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This paper presents a novel quantum walk approach to simulating parton showers on a quantum
computer. We demonstrate that the quantum walk paradigm offers a natural and more efficient approach to
simulating parton showers on quantum devices, with the emission probabilities implemented as the coin
flip for the walker, and the particle emissions to either gluons or quark pairs corresponding to the movement
of the walker in two dimensions. A quantum algorithm is proposed for a simplified, toy model of a 31-step,
collinear parton shower, hence significantly increasing the number of steps of the parton shower that can be
simulated compared to previous quantum algorithms. Furthermore, it scales efficiently: the number of
possible shower steps increases exponentially with the number of qubits, and the circuit depth grows
linearly with the number of steps. Reframing the parton shower in the context of a quantum walk therefore
brings dramatic improvements, and is a step towards extending the current quantum algorithms to simulate
more realistic parton showers.
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I. INTRODUCTION

The emergence of quantum computers has brought a
new paradigm to the field of computation. The unique
features of these devices has garnered attention from
various disciplines, including high energy physics
(HEP), where the computational challenges associated with
taking, processing, and analyzing vast amounts of data in
collider experiments like the Large Hadron Collider (LHC)
requires innovative solutions. Quantum algorithms have
been proposed to tackle some of these challenges, including
the simulation of collision events [1–3], reconstruction of
charged particle tracks in the detectors [4–6], and event
classification and analysis [7–15].
Collision events at the LHC typically involve hundreds

of particles and can be very complicated. Simulation of
such events requires extensive modeling of proton-proton
interactions and the subsequent detector response to fully

uncover the underlying physics processes. Theoretical
descriptions of these collisions can be separated into several
stages. Constituent partons in the colliding protons can
interact via large momentum transfer in the so-called hard
interaction. Due to the large interaction energies, such
collisions have the potential to probe new physics. Color-
charged particles produced as a result of this hard inter-
action are likely to emit further partons, resulting in a
parton shower. The parton shower process evolves the
system down in energy from the hard interaction to the
hadronization scale, OðΛQCDÞ. It is a perturbative process
and can involve many partons, thus being one of the most
time consuming parts of the generation of a collision event.
Consequently, the development of quantum algorithms for
the calculation of the hard process [2] and the resultant
parton shower [1,2] is an area of interest.
This paper presents a novel approach to simulating a

many-particle, collinear parton shower on a quantum
device using a quantum walk (QW) framework. It is
structured as follows: Section II gives a brief introduction
to the QW framework, Sec. III contains the description of
the proposed parton shower algorithm, and Sec. IV gives a
summary and conclusions.

II. QUANTUM WALKS

The quantum random walk [16–19] is the quantum
analog of the classical random walk and defines the
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movement of a particle, the walker, which can occupy
certain position states on a graph. Here we will consider
only discrete-time random walks, where a coin flip deter-
mines the movement of the walker at distinct time steps.
The state of the walker can therefore be defined by the
position of the walker, x, and the coin, c, as jx; ci. The
movement of the walker through the graph is determined by
two operations: the coin operation, C, which determines the
direction the walker will move, and the shift operation, S,
which propagates the walker to the next position.
As a simple example, we construct a random walk

following the approach in [18]. Consider a walker moving
along a one-dimensional line according to an unbiased coin
(i.e., the walker has an equal chance of moving left or right
after the coin flip), with the walker originally positioned at
x ¼ 0, see Fig. 1. The position of the particle on the line
forms a Hilbert space HP spanned by integer values on the
line, fjii∶i ∈ Zg. The position space is augmented by the
coin space, HC, which spans two basis states, fj↑i; j↓ig,
which here will represent the up and down spin states of a
fermion.1 Therefore, the walker occupies a total space of

H ¼ HC ⊗ HP: ð2:1Þ

In the classical case, the coin operation is carried out by
evaluating a classical coin. Based on the outcome of this
coin, the shift operator moves the walker in the correct
direction. Here we will attribute the coin state j↑i to the
walker moving in the positive x direction and the j↓i state
to the walker moving in the negative x direction. After the
step process is complete, the walker is either in the x ¼ −1
or x ¼ 1 position. In contrast to the classical case, the
quantum coin operation is based on a quantum coin. In this
example, we will consider the Hadamard coin,

H ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; ð2:2Þ

which gives an equal chance for the coin qubit to be
measured in each of the coin states. The quantum coin
operation puts the system into a superposition of the basis

states of the HC space. The shift operation is then
performed, moving the walker into a superposition of
the position states, x ¼ −1 and x ¼ 1. If a measurement
is performed after the step, the wave function collapses to
recover the classical case of the walker being in either the
x ¼ −1 or x ¼ 1 position.
The Hadamard coin used here is a balanced unitary coin

operation2 and therefore the coin and shift operations can
be defined as a single unitary transformation to the initial
qubit state,

U ¼ S · ðC ⊗ IÞ; ð2:4Þ

which is applied iteratively to represent the number of
steps. For a quantum walk of N steps, the propagation of
the walker is described by the transformation UN [18].
An example of running a linear, one-dimensional, N ¼ 100
step, random walk for both the classical case and the
quantum case is shown in Fig. 2. The classical case has
been achieved by measuring the coin qubit at each step,
removing the superposition from the system. As expected,

FIG. 1. One-dimensional walker at position x ¼ 0 can move
either left or right depending on the outcome of the coin flip, j↓i
and j↑i respectively.

