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Antikink-kink (K̄K) collisions in the ϕ6 model exhibit resonant scattering although the ϕ6 kinks do not
support any bound states to which energy could be transferred. In P. Dorey et al. [Kink-Antikink Collisions
in the ϕ6 Model, Phys. Rev. Lett. 107, 091602 (2011)] it was conjectured that, instead, energy is transferred
to a collective bound mode of the full K̄K configuration. Here we present further strong evidence for this
conjecture. Further, we construct a collective coordinate model (CCM) for K̄K scattering based on this
collective bound mode trapped between the K̄K pair which allows us to reproduce the full dynamics of K̄K
scattering with striking accuracy. We also study kink-antikink (KK̄) scattering and its description by a
CCM. In this case a significant role of radiation is discovered.
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I. INTRODUCTION

Topological solitons are spatially localized, stable sol-
utions of nonlinear field equations which carry a nonzero
topological charge [1–3]. The quantitative and sometimes
even the qualitative understanding of their interactions is far
from satisfactory in many cases. Since solitons exist both in
fundamental theories (e.g., sphalerons or monopoles in the
electroweak theory) aswell as in numerous effectivemodels,
a comprehensive understanding of their interactions is vital
not only for a deeper insight into the mathematical structure
of the theories but also for applications.
There are three main contributions to solitonic

interactions.
First, two solitons at a finite distance can act on each

other with a static force. This force can be attractive

(as typically happens for a kink-antikink pair) or repulsive.
In some particular cases, the so-called Bogomol’nyi-
Prasad-Sommerfeld (BPS) models [4], there is no static
force between the constituent solitons in a multisoliton
state [5,6]. There are famous examples of this in higher
dimensions such as the Abelian Higgs model at critical
coupling or BPS monopoles [7–9], but they also exist in
impurity-deformed [10,11] or multifield models in (1þ 1)
dimensions [12–15].
Second, the dynamics may be significantly affected by

the excitation of internal degrees of freedom (DoF). These
are often massive normal or quasinormal modes supported
by solitons, found in linear perturbation theory. Later on we
will see, however, that other possibilities also play a very
important role. A well-known example for the impact of
internal DoF on soliton dynamics is the so-called reso-
nance phenomenon which is responsible for the fractal
structure observed in the final state production in kink-
antikink (K̄K) collisions in various (1þ 1) dimensional
solitonic models [16–18]. Here, during the collision, the
initial kinetic energy of the incoming kink and antikink is
transferred to internal DoF. Then, it can be transferred back
to the kinetic DoF, allowing for the reappearance of the
solitons in the final state. However, it is also possible that a
significant fraction can be kept in the internal DoF, not
allowing the solitons to escape, which eventually leads to
their complete annihilation. Both scenarios occur in a
chaotic manner, resulting in the well-known fractal pattern.
This mechanism has been recently confirmed in KK̄
scattering in the ϕ4 theory by a derivation of a collective
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coordinate model (CCM) based on the zero mode (kinetic
DoF) and a massive normal mode, the so-called shape
mode [19]. In fact, the resulting CCM reproduces the
fractal structure with quite good agreement. This has been
further improved by considering, instead, a tower of
Derrick modes, that is, scaling deformations [20]. This
framework, the so-called perturbative relativistic CCM, not
only allows relativistic corrections to be incorporated in a
systematic, well-defined perturbative fashion, but it also
provides an arbitrary number of collective coordinates,
which results in a more accurate description of solitonic
processes. E.g., the inclusion of the two lowest Derrick
modes already led to a CCM which describes the KK̄
process in the ϕ4 model with a few percent precision.
Finally, in multisoliton processes the constituent solitons

interact with radiation which is easily produced during the
scattering. Radiation is an excitation of the continuous
spectrum (scattering modes) which is not confined to the
solitons but propagates in the full space. The interaction
between solitons and radiation is a very important but,
at the same time, a very complicated topic where the
famous soliton resolution conjecture still waits to be
proven [21,22]. Due to nonlinearities, radiation may have
a rather surprising effect on soliton motion such as negative
radiation pressure, e.g., [23]. Note that, in contrast to
internal DoF, radiation provides a channel in which the
energy can escape from the solitons.
All these three types of interactions are obviously coupled

to each other, rendering the rigorous analysis extremely
difficult even in the simplest case of KK̄ collisions in (1þ 1)
dimensions. Note that the use of Derrick modes may
probably take into account both the massive normal modes
as well as the continuous spectrum, at least partially. This is
because higher Derrick modes have frequencies above the
mass threshold [20]. On the other hand, Derrick modes, of
course, do not represent proper radiation, since they are
confined to solitons, although higher Derrick modes are
more and more widely spread out.
Although the recent progress in the explanation of the KK̄

collisions in the ϕ4 model [19,20] is a significant step
forward in the understanding of the dynamics of solitons,
it is just a beginning. There are many kink models whose
dynamics are still understood to a rather unsatisfactory
extent, see, e.g., deformations of the ϕ6 model [24–26],
higher order potentials [27–31], double sine-Gordon [32–35]
and other models [36–42].
In the present paper we revisit the antikink-kink (K̄K)

and kink-antikink (KK̄) collisions in the ϕ6 model [43–46].
This is the simplest theory which goes beyond the ϕ4 model
and which, for the K̄K case, exhibits a fractal structure in
the final state formation despite the nonexistence of shape
modes hosted by a single (anti)kink. However, as originally
proposed in [43], the resonant phenomenon can be trig-
gered by dynamically created modes trapped between the
colliding solitons. The fact that solitonic dynamics can be

significantly affected by temporal variations of the mode
structure has been recently appreciated, see, for instance,
the spectral wall phenomenon [47] or the role played by
unstable solutions, i.e., sphalerons, occurring during a
multikink evolution [48].
On the other hand, there is no corresponding fractal

structure in the KK̄ case as no trapped modes exist.
Here, we provide a detailed exploration of K̄K and KK̄

collisions based on full numerical simulations. Further, we
shall propose strategies for the construction of CCMs for
kink collisions. In particular, we will present a CCM which
reproduces the full numerical K̄K collisions with a high
precision. We will also discover some interesting difficul-
ties concerning the construction of a CCM for the KK̄
collisions. Here the inclusion of radiation effects seems to
be unavoidable.

II. ROAD MAP TO RESTRICTED SET
OF CONFIGURATIONS

Let us consider a scalar field theory in (1þ 1) dimensions

L½ϕ� ¼
Z

∞

−∞
dx

�
1

2
ϕ2
t −

1

2
ϕ2
x −UðϕÞ

�
; ð1Þ

where the field theoretical potential U has at least two

vacua, ϕð1Þ
v > ϕð2Þ

v . This guarantees the existence of a
topological (anti)kink ΦKðK̄Þ which interpolates between
the vacua. In principle, we do not have to assume that
the vacua are approached quadratically. This means that
the mass of small perturbations around a vacuum, i.e., the
meson mass, can take any value 0 ≤ m1;2 ≤ ∞. A finite,
nonzero mass means a quadratic approach, as for example
in the ϕ4 and ϕ6 models

Uϕ4 ¼ 1

2
ð1 − ϕ2Þ2; Uϕ6 ¼ 1

2
ϕ2ð1 − ϕ2Þ2: ð2Þ

On the other hand, the ϕ8 potential

Uϕ8 ¼ 1

2
ϕ4ð1 − ϕ2Þ2 ð3Þ

has a vacuum at ϕv ¼ 0 which is approached with a higher
than quadratic power. Therefore, the mass of mesons
vanishes and there is no mass gap in this vacuum. On
the other hand a formally infinite mass of vacuum exci-
tations is characteristic for compactons, which are solitons
with finite support [49].
The collective coordinate model (CCM) approach is a

standard approach which allows for a semianalytical treat-
ment of the dynamics of topological solitons and, therefore,
offers a tool for the explanation of a variety of phenomena
occurring in multisoliton collisions, see [2] for a review.
In this framework, the infinitely many DoF of the original
field ϕ whose dynamics is governed by the Lagrangian
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L½ϕ� are replaced by a finite number of DoF arising from
the truncation of the space of fields to a restricted set of
configurations

M ¼ fΦðx;XiÞ; i ¼ 1.:Ng: ð4Þ

M is called the moduli space and it should contain
configurations which capture the main features of a given
solitonic process. Its dimension, N, depends on the number
of parameters, i.e., moduli, Xi, which are then promoted
to time dependent variables XiðtÞ. The configurations Φ
are inserted into the original Lagrangian L½ϕ� and after
performing spatial integration we obtain an effective
CCM theory

LðXÞ ¼
Z

∞

−∞
L½Φðx;XÞ�dx ¼ 1

2
gijðXÞ _Xi _Xj − VðXÞ; ð5Þ

where

gijðXÞ ¼
Z

∞

−∞

∂Φ
∂Xi

∂Φ
∂Xj dx ð6Þ

is the metric on M while

VðXÞ ¼
Z

∞

−∞

�
1

2

�
∂Φ
∂x

�
2

þUðΦÞ
�
dx ð7Þ

is the positive-definite potential.
The essential ingredient is, therefore, the correct choice

of the restricted set of configurations. Unfortunately, except
for the BPS models, there is no canonical way to construct
this set. An obvious criterion is the following:

(i) The restricted configurations should reproduce, as
much as possible, the actual field profiles occurring
during a given process.

