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Abstract: Distributed Bragg Reflectors are optical structures capable of manipulating light behaviour,
which are formed by stacking layers of thin-film materials. The inverse design of such structures
is desirable, but not straightforward using conventional numerical methods. This study explores
the application of Deep Learning to the design of a six-layer system, through the implementation
of a Tandem Neural Network. The challenge is split into three sections: the generation of training
data using the Transfer Matrix method, the design of a Simulation Neural Network (SNN) which
maps structural geometry to spectral output, and finally an Inverse Design Neural Network (IDNN)
which predicts the geometry required to produce target spectra. The latter enables the designer to
develop custom multilayer systems with desired reflection properties. The SNN achieved an average
accuracy of 97% across the dataset, with the IDNN achieving 94%. By using this inverse design
method, custom-made reflectors can be manufactured in milliseconds, significantly reducing the cost
of generating photonic devices and thin-film optics.

Keywords: Machine Learning; inverse design; tandem network; chromaticity; Distributed Bragg Reflector

1. Introduction

The application of optical devices is extremely broad, and over the last few decades,
their prevalence has grown due to the advances in manufacturing techniques and compu-
tation power [1]. Metamaterials and nanophotonics can control the light–matter interaction
precisely, enabling them to be used for a wide variety of applications. Their numerous appli-
cations include invisibility cloaking [2], structural and sustainable colour generation [3,4],
high-resolution printing, anti-reflectors [5], bio-sensors [6] and nanophotonic lasers [7].
Distributed Bragg Reflectors (DBRs) are one of the classical optical systems, and are formed
of alternating layers with different refractive indices, where each material interface gives
rise to a partial reflection of the incident light waves [8]. A typical DBR is formed of an
alternating λ/4 structure of high and low refractive index materials [9]. There are a number
of applications for DBRs in photonics, such as LEDs and vertical-cavity surface-emitting
lasers [10].

There exist several numerical methods and corresponding computer programs that
serve to predict the responses of these thin-film structures, and over time, this information
has been collated into a number of libraries. However, in practice, it is common to desire a
response that has not yet been associated with a particular structure. This poses a need for
inverse design (ID), which proves far more complex than direct structural analysis [11].

Traditional ID methods have yielded successful results, and are often highly accurate
for small-scale modelling; however, when handling a large number of parameters, these
methods simply are not feasible due to their complexity and time cost [12]. For these
reasons, Machine Learning (ML) has moved to the forefront of pioneering inverse design
methods [13]. ML employs a range of algorithms to analyse large amounts of data and
map complex relationships between information, in order to make future predictions about
new data [11,14]. Although the input data are still produced through simulations, this
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computational cost occurs only once and the burden can be spread across several devices
in parallel [15]. Additionally, the analytical as opposed to the numerical approach adopted
by ML algorithms is far more efficient, allowing huge amounts of data to be analysed in
a relatively small amount of time [4]. Table 1 presents a summary of the most prevalent
inverse design methods in the literature, and their associated drawbacks.

Table 1. A summary of existing methods of inverse design and their drawbacks.

Approach Details Drawbacks

Systematic

By making intuitive design decisions
based on photonics theory and existing
structures, a starting structure is chosen

and parameters are systematically cycled
through until a desirable response is

happened upon.

The links between structures and spectra
are not always intuitive, making this
method computationally costly and

extremely slow.

Removal of non-unique instances
followed by DL

Lininger et al. implement a feedforward
neural network to design a 1–5-layer

system using up to 5 different materials,
with a user-imposed ‘similarity

metric’ [14]. This is used to filter out
training instances deemed as non-unique,
effectively reducing the design challenge

to a one-to-one problem.

The ‘similarity threshold’ chosen by the
user is arbitrary and may not catch all
similar spectra, which could prevent

model convergence.

DL tandem model

Works by Liu et al. and Xiaopeng et al.
use a Tandem Neural Network to address
non-uniqueness [15,16]. This is composed

of two networks: the first designing a
reflector to produce a target spectra,

while the second pretrained network
determines how well the target and

predicted spectra match, regardless of the
intermediate structural predictions.

Struggles with classification design
problems, as the intermediate network

output needs to be in an acceptable form
to be fed into the secondary network.

