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Abstract. The approximate graph coloring problem, whose complexity is unresolved in most
cases, concerns finding a c-coloring of a graph that is promised to be k-colorable, where c\geq k. This
problem naturally generalizes to promise graph homomorphism problems and further to promise con-
straint satisfaction problems. The complexity of these problems has recently been studied through
an algebraic approach. In this paper, we introduce two new techniques to analyze the complexity of
promise CSPs: one is based on topology and the other on adjunction. We apply these techniques, to-
gether with the previously introduced algebraic approach, to obtain new unconditional NP-hardness
results for a significant class of approximate graph coloring and promise graph homomorphism prob-
lems.
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1. Introduction. In this paper we investigate the complexity of finding an ap-
proximate solution to fully satisfiable instances of constraint satisfaction problems.
For example, for the classical problem of k-coloring a graph, one natural approxima-
tion version is the approximate graph coloring problem: the goal is to find a c-coloring
of a given k-colorable graph, where c\geq k\geq 3. There is a huge gap in our understand-
ing of the complexity of this problem. For k = 3, the best known efficient algorithm
uses roughly c=O(n0.199) colors where n is the number of vertices of the graph [48].
It has been long conjectured the problem is \sansN \sansP -hard for any fixed constants c\geq k\geq 3,
but, say for k = 3, the state-of-the-art has only recently been improved from c = 4
[38, 49] to c= 5 [5, 23].

Graph coloring problems naturally generalize to graph homomorphism prob-
lems and further to constraint satisfaction problems (CSPs). In a graph homo-
morphism problem, one is given two graphs and needs to decide whether there is a
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 39

homomorphism (an edge-preserving map) from the first graph to the second [45]. The
CSP is a generalization that uses arbitrary relational structures in place of graphs.
One particularly important case that attracted much attention is when the second
graph/structure is fixed; this is the so-called nonuniform CSP [7, 30]. This is also
the only case we consider in this article. For graph homomorphisms, this is known
as the H-coloring problem: decide whether a given graph has a homomorphism to
a fixed graph H [45]. The \sansP versus \sansN \sansP -complete dichotomy of H-coloring given in
[44] was one of the base cases that supported the Feder--Vardi dichotomy conjecture
for CSPs [30]. The study of the complexity of the CSP and the complete resolution
of the CSP dichotomy conjecture [22, 75, 76] was greatly influenced by the algebraic
approach [21] (see survey [7]). This approach has also made important contributions
to the study of approximability of CSPs (e.g., [6]).

Brakensiek and Guruswami [13, 16] suggested that perhaps progress on approxi-
mate graph coloring and similar open problems can be made by looking at a broader
picture, by extending it to promise graph homomorphism and further to the prom-
ise CSP (PCSP). Promise graph homomorphism is an approximation version of the
graph homomorphism problem in the following sense: in PCSP(H,G), we fix (not one
but) two graphs H and G such that there is a homomorphism from H to G (we write
H\rightarrow G to denote this). The goal is then to find a G-coloring for a given graph when
an H-coloring is guaranteed to exist (but not given as part of input). The promise
is that the input graph is always H-colorable and hence G-colorable as well. The
PCSP is a natural generalization of this to arbitrary relational structures, or in other
words, a generalization of the decision CSP to the promise setting. Brakensiek and
Guruswami proposed a conjecture that PCSP(H,G) is NP-hard for all nonbipartite
loopless graphs H and G such that H \rightarrow G. This would generalize the approxi-
mate graph coloring conjecture and greatly extend the Hell--Ne\v set\v ril dichotomy for
H-coloring [44].

Given the huge success of the algebraic approach to the CSP, it is natural to
investigate what it can do for PCSPs. This investigation was started by Austrin,
Guruswami, and H\r astad [3], with an application to a promise version of SAT. It
was further developed by Brakensiek, Guruswami and others [13, 14, 15, 16, 18,
19] and applied to a range of problems, including versions of approximate graph
and hypergraph coloring. A recent pair of papers [5, 23] describe a general abstract
algebraic theory for PCSPs, which shows, in particular, how algebraic properties
precisely capture the power of gadget reductions in PCSPs. However, the algebraic
theory of PCSPs is still very young and much remains to be done both in further
developing it and in applying it to specific problems. We note that the aforementioned
\sansN \sansP -hardness of 5-coloring a given 3-colorable graph was proved in [5, 23] by applying
this abstract theory.

The gist of the algebraic theory is that the complexity of PCSP(H,G) depends
only on (certain properties of) polymorphisms, which are multivariable functions that
can be defined as homomorphisms from direct powers Hn into G. However, the
analysis of polymorphisms is in general a highly nontrivial task, and powerful tools
are needed to conduct it. For resolving the CSP dichotomy conjecture, the structural
theory of finite universal algebras provided such a tool. However, it is not clear how
much this theory can be applied to the promise setting. In this paper, we show that
algebraic topology gives a very useful tool to analyze polymorphisms and pinpoint
the complexity of PCSPs. We do this by explaining how general PCSPs are naturally
equipped with a topological structure, called homomorphism complexes, and how
polymorphisms of a given PCSP can be understood through the continuous maps
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40 A. KROKHIN, J. OPR\v SAL, M. WROCHNA, AND S. \v ZIVN\'Y

they induce. Homomorphism complexes (as well as several related constructions)
have been actively studied in topological combinatorics [53, 59], though mainly to give
obstructions to the existence of homomorphisms and mostly for the case of graphs.
However, methods of algebraic topology can also be used to obtain important infor-
mation about polymorphisms: for example, to identify ``influential"" variables. We
demonstrate how this new methodology can be applied to resolve a significant part
of the Brakensiek--Guruswami conjecture.

We also show that the simple notion of adjunction, which is a certain form of
homomorphism duality, provides a powerful tool to reason about reductions between
PCSPs. We observe that adjunctions always give rise to reductions between PC-
SPs. Moreover, we prove that many reductions between PCSPs work because of the
presence of adjunction. This includes, in particular, all gadget reductions (that are
captured by the algebraic approach) and all reductions satisfying very mild technical
conditions. We demonstrate how adjunction can be applied by significantly improv-
ing the state-of-the-art in approximate graph coloring---via reductions that provably
cannot be explained via the algebraic approach from [5].

Related work. The notion of PCSP was coined in [3], though one of the main
examples of problems of this form, approximate graph coloring, has been around
for a long time [35]. The complexity landscape of PCSPs (beyond CSPs) is largely
unknown, even for the Boolean case (see [16, 31]) or for graph coloring and homo-
morphisms.

Most notable examples of PCSPs studied before are related to graph and hyper-
graph coloring. We already mentioned some results concerning coloring 3-colorable
graphs with a constant number of colors. Without additional complexity-theoretic
assumptions, the strongest known \sansN \sansP -hardness results for coloring k-colorable graphs
are as follows. For any k \geq 3, it is \sansN \sansP -hard to color a given k-colorable graph with
2k - 1 colors [5, 23]. For large enough k, it is \sansN \sansP -hard to color a given k-colorable graph

with 2\Omega (k1/3) colors [46]. The only earlier result about promise graph homomorphisms
(with H \not =G) that involves more than approximate graph coloring is the \sansN \sansP -hardness
of 3-coloring for graphs that admit a homomorphism to C5, the five-element cycle [5].

Under stronger assumptions (Khot's 2-to-1 conjecture [51] for k\geq 4 and its non-
standard variant for k= 3), Dinur, Mossel, and Regev showed that finding a c-coloring
of a k-colorable graph is NP-hard for all constants c \geq k \geq 3 [27]. It was shown in
[40] that the above result for k = 2d still holds if one assumes the d-to-1 conjecture
of Khot [51] for any fixed d\geq 2 instead of the 2-to-1 conjecture (which is the strong-
est in the family of d-to-1 conjectures). A variant of Khot's 2-to-1 conjecture with
imperfect completeness has recently been proved [26, 52], which implies hardness for
approximate coloring variants for the weaker promise that most but not all of the
graph is guaranteed to be k-colorable.

A coloring of a hypergraph is an assignment of colors to its vertices that leaves no
edge monochromatic. It is known that, for any constants c\geq k \geq 2, it is \sansN \sansP -hard to
find a c-coloring of a given 3-uniform k-colorable hypergraph [28]. Further variants of
approximate hypergraph coloring, e.g., relating to strong or rainbow colorings, were
studied in [2, 13, 17, 39, 41], but most complexity classifications related to them are
still open in full generality.

Some results are also known for colorings with a superconstant number of colors.
For graphs, conditional hardness can be found in [29], and for hypergraphs, \sansN \sansP -
hardness results were obtained in [1, 9].

An accessible exposition of the algebraic approach to the CSP can be found
in [7], where many ideas and results leading to (but not including) the resolution
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 41

[22, 75, 76] of the Feder--Vardi conjecture are presented. The book [55] contains
surveys concerning many aspects of the complexity and approximability of CSPs.

The first link between the algebraic approach and PCSPs was found by Austrin,
Guruswami, and H\r astad [3], where they studied a promise version of (2k + 1)-SAT
called (2+ \epsilon )-SAT. They use a notion of polymorphism (which is the central concept
in the algebraic theory of CSP) suitable for PCSPs. In [16], it was shown that the
complexity of a PCSP is fully determined by its polymorphisms---in the sense that
two PCSPs with the same set of polymorphisms have the same complexity. They also
use polymorphisms to prove several hardness and tractability results. The algebraic
theory of PCSP was lifted to an abstract level in [5, 23], where it was shown that
abstract properties of polymorphisms determine the complexity of PCSP.

The topological methods that we develop in this paper originate in topological
combinatorics, specifically in Lov\'asz's celebrated proof [57] that gives a tight lower
bound on the chromatic number of Kneser graphs. We refer to [59] for an approach-
able introduction, and to [53] for an in-depth technical reference. The modern view of
this method is to assign a topological space to a graph in such a way that combinato-
rial properties of the graph (e.g., the chromatic number) are influenced by topological
properties of the resulting space (e.g., topological connectivity). An intermediate step
in the construction of the topological space is to assign a certain abstract simplicial
complex to a graph (we introduce these below). In our proof, we use so-called ho-
momorphism complexes that give a simplicial structure on the set of homomorphisms
between two graphs (or other structures). We remark that restricting those complexes
to vertices and edges (so called 1-skeletons) gives graphs of homomorphisms which
have been used in CSP research before (see, e.g., [20, 56]).

We remark that three earlier results on the complexity of approximate hypergraph
coloring [2, 9, 28] were based on results from topological combinatorics using the
Borsuk--Ulam theorem or similar [57, 59]. Their use of topology seems different from
ours, and it remains to be seen whether they are all occurrences of a common pattern.

Topological methods and adjunction (including some specific cases that we use in
this paper) have also been actively used in research around Hedetniemi's conjecture
about the chromatic number of graph products [34, 61, 68, 69, 70, 71] (recently
disproved by Shitov [67]). A few ideas in this paper are inspired by this line of
research. A survey on adjunction and graph homomorphisms can be found in [32]
(see also [33]), which also discusses several specific constructions that we use in this
paper.

Our contributions. We first describe our methodological contributions related
to topology and adjunction and then specific applications to promise graph homo-
morphism and approximate graph coloring. For simplicity, we will present the general
theory for the case of graphs, which is what our applications are about; nevertheless,
it generalizes immediately to arbitrary relational structures. We do not assume that
the reader is familiar with topological combinatorics or algebraic topology and provide
the necessary definitions and explanations here and in later sections.

It will be clear to the reader familiar with category theory that much of what we
do in this paper can be naturally expressed in category-theoretic language. However,
we avoid using this language, for the benefit of the readers less familiar with category
theory.

Topological analysis of polymorphisms. As we mentioned before, the com-
plexity of a problem PCSP(H,G) is completely determined by certain abstract prop-
erties of polymorphisms from H to G. Our first contribution is the introduction of
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42 A. KROKHIN, J. OPR\v SAL, M. WROCHNA, AND S. \v ZIVN\'Y

topology as a tool to analyze polymorphisms. The basis for such analysis is the fact
that the set of all homomorphisms from a graph H to another graph G can be made
into an abstract simplicial complex denoted by \sansH \sanso \sansm (H,G).

An abstract simplicial complex \sansK is a downwards closed family of nonempty sub-
sets of a vertex set V (\sansK )---subsets in the family are called faces (or simplices), their
elements are vertices. A simplical complex describes a topological space: the geo-
metric realization of \sansK , denoted | \sansK | , is the subspace of \BbbR V (\sansK ) obtained by identifying
vertices with affinely independent points and, for each face, adding to the space the
convex hull of the vertices in the face. Thus a pair \{ u, v\} \in \sansK becomes an edge, a triple
(i.e., 3-element face) becomes a filled triangle, a quadruple becomes a filled tetrahe-
dron, and so on. The resulting space can be analyzed by using algebraic topology and
the algebraic structures (groups, rings) that it associates with a topological space.

The vertex set of the complex \sansH \sanso \sansm (H,G) is the set of all homomorphisms from H
to G. A nonempty set \{ h1, . . . , h\ell \} of such homomorphisms is a face if every function
h : V (H) \rightarrow V (G) satisfying h(v) \in \{ h1(v), . . . , h\ell (v)\} for all v is a homomorphism
H\rightarrow G. For example, if two homomorphisms h1, h2 differ at only one vertex v \in V (H),
then they are connected by a line in | \sansH \sanso \sansm (H,G)| . Note the definition generalizes in
a straightforward way from graphs to arbitrary relational structures.

There are several ways to use this notion for analysis of polymorphisms. One is
to directly use the topological structure of | \sansH \sanso \sansm (Hn,G)| ---for example, by looking
at various connectivity properties in this space and asking when polymorphisms (as
points in this space) belong to the same component. Another one, and this is what
we use in the paper, goes as follows. Any (say, n-ary) polymorphism f from H to G,
i.e., a homomorphism from Hn to G, induces in a natural way a continuous map \~f
from the space | \sansH \sanso \sansm (K2,H

n)| to | \sansH \sanso \sansm (K2,G)| , where K2 is the two-element clique.
One can then obtain information about f from algebraic invariants of \~f .

As an important example, suppose that H,G are (possibly different) odd cycles.
It is well known and not hard to check that | \sansH \sanso \sansm (K2,H)| is topologically equivalent
to the circle \scrS 1 (we do this later in Example 3.4) and | \sansH \sanso \sansm (K2,H

n)| to the n-torus
\scrT n = \scrS 1 \times \cdot \cdot \cdot \times \scrS 1. A homomorphism f from H to G induces a continuous map \~f
from \scrS 1 to \scrS 1, and the main algebraic invariant of such a map is its degree, or winding
number, which is an integer that intuitively measures how many times \~f wraps the
domain circle around the range circle (and in which direction). The degree of \~f will
be bounded because it arises from a discrete map f . Similarly, when analyzing a
homomorphism f from Hn to G, we study \~f , which is now a continuous map from
\scrT n to \scrS 1. Each of the n variables of \~f corresponds to a circle in \scrT n and thus to
a degree of \~f restricted to that circle. We show that the number of variables whose
degrees is nonzero is bounded, again because \~f arises from a discrete function f . In
this way, we obtain that each polymorphism f has a bounded number of coordinates
(independent of n) that are ``important"", or influential, and we can then use this
information, together with the previously developed algebraic theory [5], to show
that PCSP(H,G) is \sansN \sansP -hard.

Adjunction. We use symbols \Lambda ,\Gamma for functions from the class of all (finite)
graphs to itself. It will be convenient to write \Lambda H instead of \Lambda (H) for the image of H
under \Lambda . The definitions and general properties again extend to all relational struc-
tures. Adjunction is a certain duality property between functions, best introduced
with a concrete example.

Example 1.1. For a graph G and an odd integer k one can consider the following
functions: \Lambda kG is defined to be the graph obtained by subdividing each edge of G

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 43

into a path of k edges, and \Gamma kG is the graph obtained by taking the kth power of the
adjacency matrix (with zeroes on the diagonal; equivalently, the vertex set remains
unchanged and two vertices are adjacent if and only if there is a walk between them
of length exactly k in G). For example, \Gamma 3G has loops if G has triangles.

Two functions \Lambda ,\Gamma are called adjoint if

\Lambda H\rightarrow G if and only if H\rightarrow \Gamma G

for all graphs G,H. In this case \Lambda is also called the left adjoint to \Gamma , and \Gamma is the
right adjoint to \Lambda . For example, it is well known and easy to check that \Lambda k,\Gamma k are
adjoint, for any fixed odd k [32]. Adjoint functions are always monotone with respect
to the homomorphism preorder, i.e., H\rightarrow G implies both \Lambda H\rightarrow \Lambda G and \Gamma H\rightarrow \Gamma G
(see Lemma 4.5).

Adjoint functions give us a way to reduce one PCSP to another. Indeed, consider
any function \Lambda . We can always attempt to use it as a reduction between some PCSPs:
if an instance graph I is guaranteed to be H-colorable, then \Lambda I is guaranteed to be
\Lambda H-colorable if \Lambda is monotone. On the other hand if we find \Lambda I to be G-colorable,
this may imply that I is X-colorable for some graph X. In such a case \Lambda would be
a reduction from PCSP(H,X) to PCSP(\Lambda H,G). What is the best possible X? It is
a graph X such that for any instance I, \Lambda I\rightarrow G holds if and only if I\rightarrow X. If such
an X exists, it is essentially unique (since we just defined what homomorphisms X
admits). The function that assigns to a graph G this best possible X is exactly the
right adjoint to \Lambda . In this way, adjoints help us identify the best possible reduction
a function gives, even though the proof that the reduction works might not need to
mention the right adjoint.

Applications. Our applications of the above methodologies aim towards resolv-
ing the Brakensiek--Guruswami conjecture mentioned earlier:

Conjecture 1.2 (Brakensiek and Guruswami [16]). Let H and G be any non-
bipartite loopless graphs with H\rightarrow G. Then PCSP(H,G) is \sansN \sansP -hard.

We remark that the Hell--Ne\v set\v ril theorem [44] confirms Conjecture 1.2 for the
case H = G. We also remark that Conjecture 1.2 covers all graphs: as discussed in
section 2, if either H or G is bipartite or contains a loop, then PCSP(H,G) can be
easily solved in polynomial time.

