
Journal Pre-proof

Parameterized temporal exploration problems

Thomas Erlebach and Jakob T. Spooner

PII: S0022-0000(23)00010-7

DOI: https://doi.org/10.1016/j.jcss.2023.01.003

Reference: YJCSS 3429

To appear in: Journal of Computer and System Sciences

Received date: 18 August 2022

Revised date: 11 January 2023

Accepted date: 19 January 2023

Please cite this article as: T. Erlebach and J.T. Spooner, Parameterized temporal exploration problems, Journal of Computer and System
Sciences, doi: https://doi.org/10.1016/j.jcss.2023.01.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.jcss.2023.01.003
https://doi.org/10.1016/j.jcss.2023.01.003

Parameterized temporal exploration problems10

Thomas Erlebacha,1,∗, Jakob T. Spoonerb11

aDepartment of Computer Science, Durham University,UK12
bSchool of Computing and Mathematical Sciences, University of Leicester,UK13

Abstract14

We study the fixed-parameter tractability of the problem of deciding whether
a given temporal graph admits a temporal walk that visits all vertices (tem-
poral exploration) or, in some variants, a certain subset of the vertices. In the
strict variant, edges must be traversed in strictly increasing timesteps; in the
non-strict variant, any number of edges can be traversed in each timestep.
For both variants, we give FPT algorithms for finding a temporal walk that
visits a given set X of vertices, parameterized by |X|, and for finding a tem-
poral walk that visits at least k distinct vertices, parameterized by k. We
also show W[2]-hardness for a set version of temporal exploration. For the
non-strict variant, we give an FPT algorithm for temporal exploration param-
eterized by the lifetime, and show that temporal exploration can be solved
in polynomial time if the graph in each timestep has at most two connected
components.

Keywords: Temporal graphs, fixed-parameter tractability, parameterized15

complexity16

1. Introduction17

The problem of computing a series of consecutive edge-traversals in a18

static (i.e., classical discrete) graph G, such that each vertex of G is an19

endpoint of at least one traversed edge, is a fundamental problem in algo-20

rithmic graph theory, and an early formulation was provided by Shannon [1].21

Such a sequence of edge-traversals might be referred to as an exploration22

or search of G and, from a computational standpoint, it is easy to check23

whether a given graph G admits such an exploration and easy to compute24

one if the answer is yes – we simply carry out a depth-first search starting25

at an arbitrary start vertex in V (G) and check whether every vertex of G26

?A preliminary version of this paper appeared in the proceedings of the 1st Symposium
on Algorithmic Foundations of Dynamic Networks (SAND 2022), volume 221 of LIPICs,
article 15, 2022. DOI 10.4230/LIPIcs.SAND.2022.15

∗Corresponding author
Email addresses: thomas.erlebach@durham.ac.uk (Thomas Erlebach),

jakob.t.spooner@gmail.com (Jakob T. Spooner)
1Research supported by EPSRC grants EP/S033483/2 and EP/T01461X/1.

Preprint submitted to Journal of Computer and System Sciences January 25, 2023

is reached. We consider in this paper a decidedly more complex variant of27

the problem, in which we try to find an exploration of a temporal graph. A28

temporal graph G = 〈G1, . . . , GL〉 is a sequence of static graphs Gt such that29

V (Gt) = V (G) and E(Gt) ⊆ E(G) for any timestep t ∈ [L] and some fixed30

underlying graph G.31

A concerted effort to tackle algorithmic problems defined for temporal32

graphs has been made in recent years. With the addition of time to a graph’s33

structure comes more freedom when defining a problem. Hence, many studies34

have focused on temporal variants of classical graph problems: for example,35

the travelling salesperson problem [2]; shortest paths [3]; vertex cover [4];36

maximum matching [5]; network flow problems [6]; and a number of oth-37

ers. For more examples, we point the reader to the works of Molter [7] or38

Michail [2]. One seemingly common trait of the problems that many of these39

studies consider is the following: Problems that are easy for static graphs40

often become hard on temporal graphs, and hard problems for static graphs41

remain hard on temporal graphs. This certainly holds true for the problem42

of deciding whether a given temporal graph G admits a temporal walk W43

– roughly speaking, a sequence of edges traversed consecutively and during44

strictly increasing timesteps – such that every vertex of G is an endpoint of45

at least one edge of W (any temporal walk with this property is known as an46

exploration schedule). Indeed, Michail and Spirakis [8] showed that this prob-47

lem, Temporal Exploration or TEXP for short, is NP-complete. In this48

paper, we consider variants of the TEXP problem from a fixed-parameter49

perspective and under both strict and non-strict settings. More specifically,50

we consider problem variants in which we look for strict temporal walks,51

which traverse each consecutive edge at a timestep strictly larger than the52

previous, as well as variants that ask for non-strict temporal walks, which al-53

low an unlimited but finite number of edges to be traversed in each timestep.54

1.1. Contribution55

An overview of our results is shown in Table 1. After presenting prelim-56

inaries and problem definitions in Section 2, we show in Section 3 for the57

strict setting that two natural parameterized variants of TEXP are in FPT.58

Firstly, we parameterize by the size k of a fixed subset of the vertex set and59

ask for an exploration schedule that visits at least these vertices, providing60

an O(2kkLn2)-time algorithm. Secondly, we parameterize by only an inte-61

ger k and ask that a computed solution visits at least k arbitrary vertices62

– in this case we specify, for any ε > 0, a randomized algorithm (based on63

2

Table 1: Overview of results. The parameters are: L = lifetime, γ = maximum number
of connected components per step, k = number of vertices to be visited.

Problem Parameter strict non-strict
TEXP L FPT FPT

Corollary 14 Theorem 34

TEXP γ NPC for γ = 1 poly for γ = 1, 2
Observation 12 Theorem 28

k-fixed TEXP k FPT FPT
Theorem 13 Corollary 21

k-arbitrary TEXP k FPT FPT
Theorems 15, 17 Corollary 22

Set-TEXP L W[2]-hard W[2]-hard
Theorem 19 Theorem 37

the colour-coding technique first introduced by Alon et al. [9]) with running64

time O((2e)kLn3 log 1
ε
). A now-standard derandomization technique [9, 10]65

is then utilized in order to obtain a deterministic (2e)kkO(log k)Ln3 log n-time66

algorithm. Furthermore, we show that a generalized variant, Set TEXP, in67

which we are supplied with m subsets of the input temporal graph’s vertex68

set and are asked to decide whether there exists a strict temporal walk that69

visits at least one vertex belonging to each set, is W[2]-hard.70

In Section 4, we consider the non-strict variant known as Non-Strict71

Temporal Exploration, or NS-TEXP, which was introduced in [11].72

Here, a candidate exploration schedule is permitted to traverse an unlimited73

but finite number of edges during each timestep, and it is not too hard to74

see that this change alters the problem’s structure quite drastically (more75

details in Sections 2.2 and 4). We therefore use a different model of temporal76

graphs to the one considered in Section 3, which we properly define later. In77

this model, an exploration schedule may exist even if the lifetime L is much78

smaller than the number n of vertices. Nevertheless, we show that NS-TEXP79

parameterized by L is FPT by giving an O(L(L!)2n)-time recursive search-80

tree algorithm. Furthermore, we show that the FPT algorithms for visiting k81

fixed vertices or k arbitrary vertices, where k is taken as the parameter, can82

be adapted from the strict to the non-strict case, while saving a factor of n in83

the running-time. For the case that the maximum number of components in84

each step is bounded by 2, we show that all four non-strict problem variants85

3

can be solved in polynomial time. For the non-strict variant of Set TEXP,86

we show W[2]-hardness.87

1.2. Related work88

We refer the interested reader to Casteigts et al. [12] for a study of89

various models of dynamic graphs, and to Michail [2] for an introduction90

to temporal graphs and some of their associated combinatorial problems.91

Brodén et al. [13] considered the Temporal Travelling Salesperson92

Problem for complete temporal graphs with n vertices. The costs of edges93

are allowed to differ between 1 and 2 in each timestep. They showed that94

when an edge’s cost changes at most k times during the input graph’s lifetime,95

the problem is NP-complete, but provided a (2− 2
3k

)-approximation. For the96

same problem, Michail and Spirakis [8] proved APX-hardness and provided97

a (1.7 + ε)-approximation. Bui-Xuan et al. [14] proposed multiple objectives98

for optimisation when computing temporal walks/paths: e.g., fastest (fewest99

number of timesteps used) and foremost (arriving at the destination at the100

earliest time possible).101

Michail and Spirakis [8] introduced the TEXP problem, which asks whether102

or not a given temporal graph admits a temporal walk that visits all vertices103

at least once. The problem was shown to be NP-complete when no restrictions104

are placed on the input, and they proposed considering the problem under the105

always-connected assumption as a means of ensuring that exploration is pos-106

sible (provided the lifetime of the input graph is sufficiently long). Erlebach et107

al. [15] considered the problem of computing foremost exploration schedules108

under the always-connected assumption, proving O(n1−ε)-inapproximability109

(for any ε > 0). They also showed that subquadratic exploration schedules110

exist for temporal graphs whose underlying graph is planar, has bounded111

treewidth, or is a 2 × n grid. Furthermore, they proved that cycles with at112

most one chord can be explored in O(n) steps. For always-connected cycles,113

it had already been shown earlier by Ilcinkas and Wade [16] that O(n) steps114

always suffice. Bodlaender and van der Zanden [17] examined the TEXP115

problem when restricted to always-connected temporal graphs whose under-116

lying graph has pathwidth at most 2, showing the problem to be NP-complete117

in this case.118

Later, Erlebach et al. [18] showed that temporal graphs can be explored in119

O(n1.75) steps if the graph in each step admits a spanning-tree of bounded de-120

gree or if one is allowed to traverse two edges per step. Taghian Alamouti [19]121

showed that a cycle with k chords can be explored in O(k2 · k! · (2e)k · n)122

4

timesteps. Adamson et al. [20] improved this bound for cycles with k chords123

to O(kn) timesteps. They also improved the bounds on the worst-case ex-124

ploration time for temporal graphs whose underlying graph is planar or has125

bounded treewidth.126

Akrida et al. [21] considered a TEXP variant called Return-To-Base127

TEXP, in which the underlying graph is a star and a candidate solution128

must return to the vertex from which it initially departed (the star’s cen-129

tre). They proved various hardness results and provided polynomial-time130

algorithms for some special cases. Casteigts et al. [22] studied the fixed-131

parameter tractability of the problem of finding temporal paths between a132

source and destination that wait no longer than ∆ consecutive timesteps at133

any intermediate vertex. Bumpus and Meeks [23] considered, again from a134

fixed-parameter perspective, a temporal graph exploration variant in which135

the goal is no longer to visit all of the input graph’s vertices at least once,136

but to traverse all edges of its underlying graph exactly once (i.e., comput-137

ing a temporal Eulerian circuit). They also resolved the complexity of the138

two cases of the Return-To-Base TEXP problem that had been left open139

by [21].140

The problem of Non-Strict Temporal Exploration was introduced141

and studied in [11]. Here, a computed walk may make an unlimited num-142

ber of edge-traversals in each given timestep. Amongst other things, NP-143

completeness of the general problem was shown, as well as O(n1/2−ε) and144

O(n1−ε)-inapproximability for the problem of minimizing the arrival time of145

a temporal exploration in the cases where the number of timesteps required146

to reach any vertex v from any vertex u is bounded by c = 2 and c = 3,147

respectively. Notions of strict/non-strict paths which respectively allow for a148

single edge/unlimited number of edge(s) to be crossed in any timestep have149

been considered before, notably by Kempe et al. [24] and Zschoche et al. [25].150