DL mixture-density model

Unni et al. also use two networks, the
second again being pretrained to map

structural components to spectral
response [17]. However, the two are not
connected, and instead the first network
outputs the probability of a number of
structures, and a separate optimisation
process evaluates each possibility with

reference to its performance in the
second network.

Requires an optimisation process on top
of a second pretrained network, and

multiple possible designs must be tested
and verified for each design case.

Within recent years, the tandem approach has become the most popular method of
addressing non-uniqueness. To give a more comprehensive overview, a tandem network is
established first with an Inverse Design Neural Network (IDNN), the output of which acts
as the input of a forward modelling network, as shown in Figure 1.

This forward model (sometimes referred to as the simulation neural network (SNN) [16]
to distinguish between the forward design and forward propagation) has been pretrained,
meaning that its parameters are locked throughout the tandem model training. The calcu-
lated network loss is taken as the difference between the desired spectral response (fed into
the inverse model as an input), and the predicted spectral response given by the pretrained
forward model [15]. Any structure produced by the inverse model is directly fed into the
pretrained SNN, which is known to converge. In taking this approach, we can minimise the
non-uniqueness problem, as, regardless of the predicted material structure, the model will
be assessed only on its ability to produce a structure with the desired spectral response [15].
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It is clear from this that the SNN model is an integral part of the tandem network, as
inaccuracies here will prevent the inverse model from producing valid results [11].

Figure 1. A simplified tandem network showing the pretrained SNN network as connected to the
inverse network. The hidden layers are represented by the grey nodes, where, in practice, there
would be multiple layers.

The aim of this study is to accurately produce on-demand reflector designs using a
Deep Learning approach to analyse a tightly constrained thin-film structure. A tandem
network approach is adopted to address the non-uniqueness problem, and to achieve an
accurate and versatile model using a reduced dataset.

2. Materials and Methods

The reflector design has been simplified into a six-layer structure composed of alter-
nating layers of SiO2 and Si3N4, with each layer ranging from 10 to 60 nm. An example of
this is shown in Figure 2.

Figure 2. A 6-layer thin-film structure of alternating layers of SiO2 and Si3N4, all of some depth di.
The transmission and reflectance media surrounding the structure are both half-infinite free space.

These are a traditional choice of dielectrics, and for good reason. SiO2 is a low-
refractive-index material (n in the range of 1.45–1.47 within the visible spectrum), and
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is usually used alongside a high-index material. In this case, this is Si3N4, which has a
corresponding refractive index in the range of 1.99–2.08 [18]. Together, they are able to
produce highly reflective surfaces when in the right combination. Furthermore, several
methods have been developed for the stable production of both SiO2 and Si3N4 films,
making them a practical choice [19].

The following methodology analyses a range of six-layer thin-film structures, bounded
on each side by free space and subject to normal incident light waves.

2.1. Data Generation

The desire for relatively small-scale data generation requires careful attention to the
choice of samples, to ensure enough diversity to train a useful model and simultaneously
encapsulating enough similar data that accurate input–output mapping can occur. The
examination of possible material depths within the chosen range yielded 46,656 samples,
where material depths were constrained to multiples of 10 nm. The intention was to
split these data in half, where alternating samples were taken, so that both the SNN and
IDNN could be trained on similar yet unique data. Following this, information regarding
refractive indices (n) and extinction coefficients (k) was compiled from an online refractive
index database [18] for the two materials. Data were taken for wavelengths between 380
and 780 nm, over which range both materials had a negligible k value. The raw data were
then processed through a simple program wavelengths.m (see data availability for information
on accessing code), which linearly extrapolated between the data points to produce uniformly
spaced refractive index values for each material.

Finally, these values were input to a program based on the works by Rao [20], tmm-
Comp.m (see data availability for information on accessing code), along with a file containing
the structural combinations, and the TMM used to evaluate each case. The output of this
program was the reflectance spectrum of each structure within the visible light range.

2.2. Feature Encoding

The outputs from the TMM code were taken as the spectral data (with each feature of
length 81), whereas the structural data were the same as those used in the TMM process.
The resulting features were of the form [d1,d2, . . ., d6], where each di refers to the depth at
layer i. To make bounding the depth predictions easier later on, all structural values were
scaled to between 0 and 1.

