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Branes and Non-Invertible Symmetries

Iñaki García Etxebarria

 = 4 supersymmetric Yang-Mills theories with algebra 𝔰𝔬(4N) and
appropriate choices of global structure can have non-invertible symmetries.
We identify the branes holographically dual to the non-invertible symmetries,
and derive the fusion rules for the symmetries from the worldvolume
dynamics on the branes.

1. Introduction

The notion of symmetry is undergoing rapid evolution: during
the last few years a number of works have convincingly argued
that the classical textbook definition of symmetry as a group
of transformations acting on local operators can (and should)
be extended to include higher form symmetries acting on ex-
tended operators,[1] higher groups structures[2–4] and more gen-
erally higher categorical structures.
The importance of such higher categorical structures in two

dimensions has been realised for a long time, where they often
appear fromdiscrete gauging.[5–8] A number of recent works have
shown that symmetry operators without inverses (and which
are therefore not elements of any group, but should rather be
thought of in categorical terms) are also very common in higher
dimensional theories.[9–26] In this paper wewill focus on one class
of theories where such non-invertible symmetries appear: = 4
theories with gauge group1 Pin+(4N), Sc(4N) andPO(4N).[14] The
details are a little different in the three cases, so in this intro-
duction we will focus on the Sc(4N) case for concreteness. This
theory has three 2-surface symmetry generators, which we will
call D𝖼,e

2 (Σ2), D
𝗌,m
2 (Σ2) and their product D

𝖼,e
2 (Σ2)D

𝗌,m
2 (Σ2). There is

additionally a three-surface operator  (3). The terms in the
fusion algebra involving (3) are

 (3) × (3) =
∑

Σ2 ,Σ′
2∈H2(3;ℤ)

D𝖼,e
2 (Σ2)D

𝗌,m
2 (Σ′

2) , (1a)
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1 In this note we do not aim to analyse fully the mapping from bound-
ary conditions to global structures, so we will ignore the existence of
discrete choices of 𝜃 angles in some of the theories we discuss.[27] A
careful analysis of the mapping from global structures to properties of
the holographic duals will be provided in [28].
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 (3) × D𝖼,e
2 (Σ2) =  (3) , (1b)

 (3) × D𝗌,m
2 (Σ2) =  (3) . (1c)

The right hand side of (1a) is generically a
sum of operators, and therefore  (3)
is not invertible.
All these theories can be obtained from

the  = 4 SO(4N) theories by suitable
gaugings of discrete symmetries. Whether we have performed
the gauging or not is not visible for a local observer measuring
processes on a topologically trivial (but arbitrarily large) neigh-
bourhood of a point. This suggests that the holographic dual of
all these theories is the same, which is indeed the case: the holo-
graphic dual is in all cases IIB on AdS5 ×ℝℙ5. The different the-
ories arise from different choices of asymptotic behaviour for dis-
crete gauge fields in the bulk, as discussed in related examples in
[29, 30].
Since all these theories share the same bulk description, it

should be possible to describe the non-invertible symmetry
generators (in the cases where they are present in the field
theory) in terms of objects living on the holographic IIB dual.
The goal of this note is to identify these objects, and to derive
their fusion rules using IIB techniques.2 ,3 Surprisingly, given
the perhaps unfamiliar fusion relations (1), it will transpire that
the symmetry generators are represented holographically by
ordinary branes wrapping torsional cycles in the internal ℝℙ5.
In order to explain how this is possible, it is useful to review

briefly how the fusion relations (1) are derived in [14] (see also
[12]). We start with the SO(4N) theory, which has a ℤ2 outer au-
tomorphism 0-form symmetry and a ℤ2 × ℤ2 1-form symmetry.
We will denote the background for the 0-form symmetry A1, and
the backgrounds for the twoℤ2 factorsB

m
2 andC

e
2. There is a cubic

’t Hooft anomaly represented by an anomaly theory with action

i𝜋 ∫ A1B
e
2C

m
2 . (2)

We obtain the Sc(4N) theory by gauging both 1-form symmetries
simultaneously.4 (The Pin+ and PO cases are obtained by gaug-
ing other pairs of symmetries involved in the cubic anomaly.)

2 The techniques we use in our analysis do not require knowledge of the
Lagrangian of the boundary SCFT (although the choice of theories to
study is certainly informed by the field theory results in [14], and we
will chose our notation to dovetail the field theory analysis), so they
apply equally well to the study of non-Lagrangian theories realised ei-
ther holographically or via geometric engineering. See [21] for a recent
study of non-invertible symmetries in non-Lagrangian theories using
a different approach.

3 We refer the reader to [23] for a holographic study of a different class
of non-invertible defects.

4 There is a discrete choice when gauging, related to the precise way
in which we sum over Bm2 backgrounds. A slightly different choice (re-
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Naively, we would say that the 0-form symmetry is broken due
to the cubic anomaly (2). The more precise statement is that due
to the anomaly the generatorD(0)

3 (3) of the 0-form symmetry is
not invariant under combined gauge transformations of Bm

2 and
Ce
2. But as argued in [12, 14] it is possible to “dress” (or stack)

D(0)
3 (3) with an anomalous TQFT  depending on Bm

2 and Ce
2.

