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Long-range states and Feshbach resonances in collisions between
ultracold alkali-metal diatomic molecules and atoms
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We consider the long-range states expected for complexes formed from an alkali-metal diatomic molecule
in a singlet state and an alkali-metal atom. We explore the structure of the Hamiltonian for such systems, and
the couplings between the six angular momenta that are present. We consider the patterns and densities of the
long-range states, and the terms in the Hamiltonian that can cause Feshbach resonances when the states cross
threshold as a function of magnetic field. We present a case study of 40K 87Rb + 87Rb. We show multiple types
of resonance due to long-range states with rotational and/or hyperfine excitation, and consider the likelihood of
them existing at low to moderate magnetic fields.

DOI: 10.1103/PhysRevResearch.5.023001

I. INTRODUCTION

Collisions are fundamentally important in ultracold
physics. They not only dictate the lifetimes of ultracold sam-
ples and the efficiency of evaporative cooling, but also allow
exquisite control of ultracold gases. For ultracold atoms, a
detailed understanding of two-body collisions has evolved
through close interplay between experiment and theory. In
particular, a zero-energy Feshbach resonance occurs when-
ever a molecular bound state is close in energy to an atomic
threshold, and is coupled to it by the interaction potential.
A tunable Feshbach resonance occurs when the state can be
tuned across the threshold, most commonly with a magnetic
field. At the lowest threshold, the s-wave scattering length
passes through a pole as a function of applied field. This
allows the effective interaction strength in a quantum gas to
be tuned to any desired value in the vicinity of a resonance.
As a result, magnetically tunable Feshbach resonances have
become a mainstay of ultracold atomic physics [1], with ap-
plications that range from the study of Efimov physics [2]
to investigations of the BCS-BEC crossover in degenerate
Fermi gases [3]. Feshbach resonances have also been used
for magnetoassociation, in which pairs of ultracold atoms are
converted to weakly bound diatomic molecules by sweeping
a magnetic field across a resonance [4–6]. Several of these
molecules have been transferred to the absolute ground state,
usually by stimulated Raman adiabatic passage [7–19].

Many new opportunities will open up if molecular colli-
sions can be controlled in the same way as atomic collisions,
through tunable Feshbach resonances. However, ultracold
molecule-molecule collisions have turned out to be unex-
pectedly lossy [20–22], even in systems where there is no
energetically allowed two-body reaction between the colliding

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

species [23]. Indeed, most experiments on diatomic molecules
have observed loss rates close to the so-called universal rate,
corresponding to unit probability of loss for colliding pairs
that reach short range [24]. This has prompted work to en-
gineer long-range potentials that prevent collisions reaching
short range [25–30]. The short-range loss is usually explained
in terms of the formation of long-lived collision complexes
[31,32], which cause a very dense (and so far unresolved)
mass of Feshbach resonances. The complexes can be de-
stroyed in a variety of ways, including by chemical reaction
or via optical excitation by the trapping light [33]. However,
there is conflicting evidence on the lifetimes of the complexes
and the mechanisms of their loss [21,22,34–36].

Tunable Feshbach resonances have not yet been observed
in molecule-molecule collisions. However, ultracold atom-
molecule collisions provide a middle ground between the
simplicity of atom-atom collisions and the complexity of
molecule-molecule collisions. Collisional losses are still fast
in some cases, but much slower in others. The first obser-
vations of atom-molecule Feshbach resonances have recently
been made. In particular, magnetic Feshbach resonances have
been observed in collisions between ultracold 40K atoms and
23Na 40K molecules in singlet states [17,37–40] and between
23Na atoms and 6Li 23Na molecules in triplet states [41].

We have recently investigated the theory of the triatomic
complexes that can be formed in collisions between alkali-
metal diatomic molecules and atoms [42]. We focused on
the doublet states formed in collisions of diatomic molecules
in singlet states. We calculated densities of states for atom-
molecule pairs at short range and showed that, for a single
hyperfine manifold, the states are much more widely spaced
than the range of collision energies. These short-range states
are expected to be chaotic in nature [31,43]. We also consid-
ered the role of hyperfine coupling due to the Fermi contact
interaction, and showed that it can couple different hyperfine
manifolds, producing broad resonances and background loss.
However, the short-range states are unlikely to be responsible
for the resonances observed in K + NaK; the patterns of the
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FIG. 1. Schematic picture of the channels and states in an alkali-
metal atom+diatom collision. Short-range states are expected to be
chaotic, but the asymptotic channels have atom+diatom character,
and so do any states supported by those channels in the long-range
region. Examples of long-range states are shown for one channel with
rotational excitation (blue) and one channel with hyperfine excitation
(red) but similar states will also exist for other channels. States that
lie close to the incoming channel threshold can cause magnetically
tunable Feshbach resonances.

resonances observed suggest that they are due to long-range
states [37], which are more weakly coupled to the scattering
channels and cause narrower resonances that are potentially
controllable with magnetic fields.

The purpose of the present paper is to investigate the
long-range states of the complexes that can be formed
in collisions between alkali-metal diatomic molecules
and atoms, and the circumstances under which they can
produce tunable Feshbach resonances. The long-range
states are relatively weakly coupled to one another; they
are likely to have more structured energy-level patterns
than the short-range states, and not to be chaotic in nature.
Nevertheless, they have complicated Zeeman and hyperfine
Hamiltonians, with many terms that can couple them to the
incoming and (in some cases) inelastic scattering channels.
These states are shown schematically in Fig. 1.