Depending on the network in question, the features can be read as either inputs
or desired outputs. To save confusion, from herein, they will be referred to as either
the structural properties or reflectance spectra, where these can be both predicted or
target values.

2.3. Simulation Neural Network

A fully connected neural network (FCNN) with four hidden layers was implemented,
where network inputs were processed through a batch normalisation layer to improve
convergence, and eliminate the need for further standardisation [21]. The input and output
layers hold 6 and 81 neurons, which represent the 6 layer thicknesses and the discretised
reflectance spectra, respectively. The mean squared error (MSE) loss function was chosen
to suit the regression task, and the Adam optimiser was chosen for combined convergence
speed and quality [22]. Finally, a learning rate of 0.001 was used. All layers initially used
the ReLU activation function, except for the final layer, which used a sigmoid function to
bound the predictions to between 0 and 1.

Further refinements looked at adding model complexity through altering layer sizes
and adding dropout. Table 2 summarises some of the key metrics produced by different
layer architectures. It was found that optimal performance was achieved by increasing only
the final layer to 1000 neurons, but that additional neurons saw no significant improvements.
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Table 2. A sample of trialled SNN model architectures and their associated accuracy metrics.

Hidden Layer Sizes Dropout Mean Absolute Error

500, 500, 500, 500 None 0.0047
500, 500, 500, 1000 None 0.0039
500, 500, 1000, 1000 None 0.0039
500, 500, 500, 1000 2%, 2%, 1%, 0 0.0041
500, 500, 500, 1000 2%, 1%, 1%, 0 0.0044
500, 500, 500, 1000 5%, 2%, 1%, 0 0.0040
500, 500, 500, 1000 2%, 1%, 0, 0 0.0037

Following these trials, a structure of 6-500-500-500-1000-81 neurons was chosen, with
2% and 1% dropout in hidden layers 1 and 2, respectively, as this presented the best
trade-off between predictive accuracy and overfitting.

Dropout was not added to the later layers, as, this late in the network, there is less
opportunity for the model to correct the potential errors that it could introduce.

To help optimise the convergence, the model was updated to take an adaptive learning
rate. This makes use of the accuracy of a small learning rate where needed, whilst reducing
the chance of getting trapped in local minima at an early stage [21]. It works by reducing
the learning rate if the validation loss plateaus for more than a specified number of epochs
(known as the patience) [22]. After some experimentation, this was chosen as 6, and the
learning rate decreased logarithmically each time it updated until reaching 1× 10−6, below
which the network training became unfavourably slow.

Lastly, to try and reduce the final training errors, the ReLU activation functions were
swapped for leaky ReLU functions. The difference between these is that the leaky variety
has a user-defined non-zero gradient for negative values. This helps to solve the ‘dying
neuron’ problem, as, now, if certain weights enter the negative region, their training will not
completely stop [23]. The hyperparameter α specifies how much the function ‘leaks’—in
other words, the gradient of the function for negative values of x. Here, α has been chosen
as 0.1.

A summary of the current network architecture is included in Table 3.

Table 3. Summary of final SNN model architecture.

Layer Details Number of Parameters

Input shape Output shape = 6 0
Dense layer Output shape = 500 3500

Dropout layer 2% dropout 0
Dense layer Output shape = 500 250,500

Dropout layer 1% dropout 0
Dense layer Output shape = 500 250,500
Dense layer Output shape = 1000 501,000
Dense layer Output shape = 81 81,081

The model was trained on the first half of the dataset mentioned in Section 2.1, where
the data were first shuffled and then split into training, validation, and test data at roughly
a 6:1:0.8 split.

Following this, the model was saved so that it could be imported into a new file later,
with its parameters already determined.

2.4. Tandem Neural Network

To form the tandem network, first, an IDNN model was created in much the same way
as for the SNN. The main differences were that the layers tapered from largest to smallest,
to correspond with the larger spectral inputs and smaller material outputs, and the number
of hidden layers was increased from 4 to 6 to deal with the slightly more complex problem.
For the same reason, the first three layers hold 1000 neurons each, and the remaining three
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have 500. This required the dropout values to be tweaked accordingly to be 2% and 1%
in hidden layers 3 and 4, respectively. Finally, the output layer used a sigmoid activation
function to bound the material predictions to a form recognisable by the SNN.