FIG. 2. Simulation of a 100-step random walk using the IBM Q
32-qubit simulator [22] for 100,000 shots for a classical random
walk obtained by measuring the coin state after each step, and a
quantum random walk using a symmetric initial position and a
Hadamard coin. Only nonzero probabilities are shown, as odd-
numbered positions will have zero probability for this walk.

1The coin space can be represented by any two-level quantum
system. The choice of using the up and down spin states of a
fermion is useful when implementing quantum walks on qubit-
based quantum devices, such as those available on the IBM Q
network [20].

2Strictly speaking, the Hadamard coin introduces a bias to the
quantum walk through the phase on the coin qubit. This is
discussed in detail in [18] and references therein. Here we remove
this bias for a general quantum walk by using a symmetric
initial state,

jΦsymmi ¼
1ffiffiffi
2

p ðj0i þ ij1iÞ ⊗ j0i; ð2:3Þ

obtaining the distribution presented in Fig. 2.
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the classical walk yields a Gaussian distribution of posi-
tions centered about the initial position of the particle,
with the variance σ2 ¼ N. In contrast, the quantum random
walk, where there are quantum interference effects between
the intermediate steps of the walk process, results in a
distribution that is dramatically different from the classical
case. It can be shown [18,21] that the variance of the
quantum random walk process goes as σ2 ∼ N2. This is a
remarkable attribute of the quantum random walker, which
propagates quadratically faster than the classical walker.
The average distance of the walker from the initial position
is σ ¼ ffiffiffiffi

N
p

and σ ∼ N for the classical and quantum walks
respectively.

A. Quantum walks with memory

An interesting extension of the discrete-time quantum
walk is the addition of a “memory” Hilbert space.
Analogous to classical random walks with memory, quan-
tum walks with memory offer an opportunity to simulate
arbitrary dynamics by modifying the movement of the
walker based on the outcomes of previous coin operations
[23,24] and walker positions [25]. Through the use of
memory, quantum walks have been shown to display
unique diffusive characteristics [23–26]. The diffusive
characteristics depend on the size of the quantum walk’s
memory, and the probability distributions range from an
ideal quantum walk distribution, to an ideal classical walk
distribution, in the limit of full memory [23,24].
An example of a discrete-time quantum walk with

memory is presented in [24] and considers quantum walks
with different size memory of previous coin outcomes. As
the size of the quantum memory increases to the number of
steps in the walk, this is equivalent to a new coin per step
and classical statistics are obtained. Classical distributions
can be easily obtained by measuring the coin, or intro-
ducing decoherence, at each step. Therefore, one might
assume that, in the limit of full memory, quantum walks are
reduced to classical algorithms. However, and very impor-
tantly, there is no decoherence present within the quantum
walk with memory and the state is still a highly entangled
pure state [24]. The evolution of the quantum walk is
entirely unitary,3 thus one can always evolve back to the
initial state by reversing time. This is not possible in a truly
classical case. Furthermore, quantum walks with memory
have been shown to spread significantly faster than their
classical counterparts [25].
The ability of quantum walks with memory to efficiently

simulate classical dynamics through the population of
a memory Hilbert space is particularly useful in the

simulation of parton showers on quantum devices.
Section III outlines the implementation of a discrete
collinear QCD parton shower on a quantum device using
a quantum walk with memory of the previous step’s coin
operation.

III. QUANTUM WALK AS A PARTON
SHOWER SIMULATION

The parton shower [27] evolves the energy scale of a
scattering event from the hard interaction down to the
hadronization scale through the radiation of additional
partons. The emissions are determined by splitting func-
tions which correspond to the different emission proba-
bilities in the shower. The shower content is then updated
depending on which splitting probability is chosen. In
classical computing, parton shower algorithms are imple-
mented using Markov chain Monte Carlo (MCMC) algo-
rithms [28–30] to efficiently sample the probability
distributions of the shower final state observables. In
quantum computing, a quantum walk mechanism provides
a natural framework for the simulation of this probabilistic
interpretation of parton showers: the emission probabilities
correspond to the coin flip probabilities, and updating the
shower content depending on the emission corresponds to
the shift operation in the quantum walk framework.
In this section, we detail this novel quantum walk

