Received: 28 April 2022

Revised: 9 September 2022

W) Check for updates

Accepted: 21 October 2022

DOI: 10.1112/mtk.12181

RESEARCH ARTICLE

Mathematika

Correlations of multiplicative functions in

function fields

Oleksiy Klurman' | Alexander P. Mangerel> | Joni Terdviinen®

ISchool of Mathematics, University of
Bristol, Woodland Road, Bristol, UK

2Depalrtment of Mathematical Sciences,
Durham University, Upper Mountjoy
Campus, Stockton Road, Durham, UK

3Department of Mathematics and
Statistics, University of Turku, Turku,
Finland

Correspondence

Joni Terédviinen, Department of
Mathematics and Statistics, University of
Turku, 20014 Turku, Finland.

Email: joni.p.teravainen@gmail.com

Funding information
Titchmarsh Fellowship; Academy of
Finland, Grant/Award Number: 340098

Abstract
We develop an approach to study character sums,
weighted by a multiplicative function f : F,[t] — St, of
the form

Y F@xGEG),
deg(G)=N
G monic
where y is a Dirichlet character and ¢ is a short inter-
val character over [Fq[t]. We then deduce versions of
the Matomé&ki-Radziwilt theorem and Tao’s two-point
logarithmic Elliott conjecture over function fields F[¢],
where q is fixed. The former of these improves on work
of Gorodetsky, and the latter extends the work of Sawin-
Shusterman on correlations of the Mdbius function for
various values of q. Compared with the integer setting,
we encounter a different phenomenon, specifically a low
characteristic issue in the case that q is a power of 2. As
an application of our results, we give a short proof of the
function field version of a conjecture of Kétai on classify-
ing multiplicative functions with small increments, with
the classification obtained and the proof being different
from the existing one in the integer case. In a companion
paper, we use these results to characterize the limiting
behavior of partial sums of multiplicative functions in
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156 KLURMAN ET AL.

function fields and in particular to solve a “corrected”
form of the Erd6s discrepancy problem over F[t].

MSC 2020
11T55, 11N37 (primary)

1 | INTRODUCTION AND RESULTS

In the integer setting, there has been a lot of progress in understanding short sums

Y. fn), with1<H<x, )

x<n<x+H

of multiplicative functions f : N — C, as well as their correlations

LN rmfyn+h), forhs1l. @)
X

n<x

See [27], [29, Theorem A.1], [28] for some papers dealing with (1) and [20, 29, 33, 36] for some
papers dealing with (2). These results have also led to a number of applications, including a
solution by Tao [32] to the famous Erdds discrepancy problem.

Let g be a fixed prime power and denote by [ [¢] the ring of polynomials in ¢ over F,. Our focus
in this paper is on analogs of (1) and (2) over F[t]. These results have applications, in particular,
to the Erd6s discrepancy problem over F,[¢], which we study in our follow-up paper [24]. In the
course of the proofs of our main results, we develop a substantial amount of pretentious number
theory over F[¢].

Let M denote the set of monic polynomials in F,[¢]. Also, denote by My and My the sets
of monic polynomials of degree < N or = N, respectively. Let P be the set of irreducible monic
polynomials in F[t]. Again, define Py and Py similarly. Finally, let U stand for the unit disc of
the complex plane.

By a Dirichlet character y : F,[t] > C modulo M € M, we mean a multiplicative homomor-
phism y : ([Fq[t]/M[Fq[t])X — C\ {0}, extended to all of [Fq[t] by setting y(G) = 0 whenever G
and M are not coprime.

We first describe our result on short sums of multiplicative functions. This provides an analog
of the celebrated Matoméki-Radziwilt theorem [27] in function fields.

Matomdki and Radziwilt showed that, for any bounded, real-valued multiplicative function
f: N—-[-1,1], one has

lZX
X Jx

as soon as H = H(X) - oo with X. Thus, the short sums of f over [x, x + H] are almost always
asymptotic to the corresponding long sum of f over [X,2X], which can either be understood
asymptotically or upper bounded non-trivially by Halasz’s theorem (see [35, Section II1.4.3] for
further details).

2

1

= X f-y Y fm)| dx=o),

x<n<x+H X<n<2X
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In function fields, the role of a short interval is played by"
Iz(Gy) :={Ge M: deg(G-G,) <H}, G,€eM.

We prove a function field version of the aforementioned result for sums over such short intervals,
following a line of approach which differs somewhat from the result over the integers. We state
this as follows.

Theorem 1.1 (Matom#ki-Radziwilt Theorem for Function Fields, Real Case). Let f: M —
[—1, 1] be a multiplicative function. Let N be large and let1 < H < N — N3/*with H = H(N) =
as N — oo.

(i) Ifqisodd, we have

2
logH

-N -H _ 4N —1/18+0(1)

e T e Y f@O-a T O < = e N,

GyEMy Gely(Gy) GEMy

(ii) If q is even, we have

2

— logH
g Y g Y fG-gN Y fGxi©)| < % + N~1/18+0(1)
GoEMY Gely(Gy) GeEMy

where y, mod tN"H+1 is a real character that minimizes the map

x ~ min , yx mod tNH*L,

6€lo,1] p

1 - Re(/(P)T(P)
2

deg(P
Py q eg(P)

and where x7 is the completely multiplicative function satisfying x7(t) =1 and x{(G) :=
x:1(t48G@G(1/t)) for all G coprime to t.