After freezing the parameters to prevent further training, the tandem model was
formed by cascading the SNN and IDNN, and taking the MSE between the IDNN input
and the SNN output as the model loss function. The final IDNN model architecture can be
seen in Table 4.

Table 4. Summary of final IDNN model architecture.

Layer Details Number of Parameters

Input shape Output shape = 81 0
Dense layer Output shape = 1000 82,000
Dense layer Output shape = 1000 1,001,000
Dense layer Output shape = 1000 1,001,000

Dropout layer 2% dropout 0
Dense layer Output shape = 500 500,500

Dropout layer 1% dropout 0
Dense layer Output shape = 500 250,500
Dense layer Output shape = 500 250,500
Dense layer Output shape = 6 3006

3. Results and Discussion
3.1. SNN Model Performance

The mean absolute errors for the network discussed in Section 2.3 are shown in
Figure 3, both with and without the addition of dropout. Without dropout, the training and
validation curves converge at a very similar level, with the validation dataset slightly un-
derperforming compared to the training dataset, suggesting a small amount of overfitting.
With the application of dropout, the curves switch places, and the training curve converges
at a noticeably higher level. This is unlikely due to the selection of validation samples
as this is a direct result of applying dropout, and so is likely caused due to the effective
‘shrinking’ of the network layers that occurs when training the model. When testing on
validation and test data, all neurons are used again, which can result in a marginal increase
in performance.

Figure 3. Learning curves showing the mean absolute error (MAE) of the SNN network without
(a) and with (b) the use of dropout. Curves representing both the training and validation datasets are
shown, and the final MAE of the validation curves highlighted.

The training begins to slow after around 12 epochs, where one can see that the curves
begin to smooth out as a result of the adaptive learning rate. With dropout, the mean
absolute error for the validation dataset is 0.0037, and it is 0.0036 for the test dataset.
Considering that the range of possible reflectance values is 1, this is a strong result; however,
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to further analyse the model performance, predicted spectra were examined. Predictions
were made for each sample in the test dataset, and by comparing these to the targets, the
resulting percentage accuracy was calculated using (1).

Accuracy =
1
N

N

∑
i=1

|R′i − Ri|
Ravg

× 100 (1)

where N is the number of test vectors, R′i is the predicted spectrum, Ri the ground truth, and
Ravg is the average value of each spectrum. The 2328 test inputs yielded an average accuracy
of 97.2%, with a possible accuracy of up to 99.4%. Figure 4 shows two sample spectra, one
representing a 99% accurate graph, and one showing one of the lower-performing graphs.
One can see that although the accuracy is only 77% for Figure 4a, the absolute errors are
small. This is due to the way in which the accuracy was defined in (1). By dividing by the
average reflectance value for each case, spectra with consistently low levels of reflectance
will yield a higher percentage error for the same absolute errors. Nevertheless, this was
preferable to dividing by the actual value, which could produce huge errors for expected
values close to zero.

Figure 4. The predicted (blue) and anticipated (red) reflectance spectra produced by the SNN for two
different structures, demonstrating its ability to predict a variety of spectral shapes. The percentage
accuracies for (a,b) are 77% and 99%, with layer depths [21 10 50 30 60 60] and [40 50 30 10 60 50]
nm, respectively.

3.2. Tandem Model Performance

The IDNN network was analysed by first looking at the tandem network performance,
and then validating the predictions made by the IDNN.

Similarly to the SNN, the tandem network training curves were evaluated for a range
of model architectures. It was seen that even without the application of dropout, the
validation curve converged to a lower error. This is most likely due to the presence of
dropout in the SNN model; however, it was seen that low levels of dropout in the IDNN
did still increase the performance further by helping model generalisation.

The final mean absolute errors were 0.00770 and 0.00745 for the validation and test
datasets, respectively. As expected, this is marginally higher than for the SNN, as this
is both a more complex system and must incorporate the errors of both the IDNN and
the SNN.