approach to simulating a parton shower on a quantum
device. Within this framework, the algorithm can simulate a
many-particle parton shower, and shows a remarkable
improvement on the number of shower steps that can be
simulated in comparison to previous quantum algorithms
[1,2]. The section is ordered as follows: Section III A gives
the theoretical outline of the toy model used in the parton
shower, Sec. III B shows the implementation of a simple
parton shower with one particle type, Sec. III C outlines
the full collinear parton shower, Sec. III D examines the
quadratic speed up provided by a quantum walk under
certain conditions and highlights parallels with the quan-
tum walk parton shower, and Sec. III E discusses possible
extensions to the algorithm with advancements in quantum
computers to simulate a realistic parton shower.

A. Theoretical outline of the shower algorithm

We present a discrete, collinear parton shower using the
quantum walk framework. As with the parton shower
algorithms presented in [1,2], this algorithm utilizes the
ability of the quantum device to remain in a superposition
state throughout the calculation. Consequently, all shower
histories are calculated simultaneously and are encoded
in the final wave function, with a measurement projecting
out a specific quantity of the final state, e.g., the number
of partons. This offers a unique advantage over classical
parton shower algorithms, which need to calculate each
shower history explicitly and store the information on a

3It is worth noting that the construction of a unitary evolution
for a quantum walk with memory is not trivial, and a generic
model for all quantum walks with memory is yet to be outlined.
Reference [26] outlines a generic model for all quantum walks
with memory on regular graphs.
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physical memory device. Only after summing over all
possible shower histories can a physically meaningful
quantity be extracted. The goal of this algorithm is to
create the foundation for the development of a full, general
parton shower by studying a simplified toy model that
meets the capabilities of current quantum simulators.
An emission is collinear if a parton with momentum P

splits into two massless particles, which have parallel
4-momenta, such that the momentum distribution is

pi ¼ zP; pj ¼ ð1 − zÞP; ð3:1Þ

thus, ðpi þ pjÞ2 ¼ P2 ¼ 0 [31]. In this algorithm, we use a
similar theoretical setup as [2]. In each shower step,
emission is determined by first ascertaining whether an
emission occurred in the step using the Sudakov factors,
and then applying the relevant splitting functions. The
Sudakov factors for a QCD process are given by

Δi;kðz1; z2Þ ¼ exp

�
−αs

Z
z2

z1

Pkðz0Þdz0
�
; ð3:2Þ

and are used to calculate the probability of nonemission
[32]. The probability that no particles split for an arbitrary
step N in the shower process, where N particles can be
present, is given by the total Sudakov factor,

Δtotðz1; z2Þ ¼ Δng
g ðz1; z2ÞΔnq

q ðz1; z2ÞΔnq̄
q̄ ðz1; z2Þ; ð3:3Þ

where ng, nq, and nq̄ are the number of gluons, quarks, and
antiquarks present in the step.4 As in [2], only collinear
splittings will be considered. The emission probabilities are
therefore calculated using the collinear splitting functions
outlined in [33–35]. The emission of a gluon from a quark
is defined at leading order (LO) by

Pq→qgðzÞ ¼ CF
1þ ð1 − zÞ2

z
; ð3:4Þ

where CF ¼ 4=3 is calculated using color algebra, and the
quark and gluon have momentum fractions (1 − z) and z
respectively. The gluon can self-couple, and therefore can
split to both a pair of gluons and a quark-antiquark pair. At
LO, the splitting functions for these emissions are

Pg→ggðzÞ ¼ CA

�
2
1 − z
z

þ zð1 − zÞ
�
;

Pg→qq̄ðzÞ ¼ nfTRðz2 þ ð1 − zÞ2Þ; ð3:5Þ

where CA ¼ 3 and TR ¼ 1=2 are calculated using color
algebra, and nf is the number of massless quark flavors.

Combining the Sudakov factors with the splitting func-
tions defines the full probability of emission for particle k
splitting to i and j,

Probk→ij ¼ ð1 − ΔkÞ × Pk→ijðzÞ: ð3:6Þ

In the QW framework, this probability is applied as a
unitary rotation to the coin qubit, defining the shower
algorithm’s coin operation.
The proposed algorithm does not include kinematics.

This allows for the calculation to be implemented on
currently accessible simulators, such as the 32-qubit
IBM Q Quantum Simulator [22]. As a result, the shower
evolution cannot be determined by the kinematics of the
shower particles, but instead the evolution variable z is
evolved to lower and lower momenta, exponentially, with
the number of steps. Section III E outlines how a more
realistic parton shower could be constructed on future
devices.