Remarks.

* The long sum Y. My f(G) appearing in Theorem 1.1 is very well understood, as in the inte-
ger setting. This is thanks to a version of Haldsz’s theorem over function fields, established by
Granville, Harper, and Soundararajan [9].

* The savings (log H)/H obtained is of the same quality as the h-dependence found in [27, The-
orems 1 and 2] (replacing H by log h there). This term arises from a sieve-theoretic bound that
allows us to restrict the support of the intervening sums in our analysis to polynomials G hav-
ing prime factors with degrees in specified intervals, depending on H (see Lemma 4.10 below).
This term is not expected to be optimal in general, and standard “square-root cancellation”
heuristics for sufficiently pseudo-random multiplicative functions (such as the Liouville func-
tion A: M — {—1, 1}, the completely multiplicative function defined at all prime polynomials
P by A(P) = —1) suggests a bound of the shape g~H(1/2-9)_In this connection, it is worth not-

 For ease of comparison with prior function field literature, specifically the work of Keating and Rudnick [18, 19], we note
that our short interval I;(G,) corresponds to I(Gy; H — 1) in the notation of [18].

85Ue0| 7 SuowiWoD aAee.) a|qeal|dde sy Aq peusenob ae Seoiiie YO ‘8sn JO S9|nJ Joy Akelqi 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIWOY A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S [£202/50/72] Uo ARidi8ulluo /8|1 1581 Aq T8TZT MIW/ZTTT 0T/I0P/L0D A3 | Im Aelq 1 pul|uo-00syTewpuO|//:Sdny woly pepeojumod ‘T ‘€202 ‘Zv6.LT0Z



158 | KLURMAN ET AL.

ing that in the integer setting, Chinis [3, Theorem 1.2] has shown that, assuming the Riemann
Hypothesis, the short sums k™1 > _, <xth A(n) of the Liouville function 4 exhibit a correspond-
ing error term of the quality 4~'/2*¢ in mean square whenever h > (log X)* with A = A(¢) > 0.
It might be interesting to pursue a similar result in the F[] setting.

* Note that, interestingly, a low-characteristic issue emerges in the Matomé&ki-Radziwilt theo-
rem: In F,[t], for instance, a real-valued multiplicative function can indeed have different mean
values on short and long intervals. This is the reason why we have stated the cases of g odd
and even separately in Theorem 1.1. Functions of the form y}, where ; is a character mod-
ulo a power of t, are examples of short interval characters; see Definition 1.3 below, as well as
Sections 3.3 and 3.4 for further details relating to the transformation y; — x7.

* Theorem 1.1 can be viewed as generalizing and strengthening the work of Gorodetsky [7,
Theorem 1.3], who proved that for any factorization function” f and for H = H(N) satisfying
HloglogN/logN — oo, the sum of f over a short interval I;(G) is almost always asymp-
totic to the corresponding long sum. Neither the class of factorization functions nor the class of
multiplicative functions contains the other, but their intersection contains several interesting
number theoretic functions; for example, one of the most important functions in both classes
is the Mdbius function u: M — {—1,0,+1} (defined as u(G) := (—1)% if G is squarefree and
has s irreducible factors, and p(G) : = 0 otherwise). In Theorem 1.1, we do not have any lower
bound on how quickly the length H of the interval must grow, which is vital when we use this
result to deduce Theorem 1.4.

We in fact establish a slightly more general version of Theorem 1.1 (namely, Theorem 6.1)
that applies to bounded complex-valued multiplicative functions as well, but omit the more
complicated statement here for the sake of simplicity.

It is also natural to study the variance of multiplicative functions in arithmetic progressions;
see [11, 14] for some works on this topic. In the integer setting, an estimate for the variance
of a multiplicative function in arithmetic progressions that is of comparable strength to the
Matomaiki-Radziwilt theorem was established in [23]. Here, we generalize this result to function
fields, obtaining in fact a stronger version that does not involve exceptional®* moduli. For multi-
plicative factorization functions, this also improves on a corresponding result of Gorodetsky [7,
Theorem 1.3].

Theorem 1.2 (Variance of Multiplicative Functions in Arithmetic Progressions). Let1 < H < N —
N3/4, such that H = H(N) — o0 as N — co. Let f : M — U be a multiplicative function. For every
Q € My _p, thereis a character y, modulo Q such that

2

Y Y -2y jeme)| < <—1°Ig_IH +N—1/18+°<1>>q2N—deg<Q>.

AmodQ | GEMy ¢(Q) GeEMy
G=Amod Q

T A function f(G) is called a factorization function if it only depends on the values of deg(P) and vp(G), where P runs
through the irreducible divisors of G, and vp(G) denotes the largest integer k with P | G.