We begin with the simplest single kink sector. As a kink
is a solution of a Poincaré invariant theory, it enjoys
translational symmetry and, therefore, can be located at
any spatial point a. This leads to a whole family of
energetically equivalent kinks ΦKðx;aÞ ¼ ΦKðx − aÞ.
This is also related to the fact that a kink is a static solution
of a first order equation, the so-called Bogomol’nyi
equation,

ϕx ¼ �
ffiffiffiffiffiffiffi
2U

p
; ð8Þ

which implies the appearance of one integration constant,
the modulus a. Of course, the transition between energeti-
cally equivalent solutions costs an arbitrarily small amount
of energy. Therefore, the modulus a can be identified with
the presence of a zero mode and its change describes a
kinetic DoF, i.e., the rigid motion of the kink.
In the next step, one may also include massive excita-

tions. They can be vibrational modes obtained in the linear

perturbation analysis (normal modes or quasinormal
modes). Here, we perturb the kink solution by a small
deformation, ϕðx; tÞ ¼ ΦKðx; aÞ þ ηKðx; t; aÞ. If inserted
into the equation of motion, this leads to the linear
Schroedinger-type equation

�
d2

dx2
−
d2U
dϕ2

����
ΦKðx;aÞ

�
ηKðx; aÞ ¼ −ω2ηKðx; aÞ; ð9Þ

where we assumed periodic time dependence of the
perturbation, ηKðx; t; aÞ ¼ ηKðx; aÞeiωt. Normal modes
require ω ∈ R while for quasinormal modes ω has a
nontrivial imaginary part.
However, this is not the only possible choice. For

example, it has recently been proposed to use Derrick
modes arising in a scaling perturbation [20]. This not only
introduces an arbitrary number of modes (hence, collective
coordinates) but also recovers, in a perturbative fashion, the
Lorentz contraction of solitons. In addition, higher Derrick
modes have frequencies above the mass threshold (the mass
of the meson squared), which may take into account some
features of radiation.
Both choices simply represent internal DoF of a kink.

As a result, we arrive at the following restricted set of
configurations

MK ¼
�
ΦKðx; aÞ þ

XN
i¼1

XiηKi ðx; aÞ
�
; ð10Þ

where for concreteness we choose the normal modes
ηKi ðx; aÞ hosted by a kink. Xi are the amplitudes of the
modes and serve as new moduli. Note that due to the
Poincare invariance ηKi ðx; aÞ ¼ ηKi ðx − aÞ and the internal
DoF are confined to the kink. The construction for the
antikink is identical.
Now, we can move to a multi soliton processes like

antikink-kink or kink-antikink collisions. The starting point
is the simplest, one-parameter restricted set of configura-
tions, fΦðx; aÞg, which should provide the crudest descrip-
tion of the considered process. This one-dimensional
moduli space is not meant to give a good approximation
but rather a correct arena in which the multi-kink scattering
happens. This means the following.
(ii) The one-parameter set fΦðx; aÞg should include the

initial and final states occurring in the process.
In other words, lima→a� Φðx; aÞ ¼ ΦinðoutÞ, where a� are
some of the values of the modulus a. It is important to fulfill
this condition, which is more restrictive than the condition
of the correct topology. In many cases, it is enough to take a
simple sum of the scattered (initial) solitons (modulo an
additive constant setting the proper value of the vacuum).
This happens, e.g., for KK̄ collisions in the ϕ4 model,
where Φðx; aÞ ¼ ΦKðxþ aÞ þΦK̄ðx − aÞ. This will also
be a valid construction for antikink-kink collisions in
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the ϕ6 model. Nonetheless, we will present an example
where such a naive sum leads to configurations which do
not interpolate between the initial and final states, see the
kink-antikink scattering in ϕ6 theory.
Let us assume that we have found the correct one-

dimensional moduli space obeying condition (ii) above. For
the sake of simplicity we also assume that the simple sum
of the initial states is a good choice. Now we want to
include further DoF. The most straightforward choice for
the restricted set of configurations is simply the naive sum
of single soliton sets. For example, for an antikink-kink
collision this results in the following moduli space

MK̄K ¼ MK̄ ∪ MK

¼
�
ΦK̄ðx;−aÞ þΦKðx; aÞ

þ
XN
i¼1

XiðηK̄i ðx;−aÞ þ ηKi ðx; aÞÞ
�
; ð11Þ

where we restrict our consideration to a symmetric scatter-
ing. Here the antikink and kink are located at −a and þa,
respectively. In general, this choice may lead to the
appearance of apparent singularities on the moduli space.
Usually, they can be removed by an appropriate redefinition
(or extension) of the collective coordinates [50]. Another
important observation is that, by construction, all internal
DoF are confined to the constituent solitons.
Although this framework very successfully reproduced,

e.g., kink-antikink collisions in the ϕ4 model, especially in
the case where Derrick modes are used, in general it may
miss an important detail, namely the possible existence of
modes which are not confined to individual solitons.
To see this possibility, we consider again a kink and its

linear perturbation. In general, the effective potential in the
eigenproblem can tend to two different values at x → �∞.
This corresponds to two different meson masses in the two
vacua,m1 < m2. This is schematically plotted in Fig. 1, left
panel. This happens, for example, in ϕ6 theory. The mass at
the vacuum ϕ ¼ 0 is m2 ¼ 1 while at the vacuum ϕ ¼ 1 it
takes the bigger valuem1 ¼ 2. For the ϕ4 model the masses
are identical and we have a symmetric situation, see Fig. 1,
right panel.

Now, if we consider a two-soliton configuration built as a
naive sum of single soliton states, we find two qualitatively
distinct possibilities for well-separated constituent solitons.
The single soliton effective potentials can be joined by a
plateau with the bigger mass threshold m2, see Fig. 2, left
panel. This corresponds to a kink-antikink state, e.g., in the
ϕ6 model. Obviously, the resulting modes are simply a sum
of modes of each soliton. Furthermore, they are still
confined to the solitons. However, if the effective potentials
are connected by a plateau with smaller massm1, some new
modes may show up, see Fig. 2, right panel. These modes
are not confined to the colliding solitons but are delocalized
in the space between them. These are new, two-soliton,
trapped or delocalized modes and they play an important
role in a scattering process. We call them delocalized
modes because, in contrast to the usual normal modes, they
are not bounded to individual solitons but, instead, extend
to the whole space between the colliding kinks. Exactly this
situation occurs in antikink-kink collisions in the ϕ6 model
where, in addition, single solitons do not host any normal
modes. Therefore, the observed fractal structure in the final
state formation was attributed to the resonant phenomenon
between the kinetic DoF and the two-soliton modes [43].
A similar mechanism was later considered in the case of
the ϕ8 model [27].
This leads to an improved proposal for the restricted set

of configurations.
(iii) The multiparameter restricted set of configurations,

fΦðx; a; X1;…; XNÞg, should include the internal
DoF (internal modes) arising in the perturbation
theory of the corresponding multisoliton configura-
tion Φðx; aÞ.

Concretely, for antikink-kink collisions this leads to the
following moduli space

M̃K̄K¼fΦðx;a;X1;…;XNÞg

×

�
ΦK̄ðx;−aÞþΦKðx;aÞþ

XN
i¼1

XiηK̄Ki ðx;aÞ
�
; ð12Þ

where ηK̄Ki ðx; aÞ contains both the localized and the
delocalized modes obtained for the effective potential

FIG. 1. Schematic plot of the single kink eigenproblem
potential UϕϕjΦK . Left: asymmetric case, e.g., in ϕ6 model.
Right: symmetric case, e.g., in ϕ4 model.