B. Implementation of a simple shower
as a one-dimensional quantum walk

The implementation of a parton shower as a quantum
walk follows the framework of a simple quantum random
walk outlined in Sec. II. Here we define the coin operation
as a unitary rotation on the coin qubit corresponding to
the probability of emission, calculated using the Sudakov
factors and the subsequent splitting functions defined in
Sec. III A. This rotation takes the form

Uc ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Pij
p

−
ffiffiffiffiffiffi
Pij

p
ffiffiffiffiffiffi
Pij

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Pij

p
!
; ð3:7Þ

where Pij is the probability of particle k splitting to i and j,
as defined in Eq. (3.6). The coin space,HC, therefore spans
the space fj0i; j1ig defined by the possible measured states
of the coin qubit. Here we define the j0i state as the “no
emission” state, and the j1i state as the “emission” state.
The position space, HP, now defines the number of
particles present in the shower and has been altered to
include only zero and positive integers, fjii∶i ∈ N0g, as the
parton shower cannot have a negative number of particles.
The shift operation is controlled from the coin qubit and
moves the walker in the correct direction.
To illustrate this simple shower, Fig. 3 shows a schematic

of a one-dimensional quantum walk with memory able to
simulate a particle which can split to produce another
particle of the same type. In this simple shower, the number
of particles present is encoded in the position of the walker,
with the initial state of the walker being the zero position.
Figure 3 uses a two qubit basis for the position of the
walker, ultimately allowing the algorithm to simulate a
maximum of four shower particles in the final state. The
number of particles that the algorithm can simulate

4As the algorithm allows for steps with no emissions, for a step
N: ðng þ nq þ nq̄Þ ≤ N.
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increases exponentially with the number of position qubits,
x, as 2x. For this example, only one splitting is possible,
i → ii, and as a result only one coin qubit is needed to
encode the splitting probability. As outlined in Sec. III A,
the splitting probability from Eq. (3.6) contains the
Sudakov factor. To correctly implement the splitting
probability for the shower step, the particle content of
the shower must be known. This is handled by the “position
check” scheme illustrated in Fig. 3, which is controlled
from the position of the walker and applies the correct
splitting probability accordingly. The scheme is constructed
from a series of CCNOT gates, thus the operation is entirely
unitary and maintains the coherence of the system.
Furthermore, the position check scheme ensures that the
coin operation from Eq. (3.7) is always applied to the j0i
state on the coin qubit to recover the correct parton shower
distribution. This is done by allowing the walker to have a
memory of the outcome of the coin from the previous step
by populating a memory register. For the quantum walk
parton shower, memory is only required after the second
shower step and thus the algorithm does not have full
memory of the walk evolution. Quantum walks with
memory are discussed in Sec. II A.
The subsequent shift operation then adjusts the number

of particles present in the shower, depending on the
outcome of the coin operation. If, after the coin operation,
the coin qubit is in the j1i state, then the splitting has
occurred and the position of the walker is increased by one,
increasing the number of particles present in the shower by
one. However, if the coin operation yields a j0i state, then
the walker does not move for this simple example.5 As
shown in Fig. 3, the shift operation is constructed from a
series of Toffoli gates and thus is a unitary operation.

This step can then be repeated for the number of discrete
shower steps in the parton shower, resembling the quantum
random walk outlined in Sec. II. Throughout the calcu-
lation, the device is in a superposition state of all possible
outcomes of the coin and shift operations. At the end of the
shower process, the final state of the system is measured
and projected onto a classical state.

C. Implementation of a collinear parton shower

It is possible to extend the simple shower outlined in
Sec. III B to include multiple parton types by increasing
the dimension of the position space HP, with the aim of
developing a multiparticle, discrete, collinear parton
shower using the theoretical outline discussed in Sec. III A.
The algorithm presented here considers a toy model
comprised of a gluon and one flavor of quark, and can
simulate the corresponding splittings.
As shown in Sec. III B, a quantum walker in a one-

dimensional position space, HP, has the ability to simulate
a single particle type. Augmented by the coin space, HC,
with dimension equal to the number of possible splittings
associated with the particle, the quantum walk can simulate
a simple parton shower comprising one particle type.
Increasing the dimension of the position space increases
the number of particles which can be simulated in the
algorithm. Applying this mechanism to our toy model of
the parton shower, the position space, HP, is increased to
two dimensions to accommodate the simulation of gluons
and quarks, counting gluons in one dimension and quarks
in the other. Note that we do not need to include dimensions
for both quarks and antiquarks as they are produced in
conjunction through the g → qq̄ splitting, thus instead we
count quark-antiquark pairs. Figure 4 shows a visualization
of how the walker’s position on a 2D plot corresponds to
the number of particles in the shower, with gluons and
quarks measured on the x and y axes respectively of the
walker’s 2D lattice. The coin space HC is increased to a

FIG. 3. Schematic for a single step of a quantum walk as a parton shower, with the ability to simulate a particle which can split to more
particles of the same type. Here, the position check determines the number of particles present by assessing the position of the walker
and records the state of the coin qubit to a memory register (only after the second step). The “coin” operation applies the correct splitting
probabilities depending on the position of the walker. The “shift” operation moves the walker depending on the outcome of the coin
operation. Here only one position possibility is shown. The position check will loop through all possible walker positions to correctly
apply the coin operation.