2. Preliminaries151

For a pair of integers x, y with x ≤ y we denote by [x, y] the set {z :152

x ≤ z ≤ y}; if x = 1 we write [y] instead. We use standard terminology153

from graph theory [26], and we assume any static graph G = (V,E) to be154

simple and undirected. A parameterized problem is a language L ⊆ Σ∗ ×N,155

where Σ is a finite alphabet. For an instance (I, k) ∈ Σ∗ × N, k is called156

the parameter. The problem is in FPT (fixed-parameter tractable) if there157

is an algorithm that solves every instance in time f(k) × |I|O(1) for some158

5

computable function f . A proof that a problem is hard for complexity class159

W[r] for some integer r ≥ 1 is seen as evidence that the problem is unlikely160

to be contained in FPT. For more on parameterized complexity, including161

definitions of the complexity classes W[r], we refer to [27, 28].162

2.1. Temporal exploration with strict temporal walks163

The relevant concepts and problem definitions for strict temporal walks164

are as follows. We begin with the definition of a temporal graph:165

Definition 1 (Temporal graph). A temporal graph G with underlying graph166

G = (V,E), lifetime L and order n is a sequence of simple undirected graphs167

G = 〈G1, G2, . . . , GL〉 such that |V | = n and Gt = (V,Et) (where Et ⊆ E)168

for all t ∈ [L].169

For a temporal graph G = 〈G1, . . . , GL〉, the subscripts t ∈ [L] indexing170

the graphs in the sequence are referred to as timesteps (or steps) and we171

call Gt the t-th layer. A tuple (e, t) with e ∈ E(G) is an edge-time pair (or172

time edge) of G if e ∈ Et. Note that the size of any temporal graph (i.e., the173

maximum number of time edges) is bounded by O(Ln2).174

Definition 2 (Strict temporal walk). A strict temporal walkW in G is a tuple175

W = (t0, S), consisting of a start time t0 and an alternating sequence of ver-176

tices and edge-time pairs S = 〈v1, (e1, t1), v2, (e2, t2), . . . , vl−1, (el−1, tl−1), vl〉177

such that ei = {vi, vi+1}, ei ∈ Gti for i ∈ [l− 1] and 1 ≤ t0 ≤ t1 < t2 < · · · <178

tl−1 ≤ L.179

We say that a strict temporal walk W = (t0, S) visits any vertex that180

is included in S. Further, W traverses edge ei at time ti for all i ∈ [l − 1]181

and is said to depart from (or start at) v1 ∈ V (G) at timestep t0 and arrive182

at (or finish at) vl ∈ V (G) at the end of timestep tl−1 (or, equivalently, at183

the beginning of timestep tl−1 + 1). Its arrival time is defined to be tl−1 + 1.184

It is assumed that W is positioned at v1 at the start of timestep t0 ∈ [t1]185

and waits at v1 until edge e1 is traversed during timestep t1. The quantity186

|W | = tl−1− t0 +1 is called the duration of W . Observe that the arrival time187

of a strict temporal walk equals its start time plus its duration. We remark188

that a walk with arrival time t that finishes at a vertex v and a walk with189

start time t (or later) that departs from v can be combined into a single walk190

in the obvious way.191

We denote by sp(u, v, t) the duration of a shortest (i.e., having minimum192

arrival time) temporal walk in G that starts at u ∈ V (G) in timestep t and193

6

ends at v ∈ V (G). If u = v, sp(u, v, t) = 0. We note that there is no194

guarantee that a walk between a pair of vertices u, v exists; in such cases195

we let sp(u, v, t) = ∞. The algorithms that we present in Section 3 will196

repeatedly require us to compute such shortest walks for specific pairs of197

vertices u, v ∈ V (G) and a timestep t ∈ [L] – the following theorem allows us198

to do this:199

Theorem 3 (Wu et al. [3]). Let G = 〈G1, . . . , GL〉 be an arbitrary temporal200

graph. Then, for any u ∈ V (G) and t ∈ [L], one can compute in O(Ln2)201

time for all v ∈ V (G) the value sp(u, v, t). For any v ∈ V (G) for which202

sp(u, v, t) is finite, a temporal walk that starts at u at time t, ends at v, and203

has duration sp(u, v, t) can then be determined in time proportional to the204

number of time-edges of that walk.205

The following two definitions will be used to describe the sets of candidate206

solutions for several of the problems that we consider in this paper.207

Definition 4 ((v, t,X)-tour). A (v, t,X)-tour W in a given temporal graph208

G is a strict temporal walk that starts at some vertex v ∈ V (G) in timestep t209

and visits (at least) all vertices in X ⊆ V (G). We can assume that the walk210

ends as soon as all vertices in X have been visited, so we take the arrival211

time α(W) of a (v, t,X)-tour W to be the timestep after the timestep at the212

end of which W has for the first time visited all vertices in X.213

Definition 5 ((v, t, k)-tour). A (v, t, k)-tour W in a given temporal graph214

G is a (v, t,X)-tour for some subset X ⊆ V (G) that satisfies |X| = k. The215

arrival time α(W) of a (v, t, k)-tour W is the timestep after the timestep at216

the end of which W has for the first time visited all vertices in X.217

A (v, t,X)-tour W ((v, t, k)-tour W ∗) in a temporal graph G is said to be218

foremost if α(W) ≤ α(W ′) (α(W ∗) ≤ α(W ∗′)) for any other (v, t,X)-tour219

W ′ (any other (v, t, k)-tourW ∗′). We now formally define the main problems220

of interest: For a given temporal graph G with start vertex s ∈ V (G), an221

(s, 1, V)-tour is also called an exploration schedule. The standard temporal222

exploration problem is defined as follows:223

Definition 6 (TEXP). An instance of TEXP is given as a tuple (G, s),224

where G is an arbitrary temporal graph with underlying graph G = (V,E)225

and lifetime L; and s is a start vertex in V (G). The problem then asks that226

we decide if there exists an exploration schedule in G.227

7

Instead of visiting all vertices, we may be interested in visiting all vertices228

in a given set of k vertices, or even an arbitrary set of k vertices. These229

problems are captured by the following two definitions.230

Definition 7 (k-fixed TEXP). An instance of the k-fixed TEXP prob-231

lem is given as a tuple (G, s,X, k) where G = 〈G1, . . . , GL〉 is an arbitrary232

temporal graph with underlying graph G and lifetime L; s is a start vertex233

in V (G); and X ⊆ V (G) is a set of target vertices such that |X| = k. The234

problem then asks that we decide if there exists an (s, 1, X)-tour W in G.235

Definition 8 (k-arbitrary TEXP). An instance of the k-arbitrary236

TEXP problem is given as a tuple (G, s, k) where G = 〈G1, . . . , GL〉 is an237

arbitrary temporal graph with underlying graph G and lifetime L; s is a start238

vertex in V (G); and k ∈ N. The problem then asks that we decide whether239

there exists an (s, 1, k)-tour W in G.240

Finally, we may be given a family of subsets of the vertex set, and our241

goal may be to visit at least one vertex in each subset. This leads to the242

following problem, whose definition is analogous to the Generalized TSP243

problem [29] (also known by various other names including Set TSP, Group244

TSP, and Multiple-Choice TSP).245

Definition 9 (Set TEXP). An instance of Set TEXP is given as a tuple246

(G, s,X), where G is an arbitrary temporal graph with lifetime L, s ∈ V (G)247

is a start vertex, and X = {X1, . . . , Xm} is a set of subsets Xi ⊆ V (G).248

The problem then asks whether or not there exists a set X ⊆ V (G) and an249

(s, 1, X)-tour in G with X ∩Xi 6= ∅ for all i ∈ [m].250

For yes-instances of all the problems defined above, a tour with minimum251

arrival time (among all tours of the type sought) is called an optimal solution.252

2.2. Temporal exploration with non-strict temporal walks253

When we consider the non-strict version of TEXP, a walk is allowed254

to traverse an unlimited number of edges in every timestep. As mentioned255

in the introduction, this changes the nature of the problem significantly.256

In particular, it means that a temporal walk positioned at a vertex v in257

timestep t is able to visit, during timestep t, any other vertex contained258

in the same connected component C as v and move to an arbitrary vertex259

u ∈ C, beginning timestep t + 1 positioned at vertex u. As such, it is no260

longer necessary to know the edge structure of the input temporal graph261

8

during each timestep, and we can focus only on the connected components262

of each layer. This leads to the following definition:263

Definition 10 (Non-strict temporal graph, G). A non-strict temporal graph264

G = 〈G1, . . . , GL〉 with vertex set V := V (G) and lifetime L is an indexed265

sequence of partitions (layers) Gt = {Ct,1, . . . , Ct,γt} of V for t ∈ [L]. For all266

t ∈ [L], each v ∈ V satisfies v ∈ Ct,j for a unique j ∈ [γt]. The integer γt267

denotes the number of components in layer Gt; clearly we have γt ∈ [n].268

For a given non-strict temporal graph with lifetime L and γt components269

per step for t ∈ [L], we define γ = maxt∈[L] γt to be the maximum number of270

components per step. A non-strict temporal walk is defined as follows:271

Definition 11 (Non-strict temporal walk,W). A non-strict temporal walkW272

starting at vertex v at time t1 in a non-strict temporal graph G = 〈G1, . . . , GL〉273

is a sequence W = Ct1,j1 , Ct2,j2 , . . . , Ctl,jl of components Cti,ji (i ∈ [l]) with274

1 ≤ t1 ≤ tl ≤ L such that: ti + 1 = ti+1 for all i ∈ [1, l − 1]; Cti,ji ∈ Gti and275

ji ∈ [γti] for all i ∈ [l]; Cti,ji ∩ Cti+1,ji+1
6= ∅ for all i ∈ [l− 1]; and v ∈ Ct1,j1.276