FIG. 2. Schematic plot of the two-kink eigenproblem potential
for the asymmetric solitons. Left: KK̄ case, UϕϕjΦKK̄. Right: K̄K
case, UϕϕjΦK̄K.
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d2U
dϕ2

����
ΦK̄ðx;−aÞþΦKðx;aÞ

: ð13Þ

Herewe use our assumption that the one-dimensionalmoduli
space is spanned by a simple sum of the antikink and kink,
Φðx; aÞ ¼ ΦK̄ðx;−aÞ þΦKðx; aÞ. In general, also the local-
ized solitonmodes should be added as in (11). Indeed, if there
are no delocalized modes, such a naive superposition works
quite well. Therefore, this improved set contains the set
obtained by naive superposition, M̃ ⊃ M.
Several comments are in order. First, while the localized

soliton modes are assumed to have the same form at any
intersolitondistance2a, this is not the case for the delocalized
modes. On the contrary, by construction their form as well as
their number changes as the solitons approach each other.
In particular, at a certain distance between the solitons a
delocalizedmode hits themass threshold andbecomes a non-
normalizable mode. This means that it ceases to be a valid
DoF. Such a change of the structure of the modes may
potentially have a very nontrivial impact on the kink
dynamics, which has to be carefully taken into account in
the restricted set of configurations.This fact also is behind the
spectral wall phenomenon [47,51].
Second, it may be necessary to include radiation,

which in particular cases can strongly affect the dynamics.
Interestingly, the delocalized modes can be identified with
localized radiation with a frequency below the higher mass
threshold. Indeed, for sufficiently separated solitons, an
initial perturbation localized at the origin will decay into
radiation identically as if being created in the vacuum with
lower meson mass. The fraction of radiation with ω < m1

will be trapped and eventually can excite delocalized
modes. The number of these modes goes to infinity and
the energy level separation decreases as the intersoliton
distance grows, and effectively we flow into the continuous
spectrum. This is a rather remarkable mode-radiation
duality.
In the next section we will present further arguments

that delocalized, trapped modes are indeed responsible for
the fractal structure in K̄K collisions in the ϕ6 model, as
originally proposed in [43].
Later on, we will consider KK̄ collisions where no

delocalized modes exist. As there are also no single soliton
massive normal modes, the dynamics seems to be governed
by radiation,which quite efficiently transfers the energy from
the kineticDoF leading to a fast annihilation. Thiswill lead to
a new challenge for a description within a CCM.

III. K̄K COLLISIONS IN THE
ϕ6 MODEL REVISITED

The ϕ6 model is defined by the following Lagrangian

Lϕ6 ½ϕ� ¼
Z

∞

−∞

�
1

2
ϕ2
t −

1

2
ϕ2
x −

1

2
ϕ2ð1 − ϕ2Þ2

�
dx ð14Þ

and has a static kink

ΦKðx; aÞ≡ ϕð0;1Þðx; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhðx − aÞ

2

r
ð15Þ

which interpolates between two vacua: ΦKðx ¼ −∞Þ ¼ 0
and ΦKðx ¼ þ∞Þ ¼ 1. The antikink joins the same vacua
but in opposite order and reads

ΦK̄ðx; aÞ≡ ϕð1;0Þðx; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanhðx − aÞ

2

r
ð16Þ

In contrast to ϕ4 solitons, kink and antikink are not
related by a simple multiplication by (−1). There are also
mirror kinks Φ�

K and antikinks Φ�̄
K interpolating between

the vacua at −1 and 0. They are Φ�
Kðx; aÞ≡ ϕð−1;0Þðx; aÞ ¼

−ϕð0;1Þð−x;−aÞ and Φ�̄
Kðx;aÞ≡ϕð0;−1Þðx;aÞ¼−ϕð0;1Þðx;aÞ.

The solitons host only a zero mode reflecting the
existence of the free parameter a. There are no massive
normal modes. In addition, as we have already mentioned,
the mass of small perturbations around the ϕv ¼ 0 vacuum
is smaller than for the ϕv ¼ �1 vacua. Namely, m0 ¼ 1
while m�1 ¼ 2. This leads to an asymmetric effective
potential in the linear perturbation problem.
It is known that K̄K collisions have a fractal structure in

the final state formation [43]. Indeed, the incoming antikink
and kink may be back scattered, via a sequence of bounces,
or may annihilate to the ϕv ¼ 1 vacuum, which occurs by
the formation of a quasiperiodic kink-antikink bound state,
the bion, which decays to the vacuum by the emission of
radiation. The actual behavior depends on the initial
velocity of the colliding solitons and reveals a fractal-like
pattern of bounce windows and bion chimneys, see Fig. 3.
This is very similar to the famous KK̄ (and K̄K) scattering
in the ϕ4 model. There is, however, one important differ-
ence. While solitons in ϕ4 theory have a well defined
soliton confined DoF, i.e., a massive normal mode, the
so-called shape mode or the very similar Derrick mode, the
situation in the ϕ6 model is more subtle.

FIG. 3. Time dependence of the value of the field at the origin,
ϕðx ¼ 0; tÞ for various initial velocities vin in the K̄K collision in
the ϕ6 model.
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As we have already noted, a single (anti)kink in ϕ6

theory does not possess any massive bound modes which
could enter into the resonant energy transfer mechanism
and explain the fractal structure. On the other hand, there
are soliton confined Derrick modes playing the role of
internal DoF. In addition, there are delocalized, two-soliton
modes. It was observed in [43], that the naive K̄K sum

ΦK̄Kðx; aÞ ¼ ΦK̄ðx;−aÞ þΦKðx; aÞ; ð17Þ

gives rise to a two-soliton effective potential which hosts
trapped or delocalized modes ηK̄Ki ðx; aÞ. Their form,
frequencies and even number depends on the distance

between the colliding solitons, see Fig. 4. Indeed, there is a
zero mode ηK̄K0 (which corresponds to a simultaneous
translation of the K̄K pair), an unstable mode ηK̄K−1 (which
reflects the fact that the naive superposition is not a static
solution of the model) and, finally, there are massive modes
ηK̄Ki ; i ≥ 1, whose number grows with the intersoliton
distance. These two-soliton, trapped modes were used
to explain the resonant phenomena in the K̄K collision
in the ϕ6 model [43].
Here we present further convincing arguments that this

is indeed the case—the fractal structure in the final state
formation is triggered by the delocalized modes. In
addition, we find evidence that the Derrick modes have
some importance.
Let us consider a K̄K pair colliding with initial velocity

vin ¼ 0.04542. This is an example of a two bounce solution
with a rather long lasting bounce window, see Fig. 5, upper
left panel. There are two important distinct regimes: (i) the
formation of a quasistationary state where the positions
(centers of mass) of the kink and antikink do not change, and
(ii) the transition through the vacuum, i.e., the annihilation
moment.
As far as the quasistationary state is considered, the first

observation is that the change of the field profiles occurs
mainly in the region between the solitons. This is shown
in Fig. 5, upper right panel, where we plot various field
profiles for t ∈ ½422; 427�. As said, the antikink and kink
practically do not change their positions, staying all the

FIG. 4. Dependence of the trapped (delocalized) 2-soliton even
mode structure on a obtained for the effective potential (13)
in ϕ6 model.

FIG. 5. Upper left: an example of a two bounce K̄K collision in the ϕ6 model with initial velocity of the solitons vin ¼ 0.04542. Upper
right: plot of several profiles for t ∈ ½422; 427�. Lower left: an example of two bounce KK̄ collision in ϕ4 model with initial velocity of
the solitons vin ¼ 0.2599. Lower right: plot of several profiles for t ∈ ½197; 202�.
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time at a ¼ aqs ≈∓6, while the field between them
fluctuates. This can be contrasted with a two bounce KK̄
solution in the ϕ4 model, see Fig. 5, lower panels, where the
field fluctuates mainly around the colliding solitons, due to
excitation of the shape (or Derrick) mode. Undoubtedly,
in the ϕ6 model the delocalized excitations seem to govern
the dynamics.
This is particularly visible if we consider the field

profiles where we subtract the K̄K pair configuration,
(17) with a ¼ ast ¼ 6 see Fig. 6, solid line. Here, the
profiles are taken at t ¼ 400, 401, 402 and 403. Indeed, the
deformation extends over the whole intersoliton region
and concentrates in the center. This deformation is fully
described by a superposition of the first few two-soliton
modes with positive frequency, ηK̄Ki where i ≥ 1. As the
soliton separation remains basically constant at a ¼ 6, we
use this value to obtain the lowest four normal modes ηK̄Ki ,
i ¼ f1; 2; 3; 4g, see Fig. 7. We found that the actual field
profiles can be decomposed into these first four positive
two-soliton modes with a high precision, see, Fig. 6, dashed
line. For example, for t ¼ 400 the corresponding ampli-
tudes are: A1 ¼ −0.07519; A2 ¼ 0.00881; A3 ¼ 0.00292;
A4 ¼ −0.00083. Note that the amplitude of the first
delocalized mode ηK̄K1 is approximately an order of
magnitude bigger than the amplitude of the next mode.