The combined topological operator is gauge invariant, and sur-
vives as a topological operator of the gauged theory. The price to
pay is that the fusion rules for  are more involved, and lead to
non-invertibility of the dressed operatorD(0)

3 (3) ×  (the details
will be reviewed below).
Coming back to the IIB holographic setup, the main observa-

tion of this paper is that D(0)
3 (3) ×  is precisely the IR limit

of the theory on branes wrapping suitable torsional cycles in the
holographic dual background. For instance, wewill see that in the
Sc(4N) case the non-invertible operator arises from a D3 brane
wrapping 3 ×ℝℙ1, where ℝℙ1 ⊂ ℝℙ5. Reducing on the ℝℙ5

leaves an effective 3-dimensional brane wrapping3 inside the
five dimensional bulk, which becomes D(0)

3 (3) when pushed to
the boundary.
A pleasing consequence of the identification in this note is

that anomaly cancellation of the dressed operator follows auto-
matically: the background fields for the symmetries of the the-
ory are given by asymptotic values for the supergravity fields in
the IIB dual, and the D3 brane action is necessarily gauge in-
variant under all possible gauge transformations of these (al-
though the precise way in which this happens is often subtle).
Since anomaly cancellation is automatic once we start talking
about branes, it is illuminating to understand why non-invertible
symmetries appear in the holographic dual without referring to
anomalous operators. This is also desirable since the split be-
tween the bare D(3) and its “dressing”  is unnatural in terms
of the brane theory, particularly once we try to formulate things
in the language of K-theory. We provide such an explanation be-
low in terms of incomplete cancellation of induced brane charges
due to quantum effects.

Note Added

I thank the authors of [31] for informing me of their related upcoming
work, where they give complementary evidence for the identification
of non-invertible symmetries with branes in holographic settings, and
for agreeing to coordinate submissions.

2. 4d = 4 𝔰𝔭𝔦𝔫(4N) SYM and Non-Invertibles

The Spin(4N) SYM theory has a 2-group structure, with one-form
symmetry group5

lated by the outer automorphism) gives the Ss(4N) global form instead,
which also has non-invertible symmetries. The analysis of both cases
is essentially identical, so we will focus on the Sc(4N) case.

5 Our conventions are as follows: Spin(4n) has two spinor irreps unre-
lated by complex conjugation, which we denote by “𝗌” and “𝖼”. ℤ𝗌

2 acts
on 𝖼, and leaves 𝗌 invariant, while ℤ𝖼

2 acts on 𝗌 and leaves 𝖼 invariant.
This choice of notation is motivated by consistency with the fact that
the diagonalℤ2 combination, traditionally denotedℤV

2 , does not act on
the vector. We define Sc(4N) := Spin(4N)∕ℤ𝗌

2.

Γ(1) = ℤ𝗌
2 × ℤ𝖼

2 , (3)

and a 0-form symmetry partℤ(0)
2 which is an outer automorphism

that acts on the 1-form symmetry by exchanging the two factors:
ℤ𝗌
2 ↔ ℤ𝖼

2. We will now construct the topological defects that gen-
erate these symmetries in the holographic dual.
This holographic dual is obtained as the near horizon limit of

a stack of D3-branes on top of an O3− orientifold, and is given by
IIB string theory on AdS5 ×ℝℙ5.[29] In general we want to put the
field theory on some spin6 manifold4 different from S4, so we
will replace AdS5 by a non-compactmanifold X5 which asymptot-
ically becomes ℝ ×4.[32] There is a non-trivial SL(2,ℤ) duality
fibration over ℝℙ5, which acts with the −1 ∈ SL(2,ℤ) element
as we go around the non-trivial generator of 𝜋1(ℝℙ5) = ℤ2. (This
element can be represented alternatively as ΩFL in worldsheet
terms, but with future generalisations in mind we will describe
it as an SL(2,ℤ) bundle instead.) The 2-form supergravity fields
B2 and C2 get a sign under this action, and project down to ℤ2
fields on AdS5, while C4 does not get a sign and survives as a
continuous field. We will find it useful to work in a democratic
formulation, where we also include the B6 andC6 fieldsmagnetic
dual to B2 and C2. SL(2,ℤ) is a gauge symmetry of the theory on
the (orientable) space AdS5 ×ℝℙ5, so in order for the action to be
well defined we need B6 and C6 to also transform with a minus
sign under −1 ∈ SL(2,ℤ).
What this means is that H3 and F3 are elements of the coho-

mology group with local coefficients H3(X5 ×ℝℙ5; ℤ̃) (we refer
the reader to appendix 3.H of [33] for details), and similarly their
magnetic duals H7 and F7 are elements of H7(X5 ×ℝℙ5; ℤ̃). On
the other hand F5 is classified by H

5(X5 ×ℝℙ5;ℤ). In what fol-
lows we will focus on the structure on ℝℙ5, as the SL(2,ℤ) bun-
dle is trivial on X5. The untwisted cohomology groups of ℝℙ5

are standard, and the twisted ones can be derived easily from the
results in [34]:

H∗(ℝℙ5,ℤ) = {ℤ , 0 , ℤ2 , 0 , ℤ2 , ℤ}

H∗(ℝℙ5, ℤ̃) = {0 , ℤ2 , 0 , ℤ2 , 0 , ℤ2} .
(4)

Similar considerations hold for homology: (p, q) 1-branes (such
as fundamental strings and D1 branes) are elements of H2(X