The structure of the paper is as follows. Section II explores
the form of the Hamiltonian for atom-diatom complexes,
the ways that different angular momenta are coupled to-
gether, and the selection rules rules for different coupling
terms. Section III considers the patterns and densities of
near-threshold states, and their consequences for Feshbach
resonances in different alkali-metal molecule-atom systems.
Section IV describes a case study for 40K 87Rb + 87Rb, with
specific examples of level-crossing diagrams for resonances
due to different types of long-range state. Finally, Sec. V
presents our conclusions.

II. HAMILTONIAN AND SELECTION RULES

There are 6 sources of angular momentum in a triatomic
system AB + C formed from a singlet molecule and an alkali-
metal atom: the electron spin S = 1/2, three nuclear spins iA,
iB, iC, the rotation n of the diatomic molecule AB and the
rotation L of AB and C about one another.

A. Atomic and molecular states

An alkali-metal atom C in a 2S state, with electron spin
S = 1/2 and nuclear spin iC, is characterized in zero field
by its total spin fC = iC ± 1

2 . The two hyperfine states are
separated by the hyperfine splitting (iC + 1

2 )ζC, where ζC is
the scalar hyperfine coupling constant that arises from the
Fermi contact interaction; the splitting varies from 228 MHz
for 6Li to 9.2 GHz for 133Cs. In a small magnetic field B, each
hyperfine state fC is split into 2 fC + 1 Zeeman states labeled
by the projection m f ,C onto the axis of the field. At higher
fields, the Zeeman effect mixes the two states of different fC,
and at very high fields the good quantum numbers are MS and
mC rather than fC, with m f ,C = MS + mC. The states at any
field may nevertheless be labeled ( f̃C, m f ,C), where f̃C is the
value of fC that the state correlates with at zero field.

A diatomic molecule AB in a 1� state, with vibrational
and rotational quantum numbers v and n, is characterized
in zero field by its total angular momentum fAB, which
is the resultant of n, iA and iB. For the ground rotational
state, n = 0, iA and iB are coupled only very weakly, with
small splittings between the zero-field states with different
values of fAB. For the alkali-metal diatomic molecules, the
spread is typically only tens of kHz and is due to the scalar
nuclear-spin–nuclear-spin interaction [44,45]. Thus only a
small magnetic field (tens of Gauss) is needed to decouple
the nuclear spins [44,45], such that the projections mA and
mB of iA and iB become nearly good quantum numbers.
However, for n > 0 there are much larger zero-field split-
tings, usually dominated by nuclear quadrupole couplings, but
including nuclear-spin–rotation and scalar and tensor nuclear-
spin–nuclear-spin interactions; for these states a considerably
larger magnetic field (hundreds of Gauss) is needed to de-
couple iA and iB from n [46], and fAB may remain a useful
quantum number at considerably higher fields. In an optical
trap, states with n > 0 are further complicated by mixing due
to the anisotropic ac Stark effect [47].

B. The interaction operator

Colliding atoms and molecules are initially in eigenstates
of their individual Hamiltonians. Terms that are present in the
Hamiltonians of the separated species, and are independent
of their separation R, do not provide coupling between the
colliding pair and the bound states of the triatomic complex.
They therefore cannot by themselves produce Feshbach res-
onances. It is convenient to define an interaction operator
V̂ (R, ξ ) that includes all R-dependent terms in the Hamil-
tonian of the colliding pair, excluding the relative kinetic
energy. Here ξ represents all coordinates except R, includ-
ing spin coordinates. The interaction operator includes the
intermolecular potential, but also contains spin-dependent and
field-dependent terms as described below.

The complete wave function of the collision system or the
triatomic complex may be expanded

�(R, ξ ) = R−1
∑

j

� j (ξ )ψ j (R). (1)

The channel functions � j (ξ ) form a complete orthonormal
basis set for motion in the coordinates ξ . The component
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of the wave function in each channel j is described by a
radial channel function ψ j (R). A full numerical solution of the
resulting coupled-channel problem is beyond the scope of this
paper, but the formalism is nonetheless useful for considering
the various couplings and their effects.

When considering collisions and long-range states, it
is convenient to choose channel functions with quantum
numbers {v, n, L, N, MN , mA, mB, f̃C, m f ,C}, collectively rep-
resented by j in Eq. (1). Here N is the total spin-free angular
momentum, which is the resultant of n and L, and MN is its
projection onto the axis of the magnetic field. The channel
functions are defined more formally in Appendix. It is useful
to distinguish a quantum number for the incoming channel,
X in, from the corresponding one for a resonant bound state,
X res.

For each term �̂ in the interaction operator, we are inter-
ested in the matrix elements 〈 jres|�̂| jin〉 and particularly in
the associated selection rules 	X = X res − X in involving the
different quantum numbers described above. We now consider
these selection rules for each term in the interaction operator.