The same analysis can be repeated for any t ∈ ½400; 425�,
which still corresponds to the regime when the antikink and
kink positions do not change. The resulting time depend-
ence of the amplitudes of the modes is shown in Fig. 8.
Again, the amplitudes of the modes decreases quickly with
the mode number. After fitting the periodic functions
A0
i cosðωitþ δÞ, we found that the fitted frequencies

very well correspond to the frequencies of the modes
emerging from the small perturbation around the K̄K
superposition (17) with a ¼ 6. The fitted values are,
respectively, ω1 ¼ 1.0377, ω2 ¼ 1.2756, ω3 ¼ 1.5999,
ω4 ¼ 1.9046 while the frequencies derived in the linear
problem are ω1 ¼ 1.0376, ω2 ¼ 1.2795, ω3 ¼ 1.6083,
ω4 ¼ 1.9191. The agreement is spectacular.
This fully confirms that the two-soliton (delocalized)

modes trigger the resonant mechanism and, therefore, are
responsible for the appearance of the fractal structure. It
also firmly shows that these two-soliton modes should be
included in any restricted set of configurations, which
would be considered as the starting point for a CCM.
Now we move to the second regime, that is the

annihilation moment. Although the velocities relevant for
two and higher bounce windows as well as for bion
chimneys in the K̄K scattering in ϕ6 model are definitely
nonrelativistic, with the critical velocity being approxi-
mately vc ≈ 0.048, passing through the vacuum is a rather
violent, relativistic process. To see this, we again consider
the K̄K solution with vin ¼ 0.04542 and plot the field
profiles at t ≈ 144, Fig. 9 solid line. These profiles can be
approximated by the naive superposition expression (17)
with a moderate success, Fig. 9 dotted line. The fit is
significantly improved if we take into account the Lorentz
contraction, Fig. 9 dashed line. Here the Lorentz γ factor
grows from the initial nonrelativistic value γin ≈ 1.001 up
to γ ¼ 1.5, which corresponds to the highly relativistic
velocity v ≈ 0.75. This suggests a relativistic nature of the
field when it crosses the vacuum, even though the solitons
start their evolution with totally nonrelativistic velocities.

FIG. 6. Field profile with subtracted static configuration (17)
for K̄K solution in ϕ6 model with vin ¼ 0.04542 (solid line) and
the delocalized mode fit (dashed line).

FIG. 7. The lowest four delocalized, massive normal modes
arising from (17) with a ¼ 6ð?Þ.

FIG. 8. Time dependence of the amplitudes of the first four
delocalized modes found in the decomposition of the K̄K field
profiles for vin ¼ 0.04542.
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The highly relativistic property of the field in the
moment of annihilation can be important for the construc-
tion of the correct restricted set of configurations capturing
the K̄K (or KK̄) dynamics. The Lorentz contraction of a
soliton can be taken into account in terms of the (pertur-
bative) relativistic moduli space by including the Derrick
modes [20,52]. Therefore, their amplitudes may play an
important role in the construction of the correct CCM, in
addition to the amplitudes of the delocalized modes.
It is instructive to compare this annihilation process with

the KK̄ solution in the sine-Gordon theory, which is an
example of a the very special integrable model, for which

UsG ¼ 1 − cosϕ: ð18Þ

Here, the KK̄ scattering solution is exactly known and reads

ΦKAK ¼ 4 arctan
�
sinhðγvtÞ
v coshðγxÞ

�
: ð19Þ

Importantly, at any time of the evolution, the KK̄ solution
can be written as a sum of a single kink and antikink at
certain positions ∓a

ϕKK̄ ¼ 4 arctan ebðxþaÞ − 4 arctan ebðx−aÞ ð20Þ

where

b ¼ γ; a ¼ 1

γ
arsinh

sinhðγvtÞ
v

: ð21Þ

As a is the position of the colliding solitons, its time
derivative, _a, can be viewed as a velocity of the center of the
constituent kink and antikink. Here,

_a ¼ v coshðγvtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ sinh2ðγvtÞ

p ð22Þ

At t → −∞, it tends to vwhich is simply the initial velocity
of the infinitely separated, free kink and antikink. However,

as t grows, _a also grows and at t ¼ 0 it reaches its maximal
value _aðt ¼ 0Þ ¼ 1. This is the instant where the solitons
annihilate completely, temporarily forming the vacuum.
Even though the velocities of the soliton centers tend to 1,
one cannot say that the process experiences here a highly
relativistic phase. The Lorentz contraction factor b is all
the time equal to its initial value b ¼ γðvÞ. Hence, if v ≪ 1
then the nonrelativistic approximation, γ ≈ 1 is a valid
approximation at any time of the evolution.
Similar conclusions can be drawn for the sine-Gordon

breather. In this case the solution is

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
;

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p arsinh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
sinðωtÞ

ω
ð23Þ

where ω is the frequency of the oscillations. As before,
j _aj ≤ 1 with the equality for t ¼ nπ, while the Derrick
factor, b, does not change. In the nonrelativistic approxi-
mation ω ≪ 1 and once again b ≈ 1, see, e.g., [20].
Thus, for the sine-Gordon model we can conclude that

an initially nonrelativistic kink and antikink remain non-
relativistic during the whole evolution.
From the above analysis of the field profiles the

following qualitative picture of the K̄K scattering in the
ϕ6 model (in the interesting fractal regime) emerges.
Initially, we have an antikink and a kink approaching each
other with a small velocity. The profiles are just the naive
superposition of the single soliton solutions (17) and no
internal DoF are excited. As the solitons come closer, the
profiles require a growing Lorentz contraction factor while
simultaneously some additional deformation on the anti-
kink and kink shows up. This deformation spreads quickly
over the whole intersoliton region as the solitons approach
each other, which eventually leads to the excitation of the
lowest delocalized two-soliton modes. Now, the process is
very rapid with a highly relativistic γ. This corresponds to a
significant excitation of Derrick modes. A further effect of
this is that for even smaller antikink-kink separation, i.e.,
smaller a, for which the positive frequency delocalized
modes formally ceases to exist, the profiles still carry such
modes. An identical effect occurs in the KK̄ collision in the
ϕ4 model, where the shape mode is not an excitation of
the vacuum and, therefore, formally disappears during the
annihilation. Apparently, because of the rapidity of the
process, the modes are frozenwhile the field passes through
the vacuum. After crossing the vacuum, the delocalized
modes are more and more excited, while the excitation of
Derick modes decreases. Thus, the γ factor approaches
again 1 and finally, if vin is suitably chosen, the quasista-
tionary state is formed.
In the next section we will analyze several CCM models

based on restricted sets of configurations which follow
from this general picture.

FIG. 9. A K̄K collision with vin ¼ 0.04542 at a time close to
passing the vacuum. Comparison of field profiles (solid line),
naive superposition (17) (dotted line) and naive superposition
with Lorentz factor (dashed line).
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IV. COLLECTIVE COORDINATE MODELS

A. Relativistic CCM with soliton confined modes

First of all, the traditional way of constructing a CCM,
which takes into account only the zero and shape modes
of single solitons, fails completely. As we said, (anti)
kinks in ϕ6 theory do not host any massive bound modes
and, therefore, one is left only with the naive antikink-
kink superposition (17), that is, with the modulus a.
This is too simple a set of configurations to describe
bounces. All solutions of the corresponding CCM with
energy bigger than twice the soliton mass are simply one
bounce solutions.
To improve the description, we apply the (perturbative)

relativistic moduli space approach for the construction of a
(perturbative) relativistic CCM [(p)RCCM]. This approach
in its perturbative version provides an arbitrary large
number of coordinates [20]. However, in the simplest
setup, the moduli correspond to single localized soliton
excitations and, therefore, cannot be fully suitable for the
K̄K collisions in the ϕ6 model. As a result, the predictions
of this minimal version of the (p)RCCM, that is, a version
without any addition of the two-soliton delocalized modes,
do not agree with the full field theory computations. This is,
of course, not surprising in the view of the previous section.
We underline that this is not a failure of the perturbative
relativistic moduli space framework but rather it reflects a
problem of the construction of the two-soliton restricted set
of configurations as a naive sum of two single soliton sets,
as we explained above.
Let us start with the relativistic moduli space approach

applied to the single kink sector, where the BPS kink static
solutions, parametrized by the position a, are extended to
include the scaling deformation b. This results in the
following restricted set of configurations