5 ×
ℝℙ5; ℤ̃), (p, q) 5-branes are elements ofH6(X

5 ×ℝℙ5; ℤ̃), and D3
branes are elements ofH4(X

5 ×ℝℙ5;ℤ). The relevant homology
groups are (by Poincaré duality, which holds since ℝℙ5 is ori-
entable)

H∗(ℝℙ5,ℤ) = {ℤ , ℤ2 , 0 , ℤ2 , 0 , ℤ}

H∗(ℝℙ5, ℤ̃) = {ℤ2 , 0 , ℤ2 , 0 , ℤ2 , 0} .
(5)

With an understanding of the cycles that the branes can wrap,
it is straightforward to identify the charged operators of the
Spin(4N) theory[29]: the vector Wilson line WV is a fundamen-
tal string on a point of ℝℙ5, the 𝗌-spinor Wilson line W𝗌 is a
D5-brane on ℝℙ4, and finally the 𝖼-spinor Wilson lineW𝖼 is the

6 We will assume for simplicity that neither4 nor any of the subman-
ifolds where we will wrap defects contains torsion in homology. This is
not physically required, but it simplifies some of the formulas below.
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combination of both previous lines: a D5-brane/F1 bound state,
again wrapped on ℝℙ4. In all cases the branes wrap a surface on
X5 extending to the boundary, where they end on a line.
We can go to the SO(4N) theory by gauging the diagonal factor

ℤV
2 ⊂ ℤ𝗌

2 × ℤ𝖼
2. The vector lineWV is unaffected by the gauging,

so it survives, but the W𝗌 and W𝖼 lines are no longer gauge in-
variant, and become non-genuine (that is, boundaries of surface
operators). A non-genuine line HV of the Spin(4N) theory, with
w𝗌
2 = w𝖼

2 flux around it, now becomes a genuine line operator in
the SO(4N) theory. Holographically this operator corresponds to
a D1 brane wrapping a point inH0(ℝℙ5; ℤ̃) = ℤ2.

7 We denote the
generators for these two symmetries DB,e

2 (2) (acting on funda-
mental strings) and DC,m

2 () (acting on D1 branes), and the cor-
responding background fields Be

2 and C
m
2 .

Starting from the SO(4N) theory we can gauge various pairs
of global symmetries, an operation that, due to the cubic
anomaly (2), results in theories with non-invertible symmetries
[12, 14]:

Pin+(4N): gauge D(0)
3 and DC,m

2

Sc(4N): gauge DB,e
2 and DC,m

2

PO(4N): gauge D(0)
3 and DB,e

2 .

(6)

In these expressions D(0)
3 , or more precisely D(0)

3 (3) is the
generator for the outer automorphism 0-form symmetry of the
SO(4N) theory.
We are thus led to the crucial question in this paper: hav-

ing identified the charged operators in the field theory in terms
of the holographic dual, what is the holographic description of
the charge operators implementing the global symmetries in the
SO(4N) theory?
For concreteness, let us specialise to the holographic dual of

the symmetry generator DC,m
2 (2) of the SO(4N) theory, mea-

suring how many ’t Hooft lines (mod 2) HV are linked by 2,
without taking into account theWilson linesWV . Given our iden-
tification of lines above, a natural guess would be

DC,m
2 (2)

?
→ ei𝜋 ∫2×ℝℙ4

C6 , (7)

where 2 lives on 4, and becomes the symmetry operator
when pushed to the boundary. This holonomy certainlymeasures
the number of D1 branes linked by 2 (the basic argument is
given below in case of the outer automorphism 0-form symme-
try), but it cannot be the right answer for a number of reasons.
First, we know that in IIB string theory fluxes are not measured
by cohomology, but rather K-theory.[35–37] A way of capturing the
right K-theoretic formula is to phrase the answer in terms of the
Wess-Zumino coupling in the D5 brane action:

DC,m
2 (2)

?
→ eWZ(2×ℝℙ4) . (8)

7 The simplest derivation of this fact follows from recalling that the
SO(4N) field theory is invariant under SL(2,ℤ), which maps to an
SL(2,ℤ) action on the holographic dual. We refer the reader to [28] for
a systematic analysis.

where [37–39]

WZ(X ) = 2𝜋i∫X
eF2−B2

√
Â(TX )

Â(NX)
(C0 + C2 +⋯) (9)

A second reason why we expect neither (7) nor (8) to be the full
answer is that in string theory there are no local operators, only
dynamical objects. So we should aim to represent the charge gen-
erator by a dynamical object, and not simply a defect. The dynam-
ical objects that are electrically charged underC6, and would arise
when fixing the insertion of the defect as a boundary condition,
are D5 branes.
While neither argument is conclusive, they both suggest that

the holographic description of the symmetry generator is a full
D5, pushed to the boundary:8

DC,m
2 (2) → D5(2 ×ℝℙ4) . (10)

This ansatz has the additional virtue of restoring the common
origin between lines and charge generators, familiar from the
formulation of symmetries in terms of relative field theories.[40]

An objection one might raise about (10) is that branes are not
topological, while charge operators should be. As we will see in a
moment, the worldvolume theory on the branes, when reduced
to2 ⊂ X5, is a discreteℤ2 gauge theory. Therefore the potential
lack of deformation-invariance coming from the gauge fields on
the brane is not an issue. There is still an overall factor of the
volume, but it does not couple to the dynamical fields of the field
theory on the boundary, so it can be absorbed into a counterterm.
A subtle feature of (10) is that the worldvolume theories on the

brane are quantum field theories, so we should sum over them.
As we will argue, the sum over worldvolume degrees of freedom
provides precisely the minimal anomalous TQFT “dressing” the
bare symmetry generator identified in [14]. This is a very non-
trivial test of the identification (10).
Clearly, if the ansatz (10) is correct, the holographic dual of the

operator counting ’t Hooft linesHV is the S-dual of (10):