Its arrival time is defined to be tl.277

Let W = Ct1,j1 , Ct2,j2 , . . . , Ctl,jl be a non-strict temporal walk in some278

non-strict temporal graph G starting at some vertex s ∈ Ct1,j1 . We refer to279

l−1 as the duration ofW . The walkW is said to start at vertex s ∈ Ct1,j1 in280

timestep t1 and finish at component Ctl,jl (or sometimes at some v ∈ Ctl,jl)281

in timestep tl. Furthermore, W visits the set of vertices
⋃
i∈[l]Cti,ji . Note282

that W visits exactly one component in each of the l timesteps from t1 to tl.283

We call W non-strict exploration schedule starting at s with arrival time l if284

t1 = 1 and
⋃
i∈[l]Cti,ji = V (G). A non-strict temporal walk W1 that finishes285

in component Ct,j and a non-strict temporal walk W2 that starts at a vertex286

v in Ct,j at time t can be combined into a single non-strict temporal walk287

in the obvious way. This is why the arrival time of W1 is defined to be t288

rather than t + 1, as one might have expected in analogy with the case of289

strict temporal walks. Furthermore, note that the arrival time of a non-strict290

temporal walk equals its start time plus its duration.291

A non-strict (v, t,X)-tour is a non-strict temporal walk that starts at v292

at time t and visits at least all vertices in X. A non-strict (v, t, k)-tour is a293

non-strict (v, t,X)-tour for some X ⊆ V with |X| = k.294

The problems TEXP, k-fixed TEXP, k-arbitrary TEXP, and Set295

TEXP that have been defined for strict temporal walks then translate into296

9

the corresponding problems for non-strict temporal walks, which we call297

NS-TEXP, k-fixed NS-TEXP, k-arbitrary NS-TEXP, and Set NS-298

TEXP, respectively.299

3. Strict TEXP parameterizations300

In this section, we consider temporal exploration problems in the strict301

setting. First, we observe that we cannot hope for an FPT algorithm for302

TEXP for parameter γ, the maximum number of connected components per303

step, unless P = NP: It was shown in [15, Theorem 3.5] that TEXP is NP-304

hard even if the graph in each timestep is the same connected planar graph305

of maximum degree 3, which implies the following:306

Observation 12. TEXP is NP-hard even if γ = 1.307

In the remainder of this section, we first give an FPT algorithm for k-308

fixed TEXP in Section 3.1. In Section 3.2, we first give a randomized FPT309

algorithm for k-arbitrary TEXP and then show how to derandomize it.310

In Section 3.3, we show that Set TEXP is W[2]-hard for parameter L.311

3.1. An FPT algorithm for k-fixed TEXP312

In this section we provide a deterministic FPT algorithm for k-fixed313

TEXP. Let (G, s,X, k) be an instance of k-fixed TEXP. For a given order314

(v1, v2, . . . , vk) of k vertices, one can use Theorem 3 to check in polynomial315

time whether it is possible to visit the vertices in that order: We find the316

earliest arrival time for reaching v1 from s, then the earliest arrival time for317

reaching v2 from v1 if we start at v1 at the arrival time of the first walk,318

and so on. In this way we obtain a walk that visits the vertices in the given319

order, if one exists, and that walk has earliest arrival time among all such320

walks. Therefore, one approach to obtaining an FPT algorithm for k-fixed321

TEXP would be to enumerate all k! possible orders in which to visit the322

k vertices, and to determine for each order using Theorem 3 whether it is323

possible to visit the vertices in that order. In the following, we design an FPT324

algorithm for k-fixed TEXP whose running-time has a better dependency325

on k, namely, 2kk instead of k!.326

Our algorithm looks for an earliest arrival time (s, 1, X)-tour of G via a327

dynamic programming (DP) approach. We note that the approach is essen-328

tially an adaptation of an algorithm proposed (independently by Bellman [30]329

and Held & Karp [31]) for the classic Travelling Salesperson Problem to the330

parameterized problem for temporal graphs.331

10

Theorem 13. It is possible to decide any instance I = (G, s,X, k) of k-332

fixed TEXP, and return an optimal solution if I is a yes-instance, in time333

O(2kkLn2), where n = |V (G)| and L is G’s lifetime.334

Proof. First we describe our algorithm before proving its correctness and335

analysing its running time. We begin by specifying a dynamic programming336

formula for F (S, v), by which we denote the minimum arrival time of any337

temporal walk in G that starts at vertex s ∈ V (G) in timestep 1, visits all338

vertices in S ⊆ X, and finishes at vertex v ∈ S. One can compute F (S, v)339

via the following formula:340

F (S, v) =

1 + sp(s, v, 1) (|S| = 1)

min
u∈S−{v}

[F (S − {v}, u) + sp(u, v, F (S − {v}, u))] (|S| > 1)
(1)

Note that to compute F (S, v) when |S| > 1, Equation (1) states that we341

need only consider values F (S ′, u) with u ∈ S ′ and |S ′| = |S| − 1, and so we342

begin by computing all values F (S ′, u) such that S ′ ⊆ X satisfies |S ′| = 1343

and u ∈ S ′, before computing all values such that |S ′| = 2 and u ∈ S ′344

and so on, until we have computed all values F (X, u) where u ∈ X (i.e.,345

values F (S ′, u) with |S ′| = k = |X|). Once all necessary values have been346

obtained, computing the following value gives the arrival time of an optimal347

(s, 1, X)-tour:348

F ∗ = min
v∈X

F (X, v). (2)

If, whenever we compute a value F (S, v) with |S| > 1, we also store alongside349

F (S, v) a single pointer350

p(S, v) = arg min
u∈S−{v}

[F (S − {v}, u) + sp(u, v, F (S − {v}, u))],

then once we have computed F ∗ we can use a traceback procedure to recon-351

struct the walk with arrival time F ∗. More specifically, let u1 = arg minu∈X F (X, u)352

and ui = p(X − {u1, . . . , ui−2}, ui−1) for all i ∈ [2, k]. To complete the algo-353

rithm, we then check if F ∗ is finite: If so, then there must be a (s, 1, X)-tour354

W in G with α(W) = F ∗ that visits the vertices uk, . . . , u1 in that order.355

We can reconstruct W by concatenating the k shortest walks obtained by356

starting at s in timestep 1 and computing a shortest walk from s to uk, then357

computing a shortest walk from uk to uk−1 starting at the timestep at which358

uk was reached, and so on, until u1 is reached; once constructed, returnW . If,359

on the other hand, F ∗ =∞ (which is possible by the definition of sp(u, v, t))360

then return no.361

11

Correctness. The correctness of Equation (1) can be shown via induction362

on |S|: The base case (i.e., when |S| = 1) is correct since the arrival time363

of the foremost temporal walk that starts at s in timestep 1 and ends at a364

specific vertex v ∈ X is clearly equal to one plus the duration of the foremost365

temporal walk between s and v starting at timestep 1.366

For the general case (when |S| > 1), assume first that the formula holds367

for any set S ′ such that |S ′| = l and any vertex u ∈ S ′. To see that the368

formula holds for all sets S with |S| = l + 1 and vertices v ∈ S, consider369

any walk W that starts in timestep 1, visits all vertices in some set S with370

|S| = l+ 1 and ends at v. Let x1, . . . , xl+1 be the order in which the vertices371

xi ∈ S are reached by W for the first time; let x = xl+1 = v and x′ = xl.372

Note that the subwalk W ′ of W that begins in timestep 1 and finishes at373

the end of the timestep in which W arrives at x′ for the first time is surely374

an (s, 1, S − {v})-tour, since W ′ visits every vertex in S − {x} = S − {v}.375

Then, by the induction hypothesis we have α(W ′) ≥ F (S − {v}, x′) because376

|S − {v}| = l, and since W ends at v we have377

α(W) ≥ α(W ′) + sp(x′, v, α(W ′))

≥ F (S − {v}, x′) + sp(x′, v, F (S − {v}, x′)).
More generally, we can say that any (s, 1, S)-tour W that starts at s in378

timestep 1, visits all vertices in S (where |S| = l + 1), and finishes at v ∈ S379

satisfies the above inequality for some x′ ∈ S − {v}. Note that for any380

u ∈ S − {v}, F (S − {v}, u) + sp(u, v, F (S − {v}, u)) corresponds to the381

arrival time of a valid (s, 1, S)-tour, obtained by concatenating an earliest382

arrival time (s, 1, S−{v})-tour that ends at u and a shortest walk between u383

and v starting at time F (S−{v}, u). Therefore, to compute F (S, v) it suffices384

to compute the minimum value of F (S−{v}, u)+sp(u, v, F (S−{v}, u)) over385

all u ∈ S−{v}; note that this is exactly Equation (1) in the case that |S| > 1.386

To establish the correctness of Equation (2) recall that, by Definition 4,387

the arrival time of any (s, 1, X)-tour in G is equal to the timestep after the388

timestep in which it traverses a time edge to reach the final unvisited vertex389

of X for the first time. Assume that I is a yes-instance and let x∗ ∈ X390

be the k-th unique vertex in X that is visited by some foremost (s, 1, X)-391

tour W ; then, by the analysis in the previous paragraph, we must have392

α(W) = F (X, x∗) since W is foremost, so x∗ = arg minv∈X F (X, v) and thus393

α(W) = F (X, x∗) = minv∈X F (X, v) = F ∗, as required.394

The fact that the answer returned by the algorithm is correct follows395

from the correctness of Equations (1) and (2) and the traceback procedure,396

12

together with the fact that I is a no-instance if and only if F ∗ = ∞. The397

details of this second claim are not difficult to see and are omitted, but we398

note that it is indeed possible that F ∗ = ∞ since F ∗ is the summation of399

a number of values sp(u, v, t), some of which may satisfy sp(u, v, t) = ∞ by400

definition.401

Runtime analysis. Since we only compute values of F (S, v) such that v ∈ S402

and 1 ≤ |S| ≤ k, in total we compute O(
∑k

i=1

(
k
i

)
i) = O(2kk) values. Note403

that, to compute any value F (S, v) with |S| = i > 1, Equation (1) requires404

that we consider the values F (S − {v}, u) + sp(u, v, F (S − {v}, u)) with405

u ∈ S−{v}, of which there are exactly i−1. We therefore use Theorem 3 to406

compute (and store temporarily), for each S ′ with |S ′| = i− 1 and x ∈ S ′, in407