It is not hard to see that the conjecture is equivalent to the statement that
PCSP(Ck,Kc) is \sansN \sansP -hard for all k\geq 3 odd and c\geq 3, where Ck is a cycle on k vertices
and Kc is a clique on c vertices. This is because we have a chain of homomorphisms

\cdot \cdot \cdot \rightarrow Ck\rightarrow \cdot \cdot \cdot \rightarrow C5\rightarrow C3 =K3\rightarrow K4\rightarrow \cdot \cdot \cdot \rightarrow Kc\rightarrow \cdot \cdot \cdot (1.1)

and, for each (H,G) with a homomorphism H\rightarrow G, the problem PCSP(H,G) ad-
mits a trivial reduction from PCSP(Ck,Kc), where the promise is strengthened by
requiring the input graph to be Ck-colorable, for an odd cycle Ck in H, and the goal
is weakened to that of finding a Kc-coloring, where c is the chromatic number of G
(so we have Ck\rightarrow H and G\rightarrow Kc).

The chain (1.1) has a natural middle point K3. The right half corresponds to the
classical approximate graph coloring: find a c-coloring of a 3-colorable graph. Our
applications make progress on the right half and show hardness for all of the left half.

For the left half, we use the topological analysis of polymorphisms, as described
above, to confirm Conjecture 1.2 for G=K3.
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Fig. 1.1. Examples of circular cliques.

Theorem 1.3. PCSP(H,K3) is \sansN \sansP -hard for every nonbipartite 3-colorable H.

Equivalently, PCSP(Ck,K3) is \sansN \sansP -hard for all odd k \geq 3. We in fact prove a
more general result which covers other graphs G with similar topological properties
to K3---namely that | \sansH \sanso \sansm (K2,G)| maps to the circle \scrS 1 via a \BbbZ 2-map (see Definition
3.7).

Theorem 1.4. Let H,G be nonbipartite loopless graphs such that H\rightarrow G and
there is a \BbbZ 2-map from | \sansH \sanso \sansm (K2,G)| to \scrS 1. Then PCSP(H,G) is \sansN \sansP -hard.

We give two specific classes of graphs G satisfying the assumptions of Theorem
1.4: certain circular cliques and all square-free graphs.

For positive integers p, q such that p \geq 2q, the circular clique Kp/q is the graph
that has the same vertex set as the cycle Cp and two vertices in it are connected by
an edge if and only if they are at distance at least q in Cp (see Figure 1.1). It well
known that Kn/1 is isomorphic to Kn, K(2n+1)/n is isomorphic to C2n+1, and that
Kp/q\rightarrow Kp\prime /q\prime if and only if p/q\leq p\prime /q\prime (see, e.g., Theorem 6.3 in [45]), thus circular
cliques refine the homomorphism order (1.1) on odd cycles and cliques described
above. The circular chromatic number ofG, \chi c(G), is defined as inf\{ p/q | G\rightarrow Kp/q\} .
Note that we always have \chi (G) = \lceil \chi c(G)\rceil and also \chi c(G) \leq 2 + 1

n if and only if
G\rightarrow C2n+1.

The fact that circular cliques Kp/q with 2 < p/q < 4 satisfy the topological
condition of Theorem 1.4 is folklore, though we prove it later for completeness. The
theorem in this case can be viewed as \sansN \sansP -hardness of coloring (2+\epsilon )-colorable graphs
with 4 - \epsilon colors:

Corollary 1.5. PCSP(Kp/q,Kp\prime /q\prime ) is \sansN \sansP -hard for all 2< p/q\leq p\prime /q\prime < 4.

A graph is said to be square-free if it does not contain the 4-cycleC4 as a subgraph.
This includes all graphs of girth at least 5 and thus graphs of arbitrarily high chromatic
number. Again, it will be a simple observation that square-free graphs satisfy the
condition of Theorem 1.4. Therefore, we confirm Conjecture 1.2 for square-free graphs
G.

Corollary 1.6. PCSP(H,G) is \sansN \sansP -hard for all nonbipartite loopless graphs
H,G such that H\rightarrow G and G is square-free.

Since the key assumption of Theorem 1.4 is topological, this raises a question of
whether topology is in some sense necessary to settle Conjecture 1.2. Using adjoint-
ness, we argue that it is indeed the case, proving the following (see Theorem 4.32 for
a formal statement).
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 45

Theorem 1.7 (informal). For any graph G, the property that PCSP(H,G) is
\sansN \sansP -hard for all nonbipartite G-colorable graphs H depends only on the topology (and
\BbbZ 2-action) of | \sansH \sanso \sansm (K2,G)| .

Returning to the right half of the chain (1.1) (the classical coloring problem), we
first show that, to prove \sansN \sansP -hardness of c-coloring k-colorable graphs for all constants
c\geq k\geq 3, it is enough to prove it for any fixed k (and all c\geq k).

Theorem 1.8. Suppose there is an integer k such that PCSP(Kk,Kc) is \sansN \sansP -hard
for all c\geq k. Then PCSP(K3,Kc) is \sansN \sansP -hard for all c\geq 3.

Following the reasoning in [40], the above theorem implies \sansN \sansP -hardness of all
problems PCSP(Kk,Kc) with c\geq k\geq 3 if the d-to-1 conjecture of Khot holds for any
fixed d\geq 2. (The paper [40] used an earlier version of Theorem 1.8 with 4 in place of
3.)

Furthermore, we strengthen the best known asymptotic hardness: Huang [46]

showed that PCSP(Kk,Kc) is NP-hard for all sufficiently large k and c = 2\Omega (k1/3).
We improve this in two ways, using Huang's result as a black box. First, we improve
the asymptotics from subexponential c = 2\Omega (k1/3) to single-exponential c =

\bigl( 
k

\lfloor k/2\rfloor 
\bigr) 
\in 

\Theta (2k/
\surd 
k). Second, we show the claim holds for k starting as low as 4.

Theorem 1.9. For all k\geq 4 and c=
\bigl( 

k
\lfloor k/2\rfloor 

\bigr) 
 - 1, PCSP(Kk,Kc) is \sansN \sansP -hard.

In comparison, the previous best result relevant for all integers k was obtained in
[5] where \sansN \sansP -hardness of PCSP(Kk,K2k - 1) is proved for all k \geq 3. For k = 3,4 we
obtain no new results and for k= 5 the two bounds coincide:

\bigl( 
k

\lfloor k/2\rfloor 
\bigr) 
 - 1 = 9= 2k - 1.

However, already for k= 6 we improve the bound from 2k - 1 = 11 to
\bigl( 

k
\lfloor k/2\rfloor 

\bigr) 
 - 1 = 19,

and, for larger k, the improvement is even more dramatic.

The organization of the paper. Section 2 briefly describes the algebraic frame-
work of [5]: minions (sets of polymorphisms of a PCSP), minion homomorphism
(which provide log-space reductions between corresponding problems), and a condi-
tion on minions that guarantees \sansN \sansP -hardness. Section 3 details the topological method
and its application, Theorem 1.4. The bulk of its content is devoted to expounding
standard definitions with examples and then proving these definitions behave well
when identifying variables of polymorphisms. Section 4 introduces adjunction in a
wider context, in particular, relating it to gadget reductions and minion homomor-
phisms. Adjoint functions that give reductions for approximate graph coloring are
presented in section 4.3. Finally section 4.4 uses another adjoint function to prove
Theorem 1.7: that whether a graph G satisfies the Brakensiek--Guruswami conjecture
for all H depends only on the topology of G.

2. Preliminaries.

2.1. Promise graph homomorphism problems. The approximate graph col-
oring problem and promise graph homomorphism problem are special cases of the
PCSP, and we use the theory of PCSPs. However, we will not need the general def-
initions, so we define everything only for digraphs. For general definitions, see, e.g.,
[5].

A digraph H is a pair H = (V (H),E(H)), where V (H) is a set of vertices and
E(H) \subseteq \{ (u, v) | u, v \in V (H)\} is a set of (directed) edges. Unless stated otherwise,
our digraphs are finite and can have loops. We view undirected graphs as digraphs
where each (nonloop) edge is present in both directions.
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Definition 2.1. A homomorphism from a digraph H= (V (H),E(H)) to another
digraph G= (V (G),E(G)) is a map h : V (H)\rightarrow V (G) such that (h(u), h(v)) \in E(G)
for every (u, v) \in E(H). In this case we write h : H \rightarrow G, and simply H \rightarrow G to
indicate that a homomorphism exists.

We now define formally the promise (di)graph homomorphism problem.

Definition 2.2. Fix two digraphs H and G such that H\rightarrow G.

\bullet The search variant of PCSP(H,G) is, given an input digraph I that maps
homomorphically to H, find a homomorphism h : I\rightarrow G.
\bullet The decision variant of PCSP(H,G) requires, given an input digraph I such
that either I\rightarrow H or I \not \rightarrow G, to output yes in the former case, and no in the
latter case.

We remark that the (decision) problem PCSP(H,H) is nothing else but the con-
straint satisfaction problem CSP(H), also known as H-coloring.

There is an obvious reduction from the decision variant of each PCSP to the
search variant, but it is not known whether the two variants are equivalent for each
PCSP. The hardness results in this paper hold for the decision (and hence also for the
search) version of PCSP(H,G).

It is obvious that if at least one of H,G is undirected and bipartite, then the
problem can be solved in polynomial time by using an algorithm for 2-coloring. If
one of the graphs contains a loop, the problem is trivial. Recall that Brakensiek and
Guruswami conjectured (see Conjecture 1.2) that, for undirected graphs, the problem
is \sansN \sansP -hard in all the other cases.

All applications in this paper concern undirected graphs, even though some proofs
use digraphs. We remark that, as shown in Theorem F.3 of the arXiv version of [16]
(generalizing the corresponding result for CSPs [30]), a complexity classification of all
problems PCSP(H,G) for digraphs is equivalent to such a classification for all PCSPs
(for arbitrary relational structures).

Two (di)graphs H1 and H2 are called homomorphically equivalent if both H1\rightarrow 
H2 and H2 \rightarrow H1. The binary relation H1 \rightarrow H2 defines a preorder on the class
of all digraphs (or all graphs), called the homomorphism preorder . We will use this
preorder in section 4.

We also define digraph powers, which are essential for the notion of polymor-
phisms.

Definition 2.3. The nth direct (or tensor) power of a digraph H is the digraph
Hn whose vertices are all n-tuples of vertices of H (i.e., V (Hn) = V (H)n), and whose
edges are defined as follows: we have an edge from (u1, . . . , un) to (v1, . . . , vn) in Hn

if and only if (ui, vi) is an edge of H for all i\in \{ 1, . . . , n\} .

2.2. Polymorphisms. We use the notions of polymorphisms [3, 16], minions,
and minion homomorphisms [5, 23]. We introduce these notions in the special case of
digraphs below. General definitions and more insights can be found in [5, 7].

Definition 2.4. An n-ary polymorphism from a digraph H to a digraph G is a
homomorphism from Hn to G. To spell this out, it is a mapping f : V (H)n\rightarrow V (G)
such that, for all tuples (u1, v1), . . ., (un, vn) of edges of H, we have

(f(u1, . . . , un), f(v1, . . . , vn))\in E(G).

We denote the set of all polymorphisms from H to G by Pol(H,G).
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 47

Example 2.5. The n-ary polymorphisms from a digraph H to the k-clique Kk are
the k-colorings of Hn.

The set of all polymorphisms between any two digraphs has a certain algebraic
structure, which we now describe. We denote by [n] the set \{ 1,2, . . . , n\} .

Definition 2.6. An n-ary function f : An \rightarrow B is called a minor of an m-ary
function g : Am\rightarrow B if there is a map \pi : [m]\rightarrow [n] such that

f(x1, . . . , xn) = g(x\pi (1), . . . , x\pi (m))

for all x1, . . . , xn \in A. In this case, we write f = g\pi .

Alternatively, one can say that f is a minor of g if it is obtained from g by
identifying variables, permuting variables, and introducing inessential variables.

Definition 2.7. For sets A,B, let O(A,B) = \{ f : An\rightarrow B | n\geq 1\} . A (function)
minion M on a pair of sets (A,B) is a nonempty subset of O(A,B) that is closed
under taking minors. For fixed n\geq 1, let M (n) denote the set of n-ary functions from
M .

It is easy to see that Pol(H,G) is a minion whenever H\rightarrow G.
An important notion in our analysis of polymorphisms is that of an essential

coordinate.

Definition 2.8. A coordinate i of a function f : An\rightarrow B is called essential if f
depends on it, that is, if there exist a1, . . . , an and bi in A such that

f(a1, . . . , ai - 1, ai, ai+1, . . . , an) \not = f(a1, . . . , ai - 1, bi, ai+1, . . . , an).

A coordinate of f that is not essential is called inessential.

Definition 2.9. A minion M is said to have essential arity at most k, if each
function f \in M has at most k essential variables. It is said to have bounded essential
arity if it has essential arity at most k for some k.

Example 2.10. It is well known (see, e.g., [37]), and not hard to check, that the
minion Pol(K3,K3) has essential arity at most 1. However for any odd k > 3, the
minion Pol(Ck,K3) does not have bounded essential arity. Indeed, fix a homomor-
phism h : Ck \rightarrow K3 such that h(0) = h(2) = 0 and h(1) = 1 and define the following
function from Cn

k to K3:

f(x1, . . . , xn) =

\Biggl\{ 
2 if x1 = \cdot \cdot \cdot = xn = 1,

h(x1) otherwise.

It is easy to check that f \in Pol(Ck,K3). By using Definition 2.8 with a1 = \cdot \cdot \cdot = an = 1
and bi = 0, one can verify that every coordinate i of f is essential.

Definition 2.11. Let M and N be two minions (not necessarily on the same
pairs of sets). A mapping \xi : M \rightarrow N is called a minion homomorphism if

1. it preserves arities, i.e., maps n-ary functions to n-ary functions for all n,
and

2. it preserves taking minors, i.e., for each \pi : \{ 1, . . . ,m\} \rightarrow \{ 1, . . . , n\} and each
g \in M (m) we have \xi (g)\pi = \xi (g\pi ), i.e.,

\xi (g)(x\pi (1), . . . , x\pi (m)) = \xi (g(x\pi (1), . . . , x\pi (m))).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

1/
23

 to
 1

29
.2

34
.7

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



48 A. KROKHIN, J. OPR\v SAL, M. WROCHNA, AND S. \v ZIVN\'Y

We refer to [5, Example 2.22] for examples of minion homomorphisms.
Our proof of Theorem 1.4 is based on the following result. It is a special case

of a result in [5] (that generalized [3, Theorem 4.7]). We remark that the proof of
this theorem is by a reduction from Gap Label Cover, which is a common source of
inapproximability results.

Theorem 2.12 ([5, Proposition 5.15]). Let H,G be digraphs such that H \rightarrow 
G. Assume that there exists a minion homomorphism \xi : Pol(H,G)\rightarrow M for some
minion M on a pair of (possibly infinite) sets such that M has bounded essential arity
and does not contain a constant function (i.e., a function without essential variables).
Then PCSP(H,G) is \sansN \sansP -hard.

To prove Theorem 1.4, we will use Theorem 2.12 with the minion M =Z\leq N for
some constant N > 0. The set Z\leq N is defined to consist of all linear functions f on
\BbbZ of the form

f(x1, . . . , xn) =

n\sum 

i=1

cixi

for some ci \in \BbbZ such that
\sum n

i=1 ci is odd and
\sum n

i=1| ci| \leq N . It easy to see that Z\leq N is
indeed a minion and that all functions in it have between 1 and N nonzero coefficients,
meaning that it has bounded essential arity and contains no constant function.

3. Topology. All graphs in this section are assumed to be undirected and loop-
less.

3.1. Simplicial complexes. An (abstract) simplicial complex is a family of
nonempty sets \sansK that is downwards closed, i.e., if \sigma 1 \in \sansK , \sigma 2 \not = \emptyset , and \sigma 2 \subseteq \sigma 1, then
\sigma 2 \in \sansK . Each \sigma \in \sansK is called a face. The elements in these sets are vertices of \sansK . We
denote the set of all vertices of \sansK by V (\sansK ), i.e., V (\sansK ) :=

\bigcup 
\sigma \in \sansK \sigma . A simplicial map

between complexes \sansK and \sansK \prime is a function f : V (\sansK )\rightarrow V (\sansK \prime ) that preserves faces, i.e.,
if \sigma \in \sansK , then f(\sigma ) := \{ f(v) | v \in \sigma \} \in \sansK \prime . Two simplicial complexes \sansK and \sansK \prime are
isomorphic if there are simplicial maps \alpha : \sansK \rightarrow \sansK \prime and \beta : \sansK \prime \rightarrow \sansK such that both \alpha \beta 
and \beta \alpha are identity maps.

We will use the following notion of a product of simplicial complexes (see also [61,
section 2.2] and [53, Definition 4.25]).

Definition 3.1. Let \sansK 1, . . . ,\sansK n be simplicial complexes. We define the product
\sansK 1 \times \cdot \cdot \cdot \times \sansK n to be the simplicial complex with vertices

V (\sansK 1 \times \cdot \cdot \cdot \times \sansK n) = V (\sansK 1)\times \cdot \cdot \cdot \times V (\sansK n),

so that \sigma \subseteq V (\sansK 1 \times \cdot \cdot \cdot \times \sansK n) is a face if there are faces \sigma 1 \in \sansK 1, . . ., \sigma n \in \sansK n such
that \sigma \subseteq \sigma 1 \times \cdot \cdot \cdot \times \sigma n.

3.1.1. From graphs to simplicial complexes. As mentioned before, there
are several ways to assign a simplicial complex to a graph. For our use, the most
convenient is the homomorphism complex. Our definition of this complex is slightly
different from that in [4, 53], but the difference is superficial (as we explain in Appen-
dix A). The vertices of such a complex are homomorphisms, while faces are determined
by multihomomorphisms defined below.