ΦKðx; a; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanh bðx − aÞ

2

r
ð24Þ

which give rise to a RCCM possessing a stationary solution
equal to a Lorentz contracted kink

_a ¼ v ¼ const; b ¼ γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð25Þ

where v is the velocity of a free kink, while γ is the Lorentz
factor [52]. Note that b ∈ Rþ. The same holds for the
antikink as well as the mirror solitons. Hence, the inclusion
of the new modulus, b, leads to a relativistic motion of the
kink. In other words, the Lorentz invariance of the original
field theory is realized at the level of the CCM.
Now, we construct the restricted set of configurations

for the K̄K scattering as a naive sum of two single soliton
sets

MK̄K½a;b� ¼ fΦK̄Kðx;a;bÞg

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− tanhbðxþaÞ
2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhbðx−aÞ

2

r �

ð26Þ

For a → ∞ we obtain the antikink and kink located at
x ¼ −∞ and x ¼ ∞ respectively. As a decreases, the
solitons come closer and then pass through each other
for a < 0 forming a positive bump whose maximum can
never cross ϕ ¼ 2. These configurations provide a two
dimensional CCM (5)–(7).
Let us now focus on the moduli space metric resulting

from the restricted set of configurations (26). The main
observation is that, contrary to the kink-antikink collision
in ϕ4 theory, the relativistic moduli space metric has no
singularity for any finitea as there is nonull vector issue.This
follows from the fact that the field configurations (26) never
equal the vacuum solution ϕ≡ 1. Indeed, for any a, ΦK̄K ,
never is a constant field configuration. Specifically, at a ¼ 0,
which is a singular point in theϕ4 case (corresponding to the
situationwhen colliding solitons are on top of eachother), the
restricted fields have the following expansions

ΦK̄Kðx;a;bÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tanhbx

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhbx

2

r

×

�
1− tanh2bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tanhbx

p þ 1− tanh2bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhbx

p
�

ab

2
ffiffiffi
2

p þoðaÞ

ð27Þ

Hence, ∂aΦK̄K is not identically zero for a ¼ 0, leading to
nonzero metric components. There is still a singularity at
b ¼ 0. However, as we will discuss below, this point cannot
be attained by a finite energy configuration and, therefore, is
excluded from the dynamics. Hence, the RCCM is globally
well defined for the scattering case.
Finally, we consider the effective potential V (7). In the

limit b → 0, where the metric has the singularity, the
restricted configurations tend to a constant which is not
a vacuum. Namely, ΦK̄Kðx; a; b ¼ 0Þ ¼ ffiffiffi

2
p

. Obviously,
this corresponds to infinite potential energy. This means
that the singularity of the metric at b ¼ 0 is never accessible
for a finite energy configuration.
To conclude, the relativistic moduli space modeling the

antikink-kink collisions in ϕ6 theory is a smooth two-
dimensional manifold without any singularities. Therefore,
it leads to a globally well-defined dynamical RCCM.
Owing to this property we can study the collisions already
in the RCCM. This is a nice feature which is not shared by
the RCCM for scatterings of symmetric kinks, as in the ϕ4

model, where a regularizing scheme had to be introduced.
In Fig. 10, upper panel, we show the scan of the

evolution obtained in the corresponding RCCM (5)–(7).
The initial conditions are
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að0Þ¼ a0; _að0Þ¼ vin; bð0Þ¼ γin; _bð0Þ¼ 0 ð28Þ
where the initial separation 2a0 ¼ 24. We show the value of
the field as a function of time for different values of the initial
velocities. Qualitatively, the effective model possesses desir-
able properties. It predicts two, three and higher bounce
windows immersed between bion chimneys. However, the
critical velocity, which separates the fractal regime and one
bounce scattering is much higher than in the original theory.
Instead of vc ≈ 0.048 it is vc ≈ 0.37. There are two related
reasons for this failure. On the one hand, the restricted set of
configurations does not approximate the true profiles too
well. For example,ΦK̄Kðx; a; bÞ is always bounded between
0 < ϕðx; tÞ < 2. On the other hand, it does not have any
wiggles in the central region. This corresponds to the fact that
the scale deformation is confined to the solitons. Hence, our
RCCM contains only soliton confined DoF.
This restricted set of configurations can be improved if

we consider a variant of the upper construction, known as
the perturbative relativistic moduli space. We present it
starting with the single soliton sector, ΦKðx; a; bÞ. Now
we expand the scaling deformation of the (anti)kink,
b ¼ 1þ c, assuming that c is a small parameter. Here
we consider only the first term in the expansion

ΦKðx;a;cÞ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhðx−aÞ

2

r

þ ðx−aÞc
2

ffiffiffi
2

p
cosh2ðx−aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tanhðx−aÞp ð29Þ

In principle, we can keep an arbitrary number of terms in
the expansion, which is equivalent to the fact that we take
into account further Derrick modes. The crucial idea is to
replace each power of the expansion parameter, cn, by a
new, independent collective coordinate (amplitude) Cn, of
the pertinent Derrick mode. Inserting the perturbative
expansion of the restricted configurations (29), we obtain
a pRCCM with the following metric functions

gKaa ¼
1

96
ð24þ 24cþ ð6þ π2Þc2Þ ð30Þ

gKcc ¼
π2

48
; gKac ¼

1

8
ð31Þ

and the effective potential

VK ¼ 1

4
þ c2

8
þ c3

96
ðπ2 − 6Þ þ c4

19200
ð570− 275π2 þ 21π4Þ

þ c5

11520
ð−90þ 75π2 − 7π4Þ

þ c6

1024

�
6

7
−
7π4

20
þ 31π6

882

�
: ð32Þ

In the case of the antikink sector, the moduli space metric
differs only in the off-diagonal term, gK̄ac ¼ −1=8, while the
effective potential is exactly the same.
The pRCCM in the kink or antikink sector supports

a stationary solution with _a ¼ v ¼ const, c ¼ c̃ ¼ const
following an algebraic equation

v2

2

dgaa
dc

¼ dV
dc

ð33Þ

This solution is an approximation of a Lorentz boosted
(anti)kink.
The construction of the pRCCM describing antikink-

kink collisions goes along standard lines. The correspond-
ing restricted set of configurations is built as a simple sum
of the single soliton sectors. Hence,

ΦK̄K ¼ ΦK̄ðx;−a; cÞ þΦKðx; a; cÞ; ð34Þ

which leads to a pertinent collective model. Again, one
can easily verify that the restricted configurations do not
produce any null vector problem and the moduli space
metric is well defined everywhere.
As the initial states in the soliton collisions are a free,

boosted kink or antikink, we have to specify the corre-
sponding initial conditions. These are the stationary sol-
utions found in the single soliton pRCCM. Thus,

að0Þ ¼ a0; _a ¼ vin; cð0Þ ¼ c̃; _c ¼ 0 ð35Þ

FIG. 10. Time dependence of the value of the field at the origin,
ϕðx ¼ 0; tÞ for various initial velocities vin in CCMs for the K̄K
collision in ϕ6 model. Upper: RCCM with moduli ða; bÞ. Lower:
pRCCM with moduli ða; cÞ.
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Here a0 ¼ 12 is half of the initial separation between the
colliding kink and antikink and vin their initial velocity.
The results are better than in the RCCM but the critical

velocity is still approximately four times bigger than in
reality, see Fig, 10, lower panel. The improvement is
probably related to a slightly better set of field configura-
tions whose value is now not bounded to the segment (0,2).
Of course, the first Derrick mode is confined to the
solitons and therefore cannot alone correctly model the
true dynamics.
We expect that a further improvement can be achieved by

considering higher Derrick modes. They are more and more
widespread modes which potentially may better approxi-
mate the true delocalized two-soliton modes.
Summarizing the results of this section, we can draw the

conclusion that a CCM based entirely on soliton confined
DoF cannot successfully describe the K̄K dynamics in the
ϕ6 model. The inclusion of the delocalized, two-soliton
modes seems to be inevitable.