The average accuracy was found to be 94.0%, with a maximum accuracy of 99.8%
and a minimum accuracy of 89.52%, which appears to outperform the network presented
in [16]. Breaking it down further, it was found that 68.4% of test samples were predicted
with greater than 95% accuracy, and 79.5% above 90%. Figure 5 shows these accuracies
presented visually.
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Figure 5. A selection of graphs showing example plots corresponding to various levels of accuracy.
These are 90%, 95%, 94%, and finally 97%, where the predicted layer depths were [83.3 56.4 89.6 46.0
66.7 3.2], [27.1 25.6 58.8 49.0 65.4 26.9], [27.4 43.8 31.2 42.5 52.9 14.8] and [69.5 63.5 61.5 38.9 17.9 21.9] nm
for (a–d), respectively.

Figure 5a represents an accuracy of 90%, and shows some deviation from the target
curve. However, much of the error here could be reduced though smoothing the predicted
curve, as the overall shape is relatively close. Figure 5b represents a 95% accurate graph,
and one can see that the predicted values match the target well, both in terms of the
reflectance value and the location of the peaks and troughs along the x-axis. The latter is of
more concern, as the overall shape of the spectrum has a greater effect on the perceived
colour than relatively small changes in reflectance intensity. Moving to Figure 5c shows
a 94% accurate plot set to represent the average accuracy. There is a small divergence
between the curves at around 380–400 nm. Lastly, Figure 5d was chosen to demonstrate the
model behaviour with higher reflectance value targets. This was achieved here with 97%
accuracy, suggesting that the model was exposed to several instances of high reflectance.

To fully evaluate the IDNN, the material parameters were extracted for a number
of test samples and checked for validity. The predictions were already bounded by the
sigmoid function, meaning that negative values would not occur, but unfeasibly small
or large depth predictions were also checked for. Additionally, several predictions were
fed back into the TMM code to check that the analytical and numerical methods were in
agreement. A few such examples are given in Figure 6, and have the material depth values
of [35.6 52.7 36.9 22.1 46.1 72.0] and [47.1 25.3 23.8 22.6 51.8 68.4] nm, respectively. Here,
the dashed curves represent the Matlab simulated responses, and the solid curves are the
tandem model predictions.
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Figure 6. Model output (solid lines) compared with TMM calculations using the model predic-
tions (dashed lines) for two sample structures with material depths [35.6 52.7 36.9 22.1 46.1 72.0]
and [47.1 25.3 23.8 22.6 51.8 68.4] nm, respectively. The strong similarities indicate good agreement
between the analytical and numerical methods.

Overall, the predictions and calculations match well, which, alongside the high spectral
prediction accuracy, means that the model will perform well when designing structures
within the scope of the materials present. On top of this, the model is able to make
predictions in between 100th and 10th of a second, which is vastly faster than any other
inverse design method.

However, examining a number of spectra from the training and test datasets, it is
apparent that there are many similarly shaped curves, often with shallow peaks and
troughs. This brings into question the ability of the model to predict more diverse spectra.
To simulate the model being used, a number of arbitrary curves were used as input spectra.
These were Gaussian-shaped curves with a range of peak-heights, positions, and widths.

The results of this were mixed, with some targets being met well, and others perform-
ing poorly. This is unsurprising, as the model is only able to predict within the constraints
of the patterns observed in the training data, which in turn are constrained by material
and structural properties. This meant that relatively shallow spectra, such as that shown
in Figure 7, were predicted well with accuracies upwards of 85/90%, but that spectra
including high-intensity narrow peaks had significantly lower accuracies.

This was verified by making predictions on a number of shallow spectra only, where
it was seen that the model was able to predict all targets to above 74% accuracy, with
many above 94%, where the larger errors were a result of the low reflectance values as
opposed to greater absolute errors. This strongly suggests that the observed limitations
are due to the choice of material structure, rather than inaccuracies within the model.
Exploring more complex material arrangements would likely increase the range of spectra
that could be produced without needing to alter the core model architecture. There is also
the potential to adjust the two materials used, where differences in refractive index could
create different responses.
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Figure 7. An example of model performance when asked to design a structure to produce an arbitrary
response within the material capabilities. The predicted (blue) curve shows good similarity to the
target (red) curve, with the peaks and troughs in good agreement and a percentage accuracy of 88%.
The predicted material depths were [61.4 49.4 65.3 46.5 52.6 12.1] nm.