1t should be noted that if one assumes GRH (generalised Riemann hypothesis) in the integer setting then [23, Theo-
rem 1.4] also gives non-trivial estimates for the corresponding variance for all moduli g without exception, at least as
long as q does not have too many “small” prime factors. Note crucially that such a constraint on Q in our setting is not
needed for our result as it is stated, simply because our savings are given relative to the (possibly worse-than-trivial)
bound g2N—4¢8(@ rather than the sharper ¢(Q)q2N-9¢8(@) 1t is the factor $(Q)g~9¢8Q), ignored here, that is affected by
the primes of small degree.
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Precisely, y, is any character modulo Q that minimizes the map

. —deg(P)( _ — —27i6deg(P))
~ min 1 —Re(f(P)x(P)e )
X ee[o’l]P;Nq fPx

Next, we turn to our result on two-point correlations of multiplicative functions in function
fields, with the objective of analogizing Tao’s groundbreaking work in [33]. Tao’s result states that
if f1, f»: N = U are multiplicative functions such that at least one of f; and f,, say f,, satisfies
the non-pretentiousness assumption

1 —Re(f1(p)x(p)p™")

inf — o0asx = oo
[t]<x

p<x p

for any fixed Dirichlet character y, then we have

1w LWtk
log x Z n = o)

n<x

for any fixed h # 0. The analog of the logarithmic weight n — 1/n in function fields is G —
q—deg(G).

Tao’s result implies that if f; does not pretend to be a twisted Dirichlet character n — y(n)n',
then the autocorrelations of f, are small. It turns out that in the function field setting there are two
collections of Archimedean characters that play a role similar to n ~ n'’, namely, the characters
G > e¥7194¢8(G) a5 well as the short interval characters, to be defined presently (the group they
generate will be discussed in further detail in Section 3). Dirichlet characters twisted by at least
one of these functions provide obstructions to f; : M — U having small autocorrelations in the
setting of F,[¢]. While in terms of phenomenology this is consistent with the integer setting, some
of the arguments in the function field setting require some additional care to address both types
of twists.

Definition 1.3. A multiplicative function £ : M — C which is not identically zero is called a
short interval character if there exists v such that £(A) = £(B) whenever the v + 1 highest degree
coefficients of A and B agree (i.e., A/t4¢8(4) — B /td¢e(B) i5 3 rational function of degree < —v). If
v is the smallest positive integer with this property, then we refer to v as the length of £, and write
len(§) = v.

Theorem 1.4 (Two-point logarithmic Elliott conjecture in function fields). Let A,B € [Fq[t]\{O}
be fixed, with A monic. Let f1, f, : M — U be multiplicative functions. Assume that f satisfies the
non-pretentiousness assumption

1—Re(f 1(P)J(p)g(p)e—zmedeg(p)) N

min min min min " 3
MeMyy, PpmodM ¢ short Qe[O,IJPE; qdes®) ® )
len(§)<N <N
as N — oo for every fixed W > 1. Then,
1 _
N X T EOf(G)f2(AG +B) = o(1) @

GEMy

as N — oo.
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160 | KLURMAN ET AL.

Moreover, if f,is real-valued and q is odd, then the same conclusion follows provided only that

1—Re(f 1(P)§_b( P)e—2mi6deg(P)y ~

5
qdee® *® )

min min min Z
MEMqy $ mod M 6€{0,1/2} , &5
<N

as N — oo.

Remark1.5. Observe thatif £ is a short interval character of length v, m > 2v and deg(B) < v, then
£(AG + B) = £(A)E(G) for any G € M,,. As £(A) € S, it follows that as N — oo,

1 _ = 2v

— 2 g EDEGYE(AG+B)| > 1 - ==,

N N
GeMsN

so short interval characters clearly present a class of functions with large two-point correlations.
This explains why our non-pretentiousness assumption must rule out significant correlations of
f1 with such characters.

Since the Mobius function p: M — {—1,0,+1} is non-pretentious in the sense of (3) (by
an application of Lemma 3.1 below), this result has the following corollary regarding Chowla’s
conjecture in function fields.

Corollary 1.6 (Two-point logarithmic Chowla conjecture in function fields). Let B € F, [£1\{0} be
fixed. Let u : [Fq[t] — {—1,0, +1} be the Mobius function. Then, as N — oo,

S Y g EOUGKG +B) = o)

GEMSN

Remarks.

* Theorem 1.4 indicates that functions f that pretend to be twisted products of Dirichlet and
short interval characters y&ey(G) (where e5(G) := e27i0deg(G)) gre obstructions to the autocor-
relations of f being small. This shows a different phenomenon compared to mean values of
multiplicative functions in function fields, wherein the only obstructions to the mean value
being small are functions pretending to be ey (see, for instance, Lemma 3.5 below); this is not
necessarily unexpected since the problem of estimating mean values is not one that relates to
short interval averages.