Definition 3.2. A multihomomorphism from K to G is a mapping f : V (K)\rightarrow 
2V (G) such that, for each (u, v)\in E(K), we have f(u)\times f(v)\subseteq E(G).
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 49

Definition 3.3. Let K and G be two graphs. We define a simplicial com-
plex \sansH \sanso \sansm (K,G) as follows. Its vertices are homomorphisms from K to G, and
\sigma = \{ f1, . . . , f\ell \} is a face if the mapping u \mapsto \rightarrow \{ f1(u), . . . , f\ell (u)\} is a multihomo-
morphism from K to G.

We work almost exclusively with complexes \sansH \sanso \sansm (K2,G), where K2 is the two-
element clique. Such complexes (with our definition) appeared before, e.g., in [60],
where they are called box complexes (which is not the traditional use of this name)
and in [58], where these complexes appear under the name \sansB \sanse \sansd \sansg \sanse (G). The complex
\sansH \sanso \sansm (K2,G) can be also described in the following way. The vertices of \sansH \sanso \sansm (K2,G)
are all (oriented) edges of G. The faces are directed bipartite subgraphs that can
be extended to a complete directed bipartite subgraph of G (with all edges directed
from one part to the other); more precisely, \sigma is a face if there are U,V \subseteq V (G) such
that \sigma \subseteq U \times V \subseteq E(G). The complexes \sansH \sanso \sansm (K2,G) have an additional structure
obtained from the automorphism of K2 that switches the two vertices. The group
\BbbZ 2 then acts on the vertices of \sansH \sanso \sansm (K2,G) by reversing the direction of edges, i.e.,
 - (a, b) = (b, a).

Example 3.4. Let us consider the complex \sansH \sanso \sansm (K2,Ck). Its vertices are all
oriented edges of the k-cycle which means pairs of the form (i, i + 1) and (i + 1, i)
where the addition is considered modulo k. It is not hard to see that the only directed
complete bipartite subgraphs of Ck are either two outgoing edges from a single vertex,
or two incoming edges to a single vertex. The only nontrivial faces of \sansH \sanso \sansm (K2,Ck)
are therefore of the form \{ (i - 1, i), (i+ 1, i)\} or \{ (i, i - 1), (i, i+ 1)\} . The resulting
complex can be drawn as a graph (see Figure 3.1 for such a drawing of \sansH \sanso \sansm (K2,C5)).
The exact structure depends on the parity of k. If k is odd, the complex is a single
2k-cycle, where (i, j) is opposite to (j, i). The \BbbZ 2-action acts as the central reflection.
If k is even, the complex consists of two disjoint k-cycles such that one contains all
edges of the form (2i,2i \pm 1) and the other all edges of the from (2i \pm 1,2i). The
\BbbZ 2-action in this case switches the two parts.

Example 3.5. A slightly more complicated example is \sansH \sanso \sansm (K2,K4). See Fig-
ure 3.2 for graphical representations of this complex. There are two types of maximal
directed complete bipartite subgraphs of K4: either all three incoming/outgoing edges
of a single vertex, or 4 directed edges from a two-element subset of K4 to its com-
plement. These, and all their nonempty subsets, are the faces of \sansH \sanso \sansm (K2,K4). In
the pictures, the incoming/outgoing edges correspond to the triangular faces, and the

(0,4)

(0,1)

(2,1)(2,3)

(4,3)

(4,0)

(1,0)

(1,2) (3,2)

(3,4)

(0,5)

(0,1)(2,1)

(2,3)

(4,3) (4,5)

(5,0)

(1,0) (1,2)

(3,2)

(3,4)(5,4)

Fig. 3.1. Representations of \sansH \sanso \sansm (K2,C5) and \sansH \sanso \sansm (K2,C6).
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(3,1)

(0,2)

(1,3)

(2,0)

(0,1)

(2,1)(2,3)

(0,3)

(3,2)

(3,0)(1,0)

(1,2)

Fig. 3.2. Two representations of \sansH \sanso \sansm (K2,K4). The tetragons in both pictures represent tetra-
hedrons with the same vertices.

faces containing 4 edges correspond to tetrahedrons that are represented as tetragons.
Naturally, all subsets of these tetragons are also faces, nevertheless they are omitted
from the picture for better readability. Also note that the outer face of the left diagram
forms such a tetrahedron (corresponding to the bipartite subgraph \{ 1,3\} \times \{ 0,2\} ).
The \BbbZ 2-symmetry of this complex is given by reversing edges; this corresponds to the
antipodality on the spherical representation.

Definition 3.6. A \BbbZ 2-(simplicial) complex is a simplicial complex \sansK with a sim-
plicial map  - : \sansK \rightarrow \sansK such that  - ( - v) = v for each v \in V (\sansK ). We also write  - \sigma 
for the face \{  - v | v \in \sigma \} . We say that a simplicial map f from one \BbbZ 2-complex \sansK to
another \BbbZ 2-complex \sansK \prime is a \BbbZ 2-simplicial map, if f( - v) =  - f(v) for each v \in V (\sansK )
(note that the first  - is taken in \sansK , while the second is taken in \sansK \prime ).

The map v \mapsto \rightarrow  - v can be also viewed as an action of the group \BbbZ 2 on \sansK by simplicial
maps. We remark that a product \sansK 1\times \cdot \cdot \cdot \times \sansK n of \BbbZ 2-complexes is also a \BbbZ 2-complex
with the action defined componentwise, as  - (v1, . . . , vn) = ( - v1, . . . , - vn). Every
graph homomorphism f : H \rightarrow G induces a \BbbZ 2-simplicial map f \prime : \sansH \sanso \sansm (K2,H) \rightarrow 
\sansH \sanso \sansm (K2,G) defined by f \prime ((a, b)) = (f(a), f(b)).1

3.2. Topological spaces. The spaces assigned to \BbbZ 2-complexes inherit the \BbbZ 2

symmetry.

Definition 3.7. A \BbbZ 2-space is a topological space \scrX with a distinguished con-
tinuous function  - : \scrX \rightarrow \scrX such that  - ( - x) = x for each x. A \BbbZ 2-map between two
\BbbZ 2-spaces \scrX and \scrY is a continuous function f : \scrX \rightarrow \scrY which preserves the action of
\BbbZ 2, i.e., f( - x) = - f(x) for each x\in \scrX (note that the first  - is taken in \scrX , while the
second is taken in \scrY ).

As is the case for \BbbZ 2-complexes, \BbbZ 2-spaces are topological spaces with an action
of the group \BbbZ 2 by continuous functions.

Example 3.8. Prime examples of \BbbZ 2-spaces are spheres: we define \scrS n as a sub-
space of \BbbR n+1 consisting of all unit vectors, i.e., \scrS n = \{ (x1, . . . , xn+1) \in \BbbR n+1 | 
x2
1+ \cdot \cdot \cdot +x2

n+1 = 1\} , with antipodality as the chosen \BbbZ 2-action, i.e.,  - (x1, . . . , xn+1) =

1This is an instance of a more general fact that f induces a simplical map f \prime : \sansH \sanso \sansm (K,H) \rightarrow 
\sansH \sanso \sansm (K,G) for each K. This map is defined by f \prime (g) : x \mapsto \rightarrow f(g(x)).
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 51

( - x1, . . . , - xn+1). Other common \BbbZ 2-spaces are toruses. An n-torus \scrT n is defined
as the nth power \scrS 1 \times \cdot \cdot \cdot \times \scrS 1, and is therefore naturally equipped with a \BbbZ 2-action
defined to act coordinatewise.

A \BbbZ 2-complex \sansK is free if  - \sigma \not = \sigma for each \sigma \in \sansK (equivalently, \{  - v, v\} \not \in \sansK 
for all vertices v of \sansK ). Note that, for a loopless undirected graph G, the complex
\sansH \sanso \sansm (K2,G) is always a free \BbbZ 2-complex. To ease a technical annoyance in the proofs
below, we rephrase the definition of a geometric realization (see also [53, Definition
2.27]) of a free \BbbZ 2-complex.

Definition 3.9. Let \sansK be a free \BbbZ 2-simplicial complex. Let v1, - v1, . . . , vn, - vn
be all vertices of \sansK . We define | \sansK | , a geometric realization of \sansK , as a subspace of \BbbR n.
First, we identify the canonical unit vectors with v1, . . . , vn, so that v1 = (1,0, . . . ,0),
etc., and  - v1, . . . , - vn with their opposites, so  - v1 = ( - 1,0, . . . ,0), etc. Second,
for each face \sigma \subseteq V (\sansK ), we define \Delta \sigma \subseteq \BbbR n to be the convex hull of \sigma , i.e., \Delta \sigma =
\{ \sum v\in \sigma \lambda vv | 

\sum 
v\in \sigma \lambda v = 1, \lambda v \geq 0\} . Finally, we set

| \sansK | =
\bigcup 

\sigma \in \sansK 

\Delta \sigma =

\Biggl\{ \sum 

v\in \sigma 

\lambda vv | \sigma \in \sansK ,
\sum 

v\in \sigma 

\lambda v = 1, \lambda v \geq 0

\Biggr\} 
.

The action of \BbbZ 2 on | \sansK | maps a point
\sum 

v\in \sigma \lambda vv to the point
\sum 

 - v\in  - \sigma \lambda v( - v) which
can be equivalently described as reversing the sign of a vector, i.e., as  - (x1, . . . , xn) =
( - x1, . . . , - xn).

With the above definition, we can view V (\sansK ) as a subset of | \sansK | ---this will be
useful in the technical proofs below. Also note that  - v has two meanings that result
in the same object: either it is a \BbbZ 2-counterpart of v \in V (\sansK ), or the opposite vector
to v \in | \sansK | . Note that the geometric realization of a free \BbbZ 2-complex is a free \BbbZ 2-space,
i.e., a \BbbZ 2-space \scrX such that  - x \not = x for all x\in \scrX .

To express abstractly what it means for two \BbbZ 2-spaces to be the same, we use the
notion of \BbbZ 2-homeomorphism which is an analogue of the notion of homeomorphism.
We remark that this is a strong notion of equivalence of topological spaces, akin to
isomorphism, and that we will also use weaker notions of topological equivalence (see
also Appendix A).

Definition 3.10. Two \BbbZ 2-topological spaces \scrX and \scrY are \BbbZ 2-homeomorphic if
there are \BbbZ 2-maps f : \scrX \rightarrow \scrY and g : \scrY \rightarrow \scrX such that fg is the identity on \scrY and gf
is the identity on \scrX .

Example 3.11. It is not hard to see that the geometric representation of the
homomorphism complex \sansH \sanso \sansm (K2,Ck) of an odd cycle Ck is \BbbZ 2-homeomorphic to
\scrS 1 (see Figure 3.3). Let us define one such \BbbZ 2-homeomorphism f : | \sansH \sanso \sansm (K2,Ck)| \rightarrow 
\scrS 1. Choose k points on the circle in a regular pattern. Let us denote these vectors
x1, . . . , xk. Note that since k is odd,  - xi /\in \{ x1, . . . , xk\} for all i. We first define a map
f0 : | \sansH \sanso \sansm (K2,Ck)| \rightarrow \BbbR 2 as follows: f0(v) = xb - xa for v \in V (\sansK ), v= (a, b), and extend
it linearly. Note that the image of | \sansH \sanso \sansm (K2,Ck)| forms a regular 2k-gon centered
in the origin. We project the polygon onto \scrS 1 by putting f(x) = f0(x)/| f0(x)| . It
is clear that f is continuous and f( - x) =  - f(x), and therefore it is a \BbbZ 2-map. It is
also not hard to see that it is 1-to-1 and therefore invertible, and that the inverse is
a \BbbZ 2-map.

Remark 3.12. While there is always a continuous function between two topological
spaces \scrX and \scrY (simply map everything to a single point), there might not be a
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(0,4)

(0,1)

(2,1)(2,3)

(4,3)

(4,0)

(1,0)

(1,2) (3,2)

(3,4)

Fig. 3.3. A representation of \sansH \sanso \sansm (K2,C5) as \scrS 1 and \sansH \sanso \sansm (K2,C2
5) as \scrT 2.

\BbbZ 2-map between two \BbbZ 2-spaces. In particular, the Borsuk--Ulam theorem [12] (see
also [59]) states that there is no \BbbZ 2-map from a sphere \scrS m to a sphere \scrS n of smaller
dimension (i.e., if m>n).

Every \BbbZ 2-simplicial map f : \sansK \rightarrow \sansK \prime induces a \BbbZ 2-map | f | : | \sansK | \rightarrow | \sansK \prime | defined as a
piecewise linear extension of f :

| f | :
\sum 

v\in \sigma 

\lambda vv \mapsto \rightarrow 
\sum 

v\in \sigma 

\lambda vf(v).

(Here, we use that v \in V (\sansK ) is also a point in | \sansK | , and therefore a vector in \BbbR n.) Con-
sequently, every graph homomorphism H\rightarrow G induces a \BbbZ 2-map from | \sansH \sanso \sansm (K2,H)| 
to | \sansH \sanso \sansm (K2,G)| .

3.2.1. The fundamental group. We briefly recall the definition of the funda-
mental group assigned to a topological space \scrX , denoted \pi 1(\scrX ). For more details, see
[43, Chapter 1]. The elements of the group are homotopy classes of maps f : \scrS 1\rightarrow \scrX 
defined as follows. Intuitively, two maps are homotopic if one can be continuously
transformed into the other.

Definition 3.13. We say that two continuous maps f, g : \scrX \rightarrow \scrY are homotopic
if there is a continuous map h : \scrX \times [0,1]\rightarrow \scrY such that h(x,0) = f(x) and h(x,1) =
g(x) for each x \in \scrX . Any such map h is called a homotopy. The homotopy class of
f : \scrX \rightarrow \scrY is the set of all continuous maps g : \scrX \rightarrow \scrY that are homotopic to f . We
denote such a class by [f ].2

Formally, the fundamental group is defined relative to a point x0 \in \scrX , but the
choice of the point is irrelevant if the space \scrX is path connected (see [43, Proposition
1.5]), i.e., if any two points in \scrX are connected by a path. Fix one such choice
x0 \in \scrX . The elements of \pi 1(\scrX ) are all homotopy classes of maps \ell : \scrS 1 \rightarrow \scrX such
that \ell ((1,0)) = x0. The group operation is given by so-called loop composition: seeing
maps \ell 1, \ell 2 : \scrS 1\rightarrow \scrX as closed walks originating in x0, the product \ell 1 \cdot \ell 2 is the closed
walk that follows first \ell 1 and then \ell 2. While this product is not a group operation as
is, it induces a group operation on the homotopy classes defined as [\ell 1] \cdot [\ell 2] = [\ell 1 \cdot \ell 2]
(see [43, Proposition 1.3] for a proof).

Any map f : \scrX \rightarrow \scrY induces a group homomorphism f\ast : \pi 1(\scrX )\rightarrow \pi 1(\scrY ) defined
by f\ast ([\ell ]) = [f\ell ] for each \ell : \scrS 1\rightarrow \scrX .

2We use the notation [\ast ] both for sets \{ 1, . . . , n\} and for homotopy classes; the meaning will
always be clear from the context.
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 53

The fundamental groups of many spaces are described in the literature. For
example, we have the following.

Lemma 3.14 ([43, Theorem 1.7]). \pi 1(\scrS 1) is isomorphic to \BbbZ .

We also define \BbbZ 2-homotopy which is a strengthening of homotopy, restricting it
to \BbbZ 2-maps.

Definition 3.15. Let f, g : \scrX \rightarrow \scrY be \BbbZ 2-maps. A homotopy h from f to g is a
\BbbZ 2-homotopy if the map ht : x \mapsto \rightarrow h(x, t) is a \BbbZ 2-map for each t\in [0,1]. We say that f
and g are \BbbZ 2-homotopic, if there is a \BbbZ 2-homotopy between them.

3.3. Polymorphisms of complexes, spaces, and groups. A polymorphism
from one graph to another is defined as a homomorphism from a power. In the same
way, we can define polymorphisms of any objects as long as we have a notion of a
homomorphism and of a power.

Definition 3.16.

1. Let \sansK ,\sansK \prime be two \BbbZ 2-simplicial complexes. An n-ary polymorphism from \sansK to
\sansK \prime is a \BbbZ 2-simplicial map from the nth power of \sansK to \sansK \prime , i.e., f : V (\sansK )n \rightarrow 
V (\sansK \prime ) such that f( - v1, . . . , - vn) = - f(v1, . . . , vn) for all vi \in V (\sansK ) and

f(\sigma 1 \times \cdot \cdot \cdot \times \sigma n) = \{ f(a1, . . . , an) : ai \in \sigma i\} is in \sansK \prime 

for all \sigma 1, . . . , \sigma n \in \sansK . We denote by Pol(\sansK ,\sansK \prime ) the set of all polymorphisms
from \sansK to \sansK \prime .

2. Let \scrX ,\scrY be two \BbbZ 2-spaces. An n-ary polymorphism from \scrX to \scrY is a \BbbZ 2-map
from \scrX n to \scrY , i.e., a continuous map f : \scrX n\rightarrow \scrY such that f( - x1, . . . , - xn) =
 - f(x1, . . . , xn) for all xi \in X. Again, Pol(\scrX ,\scrY ) denotes the set of all poly-
morphisms from \scrX to \scrY .

3. Let \BbbH , \BbbG be two groups. An n-ary polymorphism from \BbbH to \BbbG is a group
homomorphism from \BbbH n to \BbbG , i.e., a mapping f : Hn\rightarrow G such that

f(g1 \cdot h1, . . . , gn \cdot hn) = f(g1, . . . , gn) \cdot f(h1, . . . , hn)

for all gi, hi \in H. We denote the set of all polymorphisms from \BbbH to \BbbG by
Pol(\BbbH ,\BbbG ).

In all the cases above, it is easy to see that polymorphisms are closed under
taking minors, and therefore Pol( - , - ) is always a minion. This allows us to talk
about minion homomorphisms between minions of polymorphisms of different objects
(graphs, simplicial complexes, topological spaces, or groups).

Example 3.17. By definition, Pol(\BbbZ ,\BbbZ ) consists of all group homomorphisms from
\BbbZ n to \BbbZ for all n> 0. It is straightforward to check that such an n-ary polymorphism
in Pol(\BbbZ ,\BbbZ ) is a linear function, i.e., of the form (x1, . . . , xn) \mapsto \rightarrow 

\sum n
i=1 cixi for some

c1, . . . , cn \in \BbbZ and, conversely, any such function is a group homomorphism from \BbbZ n

to \BbbZ .