DB,e
2 (2) → NS5(2 ×ℝℙ4) . (11)

Additionally, the SO(4M) theory has the 0-form parity symmetry
discussed above. The point operator charged under this symme-
try is known as the Pfaffian operator. As discussed in [29] the
Pfaffian operator is represented holographically by a D3 brane
wrapping the ℝℙ3 cycle inside ℝℙ5, and extending to a point on
the boundary. We will refer to this brane as the “Pfaffian brane”.
We now argue that the holographic dual of the generator of

this symmetry is

D(0)
3 (3) → D3(3 ×ℝℙ1) . (12)

More precisely, we will show that the Pfaffian brane is charged
under this D3 in the Hamiltonian formalism, so we take the
boundary to be of the form 3 ×ℝt, with the last component
the time direction along the boundary. We choose coordinates so

8 The authors of [31] provide complementary evidence for the same pro-
posal.

Fortschr. Phys. 2022, 70, 2200154 2200154 (3 of 8) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202200154 by D

urham
 U

niversity - U
niversity L

ibrary and C
ollections, W

iley O
nline L

ibrary on [21/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

that the endpoint of the Pfaffian operator is at t = 0. Nowwewrap
the putative symmetry generator D3 on3 ×ℝℙ1, where3 is
at the boundary at t = 0. Because the F5 RR flux is self-dual, the
two D3 branes that we have introduced do not commute[41–44]:

D3(3 ×ℝℙ1) Pf (pt) = e2𝜋i𝖫(ℝℙ
1 ,ℝℙ3) Pf (pt)D3(3 ×ℝℙ1)

= −Pf (pt)D3(3 ×ℝℙ1)
(13)

where Pf (pt) is the D3 brane representing the Pfaffian operator,
𝖫(ℝℙ1,ℝℙ3) = 1

2
is the linking pairing between the given cycles

ofℝℙ5, andwe have used that the given branes intersect at a point
on the t = 0 spatial slice on X5. Equation (13) is the Hamilto-
nian version of the statement that the Pfaffian operator is charged
under D3(3 ×ℝℙ1), as claimed. This discussion can be gener-
alised straightforwardly to show that the branes (10) and (11) do
indeed give the expected charges to the WV and HV lines of the
SO(4N) theory, as claimed.

3. TQFT Stacking from Wess-Zumino Couplings

Our task in this section will be to deduce the non-invertibility of
the symmetry generators of the theories in (6) from our assump-
tion that symmetry generators are represented holographically
by branes.

3.1. Fluxes and Twisted Differential Cohomology

Our basic tool will be differential cohomology.We refer the reader
to [45] for a review of the basic techniques and notation that we
use. The analysis in this paper has some novelties with respect to
the discussion in [45], which we now discuss.
The main difference is that we will be working with twisted

differential cohomology. The twisted and untwisted cohomology
groups of ℝℙ5 were given in (4) above. The ring structure in-
duced by the cup product for ℝℙ5 can be obtained by adapting
the discussion in Lemma 1 of [46] (see also [34]). It is most eas-
ily described by adjoining the twisted and untwisted cohomology
groups

𝖧∗(ℝℙ5) = H∗(ℝℙ5;ℤ)⊕H∗(ℝℙ5; ℤ̃)

= ℤ[t1, u5]∕(2t1, t61, u
2
5) .

(14)

That is, we have free components of degree 0 and 5, and ℤ2 tor-
sional components of degrees 1 to 5, generated by tn1 . In partic-
ular, taking an even number of powers of t1 gives an untwisted
class, while taking an odd number of powers gives a twisted one.
In what follows we will use the notation t2n+1 = t2n+11 for twisted
classes and u2n = t2n1 together with u5 for untwisted ones.
We denote by t̆k a flat differential cohomology class with char-

acteristic class tk, which we denote by I(t̆k) = tk, and similarly for
ŭk. We note that I(t̆21) = u2, and similarly I(t̆41) = u4, so perfectness
of the linking pairing on H2(ℝℙ5;ℤ) ×H4(ℝℙ5;ℤ) = ℤ2 × ℤ2
implies that

∫ℝℙ5
t̆61 = ∫ℝℙ5

ŭ2 ⋆ ŭ4 =
1
2

mod 1 . (15)

This equation together with the ring structure (14) will be our
workhorses in what follows.
Finally, before moving on to the examples, we need to know

how to represent background fluxes in terms of differential coho-
mology. To lighten notation, in this section we introduce b2 := Be

2
and c2 := Cm

2 . Recall that the objects charged under these back-
grounds are F1 and D1 branes, respectively, so the holographic
fluxes encoding these backgrounds are H̆3 and F̆3, which are
asymptotically of the form H̆3 = b2 ⋆ t̆1 and F̆3 = c2 ⋆ t̆1. By im-
posing this asymptotic form we ensure that the charged lines
in the field theory acquire the right holonomies, see [45, 47] for
analysis of similar examples. We could also include terms pro-
portional to t̆3 in these expansions, but they would correspond to
a change of the gauge algebra to 𝔰𝔬(4N + 1) (for F̆3) of 𝔲𝔰𝔭(4N)
(for H̆3)

[29] so we will not consider these terms further.9 Finally,
a field theory 0-form symmetry background a1 for D

(0)
2 is repre-

sented by F̆5 = a1 ⋆ ŭ4. There are additional terms possible in the
expansion for F̆5, we will discuss these below.