O(Ln2) time the value of sp(x, y, F (S ′, x)) for all y ∈ V (G) immediately after408

computing all F (S ′, x), and use these precomputed shortest walk durations to409

compute F (S, v) for any S with |S| = i and v ∈ S in time O(i) = O(k). Thus,410

we spend O(k) + O(Ln2) = O(Ln2) (since k ≤ n) time for each of O(2kk)411

values F (S, v). This yields an overall time of O(2kkLn2). Note that F ∗ can412

be computed using Equation (2) in O(k) time since we take the minimum413

of O(k) values; also note that a (v, 1, X)-tour with arrival time F ∗ can be414

reconstructed in time O(kLn2) using the aforedescribed traceback procedure,415

since we need to recompute O(k) shortest walks, spending O(Ln2) time on416

each walk. Hence the overall running time of the algorithm is bounded by417

O(2kkLn2), as claimed.418

We remark that k-fixed TEXP is also in FPT when parameterized by419

the lifetime L: If L < k − 1, the instance is clearly a no-instance, and if420

L ≥ k − 1, the FPT algorithm for k-fixed TEXP with parameter k is also421

an FPT algorithm for parameter L.422

As k-fixed TEXP becomes TEXP whenX = V (G), we get the following423

corollary.424

Corollary 14. TEXP is in FPT when parameterized by the number of ver-425

tices n or by the lifetime L.426

3.2. FPT algorithms for k-arbitrary TEXP427

The main result of this section is a randomized FPT algorithm for k-428

arbitrary TEXP that utilizes the colour-coding technique originally pre-429

sented by Alon et al. [9]. There, they employed the technique primarily to430

detect the existence of a k-vertex simple path in a given undirected graph431

13

G. More generally, it has proven useful as a technique for finding fixed mo-432

tifs (i.e., prespecified subgraphs) in static graphs/networks. We provide a433

high-level description of the technique and the way that we apply it at the434

beginning of Section 3.2.1. A standard derandomization technique (originat-435

ing from [9, 10]) is then utilized in Section 3.2.2 to obtain a deterministic436

algorithm for k-arbitrary TEXP with a worse, but still FPT, running437

time.438

3.2.1. A randomized algorithm439

The algorithm of this section employs the colour-coding technique of Alon440

et al. [9]. First, we informally sketch the structure of the algorithm behind441

Theorem 15: We colour the vertices of an input temporal graph uniformly at442

random, then by means of a DP subroutine we look for a temporal walk that443

begins at some start vertex s in timestep 1 and visits k vertices with distinct444

colours by the earliest time possible. Notice that if such a walk is found445

then it must be a (v, t, k)-tour, since the k vertices are distinctly coloured446

and therefore must be distinct. Then, the idea is to repeatedly (1) randomly447

colour the input graph G’s vertices; then (2) run the DP subroutine on each448

coloured version of G. We repeat these steps enough times to ensure that,449

with high probability, the vertices of an optimal (s, 1, k)-tour are coloured450

with distinct colours at least once over all colourings – if this happens then451

the DP subroutine will surely return an optimal (s, 1, k)-tour. With this452

high-level description in mind, we now present/analyse the algorithm:453

Theorem 15. For every ε > 0, there exists a Monte Carlo algorithm that,454

with probability 1−ε, decides a given instance I = (G, s, k) of k-arbitrary455

TEXP, and returns an optimal solution if I is a yes-instance, in time O((2e)kLn3 log 1
ε
),456

where n = |V (G)| and L is G ′s lifetime.457

Proof. Let V := V (G). We now describe our algorithm before proving it458

correct and analysing its running time. Let c : V → [k] be a colouring of the459

vertices v ∈ V . Let a walkW in G that starts at s and visits a vertex coloured460

with each colour in D ⊆ [k] be known as a D-colourful walk ; let the timestep461

after the timestep at the end of whichW has for the first time visited vertices462

with k distinct colours be known as the arrival time ofW , denoted by α(W).463

The algorithm employs a subroutine that computes, should one exist, a [k]-464

colourful walk W in G with earliest arrival time. Note that a D-colourful465

walk (D ⊆ [k]) in G is by definition an (s, 1, |D|)-tour in G.466

14

Define H(D, v) to be the earliest arrival time of any D-colourful walk467

(where D ⊆ [k]) in G that ends at a vertex v with c(v) ∈ D. The value468

of H(D, v) for any D ⊆ [k] and v with c(v) ∈ D can be computed via the469

following dynamic programming formula (within the formula we denote by470

D−c(v) the set D − {c(v)}):471

H(D, v) =

1 + sp(s, v, 1) (|D| = 1)

min
u∈V :c(u)∈D−

c(v)

[H(D−c(v), u) + sp(u, v,H(D−c(v), u))] (|D| > 1) (3)

In order to compute H(D, v) for any D ⊆ [k] and vertex v with c(v) ∈ D,472

Equation (3) requires that we consider values H(D − {c(v)}, u) such that473

c(u) ∈ D − {c(v)}, and so we begin by computing H(D′, v) for all D′ with474

|D′| = 1 and v with c(v) ∈ D′, then for all D′ with |D′| = 2 and v with475

c(v) ∈ D′, and so on, until all values H([k], v) have been obtained. The476

earliest arrival time of any [k]-colourful walk in G is then given by477

H∗ = min
u∈V (G)

H([k], u). (4)

Once H∗ has been computed, we check whether its value is finite or equal to478

∞. If H∗ is finite then we can use a pointer system and traceback procedure479

(almost identical to those used in the proof of Theorem 13) to reconstruct480

an (s, 1, k)-tour with arrival time H∗ if one exists; otherwise we return no.481

This concludes the description of the dynamic programming subroutine.482

Let r = d1
ε
e and let W ∗ initially be the trivial walk that starts and483

finishes at vertex s in timestep 1. Perform the following two steps for ek ln r484

iterations:485

1. Assign colours in [k] to the vertices of V uniformly at random.486

2. Run the DP subroutine in order to find an optimal [k]-colourful walk487

W in G if one exists. If such aW is found then check if α(W) < α(W ∗)488

or W ∗ starts and ends at s in timestep 1 (i.e., still has its initial value),489

and in either case set W ∗ = W ; otherwise the DP subroutine returned490

no and we make no change to W ∗.491

Once all iterations of the above steps are over, check if W ∗ is still equal492

to the walk that starts and finishes at s in timestep 1; if not then return W ∗,493

otherwise return no. This concludes the algorithm’s description.494

15

Correctness. We focus on proving the randomized aspect of the algorithm495

correct and omit correctness proofs for Equations (3) and (4) since the argu-496

ments are similar to those provided in Theorem 13’s proof.497

If I is a no-instance then in no iteration will the DP subroutine find an498

(s, 1, k)-tour in G. Hence in the final step the algorithm will find that W ∗ is499

equal to the walk that starts and ends at s in timestep 1 (by the correctness of500

Equations (3) and (4)) and return no, which is clearly correct. Assume then501

that I is yes-instance. Let W be an (s, 1, k)-tour in G with earliest arrival502

time, and let X ⊆ V be the set of k vertices visited by W . Then, if during503

one of the ek ln r iterations of steps 1 and 2 we colour the vertices of V in such504

a way that X is well-coloured (we say that a set of vertices U ⊆ V is well-505

coloured by colouring c if c(u) 6= c(v) for every pair of vertices u, v ∈ U), W506

will induce an optimal [k]-colourful walk in G. The DP subroutine will then507

return W or some other optimal [k]-colourful walk W ′ with α(W) = α(W ′)508

that visits a well-coloured subset of vertices X ′; note that the arrival time of509

the best tour found in any iteration so far will then surely be α(W), since510

W has earliest arrival time.511

Observe that if we colour the vertices of V with k colours uniformly at512

random, then, since |X| = k, there are kk ways to colour the vertices in513

X ⊆ V , of which k! constitute well-colourings of X. Hence after a single514

colouring of V we have515

Pr[X is well-coloured] =
k!

kk
>

1

ek
,

where the inequality follows from the fact that k!/kk >
√

2πk
1
2 e

1
12k+1/ek (this516

inequality is due to Robbins [32] and is related to Stirling’s formula). Hence,517

after ek ln r colourings, we have (using the standard inequality (1− 1
x
)x ≤ 1

e
518

for all x ≥ 1):519

Pr[X is not well-coloured in any colouring] ≤
(

1− 1

ek

)ek ln r

≤ 1/r ≤ ε.

Thus, the probability that X is well-coloured at least once after ek ln r colour-520

ings is at least 1 − ε. It follows that, with probability ≥ 1 − ε, the earliest521

arrival [k]-colourful walk returned by the algorithm after all iterations is in522

fact an optimal (s, 1, k)-tour in G, since either W or some other (s, 1, k)-tour523

with equal arrival time will eventually be returned.524

16

Runtime analysis. Note that the DP subroutine computes exactly the values525

H(D, v) such that D ⊆ [k] and v satisfies c(v) ∈ D. Hence there are at526

most
(
k
i

)
n values H(D, v) such that |D| = i, for all i ∈ [k]; this gives a527

total of
∑

i∈[k]
(
k
i

)
n = O(2kn) values. In order to compute H(D, v) for any528

D with |D| = i > 1, Equation (3) requires us to consider the value of529

H(D − {c(v)}, u) + sp(u, v,H(D − {c(v)}, u)) for all u such that c(u) ∈530

D − {c(v)}. Therefore, similar to the algorithm in the proof of Theorem 13,531

we compute and store, immediately after computing each valueH(D′, x) with532

|D′| = i− 1 and c(x) ∈ D′, the value of sp(x, y,H(D′, x)) for all y ∈ V (G) in533