3.4. Proofs of Theorems 1.3 and 1.4. We recall the statement of Theorem
1.4.

Theorem 1.4. Let H,G be nonbipartite loopless graphs such that H\rightarrow G, and
there is a \BbbZ 2-map from | \sansH \sanso \sansm (K2,G)| to \scrS 1. Then PCSP(H,G) is \sansN \sansP -hard.
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54 A. KROKHIN, J. OPR\v SAL, M. WROCHNA, AND S. \v ZIVN\'Y

Theorem 1.3 is a direct corollary of the above and Example 3.11. In the rest of
the section we prove Theorem 1.4 by using Theorem 2.12. We show that there is a
minion homomorphism from Pol(H,G) to the minion Z\leq N for some N . Recall that
Z\leq N \subset Pol(\BbbZ ,\BbbZ ) is defined to consist of all linear functions f on \BbbZ of the form

f(x1, . . . , xn) =

n\sum 

i=1

cixi

for some ci \in \BbbZ such that
\sum N

i=1 ci is odd and
\sum N

i=1| ci| \leq N . This is achieved in two
steps.

In the first step, we provide a minion homomorphism from Pol(H,G) to Pol(\BbbZ ,\BbbZ ).
This is achieved by following the constructions described above, i.e., the transforma-
tions

graph
\sansH \sanso \sansm (K2,\ast ) - \rightarrow \BbbZ 2-complex

| \ast |  - \rightarrow \BbbZ 2-space
\pi 1(\ast ) - \rightarrow group,

and showing that pushing a polymorphism through this sequence of constructions
preserves minors. This essentially follows from the well-known facts that these con-
structions behave well with respect to products. A detailed proof is presented in
section 3.4.1.

When we push a polymorphism f \in Pol(H,G) through these constructions, we
first obtain a \BbbZ 2-simplicial map f \prime \in Pol(\sansH \sanso \sansm (K2,H),\sansH \sanso \sansm (K2,G)), which in turn
induces a \BbbZ 2-map | f \prime | \in Pol(| \sansH \sanso \sansm (K2,H)| , | \sansH \sanso \sansm (K2,G)| ). Then, by composing with
the assumed \BbbZ 2-map s : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1 (and assuming without loss of generality
that H is an odd cycle), we obtain a polymorphism g of \scrS 1, and then finally a
polymorphism g\ast of the group \pi 1(\scrS 1)\simeq \BbbZ . As discussed before, g\ast can be described
more concretely as a linear function whose coefficients ci are the winding numbers of
maps \scrS 1 \rightarrow \scrS 1 defined by t \mapsto \rightarrow s \circ g(x0, . . . , t, . . . , x0), where x0 \in \scrS 1 is an arbitrary
(but fixed) point.

In the second step, we use the discrete structure of the graphs H and G, as well as
the action of \BbbZ 2, to show that the image of Pol(H,G) under the constructed minion
homomorphism is contained in Z\leq N for some N . This is described in section 3.4.2.

We note that there are several ways to present the proof of Theorem 1.3. These
presentations would look different on the surface, but in fact they use the same un-
derlying topological concepts, just hidden to various extents. For example, the proof
that appeared in the conference version [54] hides topology in a more direct combi-
natorial approach. Yet another version of the proof can be given in the language of
recolorings: the required minion homomorphism would map two polymorphisms f
and f \prime from Pol(H,G) to the same function if and only if f can be recolored to f \prime by
changing one output value at a time, that is, if there is a sequence of polymorphisms
f0, . . . , fn \in Pol(H,G) such that f0 = f, fn = f \prime and, for each i \in \{ 0, . . . , n - 1\} , there
is a unique tuple \=ti with fi(\=ti) \not = fi+1(\=ti). However, as shown in [72], recolorability is
inherently a topological notion, so the resulting proof would have the same essence as
the one presented here. We chose the current presentation because we believe that it
reflects the `true essence' of the proof.

3.4.1. A minion homomorphism. As mentioned above, the required minion
homomorphism is obtained as a composition of three mappings. The first one is a
minion homomorphism from polymorphisms of graphs to polymorphisms of simplicial
complexes. We implicitly use that for any graphs H1 and H2, there is a natural
isomorphism of \BbbZ 2-simplicial complexes
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 55

\sansH \sanso \sansm (K2,H1)\times \sansH \sanso \sansm (K2,H2)\simeq \sansH \sanso \sansm (K2,H1 \times H2)

given by the \BbbZ 2-simplicial map: ((a, b), (a\prime , b\prime )) \mapsto \rightarrow ((a,a\prime ), (b, b\prime )). See Figure 3.3 for an
example.

Lemma 3.18. For graphs H, G, the mapping

\mu 1 : Pol(H,G)\rightarrow Pol(\sansH \sanso \sansm (K2,H),\sansH \sanso \sansm (K2,G))

defined as

\mu 1(f)((u1, v1), . . . , (un, vn)) := (f(u1, . . . , un), f(v1, . . . , vn))

is a minion homomorphism.

Proof. Let us first check that \mu 1(f) is indeed a simplicial map. Assume that
\sigma 1, . . . , \sigma n are faces in \sansH \sanso \sansm (K2,H), i.e., \sigma i is a subset of edges of some complete
directed bipartite subgraph of H. We may assume without loss of generality that
\sigma i is the set of all edges of a complete directed bipartite subgraph of H which gives
\sigma i = Ui \times Vi for some Ui, Vi \subseteq V (G), which form a bipartition of some complete
bipartite subgraph of G. By definition,

\mu 1(f)(\sigma 1 \times \cdot \cdot \cdot \times \sigma n) = \{ (f(u1, . . . , un), f(v1, . . . , vn)) : ui \in Ui, vi \in Vi\} = f(U)\times f(V ),

where U = U1 \times \cdot \cdot \cdot \times Un and V = V1 \times \cdot \cdot \cdot \times Vn. By the definition of graph product,
all edges between U and V are present in Hn. Consequently, f(U) \times f(V ) is a
complete directed bipartite subgraph of G, since f is a polymorphism. This implies
that \mu 1(f)(\sigma 1 \times \cdot \cdot \cdot \times \sigma n) is a face of \sansH \sanso \sansm (K2,G).

It is straightforward that the mapping \mu 1 preserves both the \BbbZ 2-action and taking
minors.

The next step is from \BbbZ 2-simplicial complexes to \BbbZ 2-spaces. The map that we
construct will not be a minion homomorphism, it will satisfy a weaker condition that
will be sufficient later.

Definition 3.19. Assume that \scrX ,\scrY are \BbbZ 2-spaces and let M be a minion. We
say that a mapping \xi : M \rightarrow Pol(\scrX ,\scrY ) preserves minors up to \BbbZ 2-homotopy if for all
n,m> 0, f \in M (n) and \pi : [n]\rightarrow [m], we have that \xi (f\pi ) is \BbbZ 2-homotopic to \xi (f)\pi .

We recall that the points in the geometric representation of \sansK can be viewed as
convex combinations of vertices of \sansK , more precisely | \sansK | = \{ \sum v\in \sigma \lambda vv | \sigma \in \sansK , \lambda v \geq 
0,
\sum 

v\in \sigma \lambda v = 1\} and the representation of each point is unique (as we identified
v \in V (K) with affinely independent vectors in \BbbR V (K), namely, the basis vectors).
This is used in the following lemma.

Lemma 3.20. Let \sansK , \sansK \prime be two \BbbZ 2-simplicial complexes. Let \mu 2 : Pol(\sansK ,\sansK 
\prime ) \rightarrow 

Pol(| \sansK | , | \sansK \prime | ) be the linear extension, i.e., \mu 2 takes f \in Pol(\sansK ,\sansK \prime ) to

\mu 2(f) :

\Biggl( \sum 

v\in \sigma 1

\lambda 1,vv, . . . ,
\sum 

v\in \sigma n

\lambda n,vv

\Biggr) 
\mapsto \rightarrow 

\sum 

v1\in \sigma 1,...,vn\in \sigma n

\lambda 1,v1
\cdot \cdot \cdot \lambda n,vn

f(v1, . . . vn)

for a point in \Delta \sigma 1 \times \cdot \cdot \cdot \times \Delta \sigma n \subseteq | \sansK | n. Then \mu 2 preserves minors up to \BbbZ 2-homotopy.
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Proof. Let f : \sansK n\rightarrow \sansK \prime be a simplicial map and pick any \pi : [n]\rightarrow [m]. Then

\mu 2(f
\pi )

\Biggl( \sum 

v\in \sigma 1

\lambda 1,vv, . . . ,
\sum 

v\in \sigma m

\lambda m,vv

\Biggr) 
=

\sum 

v1\in \sigma 1,...,vm\in \sigma m

\lambda 1,v1 \cdot \cdot \cdot \lambda m,vm
f\pi (v1, . . . vm)

=
\sum 

v1\in \sigma 1,...,vm\in \sigma m

\lambda 1,v1 \cdot \cdot \cdot \lambda m,vm
f(v\pi (1), . . . v\pi (n)).

On the other hand, if we take the induced map first and then the minor, we obtain

\mu 2(f)

\left( 
 \sum 

v\in \sigma \pi (1)

\lambda \pi (1),vv, . . . ,
\sum 

v\in \sigma \pi (n)

\lambda \pi (n),vv

\right) 
 

=
\sum 

v1\in \sigma \pi (1),...,vn\in \sigma \pi (n)

\lambda \pi (1),v1 \cdot \cdot \cdot \lambda \pi (n),vnf(v1, . . . vn).

Both points lie in \Delta \sigma \subseteq | \sansK \prime | for \sigma = \{ f(v1, . . . , vn) | vi \in \sigma \pi (i)\} \in \sansK \prime . We can
thus continuously move from one to the other. Formally, we define a homotopy
h : | \sansK | m \times [0,1]\rightarrow | \sansK \prime | by

h(x1, . . . , xm, t) = t\mu 2(f)(x\pi (1), . . . , x\pi (n)) + (1 - t)\mu 2(f
\pi )(x1, . . . , xm).

It is clear that ht : x \mapsto \rightarrow h(x, t) is a well-defined \BbbZ 2-map, and therefore h is the re-
quired \BbbZ 2-homotopy. (As a side note, observe that the homotopy is constant on
vertices: for any vertices v1, . . . , vm of \sansK and each t \in [0,1], ht(v1, . . . , vm) is equal to
f\pi (v1, . . . , vm) = f(v\pi (1), . . . , v\pi (n)).)

Lemma 3.21. Let H be a nonbipartite graph. Then there is a \BbbZ 2-map r : \scrS 1 \rightarrow 
| \sansH \sanso \sansm (K2,H)| .

Proof. Since the graph H is not bipartite, there is a homomorphism h : Ck \rightarrow 
H for some odd k. This induces a \BbbZ 2-map | h\prime | : | \sansH \sanso \sansm (K2,Ck)| \rightarrow | \sansH \sanso \sansm (K2,H)| ,
and since | \sansH \sanso \sansm (K2,Ck)| is \BbbZ 2-homeomorphic to \scrS 1 (see Example 3.11), the claim
follows.

Lemma 3.22. Let H,G be two graphs such that H is nonbipartite, H\rightarrow G, and
there is a \BbbZ 2-map s : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1. Then \mu : Pol(H,G)\rightarrow Pol(\scrS 1,\scrS 1) defined
as

\mu (f)(x1, . . . , xn) := s(\mu 2\mu 1(f)(r(x1), . . . , r(xn))),

where \mu 1, \mu 2, and r are from Lemmas 3.18, 3.20, and 3.21, respectively, preserves
minors up to \BbbZ 2-homotopy.

Proof. Assume that f is a polymorphism from H to G of arity n and let \pi : [n]\rightarrow 
[m]. We want to prove that \mu (f)\pi is \BbbZ 2-homotopic to \mu (f\pi ). From Lemmas 3.18 and
3.20, we have that \mu 2\mu 1(f)

\pi and \mu 2\mu 1(f
\pi ) are \BbbZ 2-homotopic; let h\prime be a \BbbZ 2-homotopy

that witnesses this fact. We define a \BbbZ 2-homotopy h : \scrT m \times [0,1]\rightarrow \scrS 1 by

h(x1, . . . , xm, t) = sh\prime (r(x1), . . . , r(xm), t).

Indeed, for t= 0,

h(x1, . . . , xm,0) = s
\bigl( 
\mu 2\mu 1(f)

\bigl( 
r(x\pi (1)), . . . , r(x\pi (n))

\bigr) \bigr) 
= \mu (f)\pi (x1, . . . , xm)
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 57

while for t= 1,

h(x1, . . . , xm,1) = s
\bigl( 
\mu 2\mu 1(f

\pi )
\bigl( 
r(x1), . . . , r(xm)

\bigr) \bigr) 
= \mu (f\pi )(x1, . . . , xm).

This concludes the proof.

The final step is from \BbbZ 2-spaces to the fundamental groups. Recall that, for a
continuous function f : \scrX \rightarrow \scrY , we have a group homomorphism f\ast : \pi 1(\scrX )\rightarrow \pi 1(\scrY )
defined as f\ast ([\ell ]) = [f\ell ]. We will also need a group homomorphism from \pi 1(\scrX )n to
\pi 1(\scrX n) that is guaranteed to exist for any path connected space \scrX by [43, Proposition
1.12]. One such homomorphism is the mapping en : \pi 1(\scrX )n\rightarrow \pi 1(\scrX n) defined as

en([\ell 1], . . . , [\ell n]) := [t \mapsto \rightarrow (\ell 1(t), . . . , \ell n(t))]

for \ell 1, . . . , \ell n : \scrS 1\rightarrow \scrX .
Lemma 3.23. Let \scrX ,\scrY be two path connected \BbbZ 2-spaces. Then the mapping

\nu (f) := f\ast en

is a minion homomorphism from Pol(\scrX ,\scrY ) to Pol(\pi 1(\scrX ), \pi 1(\scrY )). Moreover, if f and
g are homotopic then \nu (f) = \nu (g).

Proof. Assume that f \in Pol(\scrX ,\scrY ) is of arity n, \pi : [n]\rightarrow [m], and \ell 1, . . . , \ell m : \scrS 1\rightarrow 
\scrX . To simplify notation, let \ell (t) = (\ell 1(t), . . . , \ell m(t)) go from \scrS 1 to \scrX n and \ell \pi (t) =
(\ell \pi (1)(t), . . . , \ell \pi (n)(t)) go from \scrS 1 to \scrX m. Using the definitions of f\ast and en, we get

\nu (f\pi )(\ell 1, . . . , \ell m) = [f\pi \ell ] = [f\ell \pi ] = \nu (f)\pi (\ell 1, . . . , \ell m).

Finally, since f\ast = g\ast if f and g are homotopic, we also get that \nu (f) = \nu (g).

We recall that \pi 1(\scrS 1)\simeq \BbbZ (Lemma 3.14). In the following statement we identify
the two isomorphic groups to obtain a minion homomorphism to Pol(\BbbZ ,\BbbZ ), the minion
of all linear functions on \BbbZ .

Corollary 3.24. Let H,G be two graphs such that H is nonbipartite, H \rightarrow 
G, and there is a \BbbZ 2-map s : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1. The mapping \nu \mu is a minion
homomorphism from Pol(H,G) to Pol(\BbbZ ,\BbbZ ) assuming \mu is as in Lemma 3.22 and \nu 
is as in Lemma 3.23.

Proof. Clearly, \nu \mu : Pol(H,G) \rightarrow Pol(\BbbZ ,\BbbZ ) is a well-defined mapping that pre-
serves arities. We need to show that it also preserves minors. This follows from
the facts that \mu preserves minors up to \BbbZ 2-homotopy (Lemma 3.22) and that \nu is a
minion homomorphism that is constant on \BbbZ 2-homotopy classes (Lemma 3.23). More
precisely, assume f \in Pol(H,G) is of arity n and \pi : [n]\rightarrow [m]. Then \mu (f\pi ) and \mu (f)\pi 

are \BbbZ 2-homotopic, and therefore

\nu (\mu (f\pi )) = \nu (\mu (f)\pi ) = \nu (\mu (f))\pi ,

where the second equality follows from minor preservation by \nu .

We remark that, for any (n-ary) function f \in Pol(H,G), the coefficients of the
linear function \nu \mu (f) =

\sum n
i=1 cixi can be naturally thought of as the degrees of f

at the corresponding coordinates. Such degrees can be defined in a combinatorial
way (see [54])---the intuitions in that approach are still topological, but the technical
proofs become somewhat ad hoc.
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58 A. KROKHIN, J. OPR\v SAL, M. WROCHNA, AND S. \v ZIVN\'Y

3.4.2. Bounding essential arity. To finish the analysis of polymorphisms from
H to G necessary for applying Theorem 2.12, we need to bound the essential arity of
functions in the image of \nu \mu (defined above) and show that none of these functions
is a constant function. We achieve this by proving that the image of \nu \mu is contained
in the minion Z\leq N for some N . Recall that this minion is defined to be the set of
all functions f : \BbbZ n\rightarrow \BbbZ of the form f(x1, . . . , xn) = c1x1 + \cdot \cdot \cdot + cnxn for some c1, . . .,
cn \in \BbbZ with

\sum n
i=1| ci| \leq N and

\sum n
i=1 ci odd.

The oddness of the sum of coefficients follows from a well-known fact about \BbbZ 2-
maps on \scrS 1. We recall that the degree of a map f : \scrS 1 \rightarrow \scrS 1 is the integer df such
that the induced map f\ast on \pi 1(\scrS 1) =\BbbZ is x \mapsto \rightarrow df \cdot x.

Lemma 3.25 ([43, Proposition 2B.6]). The degree of any \BbbZ 2-map f : \scrS 1\rightarrow \scrS 1 is
odd.

Lemma 3.26. Let H,G be two graphs such that H is nonbipartite, H\rightarrow G, and
there is a \BbbZ 2-map s : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1. Let \mu be as in Lemma 3.22, \nu as in Lemma
3.23, and let H =Pol(H,G). If f \in Pol(H,G) and \nu \mu (f) : (x1, . . . , xn) \mapsto \rightarrow 

\sum n
i=1 cixi,

then
\sum n

i=1 ci is odd.