1. Interaction terms diagonal in N

The strongest term in the interaction operator is the elec-
trostatic interaction potential V (R, r, θ ). This is written here in
Jacobi coordinates: �r is the interatomic vector of AB, of length
r, �R is the vector from the center of mass of AB to atom C, of
length R, and θ is the angle between �r and �R. For the alkali-
metal systems of interest here, V (R, r, θ ) is deep (of order 50
THz) and highly anisotropic at short range. Such potentials
have been considered in depth elsewhere [23,48–57], but their
details are not crucial for the present purposes. The important
feature of the short-range potential is that it provides strong
coupling between channels with different values of v, n, and
L. However, it is diagonal in N and its projection MN . It is also
diagonal in all spin quantum numbers. Ultracold collisions
are usually dominated by the incoming s wave, with Lin = 0,
which implies N in = nin. If the molecule AB is initially in
nin = 0, the electrostatic potential couples the incoming wave
only to other channels with N res = 0, requiring Lres = nres,
and the same spin quantum numbers as the incoming channel.

There are also terms in the interaction operator that de-
pend on spins and/or applied fields. All the hyperfine and
Zeeman terms that exist in the separated atom and molecule
become functions of R and θ when the two species interact,
and the differences from the monomer terms contribute to the
interaction operator. In addition, there are scalar and tensor
interactions that develop between the angular momenta on the
atom and those on the molecule. The magnetic moments are
also modified and contribute Zeeman terms to the interaction
operator.

The strongest spin-dependent term is the Fermi contact
interaction. At long range this couples S to iC for the free atom
to form fC. We showed in Ref. [42] that the Fermi contact
interaction depends strongly on the geometry of the complex,
particularly at short range, where the electron spin that is
originally on atom C is distributed among all three atoms. The
Fermi contact operator is of the form [42]

ĤFc =
∑

X=A,B,C

ζX (R, r, θ ) îX · Ŝ, (2)

where Ŝ and îX are the vector operators for the electron and
nuclear spin angular momenta. Each term is the product of
a scalar spatial operator ζX (R, r, θ ), which can couple states
of different v, n and L while conserving N and MN , and a
spin operator îX · Ŝ. The latter provides a coupling that can
change f̃C and/or m f ,C by 0 or 1, while conserving the total
spin projection m f ,tot = mA + mB + m f ,C.

If all the external fields present share a common axis, the
total projection quantum number MF is conserved,

MF = MN + m f ,tot = MN + MS + mA + mB + mC. (3)

Conservation of m f ,tot thus implies conservation of MN , and
vice versa.

2. Interaction terms off-diagonal in N

An important question is the strength of the coupling
between channels with different values of N and MN . If
such couplings are significant, bound states with one value
of (N, MN ) may cause Feshbach resonances in an incoming
channel with different values. In experiments that involve
diatomic molecules in their rotationless ground state, nin = 0,
and are dominated by s-wave scattering, Lin = 0, the incom-
ing channel has N in = 0. Couplings off-diagonal in N are
needed for collision complexes in any state (N res, Mres

N ) other
than (0,0) to contribute in such cases.

There are tensor hyperfine terms in the Hamiltonian, aris-
ing from dipolar interactions between electron and nuclear
spins. These terms are off-diagonal in mX for the nucleus con-
cerned by up to 1, in MS by up to 1, and in n, L, N , and MN by
up to 2, while conserving MF . They depend on the asymmetry
of the spin density around the nucleus concerned. The tensor
coupling constants for Na3 at its equilibrium geometry have
been obtained from electronic structure calculations [55] and
found to be up to 142 MHz. They are zero for free atoms and
singlet molecules, so form part of the interaction operator. The
calculated value for Na3 is about 16% of the atomic hyperfine
coupling of Na; it seems reasonable to expect similar percent-
ages for the triatomic complexes of interest here.

There are additional hyperfine terms arising from the in-
teraction of nuclear electric quadrupole moments with the
electric field gradient at the nucleus concerned. These too are
off-diagonal in n, L, N , and MN by up to 2. However, the
coupling constants are generally less than 10 MHz for alkali-
metal diatomic molecules [45], and are probably comparable
in the three-atom complexes. They are again zero for free
atoms, so there is some dependence on R, but their absolute
magnitude is small.

A magnetic field B interacts mostly with the magnetic
moment due to the electron spin S and to a much lesser extent
with those due to the nuclear spins iX and the rotational angu-
lar momenta n, L, and N . It is likely that only the electron-spin
contribution is significant in the interaction operator. For a free
atom, the matrix elements are of magnitude gSμBMSB, where
gS is the g-factor for the electron spin and μB is the Bohr
magneton. The electron g-tensor for a molecule is anisotropic
and geometry-dependent, with components gi j in a frame
fixed in the molecule. The term that enters the interaction
operator depends on the deviation of gi j (R, r, θ ) from gS; such
deviations are small (usually less than 1%) for molecules with
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well-separated electronic states that contain only light atoms,
but they may be enhanced if there is a nearby excited state
with a spin density spatially close to that of the state of interest
[58]. For example, the shifts can be a substantial fraction of
gS for transition-metal species [59]. Moreover, the spin-orbit
matrix elements responsible for them scale roughly as Z4 with
nuclear charge Z . They might therefore be substantial for the
alkali-metal triatomic molecules. They are off-diagonal in MS

and therefore off-diagonal in f̃C and m f ,C. Since the g-tensor
is defined in a frame fixed in the triatomic complex, it must
be rotated to evaluate its matrix elements between space-fixed
functions; as a result its anisotropic part can mix states with
different N and MN .