O(Ln2) time (Theorem 3). Note that there can be at most n vertices u such534

that c(u) ∈ D − {c(v)}, and so in total we spend O(n) + O(Ln2) = O(Ln2)535

time on each of O(2kn) values of H(D, v), giving an overall time of O(2kLn3).536

We can compute H∗ in O(n) time since we take the minimum of O(n) values,537

and the traceback procedure can be performed in O(kLn2) = O(Ln3) time538

since we concatenate k walks obtained using Theorem 3. Thus the overall539

time spent carrying out one execution of the DP subroutine is O(2kLn3).540

Since the running time of each iteration of the main algorithm is dom-541

inated by the running time of the DP subroutine and there are ek ln r =542

O(ek log 1
ε
) iterations in total, we conclude that the overall running time of543

the algorithm is O((2e)kLn3 log 1
ε
), as claimed. This completes the proof.544

3.2.2. Derandomizing the algorithm of Theorem 15545

The randomized colour-coding algorithm of Theorem 15 can be deran-546

domized at the expense of incurring a kO(log k) log n factor in the running547

time. We employ a standard derandomization technique, presented initially548

in [9], which involves the enumeration of a k-perfect family of hash functions549

from [n] to [k]. The functions in such a family will be viewed as colourings550

of the vertex set of the temporal graph given as input to the k-arbitrary551

TEXP problem.552

Formally, a family H of hash functions from [n] to [k] is k-perfect if, for553

every subset S ⊆ [n] with |S| = k, there exists a function f ∈ H such that f554

restricted to S is bijective (i.e., one-to-one). The following theorem of Naor555

et al. [10] enables one to construct such a family H in time linear in the size556

of H:557

Theorem 16 (Naor, Schulman and Srinivasan [10]). A k-perfect family H of558

hash functions fi from [n] to [k], with size ekkO(log k) log n, can be computed559

in ekkO(log k) log n time.560

17

We note that the value of fi(x) for any fi ∈ H and x ∈ [n] can be561

evaluated in O(1) time.562

To solve an instance of k-arbitrary TEXP, we can now use the al-563

gorithm from the proof of Theorem 15, but instead of iterating over ek ln r564

random colourings, we iterate over the ekkO(log k) log n hash functions in the k-565

perfect family of hash functions constructed using Theorem 16. This ensures566

that the setX of k vertices visited by an optimal (s, 1, k)-tour is well-coloured567

in at least one iteration, and we obtain the following theorem.568

Theorem 17. There is a deterministic algorithm that can solve a given in-569

stance (G, s, k) of k-arbitrary TEXP in (2e)kkO(log k)Ln3 log n time, where570

n = |V (G)|. If the instance is a yes-instance, the algorithm also returns an571

optimal solution.572

Similar to the case of k-fixed TEXP, we can remark that k-arbitrary573

TEXP is also in FPT when parameterized by the lifetime L: If L < k − 1,574

the instance is clearly a no-instance, and if L ≥ k − 1, the FPT algorithm575

for k-arbitrary TEXP with parameter k from Theorem 17 is also an FPT576

algorithm for parameter L.577

3.3. W[2]-hardness of Set TEXP for parameter L578

The NP-complete Hitting Set problem is defined as follows [33].579

Definition 18 (Hitting Set). An instance of Hitting Set is given580

as a tuple (U,S, k), where U = {a1, . . . , an} is the ground set and S =581

{S1, . . . , Sm} is a set of subsets Si ⊆ U . The problem then asks whether or582

not there exists a subset U ′ ⊆ U of size at most k such that, for all i ∈ [m],583

there exists an u ∈ U ′ such that u ∈ Si.584

It is known that Hitting Set is W[2]-hard when parameterized by k [27].585

Theorem 19. Set TEXP parameterized by L (the lifetime of the input586

temporal graph) is W[2]-hard.587

Proof. We give a parameterized reduction from the Hitting Set problem588

with parameter k to the Set TEXP problem with parameter L. Given589

an instance I = (U,S, k) of Hitting Set, we construct an instance I ′ =590

(G, s,X) of Set TEXP as follows: The lifetime of G is set to L = k. In each591

of the L steps, the graph is a complete graph with vertex set U ∪ {s}, where592

18

s is a start vertex that is assumed not to be in U . Finally, we set X = S.593

We proceed to show that I is yes-instance if and only if I ′ is a yes-instance.594

If I is a yes-instance, let U ′ = {u1, u2, . . . , uk} be a hitting set of size k.595

Then the walk that moves from s to u1 in step 1 and then from ui−1 to ui in596

step i for 2 ≤ i ≤ k is an (s, 1, U ′)-tour that visits at least one vertex from597

each set in X . Therefore, I ′ is a yes-instance.598

If I ′ is a yes-instance, let W be a strict temporal walk that visits at least599

one vertex from each set in X . Let U ′ be the set of at most L = k vertices600

that this walk visits in addition to the start vertex s. Then U ′ is a hitting601

set for I. Hence, I is a yes-instance.602

4. Non-Strict TEXP parameterizations603

In this section, we study temporal exploration problems in the non-strict604

setting. Let G = 〈G1, . . . , GL〉 be the given non-strict temporal graph, and605

let s ∈ V (G) be the given start vertex. When analysing running-times in this606

section, we assume that the non-strict temporal graph is given by providing,607

for each timestep t, a list of the vertex sets (with each of these sets given as608

a list of vertices) of the components in that timestep. This representation609

has size Θ(Ln). If the graph was given in the same form as a strict temporal610

graph, this representation could be computed by a pre-processing step that611

runs in time O(Ln2).612

First, we show in Section 4.1 that FPT algorithms for k-fixed NS-TEXP613

and k-arbitrary NS-TEXP can be derived using similar techniques as614

in Section 3. After that, we show that NS-TEXP and its variants can615

all be solved in polynomial time if γ (the maximum number of connected616

components in any layer of G) is bounded by 2 (Section 4.2) and that NS-617

TEXP is in FPT when parameterized by the lifetime L (Section 4.3). Finally,618

we prove W[2]-hardness for the Set NS-TEXP problem when the same619

parameter is considered (Section 4.4).620

4.1. k-fixed NS-TEXP and k-arbitrary NS-TEXP621

We now define sp(u, v, t) as the duration of a shortest (i.e., having mini-622

mum arrival time) non-strict temporal walk in G that starts at u ∈ V (G) in623

timestep t and ends at v ∈ V (G). If u = v or if u and v are in the same com-624

ponent in step t, then sp(u, v, t) = 0. If there is no such non-strict temporal625

walk, we let sp(u, v, t) =∞.626

19

Lemma 20. For given u and t, one can compute the values sp(u, v, t) for all627

v ∈ V (G) in O(Ln) time. Once this computation has been completed and the628

relevant data kept in memory, one can then, for each v ∈ V (G), determine a629

shortest walk starting at u at time t and reaching v in time proportional to630

1 + sp(u, v, t).631

Proof. Let V = V (G). For each w ∈ V , maintain a label r(w) to represent632

whether w is reachable by the time step under consideration, and a label633

a(w) to represent the earliest arrival time at w if w is reachable. In addition,634

we will remember a predecessor p(w) for every reachable vertex. Initialise635

the current time to tc = t; set r(w) = true, a(w) = tc and p(w) = u for all636

w in the component of u at time tc; set r(w) = false and a(w) = ∞ for all637

other vertices. This takes O(n) time.638

Then repeat the following step until either all vertices are reachable or639

tc equals the lifetime of the graph: Increase tc by one. For each component640

B of step tc, check whether B contains a vertex w with r(w) = true and, if641

so, mark B and remember w as pB. For each vertex w with r(w) = false in642

any marked component B of step tc, we then set r(w) = true, a(w) = tc and643

p(w) = pB. Each execution of this step takes O(n) time.644

Finally, for each vertex v ∈ V , we set sp(u, v, t) = a(v)− t.645

To construct the shortest temporal walk corresponding to a value sp(u, v, t),646

we trace back the vertices (and their components) starting with v (visited at647

time t′ = t+ sp(u, v, t)), p(v) (visited at time a(p(v)) ≤ t′ − 1), p(p(v)), and648

so on.649

It is clear that the running-time is O(Ln). Correctness can be shown650

by induction: When the step for value tc has been completed, a vertex w651

satisfies r(w) = true if and only if w is reachable from u with arrival time at652

most tc, and in that case a(w) = t′ is the earliest arrival time at w and, if653

t′ > t, p(w) is a vertex that is reachable with arrival time at most t′ − 1 and654

from which w can be reached in step t′.655

Next, we observe that it is easy to see that Equations (1) and (2) from the656

proof of Theorem 13 remain valid in the non-strict case, as the arguments657

for correctness remain the same. The factor Ln2 in the running-time of658

Theorem 13 improves to Ln in the non-strict case as, by Lemma 20, it takes659

only O(Ln) time to compute sp(u, v, t) for all v ∈ V right after F (S ′, u) = t660

has been computed for some set S ′ and u ∈ S ′. Thus, we obtain:661

20

Corollary 21. It is possible to decide any instance I = (G, s,X, k) of k-662

fixed NS-TEXP, and return an optimal solution if I is a yes-instance, in663

time O(2kkLn), where n = |V (G)| and L is G’s lifetime.664

Similarly, Equations (3) and (4) from the proof of Theorem 15 remain665

valid, and the derandomization used in the proof of Theorem 17 works for666

the non-strict case without any alterations. Thus, we obtain the following667

corollary of Theorems 15 and 17, where again we save a factor of n in the668

running-time because we can use Lemma 20 instead of Theorem 3.669

Corollary 22. For every ε > 0, there exists a Monte Carlo algorithm that,670

with probability 1−ε, decides a given instance I = (G, s, k) of k-arbitrary671

NS-TEXP, and returns an optimal solution if I is a yes-instance, in time672

O((2e)kLn2 log 1
ε
), where n = |V (G)| and L is G ′s lifetime. Furthermore,673

there is a deterministic algorithm that can solve a given instance (G, s, k) of674

k-arbitrary NS-TEXP in (2e)kkO(log k)Ln2 log n time. If the instance is a675

yes-instance, the algorithm also returns an optimal solution.676

4.2. Non-strict exploration with at most two components per step677

Let G = 〈G1, . . . , GL〉 be the given non-strict temporal graph. If there is a678

step t in which the partition Gt consists of a single component Ct,1, then it it679

trivially possible to visit all vertices: We simply wait at the start vertex until680

step t, and then visit all vertices in step t. Therefore, for all four problem681

variants (NS-TEXP, k-fixed NS-TEXP, k-arbitrary NS-TEXP, and682

Set NS-TEXP), instances where the maximum number of components per683

step is γ = 1 are trivially yes-instances, and instances with γ = 2 are also684

yes-instances if at least one step has a single component. In the remainder of685

this section, we therefore consider the case γ = 2 under the assumption that686

the partition in every step consists of exactly two components. Furthermore,687

we can assume without loss of generality that no two consecutive steps have688

the same two components: Any number of consecutive steps that all have the689

same two components could be replaced by a single step without changing690

the answer to any of the four variants of the NS-TEXP problem.691

First, we are interested in the movements that the partitions in two con-692

secutive steps allow. We refer to two consecutive steps i and i + 1 as a693

transition.694

Definition 23. A transition between step i with partition Gi = (Ai, Bi) and695

step i + 1 with partition Gi+1 = (Ai+1, Bi+1) is called free if the four sets696

21

Lemma 26. If a restricted transition follows a free transition, the whole724

graph can be explored.725

Proof. Assume that there is a free transition from step i − 1 to step i and726

a restricted transition from step i to step i + 1. Let Bi be the shrinking727

component in the restricted transition. Then a walk can visit Bi in step i728

(because the free transition allows it to reach Bi) and then, by Lemma 25,729

visit all remaining unvisited vertices in step i+ 1.730

Lemma 27. In 1 + log2 n consecutive free transitions, the whole graph can731

be explored.732

Proof. Let A be the component that the walk visits in the first step of the733

first free transition. In each of the 1 + log2 n free transitions, we can choose734

as component to visit in the next step the one that contains more of the735

previously unvisited vertices. In this way, we are guaranteed to visit at least736

half of all the remaining unvisited vertices in each of these 1 + log2 n steps.737