Proof. Consider the (unique) unary minor h(x) := f(x, . . . , x) of f . Since \mu (h) is
a \BbbZ 2-map, by Lemma 3.25 it has an odd degree, i.e., \nu \mu (h) : x \mapsto \rightarrow dhx for some odd
dh. Finally, since \nu \mu preserves minors, we get that dh =

\sum 
i\in [n] ci which we wanted

to show to be odd.

The bound on the sum of absolute values of coefficients is given by the discrete
structure of the involved graphs. The key here is that there are only finitely many
polymorphisms of a fixed arity between two given finite graphs.

Lemma 3.27. Let M be a minion on finite sets A,B. Assume that \xi : M \rightarrow 
Pol(\BbbZ ,\BbbZ ) is a minion homomorphism. Then there exists N such that for all f \in M ,
if \xi (f) : (x1, . . . , xn) \mapsto \rightarrow 

\sum n
i=1 cixi, then

\sum n
i=1| ci| \leq N .

Proof. We first consider binary functions. There are only finitely many functions
f \in M (2), so clearly the sum of the absolute values of the coefficients of \xi (f) is
bounded by some N . We argue that the same N provides a bound for all other arities
as well. Let f \in M and \xi (f)(x1, . . . , xn) = c1x1 + \cdot \cdot \cdot + cnxn. Let \sigma : [n]\rightarrow \{ 0,1\} be
defined as

\sigma (i) =

\Biggl\{ 
0 if ci \leq 0, and

1 if ci > 0.

That is, \sigma  - 1(1) is the set of all coordinates of \xi (f) with positive coefficients, and
\sigma  - 1(0) of those with negative or zero coefficients. Now, let g = f\sigma , that is, g is the
minor of f defined by

g(x0, x1) = f(x\sigma (1), . . . , x\sigma (n)),

so g is obtained by identifying all variables of f that induce positive coefficients
on \xi (f), and also all those that induce negative coefficients. We let \xi (g)(x0, x1) =
c+x1 + c - x0. Since \xi preserves minors, we get that c+ =

\sum 
ci>0 ci and c - =

\sum 
ci<0 ci.

Note that c+ \geq 0 and c - \leq 0. Finally,

\sum 

i\in [n]

| ci| =
\sum 

ci>0

ci  - 
\sum 

ci<0

ci = c+  - c - = | c+| + | c - | \leq N,
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 59

where the last inequality follows from the definition of N .

We can now finish the proof of Theorem 1.4.

Proof of Theorem 1.4. We assume that H,G are two graphs such that H is
nonbipartite, H\rightarrow G, and there is a \BbbZ 2-map s : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1. Let \mu be as in
Lemma 3.22, \nu as in Lemma 3.23, and N be the bound obtained from Lemma 3.27
for M =Pol(H,G) and \xi = \nu \mu . We claim that \nu \mu (f)\in Z\leq N for each f \in Pol(H,G).
Assume \nu \mu (f) : (x1, . . . , xn) \mapsto \rightarrow 

\sum n
i=1 cixi. We have that

\sum n
i=1 ci is odd from Lemma

3.26, and
\sum n

i=1| ci| \leq N by the choice of N . This concludes that there is a minion
homomorphism from Pol(H,G) to a minion of bounded essential arity, namely, Z\leq N ,
and thus Theorem 1.4 follows from Theorem 2.12.

3.5. Proofs of Corollaries 1.5 and 1.6. To show that Theorem 1.4 im-
plies Corollaries 1.5 and 1.6, we need the following facts about the structure of
| \sansH \sanso \sansm (K2,G)| for the relevant graphs G. These facts seem to be folklore, but we
include proofs for completeness.

Lemma 3.28. For any 2 < p/q < 4 and any square-free nonbipartite graph G,
there exist \BbbZ 2-maps

1. s1 : | \sansH \sanso \sansm (K2,Kp/q)| \rightarrow \scrS 1, and
2. s2 : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1.

Proof. (1) We first define a \BbbZ 2-map g : | \sansH \sanso \sansm (K2,Kp/q)| \rightarrow \BbbR 2. We will show that
the origin 0 is not in the image of g, which then implies that the map x \mapsto \rightarrow g(x)/| g(x)| 
is a \BbbZ 2-map to \scrS 1.

First, we define g on vertices of the complex, i.e., oriented edges of Kp/q: Place p
points x0, . . . , xp - 1 on \scrS 1 in a regular p-gon pattern. Map the edge (a, b) to the point
xb - xa. Then extend g linearly to the interior points of faces. Clearly, g is a \BbbZ 2-map.
See Figure 3.4 for a visualization of g for K7/2.

Let \sigma be a face. That is, \sigma \subseteq A\times B \subseteq E(Kp/q) for some nonempty sets of vertices
A,B. For an edge (a, b), the distance between xa, xb on the circle (the length of the
shorter arc between them) is at least 2\pi \cdot q/p. Since p/q < 4, this is greater than \pi /2.
Hence there are no a,a\prime \in A,b, b\prime \in B such that xa, xb, xa\prime , xb\prime occur in this order on
the circle, as the distances would add up to more than 2\pi . Therefore, there is a line
in \BbbR 2 that strictly separates \{ xa | a \in A\} from \{ xb | b \in B\} (indeed, scanning the
circle clockwise, there is exactly one interval from A to B and exactly one from B to
A, both of length at least \pi /2; any line crossing these intervals will do). This implies
that the convex hull of vectors xa  - xb cannot contain 0 (since each such vector has
a positive dot product with the normal vector of the line).

(2) This statement follows from observing that | \sansH \sanso \sansm (K2,G)| is essentially 1-
dimensional which loosely follows from the facts that there are no copies of the com-
plete bipartite graph K2,2 and that every free \BbbZ 2-space of dimension 1 maps to \scrS 1 (see
[59, Proposition 5.3.2(v)]). We present a compressed version of the two arguments.

Let E+ \cup E - = V (\sansH \sanso \sansm (K2,G)) be an arbitrary partition into two sets that are
swapped by reversing the edges, i.e.,  - E+ = E - and  - E - = E+. This means that
we choose an orientation for each edge of G, and denote by E+ the set of all edges
of G oriented the chosen way, while E - is the set of all edges oriented the opposite
way. We define a mapping h : | \sansH \sanso \sansm (K2,G)| \rightarrow \scrS 1 on the vertices of | \sansH \sanso \sansm (K2,G)| by
setting h(e) = (1,0) if e\in E+ and h(e) = ( - 1,0) if e\in E - .

We extend this mapping to inner points of faces. First, observe that for every
face \sigma \in \sansH \sanso \sansm (K2,G) with at least two elements, there is a vertex u \in V (G) such
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Fig. 3.4. K7/2 with a complete bipartite subgraph (on the left) and the corresponding face of

| \sansH \sanso \sansm (K2,K7/2)| after mapping to \BbbR 2 (on the right).

that either \sigma \subseteq \{ (u, v) \in E(G)\} or \sigma \subseteq \{ (v,u) \in E(G)\} , as otherwise we can find a
copy of C4 in G. We map | \sigma | for faces of the first form to the arc connecting (1,0)
and ( - 1,0) with positive y coordinates, and | \sigma | for faces of the second form to the
arc with negative y coordinates. More precisely, if \sigma = \{ (u, v1), . . . , (u, vn)\} , we let
a=

\sum n
i=1 \lambda i(u, vi) be a point of | \sigma | . Put

x=
\sum 

(u,vi)\in E+

\lambda i  - 
\sum 

(u,vi)\in E - 

\lambda i

and y=
\surd 
1 - x2 (note that | x| \leq 1, so y is well-defined), and define h(a) = (x, y). Now

to preserve the \BbbZ 2-action, we map the geometric representations of the faces of the
second form to the arc with negative y coordinates analogously putting y= - 

\surd 
1 - x2.

Clearly, the mapping h defined this way is continuous and it is easy to check that
indeed h( - a) = - h(a) for each a\in | \sansH \sanso \sansm (K2,G)| .

4. Adjunction. In this section we will use both graphs and digraphs, which by
default are allowed to have loops. We will work with certain (di)graph constructions
that can be seen as functions from the set of all finite (di)graphs to itself. On one
occasion in this section (section 4.2.1), we will allow the image of a finite digraph to
be an infinite digraph; this will be specified. We denote the set of all finite graphs and
digraphs by \sansG \sansr and \sansD \sansg \sansr , respectively. The class of all (finite and infinite) digraphs is
denoted by \sansD \sansg \sansr \infty .

In this section, we explain what adjunction is and how it can be used to obtain
reductions between PCSPs. The notion of adjointness we present is a special case of
the more general notion of adjoint functors in category theory. We restrict our atten-
tion to an order-theoretic version thereof (i.e., to posetal or thin categories), which
only considers the existence of homomorphisms; this is also known as a (monotone)
Galois connection. Generally, a monotone Galois connection between two preordered
sets P1 and P2 is a pair of maps \lambda : P1\rightarrow P2 and \gamma : P2\rightarrow P1 such that, for all a\in P1

and b\in P2,

\lambda (a)\leq b if and only if a\leq \gamma (b).(4.1)
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For us, the preorder \leq will always be the homomorphism preorder\rightarrow , and the sets P1

and P2 will be either \sansD \sansg \sansr or \sansG \sansr . In this case, \Lambda and \Gamma are adjoint if, for all (di)graphs
H and G, we have

\Lambda H\rightarrow G if and only if H\rightarrow \Gamma G.(4.2)

In this case \Lambda is a left adjoint and \Gamma is a right adjoint . If, for some \Lambda , there exists
such a \Gamma we also say that \Lambda has (or admits) a right adjoint . Similarly, we say that \Gamma 
has a left adjoint if there exists such \Lambda .

Adjunction is an abstraction of a few concepts that are already present in the
theory of (P)CSPs; notably, the Inv-Pol Galois correspondences of Geiger [36], and
Bodnarchuk et al., [10, 11] and Pippenger [63] between sets of functions and sets of
relations can also been seen as adjunctions where, in (4.1), the preorder on one side is
the inclusion and the preorder on the other side is the inverse inclusion. We remark
that many constructions described in [5, sections 3 and 4] (see e.g., [5, Lemma 4.4])
form pairs of adjoint functions. We also remark that condition (4.2) makes perfect
sense when \Lambda and \Gamma are maps between the sets of relational structures of different
signatures (say, between the set of all finite digraphs and the set of all finite 3-uniform
hypergraphs), and all results in section 4.2 hold in this more general setting.

This section is organized as follows. In section 4.1, we show that the standard
gadget reductions from the algebraic approach to the CSP can be seen as a special case
of adjunction. In section 4.2, we give general results about adjunctions and reductions
between PCSPs. In section 4.3, we apply specific cases of adjunction to prove our
results about the hardness of approximate graph coloring and demonstrate that the
reductions between PCSPs obtained there cannot be captured by the algebraic theory
from [5, 23]. Finally, in section 4.4, we use another specific adjunction to prove that, in
a precise technical sense, the complexity of the promise graph homomorphism problem
depends only on the topological properties of graphs.

To emphasize that many of our proofs in this section do not assume computability
of reductions, we will use the following definition.

Definition 4.1. Let \Lambda be a function from \sansD \sansg \sansr to \sansD \sansg \sansr or from \sansG \sansr to \sansG \sansr . We say
that \Lambda is

\bullet a reduction from PCSP(H1,G1) to PCSP(H2,G2) if it preserves the yes- and
no-answers of the two problems, i.e., for any I, I\rightarrow H1 implies \Lambda I\rightarrow H2 and
I \not \rightarrow G1 implies \Lambda I \not \rightarrow G2. Preserving yes-answers is also called completeness
and preserving no-answers soundness;
\bullet log-space/polynomial-time computable if there is a log-space/polynomial-time
algorithm that on input I outputs \Lambda I.

4.1. Adjunction in CSPs. The algebraic approach to the CSP studies certain
constructions on templates of CSPs called pp-powers, and it asserts that if A is a
pp-power of B then there is a log-space reduction from CSP(A) to CSP(B). This
reduction is a function from instances of CSP(A) to CSP(B) computable in log-space
that we call a gadget replacement . In fact, any such reduction is a left adjoint to the
corresponding pp-power construction. We present the notions simplified for digraphs
and refer to [7, section 3.1] for more background. We will use the constructions from
Example 1.1 as a running example in this subsection.

Both functions are parameterized by a gadget or a primitive positive formula (a
pp-formula), thus giving a reduction for each gadget. A digraph gadget formula of
arity n is a logical formula \phi (x1, . . . , xn, y1, . . . , yn) of the form
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\exists z1, . . . , zm . (u1, v1)\in E \wedge \cdot \cdot \cdot \wedge (uk, vk)\in E \wedge (u1
\prime = v1

\prime ) \wedge \cdot \cdot \cdot \wedge (u\ell 
\prime = v\ell 

\prime ),

where ui, vi, ui
\prime , vi\prime \in \{ x1, . . . , xn, y1, . . . , yn, z1, . . . , zm\} . Such a formula can also be

represented by a gadget digraph J\phi , which is a digraph with distinguished vertices
labeled x1, . . . , xn, y1, . . . , yn, obtained from vertices \{ x1, . . . , xn, y1, . . . , yn, z1, . . . , zm\} 
and edges \{ (ui, vi) | i \in [k]\} by identifying some of the vertices (according to the
equalities in \phi ).

If we want a gadget to transform an undirected graph to an undirected graph, we
require that the gadget is symmetric, i.e., that the formula \phi (x1, . . . , xn, y1, . . . , yn) is
logically equivalent to \phi (y1, . . . , yn, x1, . . . , xn) for all graphs, or that the gadget graph
has an automorphism switching xi and yi for each i.

The subdivision from Example 1.1 is defined by using the following digraph gadget
formula of arity 1:

\phi k(x, y) = \exists z1, . . . , zk - 1 . (x, z1)\in E \wedge (z1, z2)\in E \wedge \cdot \cdot \cdot \wedge (zk - 1, y)\in E

which is symmetric if we only consider undirected graphs. The corresponding gadget
would be an (unoriented) path of length k connecting the two distinguished vertices
x and y.

Definition 4.2. The gadget replacement \Lambda \phi assigned to a digraph gadget \phi is
then defined by applying the following construction. Starting with a digraph H,

1. for each vertex v \in V (H), introduce new vertices v1, . . . , vn \in V (\Lambda \phi H);
2. for each edge (u, v) \in E(H), introduce a fresh copy of the gadget digraph J\phi 

while identifying x1, . . . , xn with u1, . . . , un and y1, . . . , yn with v1, . . . , vn; we
denote the remaining vertices of this copy of J\phi by zu,v for z \in \{ z1, . . . , zm\} .

Note that some of the vertices ui, vj above might get identified, which can also result
in long chains of identifications. Nevertheless, \Lambda \phi is log-space computable.

The subdivision \Lambda k of Example 1.1 is the same as the gadget replacement \Lambda \phi k
.

We show an example of application in Figure 4.1.

Definition 4.3. The pp-power \Gamma \phi G of a digraph G defined by \phi is obtained by
the following construction.

1. V (\Gamma \phi G) = V (G)n, and
2. ((u1, . . . , un), (v1, . . . , vn)) \in E(\Gamma \phi G) if \phi (u1, . . . , un, v1, . . . , vn) is true in G,

in other words, there exists a homomorphism eu,v from the gadget digraph J\phi 

to G such that eu,v(xi) = ui and eu,v(yi) = vi for all i.

Again, it is not hard to check that \Gamma k : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr from Example 1.1 is the same
as the pp-power \Gamma \phi k

, i.e., it is the graph on the same vertex set where two vertices

0

1

2

\Lambda \phi 3\mapsto \rightarrow 0

1

2

0

1
23

4

5

6 7
8

\Gamma \phi 3\leftarrow [ 0

1
23

4

5

6 7
8

Fig. 4.1. Example of gadget replacement and a pp-power.
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are connected by an edge if and only if they are connected by a path of length k in
the original graph. Again, see Figure 4.1 for an application.

The standard reductions used in the algebraic approach are of the form \Lambda \phi : it is
well known (see [7, Theorem 13]) that \Lambda \phi is a reduction from CSP(\Gamma \phi G) to CSP(G)
for any digraph G. For example, it is not hard to see that \Lambda \phi 3

from our running
example is really a reduction from CSP(K3) to CSP(C9) since K3 is homomorphically
equivalent to \Gamma \phi 3C9, and hence it has the same CSP. This observation also follows
immediately from the fact that \Lambda \phi and \Gamma \phi are adjoint, which we show here directly.

Observation 4.4. Let \phi be a pp-formula. Then \Lambda \phi and \Gamma \phi are adjoint.

Proof. To prove that indeed \Lambda \phi and \Gamma \phi are adjoint, first assume h : H\rightarrow \Gamma \phi G is
a homomorphism. Such a homomorphism is a map h : V (H)\rightarrow V (G)n which can be
seen as an n-tuple of mappings h1, . . . , hn : V (H)\rightarrow V (G). Further, since h preserves
edges, we have that for each (u, v) \in E(H), \phi (h1(u), . . . , hn(u), h1(v), . . . , hn(v)) is
true in G, which gives a homomorphism eu,v : J\phi \rightarrow G such that eu,v(xi) = hi(u) and
eu,v(yi) = hi(v). We use these eu,v's to define a homomorphism h\prime : \Lambda \phi H\rightarrow G:

1. put h\prime (ui) = hi(u) for each u\in H and i;
2. extend h\prime to new vertices introduced by the second step of gadget replacement

of the edge (u, v)\in E(H) by putting h\prime (z) = eu,v(zu,v) for all z \in \{ z1, . . . , zm\} .
Clearly, h\prime is a homomorphism since each eu,v is and there are no edges in \Lambda \phi H that
are not included in some copy of J\phi . For the other implication, assume g : \Lambda \phi H\rightarrow G.
We define g\prime : H \rightarrow \Gamma \phi G as g\prime (u) = (g(u1), . . . , g(un)) for each u \in V (H). It is
straightforward to check that g\prime is indeed a homomorphism. This concludes the
proof.