There are also spin-rotation terms arising from the interac-
tion of the electron spin with molecular rotation and internal
rotation. These arise mainly from the combined effects of
spin-orbit and Coriolis mixing between electronic states [60].
The spin-rotation coupling tensor is approximately related to
the g-tensor through Curl’s approximation [61],

gi j = gSδi j − h̄−2
∑

k

εikIk j . (4)

Here Ik j is an element of the molecular inertial tensor, so
that the spin-rotation constants scale roughly with rotational
constants as well as g-tensor shifts. The isotropic part has
matrix elements off-diagonal in MN , while the anisotropic
part is off-diagonal in N and MN ; both parts conserve MJ =
MN + MS . Such terms are known to be up to several GHz for
the ground states of molecules such as NF2, NO2 and ClO2

[61,62], but values below 1 MHz have been obtained from
electronic structure calculations on Na3 at near-equilibrium
geometries [55].

An electric field interacts strongly with an electric dipole
moment to produce matrix elements diagonal and off-diagonal
in N . However, there are no purposely applied electric fields
in the experiments considered here.

In an optical trap, the light from the trapping laser can
interact with the molecular polarizability through the ac Stark
effect [47]. The polarizability is a second-rank tensor that
depends on the geometry of the triatomic complex, so the
AC Stark effect contributes to the interaction operator. It has
matrix elements that can change N by 0 or 2 and can also be
off-diagonal in v, n, and L. It is diagonal in the spin quantum
numbers.

3. Calculation of magnetic properties

The Fermi contact interactions, tensor hyperfine couplings,
spin-rotation couplings and g-tensor components can in prin-
ciple be obtained from electronic structure calculations. For
simple species, considerable success has been achieved both
with wavefunction-based methods [63,64] and with density-
functional theory [65–68]. However, for the alkali-metal
three-atom complexes, the task is complicated by the exis-
tence of two low-lying electronic states, with seams of conical
intersections between them as described in Ref. [42]. Hauser
et al. [55] have used a variety of electronic structure methods
to calculate some of these properties in Na3. However, they fo-
cused on high-symmetry geometries around the path sampled
by pseudorotation in the lowest vibronic state, and obtained

coupling constants involving spin densities by a fairly coarse
integration over electronic coordinates. Extending their calcu-
lations to heteronuclear systems at a wide range of geometries
is beyond the scope of the present paper.

III. LONG-RANGE STATES AND FESHBACH
RESONANCES

A. Structure of long-range states

The states of complexes formed in alkali-metal atom-
diatom collisions may be loosely separated into short-range
and long-range states. The short-range states are supported by
high-lying closed channels, with large values of n and/or v.
They spend most of their time in regions where the interaction
potential V (R, r, θ ) is deep and strongly anisotropic. Such
states are strongly coupled to one another and are likely to be
chaotic [31,43]. The resulting resonances were investigated in
Ref. [42]: the states may have magnetic moments significantly
different from the colliding atom and molecule, so the res-
onances are magnetically tunable, but the coupling between
the bound states and the continuum is very strong; for atom-
diatom systems in which the levels are chaotic the resulting
resonances are generally very broad (typically hundreds of
Gauss).

Interaction potentials with asymptotic form −Cj/R j sup-
port states with wave functions concentrated at long range
[69]. The spatial overlap between the long-range and short-
range states decreases as threshold is approached. The
long-range states are thus relatively weakly coupled to the
short-range states by the potential anisotropy and other short-
range interactions; the longest-range states are likely to be
separate from the chaotic manifold, though they will exhibit
avoided crossings with short-range states as a function of
magnetic field. States of this general character have been ob-
served experimentally in the chaotic spectrum of dysprosium
dimers [70] and also appear close to threshold in calculations
on the chaotic system Li + CaH [43]. This picture contrasts
with that of Mayle et al. [31], who assumed complete statisti-
cal mixing for all states without distinction.

The long-range states are approximately described by the
quantum numbers of the free atom C and molecule AB. To
a first approximation, the long-range states of the complex
are characterized by f̃C and m f ,C, together with the rotational
quantum number n of the diatomic molecule AB and a vi-
brational quantum number η for motion in the atom-molecule
separation R. For present purposes η is most conveniently
counted downwards from threshold, such that the least-bound
state in each channel with L = 0 is η = −1. The hyperfine
and Zeeman structure of the alkali-metal diatomic molecule is
complicated [44], particularly in the presence of strong laser
fields [47], but in general n couples relatively weakly to the
nuclear spins iA and iB with hyperfine and Zeeman splittings
of a few MHz or less.

For long-range complexes at zero field, n couples to L
to form resultant N , which couples to fC to form resultant
FC; this couples to iA and iB to form the total angular mo-
mentum F . However, long-range states of the same (n, L, N )
and fC but different F are unlikely to be split by more
than a few MHz, except in the vicinity of avoided crossings
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with short-range states. It therefore takes a magnetic field
of only a few G to decouple MN and the nuclear spins
of the diatomic molecule, so that the quantum numbers
are (n, L, N, MN , f̃C, m f ,C, mA, mB). The Zeeman effects for
these states are dominated by that of atom C, and at fields
more than a few G they form groups, spaced by no more
than a few MHz, with the same values of (n, L, N, f̃C, m f ,C)
but differing (MN , mA, mB). The total projection MF = MN +
m f ,C + mA + mB is conserved if the trapping laser is polarized
parallel to the magnetic field.