* Theorem 1.4 and Corollary 1.6 compare to previous results as follows. A recent groundbreaking
result of Sawin and Shusterman [31] established the Chowla conjecture in function fields in the
form

qLN 2 ,U(G + Bl) vee Iu(G + Bk) = 0(1)’

GeEMey

as N — oo for any k > 1 and any distinct By, ..., B, € F,[t] in the large field case g > p*k?e?,
where p = char(F,). In particular, if g = p“, then we must have a > 3 for this condition to
hold. Theorem 1.4 is somewhat orthogonal to this result in the sense that, despite being limited
to two-point correlations, it works for any non-pretentious multiplicative functions, unlike the
theorem in [31] which is specific to the M6bius function, and Theorem 1.4 works in any finite
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field Fy, which will be important for us. We also point out that the one-point case (f, =1)
of Theorem 1.4 is (a logarithmic version of) Halasz’s theorem in function fields, proved by
Granville, Harper and Soundararajan in [9].

In a different direction, when N is fixed and g — oo, Gorodetsky and Sawin [8, Theorem
3] obtained cancellation in two-point correlations g™V ¥ My a(G)B(G + B), where a and
B are factorization functions; in the g-limit this yields cancellation for the unweighted sums
g Ny My uw(G)u(G + B), for example (see [8, Theorem 2] for the precise statement).

Finally, we describe a short application of our results on Elliott’s conjecture to the function
field analog of a question of Kétai. Katai [16] conjectured in 1983 that if f : N — S! is completely
multiplicative and the consecutive values of f are close to each other on average, in the sense
that

D 1f(n+1) = f(n)] = o(x), (6)

n<x

then f(n) = n' for some real number ¢. This was proved in [20] by the first author. Later, the
result was generalized by Kétai and Phong [17] who proved that if f,g: N — S! are completely
multiplicative and

D lg@@n +1) = zf(m)| = o(x) )

n<x

for some complex number z, then f(n) = g(n) = n'. Since in the function field setting there are
two varieties of Archimedean characters, namely ey and short interval characters &, our classi-
fication of completely multiplicative functions satisfying (6) (and in fact more generally (7)) in
function fields takes a slightly different form.

Theorem 1.7 (Kétai’s conjecture in function fields). Let f : M — S! be completely multiplicative,
and letQ € M. Let z € S'. Suppose that

Y, 1/QG+1)+zf(G)| = o(g") ®)

GeEM N

as N — co. Then there exist 6 € [0,1) and a short interval character £ : M — U such that f(G) =
£(G)e?™194e8(G)_ Conversely, any function of this form satisfies (8) for some z.

The proof we give for this result is different” in various aspects from the proof in the integer
setting in [20], and could be translated to produce a new proof of Katai’s result over the integers.

1.1 | Proofideas

The proof of Matomiki and Radziwilt [27] in the integer setting uses harmonic analysis methods
that do not translate directly to function fields. In particular, the characters that control the short

TWhile the method of proof in [20, Section 5] could in principle be adapted to the function field setting, it would require a
function field derivation of binary correlation formulas for multiplicative functions, as in [20, Corollary 3.4], which would
likely lengthen this paper even further.
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sum behavior in function fields are not the Archimedean characters n'’ as in the integer setting,
but rather the short interval characters from Definition 1.3. For our result on the variance in
arithmetic progressions, in turn, the set of characters that control it are the Dirichlet characters.
Thus, in order to deal with both theorems simultaneously, we study character sums weighted by
f of the form

Y FOXGEG), )

GeEMy

where y is a Dirichlet character and & is a short interval character. Products of Dirichlet characters
and short interval characters are called Hayes characters (the same terminology is used in [7] and
stems from the fact that Hayes introduced these characters in [12]). Roughly speaking, we are
able to follow the proof strategy of [23] with this set of characters rather than Dirichlet characters
alone. In [23], however, our results only applied to characters whose modulus lies outside a
small set of exceptional moduli, because of our incomplete understanding of zero-free regions for
Dirichlet L-functions. In the function field setting, however, we can make use of a consequence
of Weil’s Riemann hypothesis due to Rhin [30] that shows that the L-functions corresponding to
Hayes characters satisfy GRH, which implies that there are no exceptional moduli in this setting.

We gain some information in passing from the physical to the Fourier space versions of the
problem by applying an involution (which we learned from the work of Keating and Rudnick [18,
19] and which appears earlier in the work of Hayes [12, e.g., pp. 115-116]) that relates short interval
sums to sums over arithmetic progressions, that is,

> J@- ¥ re.
deg(G)=N deg(G)=N
Gely(Gy) G=A(G,) mod tN—H+1

where A(G,) is a residue class modulo tN~H*1 determined by G, and f* is a kind of dual to f
under the correspondence,’ see Section 3.3 for further details (as well as [18, Section 5] for a nice
exposition of this idea). For example, this allows us to gain some insight, in the case that g is even
in Theorem 1.1, about the nature of the main term in the variance.

For proving our two-point Elliott result, we in fact need a generalized version of our Matomaki-
Radziwilt theorem in function fields, where we twist the multiplicative function by an additive
character, thus looking at the short exponential sum

Y f(Gep(aG) (10)

GeMpynIy(Gy)

for almost all G, (see Section 2 for the relevant notation). This exponential sum is analyzed by
adapting the approach of Matoméki-Radziwitt-Tao from [29] to function fields (see Theorem 7.1).
In particular, this involves performing the circle method in function fields, which is perhaps of
independent interest.