B. CCM with one delocalized mode

As we have clearly shown above, during the scattering
one observes the excitation of the delocalized modes
ηiK̄Kðx; aÞ, which arise in the linear perturbation theory
of the kink-antikink state. Therefore, we propose the
following restricted set of configurations

M̃K̄K½a;X1…XN �

¼
�
ΦK̄ðx;−aÞ þΦKðx; aÞ þ

XN
i¼1

XiηK̄Ki ðx; aÞ
�
; ð36Þ

where Xi are amplitudes of the delocalized modes.
Together with a, they provide the collective coordinates
(coordinates on a resulting moduli space) which we shall
use to describe the K̄K dynamics. We also observed that the
first delocalized mode ηK̄K1 plays the most significant role,
as it stores the biggest amount of energy. Thus, it is
reasonable to start with as simple a CCM as possible
and consider only the first delocalized mode

M̃K̄K½a;X� ¼ fΦK̄ðx;−aÞþΦKðx;aÞþXηK̄K1 ðx;aÞg; ð37Þ

where for simplicity we omit the subscript in the amplitude.
The mode still has quite an involved dependence on the
position a of the colliding solitons. Furthermore, for
sufficiently small a it disappears from the spectrum of
linear normal modes. To simplify our considerations,
however, we will not take into account this variation with
a. Instead, in our simplest CCM we assume that the mode
does not change and is equal to the first delocalized mode at
a given a ¼ a�. This is a standard assumption for the
construction of a CCM for kink collisions referred to
as the frozen vibrational moduli space approximation.

For example, it has been successfully applied to KK̄
scattering in the ϕ4 model [19]. This defines the final
form of the restricted configurations

M̃K̄K½a;X� ¼ fΦK̄ðx;−aÞþΦKðx;aÞþXηK̄K1 ðx;a¼ a�Þg:
ð38Þ

The reason why this is an admissible assumption is related
to the fact that the process is always rapid (relativistic)
when the kinks are very close to each other. This explains
why the disappearance of the internal modes (strictly
speaking their crossing through the mass threshold) in
many models does not seem to affect the KK̄ scattering.
The reason is that the mode ceases to exist approximately in
the moment when the field is close to the vacuum value,
i.e., when the solitons are almost on top of each other.
However, precisely in the moment of temporary annihila-
tion, the scattering solitons behave very relativistic which
translates into a rapid evolution of the field. If the typical
timescale of the evolution is smaller than the timescale
of the internal mode oscillation, then the mode freezes,
preserving its form despite the change of the underlying
field. This is very much alike the nonadiabatic evolution of
a quantum-mechanical wave function if the quantum
Hamiltonian changes very rapidly (instantaneously) from
Hðt0Þ to Hðt1Þ. After the temporary annihilation, when the
solitons reappear and the system returns to the adiabatic
evolution, the mode is again able to evolve with its
soliton(s).
All this results in the following final form of the

restricted set of configurations

M̃K̄K½a;X�

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− tanhðxþaÞ
2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanhðx−aÞ

2

r
þXηK̄K1 ðxÞ

�
;

ð39Þ

where

ηK̄K1 ðxÞ ¼ cosðxπ=7Þ
2

ðtanhðxþ 3Þ − tanhðx − 3ÞÞ

þ 1

10
ð−2þ tanhðxþ 3Þ − tanhðx − 3ÞÞ

×

�
1

coshðxþ 3Þ þ
1

coshðx − 3Þ
�

ð40Þ

is an approximate analytical form of the first delocalized
mode for the particular value a� ¼ 3.
This restricted set of configurations defines a two

dimensional CCM with a nonsingular moduli space and
potential for any finite ða; XÞ ∈ R2. Hence we get a well
defined dynamical system Lða; XÞ. We do not present the
explicit formulas for gij and Vða; XÞ because they are very
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complicated and because in our numerical scheme we do
not use analytical expressions but compute these functions
numerically. In the limit a → ∞, which represents a system
of independent infinitely separated solitons plus the first
trapped mode at the origin, the moduli space metric takes a
diagonal form. Then, gaa ¼ 1

2
, which is twice the kink mass,

while gXX ≈ 3.37314 is the norm of the mode. Similarly,
the effective potential simplifies to the following func-
tion VðXÞ ¼ 1

2
þ c1X2 þ c2X4 þ c3X6, where c1 ≈ 1.5846;

c2 ≈ −2.3612; c3 ≈ 0.9833. As required, the potential VðXÞ
has a global minimum at X ¼ 0. It also has a local
minimum at X ≈ 1.0593, which seems not to have any
physical importance.
Finally, the initial conditions for the evolution in the

CCM are as follows

að0Þ¼ a0; _að0Þ¼ vin; X1ð0Þ¼ 0; _X1ð0Þ¼ 0 ð41Þ

These are natural initial conditions corresponding to non-
relativistic kinks with no excited modes.
In Fig. 11 we present our results. In particular, we plot

the time dependence of the field at the origin for initial
velocity vin ∈ ½0.01; 0.05�. We found a spectacular quanti-
tative agreement with the full field theory computation.
First of all, exactly as in the full field theory, the fractal

structure shows up in the nonrelativistic range of initial
velocities. The critical velocity, above which only one-
bounce scattering occurs, is vCCMcrit ¼ 0.0457 which is
exactly equal to the true value vcrit ¼ 0.0457 within our
numerical precision.
Secondly, almost all positions of the two-bounce win-

dows, as well as their widths, coincide with the full theory
computation. Only the two-bounce windows located
around vin ≈ 0.015 and vin ≈ 0.0275 correspond to false
windows in the full model. This suggests that the existence
of false windows may be related with higher delocalized

modes or with radiation. Undoubtedly, our collective model
gives a tool in which this question can be analyzed.
It is important to remark that the results of the CCM

depend on the value of the modulus a ¼ a� at which we
freeze the first delocalized mode. The critical velocity
grows from vcr ¼ 0.0320 for a� ¼ 2.6 to vcr ¼ 0.0598 for
a� ¼ 3.5, see Table I. Details of the fractal structure also
vary with the freezing point.
Of course, in a more complete CCM based on the

dynamical restricted set of configurations (37) one should
take into account the fact that the delocalized mode changes
during the collision and does not freeze at a given a. Here,
however, we follow the simplest strategy. Namely, we just
select a particular shape of the first delocalized mode, i.e.,
freeze it at a certain a�. Therefore, this freezing point a�
may be viewed as a free parameter of the simplest CCM.
For a ¼ a� ¼ 3we found the most striking agreement. This
value is “natural” in the sense that quasistationary states
with a K̄K distance of 2aqs ∼ 2a� ∼ 6 form in many bounce
windows. As a general rule, the value of 2aqs grows with
the lifetime of the quasistationary state. In Sec. III, e.g., we
analyzed in detail the case of a particularly long-lived
quasi-stationary state with aqs ¼ 6. Probably, the correct
separation in each bounce window can be reproduced in a
more complete CCM provided by (37).
In any case, we must admit that at the moment we do not

fully understand why our simple CCM for a� ¼ 3 agrees so
spectacularly well with the full field theory for all initial
velocities. Naively, one would probably expect a certain
variation of the optimal value for a� with the initial velocity.
A more complete understanding of this issue most likely
requires a dynamical treatment of the delocalized modes
where a is not frozen but allowed to vary with time. It must
be stressed, however, that such a fully dynamical treatment
within a CCM framework is a very challenging problem.
This reflects the existence of essential singularities of any
moduli space based on delocalized normal modes. Indeed,
any of these modes ceases to exist for a sufficiently small
antikink-kink distance. One by one they hit the mass
threshold and become non-normalizable threshold modes

FIG. 11. KK collisions in the ϕ6 model in the CCM based on
M̃½a; X1�: time dependence of the field at the origin, ϕðx ¼ 0; tÞ,
and final velocity of the backscattered antikink, vout, for various
initial velocities vin.

TABLE I. Dependence of the value of the critical velocity vcr
obtained in the CCM based on (38) on the freezing point a�.

a� vcr

2.6 0.0320
2.7 0.0355
2.8 0.0391
2.9 0.0424
3.0 0.0457
3.1 0.0487
3.2 0.0517
3.3 0.0545
3.4 0.0572
3.5 0.0598
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which further change into antinormal or quasinormal
modes. As a consequence, some of the metric components
diverge at these points which results in a breakdown of a
CCM based only on normal modes [47].