For slightly deeper states with N > 0, the anisotropy Vaniso

of the interaction potential V (R, r, θ ) may be sufficient to
quantize n along the intermolecular vector with projection K .
In this case (n, L, N ) is replaced by (n, K, N ). This recou-
pling occurs when Vaniso is large compared to the rotational
constant of the complex, h̄2/(2μR2), in the same way as for
Case 2 coupling in spin-free Van der Waals complexes [71].
For K+NaK, for example, it takes place near R ∼ 100 a0.
As the anisotropy increases further at shorter range, Vaniso(R)
becomes greater than the rotational constant of the diatomic
molecule, h̄2/(2μABr2). The diatom rotational quantum num-
ber n is then replaced by a quantum number for a bending
vibration, as for Case 3 coupling in Van der Waals complexes
with strong anisotropy [71]. Eventually, as the binding energy
increases, the couplings to the short-range states will become
strong enough that the long-range states will merge into the
chaotic manifold, with level spacings described by random-
matrix theory as in Ref. [42].

Feshbach resonances require coupling between the incom-
ing scattering state and a quasibound state. Although the
quantum numbers (n, L, N, MN , f̃C, m f ,C, mA, mB) described
above are approximately conserved for the long-range states,
they are not fully conserved. The long-range states do mix
with the short-range states, and the mixed states have a com-
ponent at short range; the couplings described in Sec. II then
provide the necessary coupling to the incoming state. In par-
ticular, magnetically tunable Feshbach resonances occur when
a bound or quasibound state crosses the energy of the incom-
ing state; they can be observed only if the incoming state and
the quasibound state have different magnetic moments, and
this will usually require differing values of f̃C or m f ,C; since
MF is conserved, a change in m f ,C requires a compensating
change in MN , mA, or mB. As described in Sec. II, the Fermi
contact interaction can exchange angular momentum between
m f ,C and mA or mB while conserving m f ,tot, with selection rule
	m f ,C = ±1. It can also change f̃C. Couplings off-diagonal
in N and/or MN are generally weaker but can arise from ten-
sor hyperfine coupling, g-tensor anisotropy, and spin-rotation
coupling as described above.

The alkali molecule + atom systems have some similarities
with systems in which an alkali-metal atom interacts with
a closed-shell atom, such as Rb+Sr [72,73] and alkali+Yb
[74,75]. In both cases the resonances are principally due to R-
dependent hyperfine coupling, and for Sr and Yb they are very
narrow, with widths in the mG range. However, the alkali-
metal triatomic systems differ because the near-threshold
states typically have much larger components at short range,
due to mixing with the chaotic manifold of short-range states.
In consequence, the resulting resonances will be substantially
wider.

The long-range states will be much less susceptible to
laser-induced loss than short-range states. For large R, the
electronically excited triatomic states responsible for loss are
much less strongly bound, so are likely to be inaccessible with
the laser frequencies used for trapping. In an alternative view-
point, the vibronically excited states responsible for loss are
short-range states, which have poor Franck-Condon overlap
with the long-range states. Because of this, the long-range
states can be sharp enough to cause well-defined Feshbach
resonances [17,37].

B. Expected positions of Feshbach resonances

The alkali-metal atom-molecule systems have interaction
potentials of the form V (R) = −C6/R6 at long range. If
channel coupling is neglected, each asymptotic channel la-
beled by quantum numbers (n, L, N, MN , f̃C, m f ,C, mA, mB)
supports a set of near-threshold bound states with a simple
pattern of binding energies given by quantum defect theory
[76]. There is always exactly one s-wave bound state (L = 0)
in a certain energy window immediately below threshold.
This window is known as the top bin and its width is de-
termined by only the asymptotic form of the interaction
potential and the reduced mass μ. For an interaction poten-
tial −C6R−6, the width of the top bin is approximately 36Ē ,
where Ē = h̄2/(2μā2) is the energy scale associated with the
mean scattering length of Gribakin and Flambaum [77], ā =
(2μC6/h̄2)1/4 × 0.4779888 . . . . Values of ā and Ē are given
in Table I for all possible systems AB + A, where A and B are
different alkali-metal atoms, using the C6 coefficients of [78].
The concept of bins can be extended to higher partial waves
and deeper bound states, as described by Gao [76]. Table I
includes the depth of the top bin, EL

bin, for L = 0, 1 and 2.
To a first approximation, a near-threshold bound state re-

tains the character of the threshold that supports it. If channel
mixing is neglected, it shares the magnetic moment of the
threshold and runs below it and parallel to it as a function of
magnetic field. Consider incoming and resonant channels with
threshold energies E in(B) and E res(B) as a function of mag-
netic field. A bound state with binding energy E res

b relative to
E res(B) crosses the incoming channel and may cause a Fesh-
bach resonance near the field where E in(B) = E res(B) − E res

b .
In the simple case where the Zeeman effect is linear, as for
heavier alkali-metal atoms at low fields, and the channels
correlate with the same zero-field level, E res(B) − E in(B) =
−gSμBB	m f ,C/(iC + 1/2).