5Note that in Fig. 3 the shift operation also shows the ability to
decrease the walker’s position. This is not needed for the simple
example of i → ii splittings, but will be useful later.
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three-dimensional Hilbert space, with three coin qubit
rotations corresponding to the splitting functions in
Eqs. (3.4) and (3.5). Controlled from the coin register,
the shift operations propagate the walker to reflect the
production of new particles in the shower step. A schematic

of the quantum circuit is shown in Fig. 5. It should be noted
that it is likely that more than one of the coin qubits can be
in the j1i state in a step. In these situations, it is not clear
which splitting kernel should be applied and therefore the
algorithm does not apply a shift operation to the walker.

(a) (b)

FIG. 4. Visualization of a quantum walk as a parton shower comprising gluons and quarks. The quantum walker’s position on a 2D
plot corresponds to the number of particles in the parton shower: (a) Parton shower using the collinear splitting functions for quarks and
gluons. (b) Parton shower with modified splitting functions to show how the walker moves in the 2D lattice.

FIG. 5. Schematic of the quantum circuit for a single step of a discrete QCD, collinear parton shower with the ability to simulate the
splittings of gluons and one flavor of quark. The shower algorithm is split into three distinct sections: (1) The position check determines
the position of the walker so that the correct Sudakov form factors are applied in the splitting kernels, (2) the coin flip applies unitary
rotations to a coin register corresponding to the possible splitting kernels, (3) the shift operation propagates the walker into the correct
direction to describe the particle splitting in the shower step. This step is then repeated iteratively to simulate a full shower process.
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This is realized by controlling from coin states that only
have one coin qubit in the j1i, as shown in Fig. 5.
To simulate a parton shower, the step shown in Fig. 5 is

performed many times. The qubit requirement for an
N-step shower scales as

nqubits ¼ 2 log2ðN þ 1Þ þ 6: ð3:8Þ

Only one splitting is allowed to occur per step, and steps
where no emission occurred are dictated by the Sudakov
form factors from Eq. (3.3). The system is kept in a
superposition state throughout the algorithm, with a meas-
urement taking place only at the end of the calculation.
Therefore, after all the steps have been evaluated, the system
is in a superposition of all possible shower histories. This
differs dramatically from classical parton shower algorithms
where each shower history must be individually calculated.
A physically meaningful quantity can only be extracted from
a classical shower algorithm once all possible shower
histories have been summed over. Consequently, the quan-
tum algorithm approach to parton showers provides a unique
advantage over the classical approach.
The quantum parton shower algorithm with 31 shower

steps has been run for 500,000 shots on the IBMQ 32-qubit
Quantum Simulator [22]. The output from the quantum
simulator has been compared to a classical parton shower
algorithm, which follows the same theoretical framework
as that outlined in Sec. III A, simulating a toy model
with one quark flavor and a gluon. Figure 6 shows the

comparison between the probability distributions produced
by the quantum and classical parton shower algorithms for
the number of gluons measured at the end of the shower.
This is shown for the scenario where there are zero quark-
antiquark pairs in the final state and the much less probable
scenario where there is one quark-antiquark pair in the final
state. Due to the low statistics for the 1qq̄ results, a further
validation of the parton shower algorithm has been carried
out using modified splitting functions to enhance the g → qq̄
and q → qg splittings. The results of this test are shown in
Fig. 7 and display good agreement between the quantum
and classical parton shower algorithms. The probability of
producing two quark-antiquark pairs is less than 10−5. For
both comparison runs, the classical algorithm has been
executed for 31 shower steps with 106 shots of the algorithm.
The quantum walk framework provides a distinct

increase in the qubit and circuit depth efficiency of the
parton shower in comparison to previous quantum parton
shower algorithms [1,2]. As shown in Fig. 6, the quantum
walk parton shower has the ability to simulate over 15 times
as many shower steps than [2], and requires just over half
the amount of qubits. As a direct comparison, the quantum
walk parton shower can recreate the 2-step shower pre-
sented in [2] using 9 qubits and 203 gate operations
(59 single qubit gates, 98 CCNOT gates, and 46 CNOT

gates); a marked improvement on the 31 qubits and 444
gate operations (169 single qubit gates, 217 CCNOT gates,
and 58 CNOT gates) required in [2]. Furthermore, the
quantum walk parton shower scales much more efficiently