3.2. Non-Invertibles in Sc(4N) from D3 Branes

We start with the case of the Sc(4N) theory, where following the
analysis in [12, 14], we expect to get the topological defect that
is non-invertible from the generator of the 0-form symmetry in
the SO(4N) theory. We identified this generator above with the
D3-brane wrapped on 3 ×ℝℙ1 = 3 × S1. The worldvolume
U(1) field on the D3 brane is odd under −1 ∈ SL(2,ℤ), because
it is a trivialisation of B2, which is odd. Therefore it takes val-
ues in the twisted cohomology groupH2(3 ×ℝℙ1; ℤ̃). We have
H∗(ℝℙ1; ℤ̃) = {0,ℤ2}.
When computing the path integral on the D3, the field

strength F2 on the brane will induce D1 charge due to the Wess-
Zumino term (9), while the magnetic field strength FD

2 will in-
duce F1 charge. The Wess-Zumino action written in terms of the
electric variable F2 is

SD3,e = 2𝜋i∫3×ℝℙ1
F̆5 + F̆3 ⋆ (ℱ̆2) + F̆1 ⋆ ( 1

2
ℱ̆2 ⋆ ℱ̆2 +

1
24

ĕ) ,

(16)

with ℱ̆2 = F̆2 − B̆2, F̆1 a differential cohomology uplift of C0, and
ĕ is a differential cohomology uplift of the Euler class of 3 ×
ℝℙ1. The term proportional to F̆1 will be relevant only for analysis
of anomalies in the space of coupling constants, which we do
not analyse in this note (although this is certainly an interesting
direction to explore further).
We also need to consider couplings of the form F̆3 ⋆ B̆2. As ar-

gued in [37] (elaborating on results of [48, 49]), these couplings
are not present when measuring the actual K-theory charges,
which is what we are ultimately interested in, so we will simply
set B̆2 to 0. A more careful treatment of this issue would be desir-
able, but given that inclusion of these background fields would

9 When doing this sort of expansion there is an additional subtlety in-
volving topologically trivial differential characters that is discussed at
length in [45]. It will not affect our considerations, so we will ignore
such terms.
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not change our conclusions (since they would provide overall in-
vertible prefactors on the brane action in any case, even if we in-
cluded them), we will postpone a more careful treatment of this
point to future work.
With these simplifications taken into account, the relevant part

of the Wess-Zumino action for the D3 becomes

SD3,e = 2𝜋i∫3×ℝℙ1
F̆5 + F̆3 ⋆ F̆2 . (17)

The first term is the differential cohomology avatar of the naive
guess ∫3×ℝℙ1 C4 for the flux operator in the field theory. F̆5 is
even under the −1 ∈ SL(2,ℤ) action, so its general decomposi-
tion is of the form F̆5 = N ⋆ ŭ5 + a1 ⋆ ŭ4 + a3 ⋆ ŭ2 + N ⋆ 1̆. Here
N are the number of units of RR 5-form flux on the ℝℙ5, and we
have used that F5 is self-dual to relate the components of degrees
5 and 0.
In terms of this decomposition we have an effective operator

in AdS5 of the form

D(3) = exp
(
2𝜋i∫3×ℝℙ1

F̆5

)

= exp
(
2𝜋i∫3×ℝℙ5

F̆5 ⋆ ŭ4

)

= exp
(
𝜋i∫3

a3

)
,

(18)

where in the second equality we have used Poincaré duality on
ℝℙ5 to relate ℝℙ1 to u4, and in the third used that the only
non-trivial pairing in ℝℙ5 appearing after the expansion of F̆5
is (15). This is the expected formula for the operator measuring
discrete electric flux for the outer automorphism symmetry in the
SO(4N) theory.
The second term is the more interesting one for our purposes.

As explained above, field theory backgrounds for the symme-
try DC,m

2 are described holographically by fluxes with asymptotic
form F̆3 = c2 ⋆ t̆1. Similarly, we can expand F̆2 = 𝛾1 ⋆ t̆1. We then
have (using the formulas for integration on products reviewed in
[45])

2𝜋i∫3×ℝℙ1
F̆3 ⋆ F̆2 = 2𝜋i∫3

c2𝛾1 ∫ℝℙ1
t̆1 ⋆ t̆1 = 𝜋i∫3

c2𝛾1

(19)

where in the last step we have again used the fact that the linking
pairing is perfect, so

∫ℝℙ1
t̆1 ⋆ t̆1 =

1
2

mod 1. (20)

So far we have considered the charge induced on a D3 due to
the gauge field strength F2. The computation above shows that it
induces an effective coupling on3 to the background for DC,m