The positions of states within their bins are governed by
the scattering length a and may be obtained from quantum
defect theory [79–82]. An s-wave bound state exists close
to the top of the bin if the scattering length is large and
positive, a � ā. Similarly, a p-wave state (L = 1) exists just
below threshold if a is slightly less than 2ā and a d-wave state
(L = 2) exists just below threshold if a is slightly less than ā.
For a potential with unknown scattering length, it is possible
to calculate the probability that a state with L = 0, 1 or 2 exists
in a particular range of binding energies. For example, there
is a 50% probability of an s-wave state bound by less than
EL=0

50% = 6.1Ē ; these values are included in Table I.
Figure 2(a) shows the cumulative probability of a state with

L = 0, 1 or 2 existing within an energy range Eb/Ē below
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TABLE I. Energy and length scales and bin depths for of AB + A alkali-metal systems.

System ā (Å) Ē/h (MHz) EL=0
bin /h (MHz) EL=0

50% /h (MHz) EL=1
bin /h (MHz) EL=2

bin /h (MHz)

7Li 7Li + 7Li 21 245 8861 1505 15150 22909
7Li 23Na + 7Li 20.8 205 7390 1255 12634 19104
7Li 39K + 7Li 23.2 154 5579 947 9539 14424
7Li 87Rb + 7Li 24.2 132 4784 812 8179 12368
7Li 133Cs + 7Li 25.4 117 4226 718 7224 10924
7Li 23Na + 23Na 26 57.3 2069 351 3537 5349
23Na 23Na + 23Na 29 39.1 1411 240 2413 3649
23Na 39K + 23Na 30.8 31.8 1148 195 1963 2968
23Na 87Rb + 23Na 32.5 25.1 907 154 1551 2345
23Na 133Cs + 23Na 34.3 21.4 774 131 1324 2001
7Li 39K + 39K 36 18.5 667 113 1141 1725
23Na 39K + 39K 37.8 14.8 535 90.8 915 1383
39K 39K + 39K 41.7 11.2 404 68.6 691 1045
39K 87Rb + 39K 42.6 9.34 337 57.3 577 872
39K 133Cs + 39K 44.8 7.94 287 48.7 490 741
7Li 87Rb + 87Rb 45.7 5.36 194 32.9 331 500
23Na 87Rb + 87Rb 47.3 4.66 168 28.6 288 435
39K 87Rb + 87Rb 50 3.93 142 24.1 242 367
87Rb 87Rb + 87Rb 53.4 3.06 111 18.8 189 286
87Rb 133Cs + 87Rb 55 2.68 96.9 16.5 166 251
7Li 133Cs + 133Cs 55.7 2.39 86.3 14.7 148 223
23Na 133Cs + 133Cs 57 2.17 78.2 13.3 134 202
39K 133Cs + 133Cs 59.5 1.9 68.7 11.7 117 178
87Rb 133Cs + 133Cs 61.9 1.59 57.5 9.76 98.3 149
133Cs 133Cs + 133Cs 65.2 1.34 48.4 8.22 82.8 125

threshold. Figure 2(b) shows the same quantity as a function
of (Eb/Ē )1/3, which approaches linearity away from thresh-
old. This may be interpreted as the probability of a bound
state of this L causing a resonance in an incoming channel
at a field below that where the differential Zeeman effect,
E res(B) − E in(B), is equal to E res

b . To estimate the probability
of a resonance occurring below a field B, calculate the differ-
ential Zeeman shift between the two atomic states, divide by
Ē from Table I, and read off the probabilities.

When the couplings that produce resonances are short-
range in character, the widths of resonances are proportional
to E2/3

b [74]. States very close to threshold may therefore
produce resonances that are too narrow to observe. Under
these circumstances the lowest-field resonances that are ac-
tually observable may be those at the top of the second bin,
at slightly higher fields than implied by Table I. This was the
case, for example, for analogous resonances for f̃Rb = 1 in
87Rb + 87Sr [73].

IV. CASE STUDY: LONG-RANGE STATES OF KRb + Rb

The bound states that cause Feshbach resonances in an
incoming channel labeled by (nin = 0, Lin = 0, f̃ in

C , min
f ,C)

may belong to parent closed channels with differing val-
ues of nres, f̃ res

C or mres
f ,C (or any combination of them).

It is useful to consider a specific example here, and we
choose 40K 87Rb + 87Rb with the Rb atom in its lowest state
( f̃ in

C , min
f ,C) = (1, 1) and the KRb molecule in the excited Zee-

man state (nin, min
A , min

B ) = (0,−4, 1/2).
Closed channels with (nres, f̃ res

C ) = (0, 1) are almost de-
generate with the incoming channel at zero field; each such

channel must have a least-bound state with η = −1 some-
where in the top 142 MHz. The Fermi contact term ĤFc has
selection rule 	m f ,C = 0,±1, but only −1 is relevant for this
set of resonances. Since the differential magnetic moment be-
tween adjacent Zeeman states for Rb( fC = 1) is 0.7 MHz/G
at low field, the corresponding resonances are expected at
fields below 200 G, depending on where the least-bound
state lies within its bin. We show an illustrative example of
a level-crossing diagram for these resonances in Fig. 3(a).
This is for the case a = ∞, for which there is a state in each
channel at the bottom of each bin; the binding energies are
again calculated using quantum defect theory. Corresponding
examples for other values of a are given in the Supplemental
Material [83]. The crossings for a = ∞ are not predictions of
specific resonance positions, but instead predict a resonance
due to a state with η = −1 somewhere between B = 0 and
the crossing marked at 200 G. There will also be a bound
state in the second bin, with η = −2. This will lie between
the two zero-field levels shown in Fig. 3(a). It will cause a
resonance above 200 G; the upper limit is more complicated
due to non-linear Zeeman effects, and depends on m f ,C, but is
readily calculated from the depth of the bottom of the second
bin, which is 980 MHz for this system. These resonances are
analogous to Type II resonances that can occur in systems
such as LiYb, RbSr and CsYb [73,75,84].