To complete the proof, we develop a version of Tao’s entropy decrement argument from [33,
section 3] that allows us to express the two-point correlation as a two-variable correlation. By a bit
of Fourier analysis, we can reduce the necessary estimate for this two-variable correlation sum to
the estimate for (10) that we proved.

¥ Strictly speaking, one needs to restrict to G with G(0) = 1 for this to work.
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‘We use our correlation results in the proof of Theorem 1.7 in order to reduce our classification
of functions f to functions that are pretentious to a Hayes character y&ey. We eschew the need
for correlation formulas, as found in [20], by instead appealing to a concentration inequality that
forces f Ee_@ to be close to 1 along structured sequences of polynomials. A judicious construction
of such sequences leads to Theorem 1.7.

1.2 | Structure of the paper

The paper is organized as follows. In Section 3, we present some preliminary lemmas on the
pretentious distance, the involution mentioned above, and Hayes characters. In Section 4, we
introduce the remaining relevant preliminaries relating especially to mean square and pointwise
estimates for character sums that will be needed in the proofs of Theorems 1.2, 6.1, and 1.4. In
Section 5, we prove Theorem 1.2 using these lemmas. The proof of the Matomiki-Radziwilt theo-
rem (Theorem 1.1) proceeds completely analogously and is described in Section 6. In Section 7, we
establish cancellation in exponential sums over short intervals weighted by any non-pretentious
multiplicative function. Finally, in Section 8, we adapt the entropy decrement argument of [33]
to the function field setting and apply the short exponential sum estimate for multiplicative
functions from Section 7 to establish Theorem 1.4. Section 9 is then devoted to the proof of our
application, Theorem 1.7, on Katai’s conjecture.

2 | NOTATION

Throughout the paper, p is the characteristic of Fj, and g = p¥ for some k > 1.

We denote by M the set of monic polynomials in F,[¢] (we do not denote g dependence in
M, since it will always be clear from the context), and P the set of monic irreducible (prime)
polynomials in Fq [t]. For N € N, we write My, My, and M_y to denote, respectively, the set of
monic polynomials of degree exactly N, less than or equal N, and strictly less than N. Analogously,
we define Py, Py, and P_y to be the corresponding sets of monic irreducible polynomials. We
denote the degree of M € F[¢] by deg(M).

Given two polynomials F,G € M, not both zero, we define their greatest common divisor
(F,G) as the unique polynomial D € M such that D | F,D | G and such that for any D’ € M
satisfying D’ | F,D’ | G we have D' | D. The least common multiple [F,G] of F and G is in turn
defined by [F,G] := FG/(F,G).

Typically, G will be used to denote an element of M, whereas R or P denotes an element of P
and M denotes an element of F¢[¢], monic or otherwise.

Given two polynomials G, G € M and a parameter H > 1, we write

I4(Gy) 1= {G € M: deg(G — G,) < H}

to denote the short interval centered at G, of size H.

As usual, given ¢ € R, we write e(t) := e*™*. Given a parameter 0 € [0,1] and a polynomial
G e [Fq[t], we also write eg(G) := e(6deg(G)). Finally, given an element o € K, (t) (see Section 7)
with formal Laurent series a = ZIZN a_k(cx)t_k, we define ep(a) := e(tr[Fq /F, a_,(a)/p), where
tr[Fq /F, denotes the usual field trace. We also define () := g~V.
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Throughout the paper, we write U :={z € C: |z| <1} and S' :={z € U: |z| = 1}. We say
that f : M — C is multiplicative if f(G,;G,) = f(G,)f(G,) whenever G;, G, are coprime. Given
multiplicative functions f, g : M — U, we define the pretentious distance between them by

1/2

D(f,g:N) :=| D, g D1 - Re(f(PYgP)| (1)

PEP_y

and define D(f, g; M, N) similarly, but with the summation being over P € Py \ Pg,,. We also
set

. . . 2
Dy(N) := oIin D(f,eg; N)~.

Given a monic polynomial G € M with G(0) = 1, we put G*(t) := t98G(1/t) (see Sec-
tion 3.3 for further discussion). For a multiplicative function f : M — U, we define the associated
multiplicative function f*: M — U as f*(G) := f(G*), whenever G(0) =1, and set f*(G) =
0 otherwise.

Given a Dirichlet character y modulo Q (defined above), we define its conductor’ as
cond(y) := deg(Q’) if Q' | Q is such that y(M) agrees with a primitive Dirichlet character
x' mod Q' for all M coprime to Q. In this case, we say that x” induces y. We write X, to denote
the set of Dirichlet characters modulo Q.

A Hayes character is a character of the form ¥ = 9§, where 3, is a Dirichlet character to
modulus Q induced by a primitive character to some modulus Q" and &, is a length v short interval
character for some v > 0 (in Section 3 we first give a different definition and then note that it is
equivalent to this one). We define the conductor of ¥ by condy(¥) := deg(Q’) + v. We say that
is non-principal if condy; (¥) > 0. We further say that ¥’ induces ¥ if ' = y'¢’' and y = y¢&, with
the Dirichlet character x” inducing y and £’ = §. We also write &, ,, to denote the collection of
Hayes characters of the form 3£, where 1 has modulus Q and § has length v. See Section 3.4
for further discussion.