2 .
By IIB S-duality, this implies that a dual field strength FD

2 = 𝜙1 ⋆

t̆1 induces a coupling of the form

𝜋i∫3

b2𝜙1 (21)

on the effective operator on AdS5. The same result can be ob-
tained from the effective action presented in the magnetic vari-
ables obtained in [50].
In elementary terms, the two couplings (19) and (21) that we

have just derived can be understood as encoding the well known
facts that worldvolume flux on the D3 induces D1 charge, and
magnetic worldvolume flux F1 charge. Recall that the D1 and F1
are the charged objects in the SO(4N) theory before gauging their
corresponding symmetries. After gauging, they will become the
symmetry generators for the dual magnetic symmetries in the
Sc(4N) theory (at least if our general philosophy of identifying
branes with symmetries is correct). So what we have just shown,
is that when doing the path integral on theD3wewill have to sum
over insertions of the symmetry generators for the 1-forms of the
theory. This is certainly suggestive that condensations[9,13,16] are
going to enter the picture after gauging.
The precise details are nevertheless somewhat subtle. In gen-

eral, when performing the path integral the standard prescrip-
tion is that we choose whether we formulate the theory in terms
of electric or magnetic variables, and then sum over the specified
variables only. From this point of view the two couplings (19) and
(21) seem somewhat at odds, and it is not clear which one we
should choose. What saves the day is that this standard prescrip-
tion has to be subtly modified whenever the cohomology groups
where the electric andmagnetic fluxes live contain torsional com-
ponents. In this case, as originally pointed out by [42–44], the elec-
tric and magnetic flux operators do not commute. As shown in
[45] (see also [51] for a different derivation of the same result) this
flux non-commutativity leads to the existence of a discrete gauge
theory when the theory is compactified on the space with torsion.
The argument, adapted to the system at hand, goes as follows.
Our initial theory is four dimensional U(1) Maxwell theory on

the D3, compactified on 3 ×ℝℙ1. We will present a Hamil-
tonian quantisation analysis, so we assume that 3 =  2 ×ℝ,
and we identify the last component with the time direction.10

The spatial slice is of the form  2 ×ℝℙ1. There is a non-trivial
SL(2,ℤ) duality bundle along the ℝℙ1 = S1 direction inherited
from the ℝℙ5 background, with holonomy −1, which induces a
(F2, F

D
2 ) → (−F2,−FD

2 ) transformation of the worldvolume gauge
field. Therefore, just as in the IIB background itself, the worldvol-
ume gauge fields on the D3 are valued in twisted cohomology. In
particular H1(ℝℙ1; ℤ̃) = ℤ2, which justifies the statement above
that there is torsion in this problem.
Consider the operators Φe(a⊗ t1), Φm(b⊗ t1) that measure

electric andmagnetic fluxes on the torsional sector. They are asso-
ciatedwith flat, topologically non-trivial elements of TorH2( 2 ×
ℝℙ1; ℤ̃),[43,44] which in our case are all of the form a⊗ t1, where
a ∈ H1( 2;ℤ) and t1 is the generator of H

1(ℝℙ1; ℤ̃). Alterna-
tively, using Poincaré duality, we can view these operators as the
holonomy of the twisted fluxes F̆2 and F̆D

2 on cycles 𝛼 × p̃t and
𝛽 × p̃t, where 𝛼 and 𝛽 are Poincaré dual to a and b in 2, and p̃t

10 A Lagrangian derivation will appear in [52].
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the (twisted) point inH0( 2; ℤ̃), which is Poincaré dual on ℝℙ1

to t1. So we have

Φe(a⊗ t1) = exp
(
2𝜋i∫𝛼

𝛾1 ∫p̃t t̆1
)

= exp
(
2𝜋i∫𝛼

𝛾1 ∫ℝℙ1
t̆21

)

= exp
(
𝜋i∫𝛼

𝛾1

)
(22)

and similarly

Φm(b⊗ t1) = exp
(
𝜋i∫𝛽

𝜙1

)
. (23)

Now, it follows from the general analysis of [42–44] that

Φe(a⊗ t1)Φm(b⊗ t1) = (−1)∫ 2 abΦm(b⊗ t1)Φe(a⊗ t1) , (24)

or equivalently, formulating everything in terms of homology on
 2 (and abusing notation slightly):

Φe(𝛼)Φm(𝛽) = (−1)𝛼⋅𝛽Φm(𝛽)Φe(𝛼) . (25)

These commutation relations are precisely those of a ℤ2 theory.
We can represent this theory by a gauge theory on the two fields
𝛾1, 𝜙1 with action

[53]

Sℤ2
= 𝜋i∫3

𝛾1𝛿𝜙1 . (26)

We have identified the fields appearing in the Lagrangian with 𝛾1
and 𝜙1 since these are precisely the fields whole holonomies are
measured by the operators in the theory, by construction.
Assembling all the pieces together, we find that the effective

partition function on the D3, seen as an 3-surface dynamical ob-
ject on X5, is (up to an overall normalisation)

 (3) = D(0)
3 (3)⋅

∫ 𝛾1𝜙1 exp
(
𝜋i∫3

𝛾1𝛿𝜙1 + c2𝛾1 + b2𝜙1

)
. (27)

The path integral over 𝛾1,𝜙1 is the remnant of the U(1) YM
path integral in this torsional setting. This is precisely the non-
invertible operator found in [14].