V. KK̄ COLLISIONS

In this section we turn to the kink-antikink collisions.
It is known that in this case there is no fractal structure in
the final state formation. Instead, there are two regimes
which meet at vcr ≈ 0.289. For smaller initial velocities, the
solitons undergo annihilation via the formation of a quickly
oscillating bion/oscillon, while for v > vcr they simply
pass through each other and change into their mirror kinks
which escape to infinity, see Fig. 12. Note that the critical
velocity is quite big if compared with the K̄K case.
Despite the relatively simple outcome of this scattering,

it is surprisingly nontrivial to model it within the collective
coordinate framework. This originates in the fact that now
radiative modes play a more significant role than in the
previous K̄K case or in KK̄ collisions in the ϕ4 model.
Indeed, there are no single-kink or delocalized kink-
antikink normal modes involved here. Therefore, the main
channel in which energy escapes from the kinetic DoF of
the solitons is radiation. Ideally we would like to have a
CCM which includes such radiative DoF. This is a
complicated and still not solved issue within the CCM
framework. However, as we have noticed a few times, the
Derrick modes may capture some properties of radiation, at
least at short timescales. The description in terms of these
modes should become better as we increase their number.
In the subsequent analysis we apply this approach, again in
the simplest version, i.e., with only one Derrick mode taken
into account. Obviously, this is a very crude approximation
which cannot lead to satisfactory results. Nonetheless,
some findings are encouraging and give new insights into
the understanding of this process.
To see that there is significant radiation in a KK̄ collision

in the ϕ6 model we consider a kink and antikink boosted
toward each other with initial velocity vin ¼ 0.288, which is

just below the regime where the simple passing-through
scenario occurs. We compare it with a K̄K collision with
vin ¼ 0.042. In Fig. 13 we plot the time evolution of the
field in the origin (upper panels) together with the energy
stored in the space region −15 < x < 15 (lower panels).
Thus it shows how much of the energy is radiated away
from the solitons.
In the left panels we show the K̄K collision. We see that

after each bounce, where the field passes the þ1 vacuum,
part of the energy is emitted from the solitons. The amount
of emitted energy is relatively small, ΔE ≈ 0.00004, and it
requires many bounces to lower the energy below the
annihilation threshold which is twice the soliton mass. In
the right panels the KK̄ collision is plotted. Now, after the
first bounce, the radiation takes a significant amount of
energy, ΔE ≈ 0.022, which brings the solitons very close to
the annihilation threshold. This confirms that the energy is
radiated out in a very efficient way and, consequently, is an
important factor in the dynamics.
The first step in the construction of a correct CCM is the

right choice of the one-parameter restricted set of configu-
rations which interpolates between the initial and final
states. In this case, the initial state, i.e., the infinitely
separated pair of kink ΦK and antikink ΦK̄ located at ∓a
respectively, can produce a final state consisting of a pair of
mirror antikink Φ�̄

K and mirror kink Φ�
K located at ∓a.

Schematically it can be represented as the following
process ð0; 1Þ þ ð1; 0Þ → ð0;−1Þ þ ð−1; 0Þ. Surprisingly,
the usual naive superposition

Mnaive
KK̄ ½a� ¼ fΦKðx;−aÞ þΦK̄ðx; aÞ − 1g ð42Þ

fails. Topologically, changing the modulus from a ¼ ∞ to
a ¼ −∞ gives a correct transition. In the initial state
ða → ∞Þ we do have an infinitely separated kink-antikink
pair, with a profile starting from 0 at x ¼ −∞, tending to 1
at x ¼ 0 and then decreasing to 0 for x ¼ ∞. In the final
state (a → −∞) we get a configuration which again tends
to 0 for x ¼ ∓∞ and takes −1 at x ¼ 0. Although this is a

FIG. 12. Time dependence of the value of the field at the origin,
ϕðx ¼ 0; tÞ, for various initial velocities vin in KK̄ collisions in
the ϕ6 model.

FIG. 13. Value of the field at the origin (upper panels) and
energy stored in the region jxj < 15 (lower panels) for a K̄K
collision with vin ¼ 0.042 (left panels) and a KK̄ collision with
vin ¼ 0.288 (right panels).
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correct topological behavior, the final state is not a pair of
mirror solitons,

lim
a→−∞

ðΦKðx;−aÞ þΦK̄ðx; aÞ − 1Þ
≠ Φ�̄

Kðx;−∞Þ þΦ�
Kðx;∞Þ þ 1 ð43Þ

Hence, the assumed naive sum does not provide the correct
final state.
Specifically, the large jxj asymptotic of the naive sum (42)

for a → −∞ does not agree with the asymptotic of a largely
separated mirror antikink and mirror kink. This leads to
slightly different asymptotical values of the effective poten-
tials in the corresponding CCM. Specifically, V− > Vþ,
where V� ¼ lima→�∞ VðaÞ, see Fig. 14 dashed curve. This
unphysical jump in the CCM potential can have an
unwanted impact on the resulting dynamics.
A restricted one-parameter set of configurations which

provides the correct initial and final states can have the
following form

ΦKK̄ðx;aÞ ¼ tanhðDaÞðΦKðx;−a tanhðDaÞÞ
þΦK̄ðx; a tanhðDaÞÞ − 1Þ ð44Þ

or explicitly

ΦKK̄ðx; aÞ ¼ tanhðDaÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tanhðxþ a tanhðDaÞÞ
2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanhðx − a tanhðDaÞÞ

2

r
− 1

�
; ð45Þ

where, for the moment, D is a free constant. It is easy to
verify that this set interpolates between the right initial and
final states. Indeed,

lim
a→∞

ΦKK̄ðx; aÞ ¼ lim
a→∞

ðΦKðx;−aÞ þΦK̄ðx; aÞ − 1Þ ð46Þ

which is an infinitely separated pair of kink and antikink.
Similarly,

lim
a→−∞

ΦKK̄ðx;aÞ¼ lim
a→−∞

ð−ΦKðx;aÞ−ΦK̄ðx;−aÞþ1Þ
¼ lim

a→∞
ðΦ�̄

Kðx;−aÞþΦ�
Kðx;aÞþ1Þ; ð47Þ

which is an analogous pair of mirror antikink and mirror
kink. This choice has the additional advantage that these
states are approached exponentially fast. Thus, the naive
superposition, both in the normal and mirror sector, is
deformed only for small a.
Note also that our configurations are antisymmetric

in a, ΦKK̄ðx;−aÞ ¼ −ΦKK̄ðx; aÞ.
Since (44) provides the correct initial and final states, the

corresponding effective potential has the same asymptotical
values. Hence, there is no unwanted jump. However, the
effective potential can still have a local maximum which
again may lead to unwanted one-bounce windows. This in
fact happens for D≲ 1.27, see Fig. 14. For bigger values
the potential has only the global minimum for a ¼ 0,
Vða ¼ 0Þ ¼ 0, where we pass through the vacuumΦv ¼ 0.
Of course, a CCM based on one collective DoF cannot

explain the dynamics even in the crudest way. Here,
however, there are no soliton-confined or delocalized
normal modes whose amplitudes could provide new
collective coordinates. Fortunately, the perturbative rela-
tivistic moduli space framework supplies us with the
required additional collective excitations, which are
Derrick modes. Thus, the simplest two dimensional moduli
space with only one Derrick mode reads

MKK̄½a;c� ¼
�
ΦKK̄ðx;aÞþc tanhðDaÞ

×

�
a tanhðDaÞ−x

ðe−2ðx−a tanhðDaÞÞ þ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðx−a tanhðDaÞÞ þ1

p

þ a tanhðDaÞþxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ða tanhðDaÞþxÞ þ1

p
ðe2ða tanhðDaÞþxÞ þ1Þ

��

ð48Þ

where ΦKK̄ðx; aÞ is the improved one-parameter configu-
rations (44) and c is the amplitude of the corresponding
superposition of the modified first Derrick mode obtained
by a scaling perturbation of (44).
It is easy to notice that this restricted set of configura-

tions suffers from a null vector problem. Indeed,
∂cΦðx; a ¼ 0; cÞ ¼ 0. Therefore, gca ¼ gcc ¼ 0 at a ¼ 0.
Fortunately, this singularity can be removed by a redefi-
nition of the collective coordinate c [19,20]. Namely,

c →
c

tanhðDaÞ : ð49Þ

FIG. 14. The effective potential in the one-dimensional CCM
for KK̄ collisions: dashed curve—the naive sum (42); orange,
green and purple curves—the improved choice with D ¼ 0.5, 1,
2, 200.
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Thus, finally, the regular two-dimensional moduli space is
defined as follows