FIG. 6. Probability distribution of the number of gluons measured at the end of the 31-step parton shower for the classical and quantum
algorithms, for the scenario where there are zero quark-antiquark pairs (left) and exactly one quark-antiquark pair (right) in the final
state. The quantum algorithm has been run on the IBMQ 32-qubit quantum simulator [22] for 500,000 shots, and the classical algorithm
has been run for 106 shots.
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than the shower in [2]. The number of partons that can be
simulated in the final state grows exponentially with the
number of qubits in the quark and gluon registers. Due to
the efficiency of the quantum walk framework, the circuit
depth grows linearly with the number of shower steps. In
contrast, the number of qubits required to perform the
history operation in [2] grows, at best, quadratically with
the number of partons in the final state. The proposed
quantum walk parton shower algorithm therefore provides
a significant enhancement in a quantum device’s ability to
simulate a realistic parton shower.
It is natural to consider whether quantum computers

and the quantum walk framework provide an advantage
for simulating parton showers over classical algorithms.
Further to the arguments made here and in [2], it is
interesting to examine the possible speedup provided by
quantum walks for parton shower algorithms.

D. Quantum walk speedup of classical Markov chain
Monte Carlo algorithms

In classical computation, parton showers are simulated
using Markov chain Monte Carlo (MCMC) algorithms
[28–30] to efficiently sample from the probability distri-
bution of shower final state observables. Beyond parton
shower applications, MCMC algorithms are the heart of
modern computation, with applications across many fields.
Consequently, there is much discussion in the quantum
information community as to whether quantum computers
can provide a speedup in comparison to classical MCMC

techniques [36]. Quantum walks have been shown to give
quadratic speedup for certain cases such as search algo-
rithms [17,37–39], simulated annealing [40,41], and dedi-
cated circuits for MCMC algorithms [42]. The important
factor that leads to the speed up compared to these MCMC
algorithms comes from the Markov chain mixing time, the
time it takes for the algorithm to approach the equilibrium
distribution [43,44]. The mixing time of the Markov chain
is therefore directly linked to the run time of the algorithm.
It is interesting to note that classical MCMC algorithms are
not optimal in general.
It can be shown that, for a stochastic matrixM describing

a random walk, the mixing time is related to the so-called
“spectral gap” between the largest eigenvalue of the
stochastic process and the second largest eigenvalue
[17,18,42]. For the minimal spectral gap δ, the mixing
time of the classical random walk is known to be propor-
tional to δ−1. The spectral gap for the quantum walk is
quadratically larger in comparison to its classical analog;
therefore, the mixing time is decreased quadratically. In
combination with an efficient implementation time of a
single step, this results in an algorithm that reaches the
equilibrium distribution quadratically faster than a classical
MCMC [40–42]. Although it is not known whether this
quadratic speed up can be obtained in general for all
MCMC algorithms [45,46], this is still an active area of
research with upper bounds on the mixing times of
quantum walk Markov chain algorithms recently being
estimated [47,48].

FIG. 7. Probability distribution of the number of gluons measured at the end of the 31-step parton shower for the classical and quantum
algorithms with modified splitting kernels, for the scenario where there are zero quark-antiquark pairs (left) and exactly one quark-
antiquark pair (right) in the final state. The quantum algorithm has been run on the IBMQ 32-qubit quantum simulator [22] for 100,000
shots, and the classical algorithm has been run for 106 shots.
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Of particular interest to the parton shower algorithm
presented here is the quantization of ergodic Markov chains
using quantum walk methods, such as the Szegedy quan-
tization [38], and equivalent coin based [49,50] and
memory [51] quantum walks. It has been proven that a
quadratic speed up in mixing time can be achieved for
algorithms based on the implementation of reversible,
ergodic Markov chains [39,42]. A Markov chain is said
to be ergodic if it is aperiodic and irreducible, and
consequently has a unique equilibrium distribution [52].

1. Potential speedup of the quantum walk parton shower

There are many parallels between the quantum walk
parton shower and the quantum walks discussed in
Sec. III D, which have a proven speedup over classical
MCMC algorithms. To highlight this, we consider the
observable for the expected number of gluons hngi,
represented by the walker’s position along the x axis in
Fig. 4. The shower is initiated in the hng ¼ 1i state, with
the walker in the ðx; yÞ ¼ ð1; 0Þ position on the two-
dimensional lattice. At each step, the possible splittings
mean that the number of gluons can be increased, by
the g → gg and q → qg splittings, and decreased, by the
g → qq̄ splitting. Consequently, the evolution of the
observable hngi can be depicted as a binary tree walk,
with the walker having the ability to move both left and
right on the x axis to any state in the hngi state space after
some number of steps, N. Therefore, the Markov chain
representing the observable hngi is irreducible as there are
no transient states in the number of gluons. Furthermore,
the parton shower is aperiodic and thus hngi is ergodic
when g → qq̄ splittings are included.
Therefore, there is a connection between the quantum