The case should also be considered where a DBR spectrum is desired, for which there
is no possible solution given photon absorption within the chosen materials. Training
data are produced using the TMM, which takes n and k values into consideration, and
therefore should account for the effect of absorption where applicable. When designing
a DBR, training data should be provided that cover a range of wavelengths, including
those which would not produce viable DBRs. This will prevent the model from inferring
responses based on only a few training cases. It follows that if the user requests a spectrum
that is outside the capabilities of the material in use, then the model will fail to produce a
reflector design which performs satisfactorily. Whether a spectrum is satisfactory or not is
up to the user, where this can be assessed by comparing the tandem model output to the
target spectrum. Where a spectrum is not feasible, it can be assumed that an alternative
material pair is needed.

3.3. Colour Generation by Multilayers

The model was further assessed through exploring the range of colours produced by
each structure. From here, only the training data for the desired configuration need be
generated. This allows for far sparser data sampling, and is perhaps a more intuitive way
of demonstrating the versatility of each structure. Additionally, only by making very small
changes to the model structure is it likely that (other than a small adjustment to the input
vector size) the DL model architecture would not need to be altered.

Using an adapted code by Scardina [24], the reflectance spectra data were converted
into CIE chromaticity values of L*, a*, and b*, which were then converted to the tristimulus
values (XYZ) using Matlab. Finally, using the relations in Equation (3.3), the xy values
were found, allowing the 2D chromaticity plot seen in Figure 8 to be constructed. The
black data points represent a sample of the model predictions made for the test data, and
therefore are an accurate indicator of the current model’s true capabilities.



Appl. Sci. 2022, 12, 4877 11 of 13

x =
X

X + Y + Z
, y =

Y
X + Y + Z

(2)

Figure 8. A 2D chromaticity plot showing the RGB colour space (triangle plot). Black crosses
represent the unique colours produced by each of the model predictions made using the test data for
the SiO2-Si3N4 system. White crosses show the breadth of a 10-layer system, and blue crosses show
the results of the same 6-layer system using MgO-ZrO2 as the material pair.

The triangular plot represents the scope of the RGB colour space. It can be seen from
this that the model was able to accurately produce colours across the yellow/orange and
pink/purple ranges, as well as pale greens and turquoises. However, it struggles with
vibrant greens and reds, and deep blue–purples, which lie at the corners of the RGB space.
This is likely due to these colours being derived from narrow reflectance peaks, which are
not producible using the tightly constrained model.

Further work could focus on assessing small structural changes which could be made
in order to improve the range of the model predictions. The white and blue data points
show the additional breadth of responses which can be produced by a 10-layer SiO2-Si3N4
structure and a six-layer MgO-ZrO2 structure, respectively. It is apparent that the 10-layer
structure extends further into the purple–blue and red colour spaces, but also covers the
regions achieved with the original structure. Additionally, the MgO-ZrO2 data are able to
achieve the intense greens that were otherwise lacking, and extends even past the RGB
colour space into the blue–turquoise regions. Green colour is a huge advantage of this
multilayer system over conventional metamaterial-based structures [4]. The simplicity of
this model and the smaller quantity of data needed to train it as compared to previous
studies [15,16] present the opportunity for the same model architecture to be used alongside
a number of training datasets, each of which may be tuned to reflect the materials/structural
constraints imposed by the user.
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4. Conclusions

In this study, we used Deep Learning to design a network that can accurately produce
a Distributed Bragg Reflector (DBR) on demand. We successfully developed a Simulation
Neural Network (SNN) with a promising mean absolute error of 0.0036 and a percentage
accuracy of 97% for the test dataset. This was combined with an Inverse Design Neural
Network (IDNN) to form a tandem network, which was able to produce predictions with a
test mean absolute error of 0.00791, and an average accuracy of 94% for a range of inputs.
This proves the capability of Deep Learning in the inverse design of multilayer systems, and
could be applied to the photonic device industry while keeping the design and processing
costs low. To demonstrate the model’s versatility, reflectance predictions for the test dataset
were then converted into CIE colour space values. These were plotted on a chromaticity
diagram to demonstrate the possible colours which were within the scope of the design
constraints. It was shown that a broad colour variation was achieved, and that marginal
changes to the material structure allow for the generation of vivid colours at the corners of
the RGB colour space.
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