Pearl, 1995)
our conclusions hold irrespective of what functional
forms are chosen, and we consider any role of informa-
tion criteria in selecting these functions to be beyond the
scope of our article.

Summary

We have demonstrated that when a form of collider bias
known as M-bias is present in the occupancy process,
occupancy models that are favored by AIC and BIC
produce inaccurate parameter estimates but accurate
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predictions. In contrast, M-bias in the detection process
does not affect the accuracy of parameter estimates.
The key conclusion supported by these results is that
inference and prediction are separate tasks that should
not be conflated during model selection. The correct
choice of model selection procedure depends on
the purpose for which the occupancy model will be
used. Information-theoretic approaches are suitable for
selecting occupancy covariates if the model is to be
used for predicting the site-level occupancy probability.
However, if the goal is instead to infer the effect of envi-
ronmental covariates on occupancy, then the use of infor-
mation criteria carries significant risks; we advocate for
an approach based on causal inference in this situation.
Our results support the use of information-theoretic
methods to select detection covariates regardless of the
model’s purpose, as long as detection probability is
treated as a nuisance parameter. As single-season occu-
pancy models are in essence a form of logistic regression,
our results have wider implications for the use of
information-theoretic model selection in ecology. In
particular, we argue that our results, alongside those
of others (Arif & MacNeil, 2022; Luque-Fernandez
et al., 2019; McElreath, 2021), underscore the risks associ-
ated with using the information-theoretic approach to
compare biological hypotheses in observational studies.
Causal inference and the information-theoretic approach
share similar philosophical underpinnings, and should be
seen as complementary tools that accomplish different
tasks.
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