Fusion Rules

Now that we have a full description of the symmetry defect, in-
cluding its TQFT sector, we can derive the fusion rules for the ex-
tended operators in the Sc(4N) theory, in particular showing that
 (3) is a non-invertible operator of the Sc(4N) theory. Since
the TQFT that comes out of the brane dynamics is identical to
the one conjectured in [14], the rest of our derivation of the fu-
sion rules can proceed exactly as in that paper (and the similar

analysis in [12]). We include the details of the argument for com-
pleteness and convenience for the reader, and then offer some
comments reinterpreting some of the features of the computa-
tion from a brane perspective.
Consider first the fusion of two copies of (3). Each defect

comes with its own ℤ2 TQFT, so we have two sets of dynamical
fields:

 (3) × (3) = ∫ 𝛾1𝜙1𝛾 ′1𝜙′
1

exp
(
𝜋i∫3

𝛾1𝛿𝜙1 + 𝛾 ′1𝛿𝜙
′
1 + c2(𝛾1 + 𝛾 ′1) + b2(𝜙1 + 𝜙′

1)
)
. (28)

Switching to new variables 𝛾1, �̂�1 := 𝛾1 + 𝛾 ′1, 𝜙1, �̂�1 := 𝜙1 + 𝜙′
1, the

action becomes

 (3) × (3) = ∫ 𝛾1𝜙1�̂�1�̂�1

exp
(
𝜋i∫3

�̂�1𝛿�̂�1 + �̂�1𝛿𝜙1 + 𝛾1𝛿�̂�1 + c2�̂�1 + b2�̂�1

)
. (29)

We can integrate 𝜙1 and 𝛾1 out, which imposes 𝛿�̂�1 = 𝛿�̂�1 = 0, so
�̂�1𝛿�̂�1 = 0. We then have

 (3) × (3) = ∫ �̂�1�̂�1 exp
(
𝜋i∫3

c2�̂�1 + b2�̂�1

)
. (30)

Poincaré dualising �̂�1 and �̂�1 to Γ,Φ ∈ H2(3;ℤ), this can be
rewritten as

 (3) × (3) =
∑

Γ,Φ∈H2(3;ℤ)

D𝖼,e
2 (Γ)D

𝗌,m
2 (Φ) (31)

where D𝖼,e
2 and D𝗌,m

2 are the 1-form symmetry generators of the
Sc(4N) theory. (The notation is explained below.) So is indeed
a non-invertible defect in the Sc(4N) theory, since the right hand
side is a sum of operators.
This was the derivation in [14]. Holographically, the physical

meaning of the computation can be understood as follows. We
have argued that the defect  (3) corresponds to a D3 wrap-
ping 3 ×ℝℙ1, including its quantum dynamics. The effect of
the quantum dynamics is to sum over induced charges, which in
this case means summing over D3/F1 and D3/F1 bound states.
(The precise way in which this sum happens involves, as shown
above, aℤ2 gauge theory.) If there was no sum, but only a fixed in-
duced charge (the trivial one, say), then taking the square would
lead to a complete annihilation of theℤ2 charges, and therefore a
trivial operator. Since there is a sum involved some of the cross-
terms in the square of the sum will lead to incomplete annihila-
tions, leaving a sum over F1 and D1 insertions along the world-
volume of the D3. The D3 charge is always there no matter the
induced charge, and disappears, so only the sum over D1 and F1
insertions remains.
In order to show that this physical process does indeed pro-

duce (31), all we need to verify is that the symmetry generators
of the Sc(4N) theory are the F1 and D1. This is immediate, since
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they are the genuine lines in the SO(4N) theory, and we are gaug-
ing the symmetry they are charged under, so they become the
magnetic symmetry generators in the gauged theory. It is also
instructive to derive it from the Spin(4N) starting point. The 𝗌-
spinor Wilson lineW𝗌, given by a D5 brane wrapped on ℝℙ4, is
neutral under ℤ𝗌

2 (recall our conventions from footnote ), which
is the symmetry that we gauge to go to Sc(4N). So the correspond-
ing charge operator, the D1 on p̃t, survives as a charge operator
on the Sc(4N) theory. We have denoted it above by D𝖼,e

2 . On the
other hand the 𝖼-spinor and vector Wilson lines are not invari-
ant, due to the presence of fundamental strings in them, which
are not invariant under ℤ𝗌

2. So after gauging ℤ
𝗌
2 the fundamental

string on a twisted point in ℝℙ5 becomes the second (magnetic)
symmetry generator in the Sc(4N) theory, which we have denoted
above by D𝗌,m

2 .
We are finally left with the task of determining the fusion

of  (3) with the one-form symmetry generators D𝖼,e
2 (Γ) and

D𝗌,m
2 (Φ). Consider for example D𝖼,e

2 (Γ). We have just argued that
it corresponds to a D1 brane on Γ × p̃t. Fusing it with  (3),
which involves a sum over induced D1 branes wrapping the
Poincaré dual PD[𝛾1] × p̃t to 𝛾1 amounts to shifting 𝛾1 → 𝛾1 +
PD[Γ] in (27). But this can clearly be reabsorbed in a change of
variables, giving back (3). So

 (3) × D𝖼,e
2 (Γ) =  (3) . (32)

An identical argument shows

 (3) × D𝗌,m
2 (Φ) =  (3) . (33)