We will sometimes write y; to denote the set of roots of unity of order k, where k € N.

The functions A, w, 4, u, ¢, rad, and vp, defined on M, are the analogs of the corresponding
arithmetic functions in the number field setting. Thus,

* A(G) = deg(P) if G = P for some k > 1 and P € P, and A(G) = 0 otherwise.

* w(G) is the number of distinct irreducible divisors of G.

* 1: M — {-1,+1}is the completely multiplicative function with A(P) = —1 for all P € P.

* u: M= {=1,0,+1}is given by u(G) = (—=1)“(@ for G not divisible by P2 for any P € P, and
u(G) = 0 otherwise.

* ¢(G) is the size of the finite multiplicative group ([Fq[t] / G[Fq[t])x.

* rad(G) = 1if G =1 and rad(G) = P; - Py if Py, ..., P} are the distinct irreducible factors of G.

* vp(G), for P € P, is the largest integer k such that P | G.

T This is strictly speaking an abuse of notation/terminology, as the conductor of a function field Dirichlet character y ought
to be a polynomial of least degree that is a period for y. Here, we use it as an integer-valued measure of complexity of the
character, which will be convenient for us in various estimates in the sequel.
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Throughout this paper, the cardinality g of the underlying finite field [ is fixed. For the sake
of convenience, we have chosen to omit mention of dependencies of implicit constants in our
estimates on q. In particular, the implicit constants in any estimate may depend on g throughout
this paper.

3 | PRELIMINARIES I: MULTIPLICATIVE FUNCTIONS AND HAYES
CHARACTERS

In this section, we establish some auxiliary lemmas, specifically related to multiplicative func-
tions, that will be necessary in the proofs of Theorems 1.1 and 1.4. Recall the definition of Hayes
characters from Section 2.

3.1 | Lemmas on character sums

When working over F[t], we have the generalized Riemann hypothesis at our disposal, arising
from an application of Weil’s Riemann hypothesis for curves over finite fields (see [39, p. 134]).

Lemma 3.1 (Rhin). Let N > 1. Let ¥ be a non-principal Hayes character. Then,

2, Z(GAG) < condy (g2, (12)
GeEMy

Proof. This is [30, Theorem 3]. O
A useful corollary of Lemma 3.1 is the following.

Lemma 3.2 (A pretentious distance bound). Let N > 3, A > 1. Let ¥ be a non-principal Hayes
character of conductor condy(¥) < N A Then,

max 7(P)egs(P)g~ 8P| <« , loglog N.
max PEZP'iNx 6(P)g 4 loglog

Proof. Splitting the sum according to degree, then separating the contribution of deg(P) <
10Alog N from its complement, we get

Y x(P)eg(P)g—iee®

PeEP N

= Y e0dg Y @)+ Y ed)g? Y q(P)=:T, +T,.

d<10Alog N PePy 10Alog N<d<N PePy

T Even though GRH is useful for us in certain parts of our arguments, specifically Lemmas 3.2 and 3.3, we emphasize
that it is not the main driving force behind the proofs of our results. As noted implicitly in [27] and explicitly in [23],
obtaining non-trivial bounds on the variance in short intervals and arithmetic progressions, respectively, in the integer
setting only requires the existence of sufficiently wide zero-free regions, for example, of Korobov-Vinogradov type, for
Dirichlet L-functions to the left of Re(s) = 1 (and for L-functions of Hayes characters in our setting).
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We bound the first sum trivially using the prime polynomial theorem, yielding

< Y i< Y é:loglogN+OA(1).
d<10Alog N d<10Alog N

We now consider T,. Replacing ). Pep, X(P)by X e My ¥(G)A(G)/d in the inner sum over primes
in T, incurs an error of size O(Y 4y ¢~%/%) = O(1) from terms P¥ with k > 2. This sum can thus
be expressed as

T,= ) e(e? > AG)H(G) +0(D).

10AlogN<d<N 99" gemy

By Lemma 3.1, we can bound this as

1 g N4
IT.I< Y =] X AGXG)|+00) < — +0(1)
dqd/?
10AlogN<d<N 29" |cemy 10AlogN<d<N 24
< NA.p73AleN 19 «q,
Combining the contributions from T; and T,, we obtain the claim. O

We will also need a bound on sums of Hayes characters over M (as opposed to P).

Lemma 3.3 (Pointwise bound for character sums over monics). Let M > N > 1. Let j be either a
non-principal Dirichlet character or a non-principal short interval character of conductor M. Then,
we have

Y 26) < g (M ‘1>. 13)

GEMYy N

Remark 3.4. This lemma will be applied in particular when M < (1 + o(1))N. For Dirichlet char-
acters, we could instead have appealed to the Pélya-Vinogradov inequality (see [15, Proposition
2.1]) to produce a sharper bound in this range, rather than applying Weil’s RH; however, a corre-
sponding result for general Hayes characters does not exist in the literature. For this reason, we
have resorted to appealing to RH instead.