One of the main strengths of the algebraic approach lies in a description of when
such reductions apply, by means of polymorphisms and minion homomorphisms; see
[7, Theorem 38] (originally appeared in [8]) and [5, Theorem 4.12] for the promise
setting. We return to this later in this section (Example 4.9).

4.2. General results about adjunction for PCSPs. In the following lemma,
we give a few basic and useful properties of adjoint functors that are well known in
category theory. We provide proofs of these facts for completeness. We say that a
function \Lambda : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr is monotone if \Lambda H \rightarrow \Lambda G for all H,G such that H \rightarrow G;
and it preserves disjoint unions if \Lambda (H1+H2) and \Lambda H1+\Lambda H2 are homomorphically
equivalent for all digraphs H1,H2 (we denote disjoint union with +).

Lemma 4.5. Let \Lambda ,\Gamma : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr be adjoint. Then

1. G\rightarrow \Gamma \Lambda G for all digraphs G;
2. \Lambda \Gamma H\rightarrow H for all digraphs H;
3. both \Lambda and \Gamma are monotone; and
4. \Lambda preserves disjoint unions.

Proof. We start by proving (1): \Lambda G\rightarrow \Lambda G implies that G\rightarrow \Gamma \Lambda G by adjunction.
Similarly for (2), observe that \Gamma H\rightarrow \Gamma H implies \Lambda \Gamma H\rightarrow H by adjunction.

For (3) assume H\rightarrow G. Then by (1), we have H\rightarrow G\rightarrow \Gamma \Lambda G, and therefore by
adjunction \Lambda H\rightarrow \Lambda G. This concludes that \Lambda is monotone. Similarly from (2), we
have \Lambda \Gamma H\rightarrow H\rightarrow G and hence by adjunction \Gamma H\rightarrow \Gamma G, so \Gamma is monotone.

For (4), consider the disjoint union of digraphs H1,H2. Note that Hi \rightarrow H1 +
H2 for i = 1,2 implies \Lambda H1 + \Lambda H2 \rightarrow \Lambda (H1 + H2) by monotonicity. To show the
other direction, observe that Hi \rightarrow \Gamma \Lambda Hi \rightarrow \Gamma (\Lambda H1 + \Lambda H2) for i = 1,2 by (1) and
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monotonicity of \Gamma , hence H1 +H2 \rightarrow \Gamma (\Lambda H1 + \Lambda H2) and therefore \Lambda (H1 +H2)\rightarrow 
\Lambda H1 +\Lambda H2 by adjunction.

The next result is the main theorem of this subsection. It describes when an
adjunction provides a reduction between two PCSPs. This theorem will be applied
in the following two subsections to provide new reductions between promise digraph
homomorphism problems of the sort that has not been described before.

Theorem 4.6. Let \Lambda ,\Gamma : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr be adjoint. Let H1,G1,H2,G2 be digraphs
such that Hi \rightarrow Gi for i = 1,2. Then \Lambda is a reduction from PCSP(H1,G1) to
PCSP(H2,G2) if and only if H1\rightarrow \Gamma H2 and \Gamma G2\rightarrow G1.

Proof. Assume first that H1 \rightarrow \Gamma H2 and \Gamma G2 \rightarrow G1. Then \Lambda preserves yes-
instances because I \rightarrow H1 implies I \rightarrow \Gamma H2 (since H1 \rightarrow \Gamma H2 by assumption) and
then \Lambda I\rightarrow H2 by adjointness. It also preserves no-instances because \Lambda I\rightarrow G2 implies
I\rightarrow \Gamma G2 by adjointness and then I\rightarrow G1 because \Gamma G2\rightarrow G1 (by assumption). Hence
\Lambda is a reduction, as claimed.

For the converse, preserving yes-instances means that for I\in \sansD \sansg \sansr , I\rightarrow H1 implies
\Lambda I \rightarrow H2. Using this with I = H1, we get that \Lambda H1 \rightarrow H2 and thus H1 \rightarrow \Gamma H2

by adjointness. Preserving no-instances means that \Lambda I\rightarrow G2 implies I\rightarrow G1. Take
I=\Gamma G2. Since \Lambda \Gamma G2\rightarrow G2 by Lemma 4.5(2), we have \Gamma G2\rightarrow G1.

Naturally, we use the above theorem in the case that \Lambda is log-space computable
to obtain a log-space reduction between the two PCSPs. In the same way, it can also
be applied if \Lambda is polynomial-time computable, if the goal is to get a polynomial-
time reduction, etc. Note that, in such applications, \Gamma need not be computable to
guarantee the correctness of the reduction.

Remark 4.7. We note (a well-known categorical fact) that any two right adjoints
\Gamma 1 and \Gamma 2 of \Lambda are homomorphically equivalent in the following sense: for all G, \Gamma 1G
and \Gamma 2G are homomorphically equivalent. This follows, for example, from the above
theorem: we have that \Lambda is a reduction from PCSP(\Gamma 1G,\Gamma 1G) to PCSP(G,G) since
\Gamma 1 is a right adjoint to \Lambda and, consequently, \Gamma 1G\updownarrow \Gamma 2G since \Gamma 2 is a right adjoint.

Corollary 4.8. Let \Lambda ,\Gamma : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr be adjoint. Then

1. \Lambda is a reduction from PCSP(H,\Gamma G) to PCSP(\Lambda H,G) for all graphs H,G
such that H\rightarrow \Gamma G (or, equivalently, \Lambda H\rightarrow G);

2. \Lambda is a reduction from PCSP(\Gamma H,\Gamma G) to PCSP(H,G) for all graphs H,G
such that H\rightarrow G.

Proof. For (1), the first condition of Theorem 4.6 is equivalent to H \rightarrow \Gamma \Lambda H,
which holds by adjunction (see Lemma 4.5(1)); the second condition is trivial: \Gamma G\rightarrow 
\Gamma G. For (2), both conditions are trivial.

We remark that all reductions described in Theorem 4.6 can be deduced from
the special case in Corollary 4.8(1) by composing it with trivial reductions (that map
every instance to itself). Recall that there is a trivial reduction from PCSP(H\prime ,G\prime ) to
PCSP(H,G) if (and only if)H\prime \rightarrow H andG\rightarrow G\prime ; this is referred to as a homomorphic
relaxation [5, Definition 4.6]. If digraphs H1,G1,H2,G2 satisfy the conditions of
Theorem 4.6, then we have the following sequence of reductions:

PCSP(H1,G1)
tr. - \rightarrow PCSP(H1,\Gamma G2)

Cor. 4.8(1) -  -  -  -  -  -  - \rightarrow PCSP(\Lambda H1,G2)
tr. - \rightarrow PCSP(H2,G2).
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Similarly, Corollary 4.8(2) implies all reductions in Theorem 4.6:

PCSP(H1,G1)
tr. - \rightarrow PCSP(\Gamma H2,\Gamma G2)

Cor. 4.8(2) -  -  -  -  -  -  - \rightarrow PCSP(H2,G2).

Example 4.9. What we described in section 4.1 in the context of CSPs, can be
generalized to PCSPs as follows. The following are equivalent:

1. there is a pp-formula \phi such that \Lambda \phi is a log-space reduction from PCSP
(H1,G1) to PCSP(H2,G2) (i.e., there exists some gadget reduction between
the two);

2. there is a pp-formula \phi such that H1\rightarrow \Gamma \phi H2 and \Gamma \phi G2\rightarrow G1 (i.e., (H1,G1)
is a homomorphic relaxation of a pp-power of (H2,G2));

3. there is a minion homomorphism Pol(H2,G2)\rightarrow Pol(H1,G1).
The equivalence of (2) and (3) is by [5, Theorem 4.12]. The equivalence of the last
two items and (1) is implicit in [5] (see, e.g., [5, Lemma 4.11]), but the equivalence of
(1) and (2) follows directly from Theorem 4.6 above.

For example, all \sansN \sansP -hard (nonpromise) CSPs are reducible to one another in this
way. The understanding that one can get simple reductions between CSPs by relating
their sets of polymorphisms goes back at least as far as [47]. The use of pp-formulas
and minion homomorphisms was initiated in [21] and [8], respectively.

4.2.1. Are all reductions given by adjunctions?. Theorem 4.6 raises a ques-
tion of whether all reductions between PCSPs are given by adjunctions, in the sense
that every reduction is a left adjoint from some adjoint pair. By Lemma 4.5(3-4) we
have to restrict this question to reductions that are monotone and preserve disjoint
unions. We will show that the answer to this question is positive, with a small tech-
nical caveat that the right adjoint might produce infinite digraphs on a finite input.
Note that this caveat is not an issue, since the right adjoint does not need to be
computable.

This suggests that looking at classes of adjoints that generalize the simple gad-
get constructions \Lambda \phi could lead to understanding an essential part of all reductions
between PCSPs. In particular, we hope that the use of the PCP theorem in proving
\sansN \sansP -hardness of PCSPs (see [5, section 5]) can be superseded this way. We remark
that, e.g., the reduction in Dinur's proof of the PCP theorem [25] is not necessarily
monotone: this is due to the fact that the number of repetitions of the gap amplifica-
tion depends on the size of the input.

The core of the argument in the proof of the following theorem is a well-known
categorical statement (the adjoint functor theorem). Again, we provide a full proof
for completeness.

Theorem 4.10. Let H1,G1,H2,G2 be finite digraphs such that Hi \rightarrow Gi for
i= 1,2, and let \Lambda : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr be a reduction from PCSP(H1,G1) to PCSP(H2,G2).
Assume additionally that \Lambda is monotone and preserves disjoint unions. Then there
is a function \Gamma : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr \infty with possibly infinite images such that, for all finite
digraphs H and G, we have H \rightarrow \Gamma G if and only if \Lambda H \rightarrow G. Moreover, we have
H1\rightarrow \Gamma H2 and \Gamma G2\rightarrow G1 for any such \Gamma .

Proof. We define \Gamma G to be the disjoint union of all finite digraphs I such that
\Lambda I \rightarrow G. Assuming that H and G are finite digraphs, we immediately get that
\Lambda H \rightarrow G implies H \rightarrow \Gamma G. We first prove the other implication for connected H:
assuming that H\rightarrow \Gamma G, we get that H maps to some connected component of \Gamma G
and thus H\rightarrow I for some finite I such that \Lambda I\rightarrow G. This gives that \Lambda H\rightarrow \Lambda I\rightarrow G
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since \Lambda is monotone. For disconnected H, we use that \Lambda preserves disjoint unions, so
we may repeat the above argument for each component separately.

The ``moreover"" claim is proved similarly to Theorem 4.6. In particular, the
proof that if \Lambda is a reduction then H1 \rightarrow \Gamma H2 is identical to the one in Theorem
4.6. To prove that \Gamma G2\rightarrow G1, we cannot simply use preservation of no-instances on
the possibly infinite \Gamma G2. Instead, we get that for every I finite, I \rightarrow \Gamma G2 implies
\Lambda I\rightarrow G2, which implies I\rightarrow G1 (because \Lambda is a reduction). A homomorphism from
the possibly infinite \Gamma G2 to the finite G1 is then given by compactness.

While monotonicity is a key assumption in Theorem 4.10, preservation of disjoint
unions can always be enforced on any reduction by first precomputing connected
components of the input (which can be done in log-space due to [66]), and then
applying the original reduction on each of the components separately.

We note that all the proofs in this section reduce between decision problems; they
can be adapted for search problems. For that we need to additionally assume that
there is an efficient way to find a homomorphism I \rightarrow \Gamma G given a homomorphism
\Lambda I\rightarrow G on input (note that G is fixed here). All the adjoint pairs that we use in the
following subsections indeed have this property.

From now on, we return to considering only finite digraphs.

4.2.2. Reductions that have both a left and a right adjoint. In the two
applications below, we use reductions that are a left adjoint from one adjoint pair and,
at the same time, the right adjoint from another adjoint pair. (In fact, these reductions
will be of the form of a pp-power \Gamma \phi , as described in section 4.1, for special gadgets
\phi ). The property of being both left and right adjoint has the following consequence.

Theorem 4.11. Let \Gamma be a log-space computable function that has a right adjoint
\Omega , and a log-space computable left adjoint \Lambda . Then PCSP(\Gamma H,G) and PCSP(H,\Omega G)
are log-space equivalent for all digraphs H,G such that \Gamma H\rightarrow G.

Proof. Corollary 4.8(1) applied for \Gamma and \Omega gives that \Gamma is a reduction from
PCSP(H,\Omega G) to PCSP(\Gamma H,G). We claim that \Lambda is a reduction from PCSP(\Gamma H,G)
to PCSP(H,\Omega G). This follows from Theorem 4.6 applied to \Lambda ,\Gamma : we need to check
that \Gamma H\rightarrow \Gamma H, which holds trivially, and that \Gamma \Omega G\rightarrow G, which follows by Lemma
4.5(2), since \Gamma and \Omega are adjoint.

4.3. The arc digraph construction. Let D be a digraph. The arc digraph
(or line digraph) of D, denoted \delta D, is the digraph whose vertices are arcs (directed
edges) of D and whose arcs are pairs of the form ((u, v), (v,w)). In other words,
\delta : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr is the pp-power \Gamma \phi corresponding to (n = 2 and) the following gadget
digraph:
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\Omega , and a log-space computable left adjoint \Lambda . Then PCSP(\Gamma H,G) and PCSP(H,\Omega G)
are log-space equivalent for all digraphs H,G such that \Gamma H\rightarrow G.

Proof. Corollary 4.8(1) applied for \Gamma and \Omega gives that \Gamma is a reduction from
PCSP(H,\Omega G) to PCSP(\Gamma H,G). We claim that \Lambda is a reduction from PCSP(\Gamma H,G)
to PCSP(H,\Omega G). This follows from Theorem 4.6 applied to \Lambda ,\Gamma : We need to
check that \Gamma H \rightarrow \Gamma H, which holds trivially, and that \Gamma \Omega G \rightarrow G, which follows
by Lemma 4.5(2), since \Gamma and \Omega are adjoint.

4.3. The arc digraph construction. Let D be a digraph. The arc digraph
(or line digraph) of D, denoted \delta D , is the digraph whose vertices are arcs (directed
edges) of D and whose arcs are pairs of the form ((u, v), (v, w)). In other words,
\delta : Dgr \rightarrow Dgr is the pp-power \Gamma \phi corresponding to (n = 2 and) the following gadget
digraph:

x1

x2 = y1

y2

or to the pp-formula \phi = (x1, x2) \in E \wedge (y1, y2) \in E \wedge x2 = y1. It thus has a left
adjoint \delta L = \Lambda \phi , though we will not need it. More surprisingly, \delta has a right adjoint
\delta R : Dgr\rightarrow Dgr.

Definition 4.12. For a digraph D, let \delta RD be the digraph that has a vertex for
each pair S, T \subseteq V (D), where S or T can be empty, such that S\times T \subseteq E(D), and an
arc from (S, T ) to (S\prime , T \prime ) if and only if T \cap S\prime \not = \emptyset .

We give a proof of the adjunction below for completeness. While \delta will be the
reduction we use, \delta R will be useful for understanding the best reduction we can get
from \delta .

Lemma 4.13 ([33]). \delta and \delta R are adjoint.

Proof. Let H,G be digraphs and let h : \delta H \rightarrow G be a homomorphism. That is,
h(u, v) is a vertex of G for each arc (u, v) of H, and for every pair of arcs (u, v), (v, w)
in H, there is an arc from h(u, v) to h(v, w) in G. We can define a homomorphism
H \rightarrow \delta RG as v \mapsto \rightarrow (s(v), t(v)), where s(v) := \{ h(u, v) | (u, v) \in E(H)\} and t(v) :=
\{ h(v, w) | (v, w) \in E(H)\} . Then s(v)\times t(v) \subseteq E(G), so (s(v), t(v)) is indeed a vertex
of \delta RG. Moreover, for every arc (u, v) of H, t(u) \cap s(v) is non-empty, as it contains
(u, v); hence (s, t) is a homomorphism to \delta RG.

Conversely, let (s, t) define a homomorphism H \rightarrow \delta RG. That is, s(v), t(v) are
subsets of V (G) such that s(v)\times t(v) \subseteq E(G) and for every arc (u, v) ofH, t(u)\cap s(v) \not =
\emptyset . We define a homomorphism h : \delta H \rightarrow G as follows: choose h(u, v) to be an
arbitrary vertex in t(u) \cap s(v). For any two arcs (u, v), (v, w) in H, we have that
h(u, v) is a vertex in s(v) and h(v, w) is a vertex in t(v), hence (h(u, v), h(v, w)) is an
arc of G. Thus h is indeed a homomorphism \delta H\rightarrow G.

By Corollary 4.8(2), \delta is a reduction from PCSP(\delta RH, \delta RG) to PCSP(H,G), for
all digraphs H,G. Let us see what this gives for classical colourings, i.e., when H and
G are cliques. Let us denote b(n) :=

\bigl( 
n

\lfloor n/2\rfloor 
\bigr) 
.

Observation 4.14. For all n \in \BbbN , there are homomorphisms

Kb(n) \rightarrow \delta RKn \rightarrow K2n .

Proof. Consider vertices of the form (S, V (Kn) \setminus S) in \delta RKn, for subsets S of
V (Kn) of size exactly \lfloor n/2\rfloor . Clearly for any two such different S, S\prime , the set S\prime 

or to the pp-formula \phi = (x1, x2) \in E \wedge (y1, y2) \in E \wedge x2 = y1. It thus has a left
adjoint \delta L =\Lambda \phi , though we will not need it. More surprisingly, \delta has a right adjoint
\delta R : \sansD \sansg \sansr \rightarrow \sansD \sansg \sansr .

Definition 4.12. For a digraph D, let \delta RD be the digraph that has a vertex for
each pair S,T \subseteq V (D), where S or T can be empty, such that S \times T \subseteq E(D), and an
arc from (S,T ) to (S\prime , T \prime ) if and only if T \cap S\prime \not = \emptyset .
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We give a proof of the adjunction below for completeness. While \delta will be the
reduction we use, \delta R will be useful for understanding the best reduction we can get
from \delta .

Lemma 4.13 ([33]). \delta and \delta R are adjoint.