The number of unvisited vertices remaining at the end of these 1 + log2 n738

steps is hence at most n/21+log2 n < 1.739

Theorem 28. There is an algorithm that solves instances of NS-TEXP740

with γ = 2 in O(Ln+ n2 log n) time.741

Proof. In O(Ln) time, we can check whether there is a step in which there is a742

single component (in that case, we output “yes” and terminate). In the same743

time bound, we also preprocess the graph to ensure that no two consecutive744

steps have the same partition and determine for each transition whether it745

is free or restricted.746

If a restricted transition follows a free transition, we can output “yes” by747

Lemma 26. Otherwise, there must be an initial (possibly empty) sequence R748

of restricted transitions, followed by a (possibly empty) sequence F of free749

transitions.750

If the start vertex s is in the shrinking component in one of the restricted751

transitions R, then we can visit all vertices of the graph by Lemma 25, so we752

output “yes”. Otherwise, the start vertex smust be in the growing component753

in all the restricted transitions R. In this case, it is impossible to leave that754

component. No decision needs to be made during R, and the walk must visit755

the component containing s in the first time step of the first free transition.756

If the number of free transitions in S is greater than 1+log2 n, the answer757

is “yes” by Lemma 27. Otherwise, there are at most 1+log2 n free transitions.758

23

Then, all possible choices for the next component to visit during each of the759

at most 1 + log2 n free transitions can be enumerated in O(21+log2 n) = O(n)760

time. Furthermore, for each of these possibilities, one can check in O(n log n)761

time whether the corresponding walk visits all vertices of the graph.762

Corollary 29. For each of the problems k-fixed NS-TEXP, k-arbitrary763

NS-TEXP, and Set NS-TEXP, there is an algorithm that solves instances764

with γ = 2 in O(Ln+ n2 log n) time.765

Proof. First, assume that there is a step with a single component, or that766

a restricted transition follows a free transition, or that the vertex s is ever767

contained in the shrinking component of a restricted transition, or that the768

number of free transitions is greater than 1 + log2 n. In all these cases,769

as argued in the proof of Theorem 28, all vertices of the input graph can770

be visited, and hence the given instance is a yes-instance also of the three771

problem variants under consideration here.772

Now, assume that the temporal graph consists of an initial (possibly773

empty) sequence R of restricted transitions such that s is always contained774

in the growing component, followed by a sequence F of at most 1 + log2 n775

free transitions. Then there are at most 21+log2 n = O(n) possible non-strict776

temporal walks in the graph, and we can simply enumerate them all and777

check for each of them in O(n log n) time whether it is a solution to the given778

variant of NS-TEXP.779

We leave open the complexity of NS-TEXP and its variants in the case780

where γ is a fixed constant greater than 2.781

4.3. An FPT algorithm for NS-TEXP with parameter L782

We now consider NS-TEXP parameterized by the lifetime L of the input783

temporal graph G. Let an instance of NS-TEXP be given as a tuple (G, s, L).784

We prove that NS-TEXP is in FPT for parameter L by specifying a bounded785

search tree-based FPT algorithm.786

Let G = 〈G1, . . . , GL〉 be some non-strict temporal graph. Throughout787

this section we let C(G) :=
⋃
t∈[L]Gt, i.e., C(G) is the set of all components788

belonging to some layer of G. We implicitly assume that each component789

C ∈ C(G) is associated with a unique layer Gt of G in which it is contained.790

If a component (seen as just a set of vertices) occurs in several layers, we791

thus treat these occurrences as different elements of C(G) (or of any subset792

thereof) because they are associated with different layers. If Q is a set of793

24

components in C(G) that are associated with distinct layers (i.e., no two794

components in Q are associated with the same layer Gt of G), then we say795

that the components in Q originate from unique layers of G. For a set Q of796

components that originate from unique layers of G, we let D(Q) :=
⋃
C∈QC797

be the union of the vertex sets of the components in Q. For any such set Q,798

we also let T (Q) = {t ∈ [L] : there is a C ∈ Q associated with layer Gt}.799

Within the following, we assume that G admits a non-strict exploration800

schedule W .801

Observation 30. Let Q (|Q| ∈ [0, L − 1]) be a subset of the components802

visited by the exploration schedule W . Then there exists C ∈ C(G)−Q with803

C ∈ Gt (t ∈ [L]−T (Q)) such that |C −D(Q)| ≥ (n− |D(Q)|)/(L− |T (Q)|).804

Observation 30 follows since, otherwise, W visits at most L − |T (Q)|805

components C ∈ C(G)−Q that each contain |C−D(Q)| < (n−|D(Q)|)/(L−806

|T (Q)|) of the vertices v /∈ D(Q), and so the total number of vertices visited807

byW is strictly less than |D(Q)|+(L−|T (Q)|)·(n−|D(Q)|)/(L−|T (Q)|) = n,808

a contradiction.809

We briefly outline the main idea of our FPT result: We use a search810

tree algorithm that maintains a set Q of components that a potential explo-811

ration schedule could visit, starting with the empty set. Then the algorithm812

repeatedly tries all possibilities for adding a component (from some so far813

untouched layer) that contains at least (n− |D(Q)|)/(L− |T (Q)|) unvisited814

vertices (whose existence is guaranteed by Observation 30 if there exists an815

exploration schedule). It is clear that the search tree has depth L, and the816

main further ingredient is an argument showing that the number of candi-817

dates for the component to be added is bounded by a function of L, namely,818

by (L − |T (Q)|)2: This is because each of the L − |T (Q)| untouched lay-819

ers can contain at most L − |T (Q)| components that each contain at least820

(n − |D(Q)|)/(L − |T (Q)|) unvisited vertices. We now proceed to describe821

the details of the algorithm and its analysis. First, we state the following822

corollary of Lemma 20.823

Corollary 31. Let G = 〈G1, . . . , GL〉 be an arbitrary order-n non-strict824

temporal graph. Then, for components Ct1,j1 ∈ Gt1 and Ct2,j2 ∈ Gt2 (with825

1 ≤ t1 ≤ t2 ≤ L) one can decide, in O((t2 − t1 + 1)n) time, whether there826

exists a non-strict temporal walk beginning at any vertex contained in Ct1,j1827

in timestep t1 and finishing at Ct2,j2 in timestep t2.828

25

Proof. We construct the non-strict temporal graph G ′ that consists of the829

layers 〈Gt1 , Gt1+1, . . . , Gt2〉 of G and has lifetime L′ = t2 − t1 + 1. Then, we830

pick arbitrary vertices u ∈ Ct1,j1 and v ∈ Ct2,j2 and apply the algorithm from831

Lemma 20 to determine whether G ′ contains a non-strict temporal walk from832

u to v. Both steps take O(L′n) time.833

Let Q be a set of components originating from unique layers of G, and834

let W ?
G(s,Q) = yes if and only if there exists a non-strict temporal walk in835

G that starts at s ∈ V (G) in timestep 1 and visits at least the components836

contained in Q, and no otherwise.837

Lemma 32. For any order-n non-strict temporal graph G = 〈G1, . . . , GL〉,838

any s ∈ V (G), and any set Q of components originating from unique layers839

of G, W ?
G(s,Q) can be computed in O(Ln) time.840

Proof. Let Cs1 , Cs2 , . . . , Cs|Q| be an an index-ordered sequence of the compo-841

nents in Q, with the indices si ∈ [L] satisfying Csi ∈ Gsi (for all i ∈ [|Q|])842

and si < si+1 (for all i ∈ [|Q| − 1]). Let Cs ∈ G1 be the unique component843

in layer 1 such that s ∈ Cs (note that we may have Cs1 = Cs). Now, apply844

the algorithm of Corollary 31 with Ct1,j1 = Cs and Ct2,j2 = Cs1 , and then845

with Ct1,j1 = Csi and Ct2,j2 = Csi+1
for all i ∈ [|Q| − 1]. If the return value846

of any application of the algorithm of Corollary 31 is no, then we return847

W ?
G(s,Q) = no; otherwise we return W ?

G(s,Q) = yes. This concludes the848

algorithm’s description.849

Since each component Csi can only be visited in timestep si it is clear850

that any walk that visits all components of Q must visit them in the spec-851

ified order. The algorithm sets W ?
G(s,Q) = yes if the components of Q can852

be visited in the specified order. On the other hand, if the algorithm of853

Corollary 31 returns no for at least one pair of input components Csi , Csi+1
854

(or Cs, Cs1), then it must be that the components cannot be visited in this855

order, and thus the algorithm sets W ?
G(s,Q) = no. Thus, the algorithm’s856

correctness follows from the correctness of Corollary 31’s algorithm. To see857

that the running-time of the algorithm is bounded by O(Ln), recall that each858

application of Corollary 31’s algorithm to start/finish components Csi and859

Csi+1
takes c(si+1 − si + 1)n time (for a constant c hidden in the bound of860

Corollary 31). Thus the total amount of time spent over all applications is861

c(s1−1+1)n+
∑

i∈[|Q|−1] c(si+1−si+1)n = cn(s|Q|+ |Q|−1) ≤ cn(2L−1) =862

O(Ln), where the last inequality holds since |Q|, s|Q| ≤ L.863

26

Now, let G be some input graph, and let Q be some set of components864

originating from unique layers of G. For any s ∈ V (G), the recursive function865

g(G, s, Q) (Algorithm 1) returns yes if and only if there exists a non-strict866

exploration schedule of G that starts at s and visits (at least) the compo-867

nents contained in Q, and returns no otherwise. We prove the correctness of868

Algorithm 1 in Lemma 33.

Algorithm 1: Recursive function g(G, s, Q).

1 if |Q| = L or |D(Q)| = n then
2 if |D(Q)| = n then return W ?