The change 	m f ,C = −1 requires a compensating change
in mA or mB. For the chosen incoming channel, reso-
nances first-order in ĤFc are expected from two closed
channels: (mres

f ,C, mres
A , mres

B ) = (0,−3, 1/2) and (0,−4, 3/2).
Resonances from both these channels occur in the same region
of 0 to 200 G, but there are spin-dependent shifts due to the
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FIG. 2. Cumulative probability of a bound state existing within
energy Eb of threshold for L = 0 (black solid line), 1 (red dashed
line), and 2 (blue dotted line). Panel (a) shows this on a linear energy
scale to the depth of the first bin, and panel (b) shows it as a function
of (Eb/Ē )1/3 to larger binding energies. Probabilities above 1 indicate
that there is at least one state, in the top bin, and a probability of a
second state.

diagonal portion of ĤFc; depending on the magnitude of these,
the states may be either close together or shifted far from each
other within this region.

Additional resonances may occur due to closed channels
with f̃ res

C = 2. This state is excited by 6.83 GHz at zero
field; to cause resonances accessible in magnetic fields below
600 G, the states for ( f̃ res

C , mres
f ,C) = (2, 1) would need to be

bound by between 6.83 and 7.81 GHz. The relative magnetic
moment is larger in this case, but the states are much sparser
in energy this far below threshold. It is therefore relatively
unlikely (probability ∼19%) that resonances due to states with
f̃ res
C = 2 will exist at such fields. This likelihood is consid-

erably larger when the free atom has a substantially smaller
hyperfine splitting, as for isotopes of Li, Na, or K. An example
of such crossings is shown in Fig. 3(b), showing that they will
occur at low fields only if there is a state near the boundary
between the fourth and fifth bins. Resonances may also exist
due to states in channels with ( f̃ res

C , mres
f ,C) = (2, 0) or (2,2).

These resonances are analogous to Type I and II resonances
that can occur in systems such as RbSr and CsYb [72–75].

The different values of 	m f ,C = 0,±1 require different
combinations (mres

A , mres
B ) to produce resonances at each of the

three crossings. For our chosen incoming state, for 	m f ,C =
−1 we once again expect first-order resonances due to states
with (−3, 1/2) and (−4, 3/2); for 	m f ,C = 0 we expect
(−4, 1/2); and for 	m f ,C = +1 we expect (−4,−1/2). The
states that cause these resonances are more deeply bound than
those shown in Fig. 3(a), so their wave functions will have
greater density at short range, sample more of the regions
where the Fermi contact interaction is strong, and thus be
spread out over a larger range of energy and field by spin-
dependent shifts.

Further classes of resonances may exist in molecular col-
lisions, due to closed channels with nres > 0 but N res = 0.
For KRb the state n = 1 is located 2.23 GHz above n = 0
[85], and the state n = 2 is located 6.68 GHz above. The
molecule+atom threshold for (n, fC) = (2, 1) is thus below
that for (0,2) by just 150 MHz at zero field. The states that
can cause resonances at low fields must be bound by slightly
more than the rotational splittings. This is similar to the case
of (0,2), but with smaller relative magnetic moments. This
means that the energy windows needed to produce resonances
below 600 G are narrower: for nres = 1, the states must be
bound between 2.23 and 2.62 GHz, with a probability of
15%; for nres = 2, the states must be bound between 6.68 and
7.07 GHz, with a probability of 8%. These states are coupled
to the incoming channel by the part of the Fermi contact in-
teraction that is anisotropic in the sense that it depends on the
Jacobi coordinate θ . In Fig. 3(c) we show examples of these
states with (1,1) and (2,1), and N res = 0 such that Lres = nres.
This shows that the states for (2,1) will cause resonances only
if they lie near the boundary between the fourth and fifth
bins, as for (0,2), and those for (1,1) if they lie in the middle
of the third bin. The components (mres

A , mres
B ) that can cause

resonances are the same as for nres = 0.
There can also be resonances from states supported by

higher thresholds. These include thresholds with nres > 2, or
with nres > 0 and f̃ res

C = 2. However, these states must be
even more deeply bound, so are more sparse. At sufficient
depth, such states become increasingly strongly coupled to
short-range states and are expected to become part of the
chaotic manifold(s). No current theories exist to describe how
and for what states this happens.

One special feature of this system occurs due to the
near-degeneracy, mentioned above, between the rotational
excitation to n = 2 and the hyperfine splitting of 87Rb. As
seen in Fig. 3(c) a bound state in the top bin for a chan-
nel with (n, f̃C, m f ,C) = (2, 1,−1) crosses the threshold with
(0, 2,−2) between 70 and 140 G, and the corresponding states
in the second bin crosses between 140 and 580 G. This will
produce an additional type of resonance at thresholds with
f̃ in
C = 2.