Note that the same quality bound, with an essentially identical proof, appears as [6, Lemma 2.1]
in the context of Dirichlet characters; for the sake of completeness, we include the short proof of
the general case.

Proof. By the GRH for L-functions corresponding to Hayes characters [30], we can write the
L-function

Lz )= ), 76z
GeEM

as

M-1
£z =[]0 -2 (14)
Jj=1
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for some @; = a;(7) that all have modulus either 1 or q'/2. Now, the sum in question is the

coefficient of zV on the right of (14), which by Vieta’s formulas is equal to

2 I

SC[1,M—1]nN jES
|S|=N

This is trivially bounded in absolute value by g"N/2 (MA?l), which yields the claim. O

3.2 | Multiplicative functions in function fields

Let f : M — U be a one-bounded multiplicative function. Define the Dirichlet series correspond-
ing to f by

Lis,f) 1= ), D fG)g €@ = [T D f(PF)gHaeer, (15)

N>0GEMy PEP k>0

for Re(s) > 1; in this region, both expressions converge absolutely.
Recall the pretentious distance

DU, giN) i=| D q P (1= Re(f(PYg(P))

PEP N

One can show [21] that D satisfies a triangle inequality of the shape

D(f,h;N) < D(f, g;N) + D(g, h; N),

for any f, g,h : M — U multiplicative. Define also

Dy(N) := min D(f,eg; N)>.
+(N) (in (f,es:N)

The following variant of Hal4sz’s theorem then holds:

Theorem 3.5 (Halasz’s Theorem in Function Fields). Let N > 1. Let f : M — U be multiplicative.
Then,

- Y f(G) < @+ DN PV,

N
GEMy

Proof. We will reduce this to the Granville-Harper-Soundararajan formulation of Halasz’s
inequality in [9]. Define the multiplicative function f on prime powers by"

T This is technically different from the definition of f L used in [9]. However, it is always true that, in the notation there,
Apy, P) = Asi (P), and the difference lies only in values at powers P¥ with k > 2. It is easy to check, then, that |L(s, f1)]
and |L(s, fy)| differ in at most a factor of an absolute constant whenever f is one-bounded and Re(s) = 1.
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fN(Pk) = {f(Pk) lfdeg(Pk) <N

0 otherwise.

Then, [9, Corollary 1.2] (in the case ¥ = 1) shows that

— Y F@) <@+me™,

GEMy

where M := ming;)-; log(2N /|L(s, Fan)D. Now, the prime polynomial theorem gives

Z g dee® = Z q 4P, = Z q_d<%d + O(qd/z))

PEP_y d<N d<N
= Z 1 + O<z q_d/2> =logN + O(1).
d
d<N d<N

Moreover, if s, maximizes |L(s, f;)| on Re(s) = 1 and g~ = e(8)/q for some 6 € [0, 1], then
H <1 + f(P)e(@deg(P))q—deg(P) + O(Z q—kdeg(P))>
PEPy &

= Y Re(f(P)es(P)g =" + 0(1).

PEPy

log |L(so, fy)| = log

It follows that

— : F _ : —deg(P)q1 _
M—Rrerg;)gllog(zzv/|L(s,fN)|)—egllghPe%q &P)(1 — Re(f(P)es(P))) + O(1)

The claim follows immediately. [
Using Lemma 3.1, we can also show that for any N > 3, there is at most one Hayes character ¥
with cond;(¥) < N for which fo(N ) can be “small” in some sense. In what follows, we denote

X1 ~ ¥»1if ¥, and ¥, are induced by the same Hayes character, and otherwise write y; ~ ¥,.

Lemma 3.6 (Repulsion of pretentious distance). Let N > 3. Let f : M — U be multiplicative. Let
X1 * ¥, be two Hayes characters of conductors < N. Then,

max{D= (N), Dz (N)} > (i - o(1)) log N.

Proof. For each j =1,2, let 6; be an angle for which Df}j(N )=D(f, ¥ jeej;N ). Suppose first
that f is unimodular. Then, by the triangle inequality, we have

2max{D5 (N)'/%,D 5 (N)'/?} > D(f 71, ¢6,5N) + D(f 72, 6,3 N) = D(¥1, Tr€0,-0,N),  (16)
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where the unimodularity of f was used in the second inequality to write (f 71)(f%,) = ¥1%2-
Now, by definition we have

D(%1> X266,-0,;N)* =1ogN —Re| Y’ 7, 7:(P)e((6; — 6,)deg(P))g 8" [+ O(1).

PEPy

Since %, has conductor < N? and it is non-principal, Lemma 3.2 (with 6 := 0, — 6, and
X 1= X1Xy) yields

Re Z 1 72(P)e((6; — 6,)deg(P))g~98 ") [ « loglog N,
PEPy
and so it follows that

D()Zl,)ZZeQZ_QI;N)Z > log N — O(loglog N). 17)

Squaring both sides of (16), then inserting this last estimate into the result yields
1
max{D = (N). Dz (N} > <Z - o(1)) log N.