G(s,Q)
3 else return no
4 else
5 C ′ ← {C ∈ C(G)−Q : |C −D(Q)| ≥ (n− |D(Q)|)/(L− |T (Q)|)}
6 C∗ ← C ′ − {C ∈ C ′ : C ∈ Gt, t ∈ T (Q)}.
7 if |C∗| = 0 then return no
8 for C ∈ C∗ do
9 if g(G, s, Q ∪ {C}) = yes then return yes

10 end
11 return no
12 end

869

Lemma 33. For any non-strict temporal graph G, any s ∈ V (G), and any set870

Q (with |Q| ∈ [0, L]) containing components originating from unique layers871

of G, Algorithm 1 correctly computes g(G, s, Q).872

Proof. We first show that g(G, s, Q) is correct in the base case, i.e., when873

|Q| = L or |D(Q)| = n. If we have |D(Q)| = n, then any non-strict temporal874

walk that starts at s in timestep 1 and visits all components in Q is an ex-875

ploration schedule. Thus, the correctness of line 2 follows from the definition876

of the return value W ?
G(s,Q) (which can be computed using Lemma 32). If877

|Q| = L and |D(Q)| < n, i.e., we have reached line 3, then there must exist878

no exploration schedule that visits each of the components in Q, since any879

non-strict temporal walk in a temporal graph with lifetime L can visit at880

most L components, but at least one additional component C /∈ Q needs to881

be visited to cover at least one vertex v /∈ D(Q) – thus it is correct to return882

no in this case.883

27

Otherwise, we have |Q| < L and |D(Q)| < n, and are in the recursive case.884

Then, by Observation 30, any non-strict exploration schedule that visits all885

components in Q must visit at least one other component C ∈ C(G) − Q886

such that |C − D(Q)| ≥ (n − |D(Q)|)/(L − |T (Q)|). Line 5 computes the887

set C ′ consisting of all such components, line 6 forms from C ′ the set C∗ by888

removing from C ′ any components that originate from layers Gt such that889

C ∈ Gt for some C ∈ Q (since only one component can be visited in each890

timestep, and thus we want Q to be a set of components originating from891

unique layers of G). We remark that a more efficient implementation could892

skip layers Gt with t ∈ T (Q) already when constructing C ′ in line 5, but893

the asymptotic running-time of the overall algorithm would not be affected894

by this change. The correctness of line 7 follows from Observation 30. To895

complete the proof, we claim that the value yes is returned by line 9 if and896

only if there exists a non-strict temporal exploration schedule starting at s897

that visits all the components contained inQ; we proceed by reverse induction898

on |Q|. Assume first that the return value of g(G, s, Q′) is correct for any899

Q′ with |Q′| = k (k ∈ [L]) and let |Q| = k − 1. Now assume that, during900

the execution of g(G, s, Q), line 9 returns yes; it follows that g(G, s, Q′) = yes901

for some Q′ = Q ∪ C with C ∈ C∗ and thus it follows from the induction902

hypothesis that there exists a non-strict temporal exploration schedule that903

starts at s and visits all the components contained in Q, as required. In the904

other direction, assume that there exists some non-strict exploration schedule905

W that starts at s in timestep 1 and visits all the components in Q. Note906

that, since the execution has reached line 9, we surely have |C∗| > 0; since907

we also have |Q| < L and |D(Q)| < n it follows from Observation 30 that908

W visits at least one additional component C ∈ C∗. Then, by the induction909

hypothesis, we must have g(G, s, Q∪{C}) = yes; thus when the loop of lines910

8–10 processes C ∈ C∗ the algorithm will return yes as required.911

Theorem 34. There is an algorithm that decides any instance I = (G, s, L)912

of NS-TEXP in O(L(L!)2n) time.913

Proof. The algorithm simply returns the value of function call g(G, s, ∅) (Al-914

gorithm 1).915

By Lemma 33, g(G, v, Q) returns yes if and only if G admits a non-strict916

exploration schedule that starts at v and visits at least the components con-917

tained in the set Q (which contains |Q| ∈ [0, L] components originating from918

unique layers of G), and returns no otherwise. Thus the correctness of the919

above follows immediately.920

28

In order to bound the running time of the above algorithm, it suffices to921

bound the running time of Algorithm 1, i.e., the recursive function g. The922

initial call is g(G, s, ∅), and each recursive call is of the form g(G, s, Q) where923

Q is a set of components with size one more than the input set of the parent924

call. Hence, line 1 ensures that there are at most L levels of recursion in925

total (not including the level containing the initial call). For a call at level926

i ≥ 0, the set C∗ constructed in line 5 has size at most (L− i)2, since at most927

L − i components can cover at least (n − |D(Q)|)/(L − i) of the vertices in928

V (G)−D(Q) during each of the L− i steps t ∈ [L]− T (Q). Thus each call929

at level i ≥ 0 makes at most (L − i)2 recursive calls. The tree of recursive930

calls thus has at most (L!)2 nodes at depth L, and hence O((L!)2) nodes in931

total. It follows that the overall number of calls is bounded by O((L!)2).932

Next, note that if some level-i call g(G, s, Q) is such that |Q| < L and933

|D(Q)| < n, then line 5 computes the set C ′, which can be achieved in934

O(Ln) time by, for each t ∈ [L], scanning over the components C ∈ Gt935

(which collectively contain n vertices) and adding a component C ∈ Gt to C ′936

if and only if |C−D(Q)| ≥ (n−|D(Q)|)/(L− i). (Note that we can maintain937

a map from V to {0, 1} that records for each vertex v whether v ∈ D(Q), and938

hence the value |C −D(Q)| can be computed in O(|C|) time.) To compute939

the set C∗ in line 6 we can follow a similar approach: for each t ∈ [L]−T (Q)940

(|[L] − T (Q)| = L − i), add a component C ∈ Gt to C∗ if and only if it941

satisfies C ∈ C ′. This requires O((L− i)n) = O(Ln) time, and thus lines 5–6942

take O(Ln) time in total. Additionally, the return value of each recursive943

call is checked by the foreach loop (line 9) of its parent call in O(1) time –944

this contributes an extra O((L!)2) time over all recursive calls. On the other945

hand, if a call g(G, s, Q) is such that |Q| = L or |D(Q)| = n, then line 2946

computes W ?
G(s,Q) in O(Ln) time using Lemma 32. Thus in all cases the947

overall work per recursive call is O(Ln), and the total amount of time spent948

before g(G, s, ∅) is returned is O((L!)2)·O(Ln) = O(L(L!)2n), as claimed.949

We remark that the algorithm of Theorem 34 can be adapted to k-fixed950

NS-TEXP in a straightforward way: If we are only interested in visiting951

the vertices in a given set X with |X| = k, an observation analogous to952

Observation 30 shows the existence of a component C that contains at least953

a 1/(L−|T (Q)| fraction of the unvisited vertices inX, i.e., |(C−D(Q))∩X| ≥954

(k− |D(Q)∩X|)/(L− |T (Q)|). In Algorithm 1, we only need to replace the955

condition |D(Q)| = n in lines 1 and 2 by |D(Q) ∩X| = k, and the selection956

criterion for components in line 5 by |(C − D(Q)) ∩ X| ≥ (k − |D(Q) ∩957

29

instance I ′ = (G, s,X) of Set NS-TEXP as follows: Let V (G) = {s} ∪ {xj :977

j ∈ [m]} ∪ {yi,j : j ∈ [m], ai ∈ Sj}, and define Xi = {yi,j ∈ V (G) : j ∈ [m]}978

(i ∈ [n]) and X =
⋃
i∈[n]{Xi}. We set the lifetime L of G to L = 2k and979

specify the components for each timestep t ∈ [2k] as follows: In all odd980

steps let one component be {s} ∪ {xj : j ∈ [m]} and let all other vertices981

belong to components of size 1. In even steps, for each j ∈ [m] let there be982

a component {yi,j ∈ V (G) : i ∈ [n]} ∪ {xj} and let s form a component of983

size 1. An example of the construction is shown in Figure 2. (In the figure, for984

the sake of readability, the elements of U are denoted by e, f, g, h instead of985

a1, a2, a3, a4 and the elements of X2 are denoted by f2, h2 instead of y2,2, y4,2,986

and similarly for X1 and X3.) Since |V (G)| ≤ 1 + m + mn = O(mn),987

|
⋃
i∈[n]Xi| = O(mn) and L = 2k we have that the size of instance I ′ is988

|I ′| = O(kmn) and the parameter L is bounded solely by a function of989

instance I’s parameter k, as required. To complete the proof, we argue that990

I is a yes-instance if and only if I ′ is a yes-instance:991

(=⇒) Assume that I is a yes-instance; then there exists a collection of992

sets S ′ ⊆ S of size |S ′| = k′ ≤ k and, for all i ∈ [n], there exists S ∈ S ′993

with ai ∈ S. Let Sj1 , Sj2 , . . . , Sjk′ be an arbitrary ordering of the sets in S ′;994

note that ji ≤ m for all i ∈ [k′]. We construct a non-strict temporal walk995

W in G as follows: Starting at vertex s, for every l ∈ [1, k′], during timestep996

t = 2l − 1 visit all vertices in the current component then finish timestep997

2l − 1 positioned at xjl . The component occupied during step 2l will be the998

one containing xjl – explore all vertices contained in that component and999

finish step 2l positioned at xjl . If k′ < k, then spend the steps of the interval1000

[2k′ + 1, 2k] positioned in an arbitrary component. We claim that W visits1001

at least one vertex in Xi for all i ∈ [n]. To see this, first note that for every1002

i ∈ [n] there exists an Sj ∈ S ′ such that ai ∈ Sj. Hence, by our reduction, it1003

follows that a vertex yi,j is contained in the component containing xj during1004

timestep 2l for every l ∈ [k] and, by its construction, W visits the component1005

containing xj (and thus visits yi,j ∈ Xi) during timestep 2l∗ for some l∗ such1006

that jl∗ = j. Since this holds for all i ∈ [n] it follows that W is a feasible1007

solution and I ′ is a yes-instance.1008

(⇐=) Assume that I ′ is a yes-instance and that we have some non-strict1009

temporal walk W that visits at least one vertex in Xi for all i ∈ [n]. We first1010

claim that W visits any vertex of the form yi,j for the first time during an1011

even step. To see this, observe that every yi,j lies disconnected in its own1012

component in every odd step t, and so to visit any yi,j in an odd stepW would1013