MKK̄½a;c�¼
�
ΦKK̄ðx;aÞ

þc

�
a tanhðDaÞ−x

ðe−2ðx−a tanhðDaÞÞ þ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðx−a tanhðDaÞÞ þ1

p

þ atanhðDaÞþxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ða tanhðDaÞþxÞ þ1

p
ðe2ða tanhðDaÞþxÞ þ1Þ

��
:

ð50Þ

The optimal value of the parameter D can be determined
by comparison of the configurations (50) with the actual
profiles observed in the scattering process. We found that
D ¼ 2 is a good choice. We also remark that all D ∈ ð1; 5Þ
work similarly well and no big changes are observed.
In Fig. 15 we show the actual field profiles (solid line)

together with the best fit for the two-dimensional moduli
space configurations (dashed line) for several time
moments. Here again vin ¼ 0.288 and we demonstrate
the situation close to the first collision. It is clearly visible
that the configurations (50) very well approximate the field
profiles except the inability to model the radiation far away
from the center of the solitons. This is, of course, expected.
Furthermore, once again we see how big is the radiation
emitted during the collision.
In Fig. 16, left panels, we show how the fitted values of

the moduli a and c change in time. This is not a CCM result
but a fit of the configurations (50) to the true profiles
obtained in the full partial differential evolution. We see a
relatively long first window and fast decay of the excited
first Derrick mode after the first collision. This agrees with
the emission of radiation which quickly releases energy

from the soliton-confined DoF. The late time chaotic
changes of the amplitude of the Derrick mode probably
imply that the moduli (50) does not work too well and some
other DoF must be included.
Now we show the results obtained in the CCM based on

the moduli (50). The initial conditions are again

að0Þ ¼ a0; _a ¼ vin; cð0Þ ¼ c̃; _c ¼ 0 ð51Þ

where c̃ is a stationary solution of the single soliton case,
exactly as for the K̄K collision in pRCCM. In our analysis
this is computed numerically for each vin.
In Fig. 17 we show the time dependence of the value of

the field at the origin for initial velocities vin ∈ ½0.1; 0.35�.
An encouraging result is that this simple CCM reproduces
the critical velocity quite well. Namely, we found vCCMcr ≈
0.298 which is quite close to the true value vcr ≈ 0.289. On
the other hand, the whole structure of the formation of the
final state is not accurately predicted by the CCM. For
example, besides the nice bion chimneys, we also see
quite well pronounced, unwanted multibounce windows.
The origin of the appearance of these unwanted features is
quite clear. The CCM has only soliton confined DoF and,
therefore, there is no way to dissipate energy located on a
kink or antikink. As a consequence, during the CCM

FIG. 15. Comparison of true field profiles in a KK̄ collision
with vin ¼ 0.288 with the best fit in terms of the two dimensional
moduli space (50).

FIG. 16. Left: time dependence of the best fit of the moduli a, c
for the KK̄ collision with vin ¼ 0.288. Right: aðtÞ, cðtÞ computed
from the CCM based on (50).

FIG. 17. KK̄ collisions in the ϕ6 model in a CCM based on the
moduli (50). We plot the time dependence of the field at the origin
as a function of the initial velocity vin.
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evolution the energy stored in the first Derrick mode can
at later times be back-transferred to the kinetic motion,
which eventually leads to back-scattering of the solitons.
This, of course, does not happen in the full field theoretical
collision, where the radiation quickly reduces the energy of
the kinks, leading to a complete annihilation.
The correct prediction of the critical velocity may suggest

that the first Derrick mode is good enough to describe the
early phase of the collision properly, where it is decided
which amount of the energy is transferred from kinetic
motion to other DoF and, therefore, it is decided whether we
have a simple passing-through collision, or we enter in a
more complicated scenario. This is in fact visible if we plot
aðtÞ and cðtÞ obtained from the CCM and compare it with
the best fit, see Fig. 16, right panels. We found a reasonable
good agreement for the first collision. Namely, we see a
wider first bouncewindow.Also the amplitude of the excited
Derrick mode agrees. However, as there is no dissipation,
this amplitude remains basically constant. This has a
significant impact on the late time behavior and leads to
the observed disagreement with the full theory.

VI. CONCLUSIONS

In this work, we fully confirmed that the fractal structure
observed in the final state formation in antikink-kink
collision in the ϕ6 model is caused by delocalized, two-
soliton modes. These modes arise in the linear perturbation
theory of the antikink-kink static configuration and, contrary
to the usual shape modes, are not hosted by a single soliton
solution. So, they are nonperturbatively related to the
antikink-kink sector. As a consequence, the properties of
these delocalized modes (their shapes and frequencies) as
well as their number depends on the inter-soliton distance.
This was confirmed by a close analysis of the actual field

profiles as well as by a construction of a simple two-
dimensional collective coordinate model (CCM) which
amazingly well reproduces the full theory computations.
We would like to underline that the results obtained in the
CCM agree with the full field theory with a precision which
goes significantly beyond previously presented collective
approximations such as, for example, kink-antikink scat-
tering in the ϕ4 model [19].
Based on the success of the CCM description of the K̄K

collisions in the ϕ6 model (and the KK̄ collision in ϕ4

theory) we propose a general, robust way for the con-
struction of CCM for a wide class of multikink processes.
The main ingredient is the restricted set of configurations
(parametrized by a finite set of collective coordinates)
which includes: (1) a one-parameter subset configurations
interpolating between the initial and final states of the
process. This is typically, but not always, given by the
naive superposition of static solutions of solitons which
participate in the process; (2) the linear modes arising in
the multisoliton linear perturbation theory; and finally
(3) Derrick modes which take into account the Lorentz

contraction of the constituent solitons and also may serve to
model some effects of radiation. These components should
provide a CCM which may be treated as a precision tool
allowing for a quantitative understanding of many kink
collisions. This approach should lead to the explanation of
fractal structures found in multikink collisions in various
models as, for example, ϕ2n theories with n ¼ 4, 5, 6, etc.
We expect that this should work especially well whenever
there is a (single- or multisoliton) normal mode involved
in the process. However, one should be aware that on the
contrary to exponentially-like localized kinks in ϕ6 model,
there are versions of ϕ8 (and higher) theories, where kinks
are algebraic (powerlike) localized. This leads to a very
strong long range interactions which may significantly
complicate the analysis.
If no such modes are present, the situation is surprisingly

more subtle, because the main factor governing the dynam-
ics is the interaction of kinks with radiation. Unfortunately,
the inclusion of radiative (not soliton confined) DoF into a
collective model framework is still not fully developed.
However, the Derrick modes may provide a simple and
useful approximation. This follows from the observation
that for sufficiently high Derrick modes the frequencies
begin to be higher than the mass threshold. Furthermore,
higher modes are more widespread and therefore give a
better approximation to more distant regions. Of course, the
main limitation is that these modes are also soliton confined
and cannot transfer energy to infinity.
Thus, although the proposed general scheme for

the construction of CCMs is based on discrete DoF
((quasi)normal modes, Derrick modes), it does take into
account some feature of radiation, which is also an
important step forward. Interestingly, delocalized modes
can also be viewed as localized radiation, i.e., a kind of
standing wave trapped between the colliding solitons. This
includes only radiation with frequency lower than the mass
threshold of the outer vacuum. In addition, Derrick modes
also enjoy some features of radiation, especially at a short
timescale. This we saw in a quite accurate value of the
critical velocity for the KK̄ collision.
There are many directions in which the current work

should be continued besides the straightforward application
to multikink processes in other single scalar field theories.
First, we need a CCM where the delocalized, two-soliton

modes are treated dynamically, i.e., without any freezing
procedure. As we already mentioned, this a rather nontrivial
task which, in its full shape, might require us to incorporate
threshold modes, antinormal modes, and quasinormal
modes, i.e., the modes into which the delocalized normal
modes transmute as the solitons approach each other. This
would allow us to get rid of the free parameter a� which
enters the current version of the CCM for the K̄K collision.
Second, especially in the cases where there is no normal

mode involved in the process (as in the KK̄ collision in ϕ6

theory) one should couple a bigger number ofDerrickmodes.
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This should allow for a better modeling of the effects of
radiation, which in this case is the crucial factor. We expect
that the addition of higher Derrick modes will improve the
medium time CCM dynamics by introducing a channel in
with the energy can be transferred in quite an efficient way.
This should lead to the disappearance of unwanted bounce
windows which exist in our CCM, leading to a much better
accordance of the CCM with the full theory.
Another issue is related to the construction of the

improved one-dimensional moduli space which replaces
the invalid usual naive sum. It would be desirable to find a
unique and general way for such a construction.
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