Proof. Let H,G be digraphs and let h : \delta H\rightarrow G be a homomorphism. That is,
h(u, v) is a vertex of G for each arc (u, v) of H, and for every pair of arcs (u, v), (v,w)
in H, there is an arc from h(u, v) to h(v,w) in G. We can define a homomorphism
H \rightarrow \delta RG as v \mapsto \rightarrow (s(v), t(v)), where s(v) := \{ h(u, v) | (u, v) \in E(H)\} and t(v) :=
\{ h(v,w) | (v,w) \in E(H)\} . Then s(v)\times t(v)\subseteq E(G), so (s(v), t(v)) is indeed a vertex
of \delta RG. Moreover, for every arc (u, v) of H, t(u) \cap s(v) is nonempty, as it contains
(u, v); hence (s, t) is a homomorphism to \delta RG.

Conversely, let (s, t) define a homomorphism H \rightarrow \delta RG. That is, s(v), t(v) are
subsets of V (G) such that s(v)\times t(v)\subseteq E(G) and for every arc (u, v) ofH, t(u)\cap s(v) \not =
\emptyset . We define a homomorphism h : \delta H\rightarrow G as follows: choose h(u, v) to be an arbitrary
vertex in t(u) \cap s(v). For any two arcs (u, v), (v,w) in H, we have that h(u, v) is a
vertex in s(v) and h(v,w) is a vertex in t(v), hence (h(u, v), h(v,w)) is an arc of G.
Thus h is indeed a homomorphism \delta H\rightarrow G.

By Corollary 4.8(2), \delta is a reduction from PCSP(\delta RH, \delta RG) to PCSP(H,G), for
all digraphs H,G. Let us see what this gives for classical colorings, i.e., when H and
G are cliques. Let us denote b(n) :=

\bigl( 
n

\lfloor n/2\rfloor 
\bigr) 
.

Observation 4.14. For all n\in \BbbN , there are homomorphisms

Kb(n)\rightarrow \delta RKn\rightarrow K2n .

Proof. Consider vertices of the form (S,V (Kn) \setminus S) in \delta RKn, for subsets S of
V (Kn) of size exactly \lfloor n/2\rfloor . Clearly for any two such different S,S\prime , the set S\prime 

intersects V (Kn)\setminus S, so these vertices from a clique of size b(n) in \delta RKn. For the other
bound, note that mapping a vertex (S,T ) to (S,V (Kn) \setminus S) gives a homomorphism
from \delta RKn to its subgraph of size at most 2n, and therefore to the clique K2n .

In other words, if \chi (\delta G) \leq n (i.e., if \delta G \rightarrow Kn), then G \rightarrow \delta RKn \rightarrow K2n ,
hence \chi (G) \leq 2n. Similarly, if \chi (G) \leq b(n), then \chi (\delta G) \leq n. Therefore, \delta has
the remarkable property of decreasing the chromatic number roughly logarithmically
(even though it is computable in log-space!). This was first proved by Harner and
Entringer in [42].

Observation 4.14 can be made tight if we use another, somewhat trivial adjunction
between digraphs and graphs: Let symD be the symmetric closure of a digraph D
and let subD be the maximal symmetric subgraph of D; so subD\rightarrow D\rightarrow symD by
the identity maps. Observe that sym and sub are adjoint: symD\rightarrow D\prime if and only
if D\rightarrow subD\prime for all digraphs D,D\prime .3 Composing the two adjunctions, we get that
\delta sym is adjoint to sub \delta R. Therefore, for any digraphs H,G with H\rightarrow G, \delta sym is
a reduction from PCSP(sub \delta RH, sub \delta RG) to PCSP(H,G) by Corollary 4.8(2). For
cliques, Poljak and R\"odl [65] showed the following.

Lemma 4.15 ([65]). For all n \in \BbbN , sub \delta RKn is homomorphically equivalent to
Kb(n).

3This is in fact the composition of two adjoint pairs: taking sym and sub as functions from
digraphs to graphs and the inclusion function \iota from graphs to digraphs, we have symD\rightarrow G if and
only if D\rightarrow \iota G and \iota G\rightarrow D if and only if G\rightarrow subD for all graphs G and digraphs D.
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Proof. As before, mapping a vertex (S,T ) of sub \delta RKn to (S,V (Kn) \setminus S) gives
a homomorphism to the subgraph induced by vertices of the form (S,V (Kn) \setminus S), so
we can restrict our attention to it. A (bidirected) clique corresponds exactly to an
antichain of sets S (in the subset lattice), so by Sperner's theorem (on the maximal size
of such antichains) the largest clique has size b(n). Independent sets in this subgraph
correspond exactly to chains of sets S, thus by Dilworth's theorem (on poset width)
the subgraph can be covered with b(n) independent sets, giving a b(n)-coloring.

Lemma 4.15 is equivalent to the statement that for an undirected graph G, \delta G=
\delta symG\rightarrow Kn if and only if G\rightarrow Kb(n). This, in particular, means that the chromatic
number of \delta G is determined by \chi (G), namely, \chi (\delta G) = min\{ n | \chi (G)\leq b(n)\} . This
together with Corollary 4.8(2) implies that \delta sym gives the following reduction for
approximate coloring:

Lemma 4.16. PCSP(Kb(k\prime ),Kc\prime ) log-space reduces to PCSP(Kk,Kc) for all k\prime >
1, c\prime \geq b(k\prime )> 1, c\geq k such that b(c)\leq c\prime and k\prime \leq k.

Proof. By Theorem 4.6, \delta sym is a reduction between the two problems if Kb(k\prime )\rightarrow 
sub \delta RKk and sub \delta RKc\rightarrow Kc\prime . Lemma 4.15 then implies that the first condition is
satisfied if b(k\prime ) \leq b(k), which is implied by k\prime \leq k, and the second is satisfied if
b(c)\leq c\prime .

Remark 4.17. We remark that the reduction in Lemma 4.16 cannot be obtained by
using a standard gadget reduction captured by the algebraic approach [5] (see Example
4.9). In detail, since b(4) = 6, PCSP(K6,Kb(c)) log-space reduces to PCSP(K4,Kc)
for all c\geq 4. This contrasts with [5, Proposition 10.3] which says that there exists a
c such that Pol(K4,Kc) admits no minion homomorphism to any Pol(Kk\prime ,Kc\prime ) for
c\prime \geq k\prime > 4. Therefore, constructions like \delta change the set of polymorphisms in an
essential way and we believe that understanding the relation between Pol(H, \delta RG)
and Pol(\delta H,G) is an important question for future work.

4.3.1. Proof of Theorem 1.9. One consequence we derive from Lemma 4.16
is a strengthening of Huang's result.

Theorem 4.18 (Huang [46]). For all sufficiently large k and c= 2\Omega (k1/3), PCSP
(Kk,Kc) is \sansN \sansP -hard.

We improve the asymptotics from a subexponential c to a single exponential:
from c = \Theta (2k

1/3

) to c = b(k)  - 1 = \Theta (2k/
\surd 
k) while at the same time relaxing the

condition from ``sufficiently large k"" to k\geq 4.

Theorem 1.9. For all k\geq 4 and c=
\bigl( 

k
\lfloor k/2\rfloor 

\bigr) 
 - 1, PCSP(Kk,Kc) is \sansN \sansP -hard.

This theorem is proved by starting from Theorem 4.18 and repeatedly using the
reduction \delta sym. Roughly speaking, each step improves the asymptotics a little. After
a few steps, this results in a single-exponential function, and with slightly more preci-
sion, this results in exactly b(k) - 1. Moreover, one can notice that the requirements
on sufficiently large k get relaxed with every step. This allows us after sufficiently
many steps to arrive at any k\geq 4.

We note it would not be sufficient to start from a quasi-polynomial c = k\Theta (logk)

in Khot's [50] earlier result in place of Huang's Theorem 4.18.

Proof of Theorem 1.9. We start with Theorem 4.18 which asserts a constant C > 0
such that

PCSP(Kk,K2\lfloor C\cdot k1/3\rfloor ) is \sansN \sansP -hard, for sufficiently large k.(4.3)
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TOPOLOGY AND ADJUNCTION IN CONSTRAINT SATISFACTION 69

After one reduction using Lemma 4.16, we obtain the following.

Claim 4.19. PCSP(Kk,K\lfloor 2k/4\rfloor ) is \sansN \sansP -hard for sufficiently large k.

Proof. Substituting b(k) for k in (4.3), we get that PCSP(Kb(k),K2\lfloor C\cdot b(k)1/3\rfloor ) is
\sansN \sansP -hard for sufficiently large k. We apply Lemma 4.16; to show that it implies the
claim, we need b(\lfloor 2k/4\rfloor ) \leq 2\lfloor C\cdot b(k)1/3\rfloor . This follows since b(m) \leq 2m for all m and
2k/4 \leq (2k/k)1/3 \leq \lfloor C \cdot b(k)1/3\rfloor for sufficiently large k, and therefore

b(\lfloor 2k/4\rfloor )\leq 2\lfloor 2
k/4\rfloor \leq 2\lfloor C\cdot b(k)1/3\rfloor 

as we wanted to show.

The second reduction gives the following.

Claim 4.20. PCSP(Kk,K\lfloor 2k/4k\rfloor ) is \sansN \sansP -hard for sufficiently large k.

Proof. Substitute b(k) for k in Claim 4.19 to get that PCSP(Kb(k),K\lfloor 2b(k)/4\rfloor ) is
\sansN \sansP -hard. Observe that 2k/4k\leq b(k)/4 for sufficiently large k, and therefore

b(\lfloor 2k/4k\rfloor )\leq b(\lfloor b(k)/4\rfloor )\leq 2\lfloor b(k)/4\rfloor \leq \lfloor 2b(k)/4\rfloor .

Hence by Lemma 4.16, PCSP(Kb(k),K\lfloor 2b(k)/4\rfloor ) reduces to PCSP(Kk,K\lfloor 2k/4k\rfloor ).

After the third reduction, we get the following.

Claim 4.21. PCSP(Kk,Kb(k - 1)) is \sansN \sansP -hard for sufficiently large k.

Proof. Again, substitute b(k) for k in Claim 4.20 to obtain that PCSP(Kb(k),
K\lfloor 2b(k)/4b(k)\rfloor ) is \sansN \sansP -hard. Observe that b(k)\geq 3

2b(k - 1) for all k\geq 1, since

b(2k) =

\biggl( 
2k

k

\biggr) 
=

\biggl( 
2k - 1

k - 1

\biggr) 
2k

k
= 2 \cdot b(2k - 1)\geq 3

2
b(2k - 1), and

b(2k+ 1) =

\biggl( 
2k+ 1

k

\biggr) 
=

\biggl( 
2k

k

\biggr) 
2k+ 1

k+ 1
= b(2k)

\biggl( 
2 - 1

k+ 1

\biggr) 
\geq 3

2
b(2k).

Therefore,

b(b(k - 1))\leq b

\biggl( 
2

3
b(k)

\biggr) 
\leq 2

2
3 b(k) \leq 2b(k)/4b(k)

for sufficiently large k. Hence by Lemma 4.16, PCSP(Kb(k),K\lfloor 2b(k)/4b(k)\rfloor ) reduces to
PCSP(Kk,Kb(k - 1)).

Finally after the fourth reduction.

Claim 4.22. PCSP(Kk,Kb(k) - 1) is \sansN \sansP -hard for sufficiently large k.

Proof. Substitute b(k) for k in Claim 4.21 to get that PCSP(Kb(k),Kb(b(k) - 1)) is
\sansN \sansP -hard. By Lemma 4.16 this reduces to PCSP(Kk,Kb(k) - 1).

This concludes the improvement in asymptotics. To relax the requirements for k,
we repeat the reduction enough times. Each step is given by the following claim.

Claim 4.23. PCSP(Kb(k),Kb(b(k)) - 1) log-space reduces to PCSP(Kk,Kb(k) - 1)
for all k\geq 4.

Proof. Lemma 4.16 gives the reduction since b(k) is strictly increasing and b(k)> 4
for k\geq 4, and hence b(b(k) - 1)\leq b(b(k)) - 1.
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To finish the proof, assume that k\prime \geq 4 and let k0 be sufficiently large so Claim
4.22 is true for all k \geq k0. Since k\prime \geq 4 there is n such that k0 \leq b(n)(k\prime ) (where b(n)

denotes the n-fold composition of b). Applying Claim 4.23 n times gives a log-space
reduction from PCSP(K

b(n)(k
\prime 
)
,K

b(n+1)(k
\prime 
) - 1

) to PCSP(Kk\prime ,Kb(k\prime ) - 1), and since the

first problem is \sansN \sansP -hard (Claim 4.22) this concludes that PCSP(Kk\prime ,Kb(k\prime ) - 1) is
\sansN \sansP -hard for all k\prime \geq 4.

4.3.2. Proof of Theorem 1.8. In this section we prove a slightly more general
result than Theorem 1.8.

Theorem 4.24. If, for some loopless digraph H and all loopless digraphs G such
that H\rightarrow G, PCSP(H,G) is \sansN \sansP -hard, then PCSP(K3,G) is \sansN \sansP -hard for all loopless
digraphs G such that K3\rightarrow G.

Indeed, it is easy to see that the assumption of Theorem 4.24 is slightly weaker
than the assumption of Theorem 1.8, while the conclusions of the two theorems are
equivalent.

We prove Theorem 4.24 by iterating the reduction given by \delta in a similar way as
in the last paragraph of the proof of Theorem 1.9; in fact, that part of the proof could
be used with only minor changes to prove that PCSP(K4,Kc) is \sansN \sansP -hard for all c\geq 4
if PCSP(Kk,Kc) is \sansN \sansP -hard for some k and all c\geq k. We get to K3 by omitting the
intermediate use of sym, i.e., we keep the orientation of the edges. One step of the
reduction is given by the following lemma.

Lemma 4.25. Let H be a loopless digraph. If, for all loopless digraphs G\prime such
that H\rightarrow G\prime , PCSP(H,G\prime ) is \sansN \sansP -hard, then PCSP(\delta H,G) is \sansN \sansP -hard for all loopless
digraphs G such that \delta H\rightarrow G.

Proof. Let H be a digraph that satisfies the premise, and let G be a loopless
digraph such that \delta H\rightarrow G. We aim to prove that PCSP(\delta H,G) is \sansN \sansP -hard. Corollary
4.8(1) gives a log-space reduction from PCSP(H, \delta RG) to PCSP(\delta H,G). We claim
that the digraph \delta RG is loopless, which follows from the construction of \delta R (see
Definition 4.12) and the assumption that G is loopless: Indeed, if a vertex (S,T ) in
\delta RG has a loop, then S \cap T \not = \emptyset . Consequently, G has a loop on any vertex v \in S \cap T
since S \times T \subseteq E(G). Clearly also H\rightarrow \delta RG since \delta and \delta R are adjoint. Therefore,
we have that PCSP(H, \delta RG) is \sansN \sansP -hard by the assumption of the lemma, and we
conclude that PCSP(\delta H,G) is \sansN \sansP -hard as well.

To finish the proof of Theorem 4.24, we will need the following two lemmas. The
first one, which is a special case of the second, was independently discovered by Zhu
[74], Poljak [64], and Schmerl (unpublished; see [68]). For the sake of completeness,
we include the proof of Zhu [74].

Lemma 4.26. There is a homomorphism \delta (\delta K4)\rightarrow K3.

Proof. The vertices of \delta (\delta K4) are two consecutive pairs of arcs, i.e., they corre-
spond to triples (i, j, k) in \{ 0,1,2,3\} such that i \not = j and j \not = k. Two such triples
(i, j, k) and (i\prime , j\prime , k\prime ) are adjacent if j = i\prime and k = j\prime . We define h : \delta (\delta K4)\rightarrow K3 so
that h : (i, j, k) \mapsto \rightarrow j if j \in \{ 0,1,2\} , and h : (i,3, k) \mapsto \rightarrow c for some c \in \{ 0,1,2\} \setminus \{ i, k\} . It
is straightforward to check that such an h is a valid coloring.

We note that \delta (sym\delta K4) is not 3-colorable, so it is important here to iterate \delta 
rather than sym\delta .

The next lemma essentially shows that iterating \delta many times can bring a chro-
matic number of any finite loopless digraph down to 3. We use \delta (i)D to denote the
digraph obtained from D by applying \delta i times.
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Lemma 4.27. For every loopless digraph D there exists i\geq 0 s.t. \delta (i)D\rightarrow K3.

Proof. If D is a loopless digraph then D\rightarrow K| V (D)| . Therefore, since \delta is mono-
tone, it is enough to prove the statement for D=Kc and all c > 3 (the case c\leq 3 is
trivial). Recall that Kb(n)\rightarrow \delta RKn for all n\geq 1 (Observation 4.14) and, consequently,
\delta Kb(n) \rightarrow Kn. Recall that b(n) is strictly increasing. Now since b(n) > 4 for n \geq 4,
there is j such that b(j)(4) \geq c. Since Kc \rightarrow Kb(j)(4), the monotonicity of \delta implies
\delta Kc\rightarrow \delta Kb(j)(4), which, with \delta Kb(j)(4)\rightarrow Kb(j - 1)(4), implies \delta Kc\rightarrow Kb(j - 1)(4). Simi-

larly, we get \delta (2)Kc\rightarrow \delta Kb(j - 1)(4)\rightarrow Kb(j - 2)(4). Proceeding in the same way, we even-

tually get \delta (j)Kc \rightarrow K4. This together with Lemma 4.26 gives that \delta (j+2)Kc \rightarrow K3

which gives the claim for i= j + 2.

Proof of Theorem 4.24. Assume that H is a loopless digraph s.t. PCSP(H,G)
is \sansN \sansP -hard for all loopless digraphs G with H \rightarrow G. Let i be such that \delta (i)H \rightarrow 
K3 which exists from Lemma 4.27. Now, iterating Lemma 4.25 i times gives that
PCSP(\delta (i)H,G) is \sansN \sansP -hard for all G such that \delta (i)H \rightarrow G. Since \delta (i)H \rightarrow K3,
PCSP(\delta (i)H,G) trivially reduces to PCSP(K3,G).