We have shown that the  (3) operators of the Sc(4N) the-
ory are non-invertible, and are represented holographically by D3
branes. A small puzzle remains: our starting point was that the
bulk of the holographic dual was the same for all global forms,
so the same D3 brane appears in the bulk of all theories with the
same local dynamics, including theories that are not expected to
have non-invertible symmetries. The reason that the D3 does not
lead to non-invertible symmetries in some cases has to do with
boundary conditions (as it should, as this is the only thing that is
different in the various cases). Consider for instance the SO(4N)
theory, where the D3 on ℝℙ1 is also a symmetry operator, imple-
menting the outer automorphism. As we push to the boundary,
we obtain an operator of the form (27), but with a crucial differ-
ence: the IIBB2 andC2 fields have a Dirichlet boundary condition
in this case, so they are not dynamical but instead they provide
backgrounds for the global 1-form symmetries for the SO(4N)
theory. So the term

∫ 𝛾1𝜙1 exp
(
𝜋i∫3

𝛾1𝛿𝜙1 + C2𝛾1 + B2𝜙1

)
(34)

in (27) (where we have capitalised B2 and C2 to indicate that now
they are fixed background fields) does not depend on any dynam-
ical field in the SO(4N) theory, so it is essentially trivial as an oper-
ator of the SO(4N) theory (it can be taken out of the path integral).
In this case it is consistent to split it off from the invertible part
D(0)
3 (3), which can meaningfully be considered in isolation.

3.3. 4d PO(4N) and Pin+ Non-Invertibles

The other two theories with non-invertible symmetries in (6) can
be analysed in a very similar way.
Let us start with the PO(4N) case. Here we gaugeD(0)

3 andDB,e
2 ,

so we expect the non-invertible 2-surface operator to be associ-
ated with DC,m

2 , which we argued above is given by a D5 brane
wrapping ℝℙ4 ⊂ ℝℙ5. We will need the twisted and untwisted
cohomology groups of ℝℙ4, these are

H∗(ℝℙ4;ℤ) = {ℤ, 0,ℤ2, 0,ℤ2}

H∗(ℝℙ4; ℤ̃) = {0,ℤ2, 0,ℤ2,ℤ} . (35)

(The second line follows from analysing the twisted Gysin se-
quence in [34].) As above, F̆2 is in the twisted sector, so it ex-
pands as 𝛾1 ⊗ t̆1, but its magnetic dual F̆D

4 is now untwisted: this
is needed to be able to write a kinetic term on the twisted ℝℙ4. It
therefore has an expansion of the form F̆D

4 = 𝜙4 ⋆ 1 + 𝜙2 ⋆ ŭ2 +
𝜙0 ⋆ ŭ4.
In the electric frame the action on the D5 is of the form

S = ∫2×ℝℙ4
F̆7 + F̆2 ⋆ F̆5 +

(1
2
F̆22 +

1
24

ĕ
)
⋆ F̆3 +⋯ (36)

where the missing terms are proportional to F̆1, so we will ignore
them. The term proportional to F̆22 ⋆ F̆3 does not contribute for
degree reasons, as it goes as t̆31. The curvature term ĕ ⋆ F̆3 could
in principle contribute, but it does not depend on the electric field
so it will not enter our considerations. We are left with the first
two terms. The first one does clearly contribute, and leads to the
expected “naive” 2-surface holonomy operator on 4, entirely
analogously to the discussion around (18). The second term is
also interesting. Given our expansion of F̆5 above, there is a single
non-vanishing contribution of the form

2𝜋i∫2×ℝℙ4
(𝛾1 ⋆ t̆1) ⋆ (N ⋆ ŭ5 + a1 ⋆ ŭ4 + a3 ⋆ ŭ2 + N ⋆ 1̆)

= 𝜋i∫2
𝛾1a1 , (37)

where we have used thatℝℙ4 is Poincaré dual to t1 inℝℙ5. This is
the statement that worldvolume flux F2 induces D3 charge. The
magnetic flux FD

4 will induce F1 charge (by a generalisation of the
analysis in [50]), via a coupling of the form

2𝜋i∫2×ℝℙ4
F̆D
4 ⋆ H̆3 = 𝜋i∫2

𝜙0b2 , (38)

where we have used the expansion H̆3 = b2 ⋆ t̆1 as above.
All that remains is to obtain the prescription for how to

sum over electric and magnetic fluxes. As above, flux non-
commutativity can be used to argue that there is an effective ℤ2
gauge theory on2 with action

i𝜋 ∫2
𝛾1𝛿𝜙0 . (39)
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The only new subtlety in this derivation comes from the fact that
on ℝℙ4, being non-orientable, the perfect torsional pairing is be-
tween a twisted class t̆1 and an untwisted one ŭ4. An easy way to
verify the existence of such a coupling is to use Poincaré duality
on ℝℙ5:

∫ℝℙ4
t̆1ŭ4 = ∫ℝℙ5

t̆61 =
1
2

mod 1 . (40)

Putting all these terms together we obtain the topological ac-
tion

SPO(4N)TFT = i𝜋 ∫2
𝛾1𝛿𝜙0 + 𝜙0b2 + 𝛾1a1 (41)

which is precisely the action proposed in [14]. The fusion algebra
can be derived as above.
Finally, in the 4d Pin+(4N) SYM theory we gaugeD(0)

3 andDC,m
2 ,

so the non-invertible surface defects are realised as NS5-branes
on ℝℙ4 ×2. The worldvolume theory on the NS5 is just as
on the D5, but the gauge fields couple to the S-dual supergrav-
ity fields. We can therefore write down the answer immediately
from (41):

SPin
+(4N)

TFT = i𝜋 ∫2

𝛾1𝛿𝜙0 + 𝜙0c2 + 𝛾1a1 . (42)
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