31

need to occupy the component containing yi,j during step t − 1 and finish1014

step t−1 positioned at yi,j; hence yi,j was already visited in step t−1, which1015

is even. Therefore, in order for W to visit any yi,j it must be positioned,1016

during at least one even step, at the component containing xj. Now, to1017

construct a collection of subsets S ′ ⊆ S with size x ≤ k, let S ′ = {Sj :1018

W visits the component containing xj during some even timestep}. To see1019

that S ′ is a cover of U with size x ≤ k, observe that W visits at least one1020

vertex yi,j for every i ∈ [n]; thus, by the reduction, for every i ∈ [n] the1021

element ai is contained in set Sj for some Sj ∈ S ′. It follows that the union1022

of S ′’s elements covers U , and so I is a yes-instance.1023

5. Conclusion1024

In this paper we have initiated the study of temporal exploration prob-1025

lems from the viewpoint of parameterized complexity. For both strict and1026

non-strict temporal walks, we have shown several variants of the exploration1027

problem to be in FPT. For the variant where we are given a family of vertex1028

subsets and need to visit only one vertex from each subset, we have shown1029

W[2]-hardness for both the strict and the non-strict model for parameter L.1030

For non-strict temporal exploration, we have shown that the problem can1031

be solved in polynomial time if γ, the maximum number of connected com-1032

ponents per step, is bounded by 2. An interesting question for future work1033

is to determine whether NS-TEXP with parameter γ is in FPT or at least1034

in XP (i.e., admits a polynomial-time algorithm for each fixed value of γ).1035

Another interesting question is whether k-arbitrary NS-TEXP is in FPT1036

for parameter L.1037

References1038

[1] C. E. Shannon, Presentation of a maze-solving machine, in: N. J. A.1039

Sloane, A. D. Wyner (Eds.), Claude Elwood Shannon: Collected Papers,1040

IEEE Press, 1993, pp. 681–687.1041

[2] O. Michail, An introduction to temporal graphs: An algorithmic per-1042

spective, Internet Mathematics 12 (4) (2016) 239–280. doi:10.1080/1043

15427951.2016.1177801.1044

[3] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Path problems in1045

temporal graphs, Proceedings of the VLDB Endowment 7 (9) (2014)1046

721–732. doi:10.14778/2732939.2732945.1047

32

https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.14778/2732939.2732945

[4] E. C. Akrida, G. B. Mertzios, P. G. Spirakis, V. Zamaraev, Temporal1048

vertex cover with a sliding time window, Journal of Computer and Sys-1049

tem Sciences 107 (2020) 108–123. doi:10.1016/j.jcss.2019.08.002.1050

[5] G. B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, P. Zschoche,1051

Computing maximum matchings in temporal graphs, in: C. Paul,1052

M. Bläser (Eds.), 37th International Symposium on Theoretical As-1053

pects of Computer Science (STACS 2020), Vol. 154 of LIPIcs, Schloss1054

Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 27:1–27:14. doi:1055

10.4230/LIPIcs.STACS.2020.27.1056

[6] E. C. Akrida, J. Czyzowicz, L. Gąsieniec, Ł. Kuszner, P. G. Spirakis,1057

Temporal flows in temporal networks, Journal of Computer and System1058

Sciences 103 (2019) 46–60. doi:10.1016/j.jcss.2019.02.003.1059

[7] H. Molter, Classic graph problems made temporal - a parameterized1060

complexity analysis, Ph.D. thesis, Technical University of Berlin,1061

Germany (2020).1062

URL https://nbn-resolving.org/urn:nbn:de:101:1063

1-20201209010122820173741064

[8] O. Michail, P. G. Spirakis, Traveling salesman problems in temporal1065

graphs, Theoretical Computer Science 634 (2016) 1–23. doi:10.1016/1066

j.tcs.2016.04.006.1067

[9] N. Alon, R. Yuster, U. Zwick, Color-coding, Journal of the ACM 42 (4)1068

(1995) 844–856. doi:10.1145/210332.210337.1069

[10] M. Naor, L. J. Schulman, A. Srinivasan, Splitters and near-optimal de-1070

randomization, in: IEEE 36th Annual Symposium on Foundations of1071

Computer Science (FOCS 1995), IEEE Computer Society, 1995, pp.1072

182–191. doi:10.1109/SFCS.1995.492475.1073

[11] T. Erlebach, J. T. Spooner, Non-strict temporal exploration, in: A. W.1074

Richa, C. Scheideler (Eds.), 27th International Colloquium on Structural1075

Information and Communication Complexity (SIROCCO 2020), Vol.1076

12156 of Lecture Notes in Computer Science, Springer, 2020, pp. 129–1077

145. doi:10.1007/978-3-030-54921-3_8.1078

33

https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.4230/LIPIcs.STACS.2020.27
https://doi.org/10.4230/LIPIcs.STACS.2020.27
https://doi.org/10.4230/LIPIcs.STACS.2020.27
https://doi.org/10.1016/j.jcss.2019.02.003
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1016/j.tcs.2016.04.006
https://doi.org/10.1145/210332.210337
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1007/978-3-030-54921-3_8

[12] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying1079

graphs and dynamic networks, International Journal of Parallel, Emer-1080

gent and Distributed Systems 27 (5) (2012) 387–408. doi:10.1080/1081

17445760.2012.668546.1082

[13] B. Brodén, M. Hammar, B. J. Nilsson, Online and offline algorithms for1083

the time-dependent TSP with time zones, Algorithmica 39 (4) (2004)1084

299–319. doi:10.1007/s00453-004-1088-z.1085

[14] B. Bui-Xuan, A. Ferreira, A. Jarry, Computing shortest, fastest, and1086

foremost journeys in dynamic networks, International Journal of Foun-1087

dations of Computer Science 14 (2) (2003) 267–285. doi:10.1142/1088

S0129054103001728.1089

[15] T. Erlebach, M. Hoffmann, F. Kammer, On temporal graph exploration,1090

Journal of Computer and System Sciences 119 (2021) 1–18. doi:10.1091

1016/j.jcss.2021.01.005.1092

[16] D. Ilcinkas, A. M. Wade, Exploration of the T-interval-connected dy-1093

namic graphs: the case of the ring, Theory of Computing Systems 62 (5)1094

(2018) 1144–1160. doi:10.1007/s00224-017-9796-3.1095

[17] H. L. Bodlaender, T. C. van der Zanden, On exploring always-connected1096

temporal graphs of small pathwidth, Information Processing Letters 1421097

(2019) 68–71. doi:10.1016/j.ipl.2018.10.016.1098

[18] T. Erlebach, F. Kammer, K. Luo, A. Sajenko, J. T. Spooner, Two1099

moves per time step make a difference, in: C. Baier, I. Chatzigian-1100

nakis, P. Flocchini, S. Leonardi (Eds.), 46th International Colloquium1101

on Automata, Languages, and Programming (ICALP 2019), Vol. 132 of1102

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp.1103

141:1–141:14. doi:10.4230/LIPIcs.ICALP.2019.141.1104

[19] S. Taghian Alamouti, Exploring temporal cycles and grids, Master’s1105

thesis, Concordia University (2020).1106

[20] D. Adamson, V. V. Gusev, D. S. Malyshev, V. Zamaraev, Faster explo-1107

ration of some temporal graphs, in: J. Aspnes, O. Michail (Eds.), 1st1108

Symposium on Algorithmic Foundations of Dynamic Networks (SAND1109

2022), Vol. 221 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Infor-1110

matik, 2022, pp. 5:1–5:10. doi:10.4230/LIPIcs.SAND.2022.5.1111

34

https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1007/s00224-017-9796-3
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.4230/LIPIcs.ICALP.2019.141
https://doi.org/10.4230/LIPIcs.SAND.2022.5

[21] E. C. Akrida, G. B. Mertzios, P. G. Spirakis, C. L. Raptopoulos, The1112

temporal explorer who returns to the base, J. Comput. Syst. Sci. 1201113

(2021) 179–193. doi:10.1016/j.jcss.2021.04.001.1114

[22] A. Casteigts, A. Himmel, H. Molter, P. Zschoche, Finding temporal1115

paths under waiting time constraints, Algorithmica 83 (9) (2021) 2754–1116

2802. doi:10.1007/s00453-021-00831-w.1117

[23] B. M. Bumpus, K. Meeks, Edge exploration of temporal graphs, Algo-1118

rithmica (2022). doi:10.1007/s00453-022-01018-7.1119

[24] D. Kempe, J. M. Kleinberg, A. Kumar, Connectivity and inference prob-1120

lems for temporal networks, Journal of Computer and System Sciences1121

64 (4) (2002) 820–842. doi:10.1006/jcss.2002.1829.1122

[25] P. Zschoche, T. Fluschnik, H. Molter, R. Niedermeier, The complexity1123

of finding small separators in temporal graphs, Journal of Computer and1124

System Sciences 107 (2020) 72–92. doi:10.1016/j.jcss.2019.07.006.1125

[26] R. Diestel, Graph Theory, Springer-Verlag, 2000.1126

[27] R. G. Downey, M. R. Fellows, Parameterized Complexity, Mono-1127

graphs in Computer Science, Springer, 1999. doi:10.1007/1128

978-1-4612-0515-9.1129

[28] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,1130

M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms,1131

Springer, 2015. doi:10.1007/978-3-319-21275-3.1132

[29] C. E. Noon, The generalized traveling salesman problem, Ph.D. thesis,1133

University of Michigan (1988).1134

[30] R. Bellman, Dynamic programming treatment of the travelling salesman1135

problem, Journal of the ACM 9 (1) (1962) 61–63. doi:10.1145/321105.1136

321111.1137

[31] M. Held, R. M. Karp, A dynamic programming approach to sequencing1138

problems, Journal of the Society for Industrial and Applied Mathematics1139

10 (1) (1962) 196–210. doi:10.1137/0110015.1140

[32] H. Robbins, A remark on Stirling’s formula, The American Mathemat-1141

ical Monthly 62 (1) (1955) 26–29.1142

35

https://doi.org/10.1016/j.jcss.2021.04.001
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-022-01018-7
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1016/j.jcss.2019.07.006
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1137/0110015

[33] M. R. Garey, D. S. Johnson, Computers and Intractability. A Guide to1143

the Theory of NP-Completeness, W. H. Freeman and Company, New1144

York-San Francisco, 1979.1145

[34] Bonnet, Édouard, Paschos, Vangelis Th., Sikora, Florian, Parameter-1146

ized exact and approximation algorithms for maximum k-set cover and1147

related satisfiability problems, RAIRO-Theoretical Informatics and Ap-1148

plications 50 (3) (2016) 227–240. doi:10.1051/ita/2016022.1149

36

https://doi.org/10.1051/ita/2016022

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

	Introduction
	Contribution
	Related work

	Preliminaries
	Temporal exploration with strict temporal walks
	Temporal exploration with non-strict temporal walks

	Strict TEXP parameterizations
	An FPT algorithm for k-fixed TEXP
	FPT algorithms for k-arbitrary TEXP
	A randomized algorithm
	Derandomizing the algorithm of Theorem 15

	W[2]-hardness of Set TEXP for parameter L

	Non-Strict TEXP parameterizations
	k-fixed NS-TEXP and k-arbitrary NS-TEXP
	Non-strict exploration with at most two components per step
	An FPT algorithm for NS-TEXP with parameter L
	W[2]-hardness of Set NS-TEXP for parameter L

	Conclusion