walk parton shower, and algorithms which achieve quad-
ratic speedup for sampling ergodic Markov chains
[38,39,42]. As a consequence, the quantum walk parton
shower has the potential to benefit from a quadratic
speedup in sampling observables that satisfy these con-
ditions, such as the number of gluons, hngi in the final state.
This article does not consider an analytical determination of
potential speedup and focuses on improving the required
quantum volume compared to previous quantum shower
algorithms, leading to more realistic shower depths.
However, it should be noted that there are several distinct
differences between the quantum walk parton shower and
the quantum walks presented in Sec. III D, which are
caveats to the potential speedup. The implementations
presented in [39] and [42] extend Szegedy’s quantum walk
[38] by employing quantum phase estimation to prepare
steady states on the quantum device. Furthermore, it has
only been proven that coin quantum walks can replicate
Szegedy’s quantization of Markov chains when the shift
and coin operations are Hermitian [49,50], with other
architectures still being an active field of research. With

these caveats in mind, whether a speedup can be realized
for the quantum walk parton shower warrants a further,
in depth study.
It is realistic to consider future extensions to the quantum

walk parton shower algorithm, such as the introduction of
color, that would benefit from extensions such as phase
estimation and amplitude amplification, thus maintaining
or improving any potential speedup. A brief discussion
about the extension of the simple parton shower example to
a more realistic shower is given in Sec. III E.

E. Toward a realistic parton shower

The parton shower algorithm described in Sec. III C is a
simplified toy model and has thus limited capability
compared to state-of-the-art, classical parton shower algo-
rithms. However, the quantum algorithm leverages the
unique ability of the quantum computer to remain in a
superposition state throughout the calculation, enabling all
shower histories to be calculated simultaneously and
providing a remarkable advantage over the classical algo-
rithms. It is interesting to consider how the parton shower
algorithm will develop with advancements in quantum
technologies. Near-future devices with larger quantum
volume [53,54] make it feasible to imagine a practical
parton shower algorithm on a quantum device.
An obvious extension to the algorithm proposed would

be to include more particle types and flavors. As described
in Sec. III C, this is easily done by increasing the dimension
of theHP andHC spaces to include another particle and its
corresponding splittings. It may then be possible to extend
the shower to include all quark flavors, increasing the
dimension of the walker’s lattice to seven: six quark
dimensions and one gluon dimension. To implement this
circuit would require a large number of qubits, with the
number required for each particle type being

nqubits ¼ log2N; ð3:9Þ

where N is the number of desired steps in the shower
process. It is possible to reduce the overall number of qubits
in the system by removing redundant areas in the quantum
walker’s lattice. For example, in Figs. 6 and 7, there is only
one quark-antiquark pair in the results. Therefore, all lattice
sites containing two or more quark-antiquark pairs could be
removed to streamline the circuit. However, this does
reduce the generality of the circuit, and such areas would
have to be known a priori to running the device.
The introduction of additional particles to the shower

would eventually require the simulation to keep track of
color flow within the parton shower. In HERWIGþþ [28],
the color reconnection stage of the parton shower is calculated
using a classical simulated annealing process. It has been
shown that quantum walk algorithms provide a quadratic
speedup over classical simulated annealing [40,41], and is
discussed further in Sec. III D. Consequently, it is expected
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that quantum walks will help improve the run time for more
complex parton showers.
It is feasible to consider an algorithm that can simulate a

parton shower for calculations where a basis transformation
is performed. For example, it has been argued in [1] that a
quantum advantage can be achieved by including inter-
ference effects into the sampling process of the final
probability distribution. The authors present a special case
consisting of two fermions, f1 and f2, and a scalar ϕ. The
algorithm performs a rotation from the flavor basis, f1=2, to
a mass basis, fa=b. The parton shower calculation is then
carried out in the mass basis, rotating back to the flavor
basis before measurement. It is through this basis change
that the authors find the interference effects are introduced
and thus provides a quantum advantage over classical
methods. Here, we have successfully replicated the 2-step
parton shower from [1] in the quantum walk framework
(without ϕ splittings) by increasing the dimension of the
Hilbert space to accommodate the two fermions and the
scalar. Figure 8 shows a comparison between the results
from both algorithms, and good agreement is obtained.
The quantum walk parton shower is implemented on a
circuit comprising 6 qubits, an improvement on the 22
qubits required for the parton shower presented in [1].