We remark that, if one iterates the reduction using \delta further, one cannot improve
Theorem 4.24 to imply the full extent of Conjecture 1.2. In particular, iterating \delta can-
not be used to show PCSP(C5,Kc) is \sansN \sansP -hard for all c\geq 3 given that PCSP(K3,Kc)
is \sansN \sansP -hard for all c \geq 3. This is because \delta (i)K3 contains a directed cycle of length
three for all integers i.

Remark 4.28. Theorems 1.8 and 4.24 can be phrased in algebraic terms us-
ing so-called H-loop conditions, which recently gained popularity in universal alge-
bra (see, e.g., [62]) and was featured in [5, section 6]. Fix a digraph H and let
(a1, b1), . . . , (am, bm) be the full list of arcs of H. The H-loop condition is the follow-
ing identity (i.e., function equation) involving two minors of a function f :

f(xa1
, . . . , xam

) = f(xb1 , . . . , xbm).(4.4)

(This definition is equivalent to the one used in [5, section 6].) One says that a minion
M satisfies the H-loop condition if it contains a function f satisfying (4.4).

The following two statements are equivalent for each loopless digraph H:

\bullet PCSP(H,G) is \sansN \sansP -hard for all loopless digraphs G with H\rightarrow G; and
\bullet PCSP(A,B) is \sansN \sansP -hard for all pairs of similar structures A, B such that
Pol(A,B) does not satisfy the H-loop condition.

This claim can be proved in a similar way to [5, Theorems 6.9 and 6.12].
In this interpretation, Lemma 4.25 can be rephrased as follows: if, for all PCSPs,

the failure to satisfy the H-loop condition implies \sansN \sansP -hardness, then so does the
failure to satisfy the \delta H-loop condition. Can this perspective be used to bring some
ideas from algebra (e.g., [62]) to obtain better conditional hardness?

4.4. Only topology matters. All graphs in this subsection are undirected.
Recall Example 1.1. The functions \Lambda k and \Gamma k from this example are adjoint for

all k. More surprisingly, for odd k, \Gamma k is itself the left adjoint of a certain function
\Omega k : \sansG \sansr \rightarrow \sansG \sansr , i.e., for all graphs H and G, \Gamma kH \rightarrow G if and only if H \rightarrow \Omega kG.
The graph \Omega kG for k = 2\ell + 1 is defined as follows; the vertices of \Omega kG are tuples
(A0, . . . ,A\ell ) of vertex subsets Ai \subseteq V (G) such that A0 contains exactly one vertex.
Two such tuples (A0, . . . ,A\ell ) and (B0, . . . ,B\ell ) are adjacent if Ai \subseteq Bi+1, Bi \subseteq Ai+1

for all i= 0 . . . \ell  - 1, and A\ell \times B\ell \subseteq E(G).
If there is a homomorphism f : \Gamma kH\rightarrow G, then a homomorphism H\rightarrow \Omega kG is
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obtained by mapping v to (f(N0(v)), . . . , f(N \ell (v))), where N i denotes the set of ver-
tices reachable via a walk of length exactly i. Conversely, if there is a homomorphism
f : H \rightarrow \Omega kG, then a homomorphism \Gamma kH \rightarrow G is obtained by mapping v to the
unique vertex in the first set of f(v) = (A0, . . . ,A\ell ).

We note that \Lambda k and \Gamma k are log-space computable, for all odd k; however, \Omega k is
not: \Omega kG is exponentially larger than G. Below, we will use the following observation
that can be found together with more properties of the functions \Lambda k,\Gamma k, and \Omega k in
[71, Lemma 2.3].

Lemma 4.29. For any graph G and all odd k, \Lambda kG\rightarrow \Omega kG.

Proof. Since \Gamma k and \Omega k are adjoint, the claim is equivalent to \Gamma k\Lambda kG\rightarrow G (note
that G\rightarrow \Gamma k\Lambda kG since \Lambda k and \Gamma k are adjoint, so we will prove that the two graphs are
homomorphically equivalent). We describe one such homomorphism h : \Gamma k\Lambda kG\rightarrow G.
Note that V (\Gamma k\Lambda kG) = V (\Lambda kG) \supseteq V (G). We put h(v) = v for each v \in V (G) and
extend this to vertices introduced to \Lambda kG by replacing an edge (u, v) \in E(G) with a
path of length k by alternatively mapping vertices on this path to u and v in such a
way that h restricted to the path is a homomorphism from the odd path to (u, v). It
is straightforward to check that h maps any two vertices of \Lambda kG that are connected
by a path of length k to an edge of G, and therefore, it is a homomorphism from
\Gamma k\Lambda kG to G.

The next lemma gives the key reduction for the main result of this subsection,
Theorem 4.32.

Lemma 4.30. Let k be odd and G be a graph. If PCSP(H\prime ,\Omega kG) is \sansN \sansP -hard for
all nonbipartite graphs H\prime \rightarrow \Omega kG, then PCSP(H,G) is \sansN \sansP -hard for all nonbipartite
graphs H\rightarrow G.

Proof. Let H,G be nonbipartite with H \rightarrow G. By Corollary 4.8(2), \Gamma k is a
reduction from PCSP(\Omega kH,\Omega kG) to PCSP(H,G). To conclude that PCSP(H,G)
is \sansN \sansP -hard it remains to show that \Omega kH is nonbipartite. Observe that since H is
nonbipartite and k is odd then also \Lambda kH is nonbipartite. Furthermore, from the
above lemma, \Lambda kH\rightarrow \Omega kH which implies that \Omega kH is also nonbipartite.

Thus (by the above lemma and homomorphic relaxation) if we know one graph
G\prime such that PCSP(H\prime ,G\prime ) is \sansN \sansP -hard for all nonbipartite H\prime , then we can conclude
the same for all G such that \Omega kG\rightarrow G\prime for some odd k. When does such a k exists?
The answer, given in [71], turns out to be topological. We remark that the results in
[71] use the so-called box complex of G instead of \sansH \sanso \sansm (K2,G). However, there exist
\BbbZ 2-maps (in both directions) between the two complexes; see maps (M2), (M3), and
(M7) in [58, Proposition 4] for explicit maps. This is enough for our purposes, but a
stronger claim is true---the two complexes are \BbbZ 2-homotopy equivalent (as defined in
Appendix A) [24, 77].

Intuitively, while the operation \Gamma k gives a ``thicker"" graph, the operation \Omega k gives
a ``thinner"" one. In fact, \Omega k behaves similarly to barycentric subdivision in topol-
ogy: it preserves the topology of a graph (formally, | \sansH \sanso \sansm (K2,\Omega kG)| is \BbbZ 2-homotopy
equivalent to | \sansH \sanso \sansm (K2,G)| [71]) but refines its geometry. With increasing k, this
eventually allows one to model any continuous map with a graph homomorphism; in
particular we have the following.

Theorem 4.31 ([71]). There exists a \BbbZ 2-map | \sansH \sanso \sansm (K2,H)| \rightarrow \BbbZ 2
| \sansH \sanso \sansm (K2,G)| 

if and only if \Omega kH\rightarrow G for some odd k.
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We now conclude the proof of whether the Brakensiek--Guruswami conjecture
holds for a graph G (and all relevant H) depends only on the topology of G---this
was informally stated earlier in Theorem 1.7). In fact, it only matters which \BbbZ 2-maps
| \sansH \sanso \sansm (K2,G)| admits.

Theorem 4.32. Let G, G\prime be graphs such that | \sansH \sanso \sansm (K2,G)| admits a \BbbZ 2-map
to | \sansH \sanso \sansm (K2,G

\prime )| and suppose PCSP(H,G\prime ) is \sansN \sansP -hard for all nonbipartite graphs H
such that H\rightarrow G\prime . Then PCSP(H,G) is \sansN \sansP -hard for all nonbipartite graphs H such
that H\rightarrow G.

Proof. By Theorem 4.31, \Omega kG\rightarrow G\prime for some odd k. Since PCSP(H,G\prime ) is \sansN \sansP -
hard for all nonbipartite graphs H, we also have that PCSP(H,\Omega kG) is \sansN \sansP -hard by
a trivial reduction. Now, Lemma 4.30 gives the claim.

In particular, Theorem 4.32 implies that Theorems 1.3 and 1.4 are equivalent.

5. Conclusion. We presented two new methodologies, based on topology and
adjunction, to analyze the complexity of PCSPs and provided some applications of
these methodologies to considerably improve state-of-the-art in the complexity of
approximate graph coloring and promise graph homomorphism problems.

As mentioned before, there are many ways in which topology can potentially be
applied in the analysis of polymorphisms from H to G, for graphs or for general
relational structures. With the approach that we used, we made a few choices for
our analysis. Specifically, we used (a) the graph K2 to construct simplicial complexes
\sansH \sanso \sansm (K2,H) and \sansH \sanso \sansm (K2,G), (b) \BbbZ 2-action on our complexes and topological spa-
ces, and (c) fundamental groups of topological spaces. One can try to perform similar
analyses, by (a) replacing K2 by any other graph K (or, for general PCSPs, by an-
other appropriate structure), (b) using any subgroup of the automorphism group of
K to account for symmetry (called ``equivariance"" in the topological literature) of the
complexes and topological spaces, and (c) replacing the fundamental group with a dif-
ferent topological invariant of spaces or continuous functions involved. Some examples
of different choices, though not in the context of polymorphisms, can be found, e.g.,
in [53, 59]. These are the obvious first choices of adapting the approach. Naturally, it
can be changed in a more fundamental way: the most prominent seems to be directly
analyzing the topological structure of the simplicial complexes \sansH \sanso \sansm (Hn,G) (see [53,
section 9.2.4] for related general suggestions). One advantage of this approach is that
the analysis would depend only on the function minion Pol(H,G), rather than on the
specific choice of H and G.

In this paper, we applied topology together with the algebraic theory from [5] to
prove complexity results about promise graph homomorphism. However, our appli-
cation can be seen as plugging the topological analysis into an algebraic result. Since
topology appears to be naturally present in minions of polymorphisms, it would be
interesting to further develop the algebraic theory from [5] to properly incorporate
topology. Similarly, we used adjunction to obtain some reductions for approximate
graph coloring problems that provably cannot be captured by the algebraic theory
from [5]---it is natural to ask whether a more general theory can be constructed that
incorporates both the current algebraic theory and adjunction.

It would be interesting to find further specific applications of our methodologies,
for example, in approximate graph and hypergraph coloring and their variations, or
possibly even beyond constraint satisfaction. Naturally, one would want to extend
our methodologies to approximate graph coloring problems PCSP(K3,Kc) or prom-
ise graph homomorphism problems PCSP(Ck,Kc) for c\geq 4. If one applies the same
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transformation of these graph problems into homomorphism complexes and topologi-
cal spaces as we use in this paper, one would need to analyze the (\BbbZ 2-)polymorphisms
from \scrS 1 to \scrS m for m\geq 2. (Note that \pi 1(\scrS m) is trivial for m\geq 2, so the fundamental
group is of no use in this case.) These polymorphisms are \BbbZ 2-maps from tori \scrT n,
n\geq 1, to \scrS m. This is somewhat related to some well-known hard open questions from
algebraic topology, such as classification of maps from one sphere \scrS m1 to another \scrS m2 .
However, to the best of our knowledge, the equivariant version of such questions was
never considered. Moreover, for our purposes, it would suffice to get any classification
of Pol(\scrS 1,\scrS m) that can be connected with the algebraic theory, e.g., with Theorem
2.12 above, or with [5, Theorem 5.22] or [19, Corollary 4.2]. Of course, it is possible
that some modification of our approach will need to be used. In any case, we believe
that topology will play an important part in settling the complexity of approximate
graph coloring and the Brakensiek--Guruswami conjecture.

Finally, we remark that the standard reductions from the algebraic approach, i.e.,
reductions of the form \Lambda \phi (see section 4.1), can be thought of as replacing individual
constraints in an instance with gadgets (possibly consisting of many constraints).
Similarly, certain reductions of the form \Gamma \phi , such as \delta and \Gamma k presented in sections
4.3 and 4.4, can be thought of as replacing gadgets (i.e., certain parts of input) with
individual constraints. The latter turned out to be particularly useful when they
themselves admit some right adjoint \Omega (as was the case for \delta and \Gamma k); however, such
reductions must have a rather restricted form [33, Theorem 2.5]. Thus, a natural
extension would be to investigate reductions which replace gadgets with gadgets (i.e.,
introduce a copy of one gadget for each homomorphism from another gadget).

Appendix A. Equivalence of homomorphism complexes. There is a su-
perficial distinction between the abstract simplicial complex \sansH \sanso \sansm (H,G) as we defined
it and the definition of the homomomorphism complex in [4, 53]. We will show that
the two definitions give topological spaces that are equivalent in the following sense.

Definition A.1. Two \BbbZ 2-spaces \scrX ,\scrY are \BbbZ 2-homotopy equivalent if there are
\BbbZ 2-maps \alpha : \scrX \rightarrow \scrY and \beta : \scrY \rightarrow \scrX such that \beta \alpha and \alpha \beta are \BbbZ 2-homotopic (recall
Definition 3.15) to the identity maps on \scrX and \scrY , respectively.

This notion is coarser than \BbbZ 2-homeomorphism (which required fg and gf to be
equal to identity maps); for example, \BbbR 2 \setminus \{ (0,0)\} is \BbbZ 2-homotopy equivalent to \scrS 1
but not \BbbZ 2-homeomorphic to it. Nevertheless, \BbbZ 2-homotopy equivalent spaces admit
the same \BbbZ 2-maps and have isomorphic fundamental groups, for example, they are
thus indeed equivalent for our purposes.

We remark that in [53] and other topological literature, very little attention is
given to the distinction between abstract (simplicial) complexes and their geometric
realizations. In particular, in [4, 53], the Hom complex of graphs H, G is defined as
a topological space and not an abstract simplicial complex (it is in fact a so-called
prodsimplicial complex; see [53, p. 28]). The following definition is an equivalent
formulation of Definition 9.23 in [53] using the comments thereafter.

Definition A.2. For a set V , we denote by \Delta V the standard simplex with ver-
tices V that is defined as a subspace of \BbbR V , where the canonical unit vectors are iden-
tified with elements of V , obtained as the convex hull of V , i.e., \Delta V = \{ \sum v\in V \lambda vv | 
\lambda v \in [0,1] for each v \in V , and

\sum 
v\in V \lambda v = 1\} .

\sansH \sanso \sansm prod(K2,G) is a subspace of \Delta V (G)\times \Delta V (G). Thus a point of this space is de-
scribed as a pair of formal sums (

\sum 
u\in V (G) \lambda uu,

\sum 
v\in V (G) \rho vv) such that

\sum 
u\in V (G) \lambda u =\sum 

v\in V (G) \rho v = 1. Using this description, \sansH \sanso \sansm prod(K2,G) is defined as the subspace
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Fig. A.1. \sansH \sanso \sansm prod(K2,K4).

consisting of those points (
\sum 

u\in V (G) \lambda uu,
\sum 

v\in V (G) \rho vv) such that \{ u | \lambda u > 0\} \times \{ v | 
\rho v > 0\} \subseteq E(G) is a complete bipartite graph. The action of \BbbZ 2 on this com-
plex is given by switching the two coordinates, i.e.,  - (\sum u\in V (G) \lambda uu,

\sum 
v\in V (G) \rho vv) =

(
\sum 

v\in V (G) \rho vv,
\sum 

u\in V (G) \lambda uu).

On the other hand, the geometric realization of our \sansH \sanso \sansm (K2,G) can be described
in the following way. It consists of convex combinations

\sum 
(u,v)\in E(G) \lambda u,v(u, v) (the

points (u, v)\in E(G) are identified with certain unit vectors in \BbbR n, where n= | E(G)| /2
so that  - (u, v) = (v,u)) such that \{ u | \lambda u,v > 0\} \times \{ v | \lambda u,v > 0\} \subseteq E(G) is a complete
bipartite subgraph.

Both complexes are therefore defined using complete bipartite subgraphs, and the
similarity is apparent. As an example that highlights the small differences, let us note
that \sansH \sanso \sansm prod(K2,K4) is \BbbZ 2-homeomorphic to \scrS 2; the space is depicted in Figure A.1.
This is since, unlike in | \sansH \sanso \sansm (K2,K4)| , the tetragonal faces on the picture correspond
to actual squares in \sansH \sanso \sansm prod(K2,K4).

Proposition A.3. Let H, G be graphs. Then the \BbbZ 2-spaces | \sansH \sanso \sansm (K2,G)| and
\sansH \sanso \sansm prod(K2,G) are \BbbZ 2-homotopy equivalent.

Proof. We define continuous maps \alpha and \beta between the two spaces that witness
the \BbbZ 2-homotopy equivalence.

| \sansH \sanso \sansm (K2,G)| \sansH \sanso \sansm prod(K2,G)

\alpha :
\sum 

(u,v)\in E(G) \lambda (u,v)(u, v) \mapsto \rightarrow 
\Bigl( \sum 

(u,v)\in E(G) \lambda (u,v)u,
\sum 

(u,v)\in E(G) \lambda (u,v)v
\Bigr) 

\sum 
(u,v)\in E(G) \lambda u\rho v(u, v) (

\sum 
u\in V (G) \lambda uu,

\sum 
v\in V (G) \rho vv) :\beta .

It is straightforward to check that \alpha and \beta are \BbbZ 2-maps, that \alpha \beta = id, and that \beta \alpha 
maps each point to a point in the same face. Thus, a homotopy from \beta \alpha to id can
be defined by linearly interpolating between the two: (p, t) \mapsto \rightarrow (1 - t)p+ t\beta (\alpha (p)) for
p\in | \sansH \sanso \sansm (K2,G)| and t\in [0,1].

We remark that the above proposition and its proof generalizes to arbitrary
Hom complexes \sansH \sanso \sansm (H,G) with the action of Aut(H), more precisely, the complex
\sansH \sanso \sansm prod(H,G) (as defined in [53, Definition 9.23]) is Aut(H)-homotopy equivalent
to | \sansH \sanso \sansm (H,G)| for any two graphs H,G.

Acknowledgments. A. K. and J. O. would like to thank John Hunton for
consultations on algebraic topology and Libor Barto and Antoine Mottet for inspiring
discussions.
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