Finally, there can be resonances due to states with N res > 0.
These are coupled to the incoming state by only the cou-
plings described in Sec. II B 2. We focus on states with
(nres, f̃ res

C , Lres ) = (0, 1, 1) and (0,1,2) (with N res = 1 and 2,
respectively), which are those most likely to cause low-field
resonances. Examples of these states are shown in Fig. 3(d).
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FIG. 3. Example level-crossing diagrams for different types of resonances due to long-range states for 40K 87Rb + 87Rb. Heavy black lines
show thresholds, and thin colored lines show bound states. Crossings that can cause Feshbach resonances are marked by symbols. All examples
show single-channel bound states for a = ∞, for which there is a state at the bottom of each s-wave bin. (a) States (nres, f̃ res

C , Lres ) = (0, 1, 0).
(b) States (0,2,0). (c) States (0,1,0) are shown with blue solid lines and circles, (1,1,1) with green dashed lines and squares, and (2,1,2) with
red dotted lines and diamonds. (d) States (0,1,0) are shown with solid lines and circles, (0,1,1) with dashed lines and squares, and (0,1,2) with
dotted lines and diamonds. Also shown in red are the bottoms of the bins for Lres = 1 and 2.

These are again shown for a = ∞, but for Lres = 1 and 2 these
states are not at the bin boundary. We therefore also show the
bin boundaries as discussed in Sec. III B. This shows that such
resonances are expected below 360 and 560 G for Lres = 1 and
2, respectively. There are many more components (mres

A , mres
B )

that can cause resonances in this case, because the sum
m f ,tot = mA + mB + m f ,C can change, compensated by MN

to conserve MF . The components that cause the strongest
resonances will depend on which of the couplings discussed in
Sec. II B 2 are most important. We have previously attributed
the magnetic Feshbach resonances observed for 40K +NaK to
states of this type [37].

V. CONCLUSIONS

We have provided a framework for understanding long-
range states of alkali-metal atom-diatom complexes, and the
types of magnetic Feshbach resonances they can produce.
We first explored the terms that exist in the Hamiltonian for
such triatomic systems and the ways in which they couple
the six sources of angular momentum present. We separated
the couplings into those that conserve the total spin-free
angular momentum N and those that can change it. The

former category includes the electronic interaction potential
and the Fermi-contact hyperfine interaction. The couplings in
the latter category include spin-rotation, tensor hyperfine, and
anisotropic Zeeman interactions. These terms are all expected
to be significantly weaker than the Fermi-contact interaction,
but they allow coupling to a wider variety of channels and thus
may still be crucial to the dynamics.

We then considered the nature of the long-range states
themselves. In contrast to the short-range states of the com-
plex considered previously [31,43], these are expected to
retain much of the character of the separated atom and
diatomic molecule. They are likely to have structured (non-
chaotic) patterns of energy levels; the levels exist in “bins”
of energy below each threshold that are determined by the
reduced mass and the long-range potential.

Finally, through a case study of KRb+Rb, we considered
the types of magnetic Feshbach resonances that can occur.
These split into a number of broad categories: those which
involve only Zeeman splittings, with no hyperfine or rota-
tional excitation; those which involve hyperfine excitation but
no rotation; those which involve rotational excitation (with
or without hyperfine excitation) but conserve the total spin-
free angular momentum; and those that change the spin-free
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angular momentum. For each type we considered the ranges
of field where they occur and the conditions that need to be
met for the resonances to exist at experimentally accessible
fields.

The work described here paves the way for future studies
of Feshbach resonances in alkali-metal atom–diatom systems
and for their use to control collisions and form ultracold
triatomic molecules.

The data presented in this work are available from Durham
University [86].
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APPENDIX: CHANNEL FUNCTIONS

The channel functions used in the coupled-channel expan-
sion (1) are based on, but not equivalent to, the eigenfunctions

of the separated atom and molecule. They are

� j (ξ ) = ψC
f̃ ,m f ,C

ψAB
mA,mB

ψABC
vnLNMN

(�r, R̂). (A1)

Here ψC
f̃ ,m f ,C

is an eigenstate of the free atom in a magnetic

field, ψAB
mA,mB

is a spin state of the free diatomic molecule, and
the coupled spatial function is

ψABC
vnLNMN

(�r, R̂) =
∑

mn,ML

〈nmnLML|NMN 〉

× ψvn(r)Ynmn (βr, αr )YLML (βR, αR), (A2)

where ψvn(r) is a vibrational function for the diatomic
molecule, the functions Y are spherical harmonics whose
arguments are the polar coordinates of unit vectors r̂ and
R̂ along �r and �R, and 〈nmnLML|NMN 〉 is a Clebsch-Gordan
coefficient. These channel functions are eigenfunctions of the
Hamiltonian of the free atom and the vibration-rotation and
nuclear Zeeman terms in the Hamiltonian of the free diatomic
molecule. However, there are small off-diagonal terms arising
from the hyperfine, rotational Zeeman and ac Stark terms for
the free molecule, and from the interaction operator V̂ (R, ξ ).
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