Furthermore, the quantum walk parton shower has a
shallow circuit depth, requiring only 61 gates (19 single
qubit gates, 30 CCNOT gates, and 12 CNOT gates) compared
to 148 gates (45 single qubit gates, 74 CCNOT gates, and
29 CNOT gates) in [1]. The basis transformation is applied
across the fermion dimensions of the position space HP
and the quantum walk parton shower agrees well with
the previous algorithm. Consequently, the quantum walk
parton shower simulates the quantum interference effects
and maintains the advantage claimed by [1].
Keeping track of particle kinematics in the parton shower

algorithm outlined in Sec. III C is an important step towards
emulating a realistic parton shower. The current publicly
accessible devices and simulators do not have adequate
quantum volume to include shower kinematics, but future
devices may have the capability to implement this.Within the
quantumwalk framework, it is possible to consider extending
the Hilbert space of the system to include a kinematic space
HK such that the total space now has the form

H ¼ HC ⊗ HP ⊗ HK: ð3:10Þ

The kinematic space HK would comprise a discretized
momentum space that each shower particle could move in.

FIG. 8. Comparison between the quantum walk parton shower framework and the algorithm presented in Ref. [1]. Both algorithms
have been run on the IBM Q 32-qubit quantum simulator for 5000 shots. There is good agreement between both algorithms, with the
quantum walk framework offering an improvement in the required quantum volume. The quantum walk circuit is comprised of 6 qubits,
an improvement on the 22 qubits required for the parton shower presented in [1].
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Similarly to the position check in Fig. 5, conditional coin
operations would then be used to apply the correct splitting
kernels to the coin qubits depending on the position of the
walker in the kinematic space HK . A schematic of a one
particle type parton shower, with kinematics included, is
shown in Fig. 9. It should be noted that, in order to keep track
of each particle’s momentum in the shower, the kinematic
spaceHK will have to be extended at each splitting. One can
initialize the system to have the whole kinematic space at the
beginning of the algorithm, populating the space only in the
event of a splitting.However, this approachwill lead to a large
redundancy in the circuit, an area which may have to be
optimized in practice.

IV. SUMMARY

Simulating parton showers on quantum computers has
been shown [1,2] to have distinct advantages that exploit
the unique features of the quantum device. In classical
parton showers, all possible shower histories are calcu-
lated individually, stored on a physical memory device
and then analyzed in their entirety to provide information
on a physical quantity. In contrast, the quantum device
remains in a quantum state throughout the calculation,
constructing a wave function which comprises a super-
position of all possible shower histories. Consequently,
all shower histories are calculated simultaneously in a
single calculation, removing the requirement to store and
track each shower history on physical memory. However,

simply porting over the classical parton shower imple-
mentations onto a quantum device is computationally
inefficient, requiring a large number of qubits and only
allowing up to 2 steps of the parton shower to be
simulated on current simulators [2].
This paper proposes a novel quantum walk approach to

simulating parton showers on a quantum computer that
represents a significant improvement in the depths of the
shower that can be simulated and with far fewer qubits.
We present a quantum algorithm for the simulation of a
collinear, 31-step parton shower implemented as a 2D
quantum walk, where the coin flip represents the total
parton emission probability, and the movement of the
walker in the 2D space represents an emission correspond-
ing to either gluons or a quark-antiquark pair. Reframing
the parton shower in this quantum walk paradigm enables a
31-step shower to be simulated, a dramatic improvement
over previous quantum algorithms [1,2]. The efficient
implementation of the quantum walk allows for a smaller
number of registers in the algorithm, which in turn grow, at
most, logarithmically with the number of shower steps, as
shown in Eq. (3.8). As a consequence, a 31-step shower can
be run on the IBM Q 32-qubit quantum simulator [22] with
almost a factor of two reduction in the number of required
qubits compared to a 2-step shower in the previous
implementation [2]. As a direct comparison, the quantum
walk framework can recreate the shower presented in [2]
using 9 qubits and 203 gate operations (59 single qubit
gates, 98 CCNOT gates, and 46 CNOT gates), compared to the
31 qubits and 444 gate operations (169 single qubit gates,
217 CCNOT gates, and 58 CNOT gates) required in [2].
Furthermore, the algorithm has been shown to replicate the
shower presented in [1] using only 6 qubits and 61 gates
(19 single qubit gates, 30 CCNOT gates, and 12 CNOT gates),
compared to 22 qubits and 148 gates (45 single qubit gates,
74 CCNOT gates, and 29 CNOT gates) required in [1].
A comparison of the quantum walk parton shower and
the shower presented in [1] is shown in Fig. 8, and good
agreement is obtained. The quantum walk approach thus
offers a natural and much more efficient approach to
simulating parton showers on quantum devices and is a
step toward simulating a realistic parton shower on a
quantum computer.
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FIG. 9. Schematic circuit diagram for a one particle type parton
shower with a discretized kinematic space. Here, HP, HK , and
HC are the position, kinematic, and coin spaces respectively, and
w is an ancillary register.
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