Suppose then that f is not unimodular. Define a random completely multiplicative function
f: M — S! (on some associated probability space) at irreducibles P in such a way that f(P) =
E f(P) for every irreducible P. By linearity of expectation, it follows that for any multiplicative
function g, we have

D(f, g; N)* = ED(f, g; N)*. (18)

It follows from this and (17) that for any 6 € [0, 1], we have

2max{D 5 (N), D5 (N)} > D(f 71, €65 N)* + D(f 72, €53 N)

=

> S(D(f 71, €6,;N) + D(f 72, €53 N))*

N

= LED(fZ1, 0 N) + D70 00,;N)))?

\V]

1
> (5 - o(l)) log N,
and the claim follows. O
Combining Theorem 3.5 with Lemma 3.6 immediately produces the following.

Corollary 3.7 (Sup norm estimate for weighted character sums). Let N > 3. Let f: M — U
be multiplicative. Let ¥, be the Hayes character of conductor < N that minimizes' the map

If there are several minimizers, we choose one of them arbitrarily.
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¥ Df)_E(N ). Then,

1 - —1/4+0(1)
max — G G|« N . (19)
condz (<N | g ngNf *
X*X1

Finally, we will need the following simple upper bound estimate for non-negative multiplicative
functions later in this paper (for a corresponding result about functions over the integers, see [10]).

Lemma 3.8 (Halberstam-Richert bound in function fields). Let g : M — [0, 0o) be multiplicative,
andlet N > 1. Let x > 0, and assume that for all P € P and k > 1 we have g(P) < x and g(Pk) <,
q*<4ee®) for any e > 0. Then,

1
Myl

Y 96 < (KI-I\;l) exp| Y gp)giee® |

GEMy PePy

Proof. Observe that for any G € My we have N = ¥ ,x,; kdeg(P) (where Pk || B means P¥ | B

pep
and P**1 } B), and thus
1
2 G =5 Y g(PO)g(Bkdeg(P)
GeMy PkBeMy
(P,B)=1
pepP
1 1 k
Sy X 9B X g+ D g(Pg(B)kdeg(P)
BeMy PEPN_geg(B) PkBeMy
pepP
k>2
=. @1 + @2.

Consider @, first. Bounding g(P) < x foreach P € Py_gey5) and then using the prime polynomial
theorem, we have

Z g(P)deg(P) < x Z A(G) < xgN~—dee®)

PEPN _deg(B) GEMN_deg(B)

for every B € My . Summing over such B now gives

N N
q —deg(B) q kv ,—kdeg(P)
©, xrx— z g(B)q~ ") L x— I I ( z g(P)gqe°8 .

BEMy PePoy \ik>0

1
Using the condition g(P*) < q3*%®) for k > 2, we get

Z Zg(Pk)q—kdeg(P) < z q—%deg(P) < Z q—d/z <1

PEPy k22 PEPy d<N
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Thus, rewriting the product over P € Py as an exponential, we get

IT <1 + g(P)g B + " g(PF)g " )>

PEP N k>2

< I1I (1+g<P>q-deg<P>)<1+Zg(Pk>q-kdeg<P>> <exp PZ g(P)g =) (20)

PEPy k>2 S

Inserting this into our bound for &, yields

To bound &,, we use the identity 1 = gV /qd¢&B)+kdeg() and the upper bound kdeg(P)g(P*) <«
qkdeg(P)/3 to get

N
q _ _
S, == ), 9B ED N kdeg(P)g(PF)g 4P
BEMSN PkepN—deg(B)
k=2

< % H Zg(Plf)q—t’deg(Pl) Z Z q—2kdeg(P2)/3'

P1EPN £20 k>2 P,eP

The sum over P, can be bounded by

D IPal Y e < Y P <1

d>1 le>2 d>1

Bounding the product in P, as in (20), we obtain

Combining this with the bound for &, proves the claim. 1

3.3 | Aninvolution for monic polynomials

Let G € M, and assume that (G, t) = 1. Following Keating and Rudnick (see [18, section 5]), we
define’

G*(t) 1= 198G /t).

TWe could extend this definition to other polynomials by writing G*(¢) = tY©)(G /t¥©)*, where ¥(G) denotes the order
of vanishing of G at t = 0. We could also modify the definition here when G(0) # 0 to give G* = G(0)~1t48(@G(1/t), thus
ensuring that G* is monic whenever G is; however, we will not need this variant of the involution here.
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The coefficients of G* are the same as those of G, but in reverse order. One can easily check that
when (G, t) = 1 and G(0) = 1, G* is monic and (G*)* = G. Since deg(G*) = deg(G), the *-map is
an involution on the set of monic degree N polynomials with G(0) = 1, foreach N > 1.

‘We observe, furthermore, that this involution is a multiplicative homomorphism on M. Indeed,
if (FG,t) =1, then

(FG)“(t) = t48FOFG/t) = t98IF1 /1) - 198D G(1 /1) = F*()G*(1).

In light of this, we can define a corresponding involution on the space of multiplicative functions.
That is, suppose that f : M — U is multiplicative. We define a map f — f* via f*(G) := f(G*)
for all (G, t) = 1 with G(0) = 1, and f*(¢t¥) = 0 for k > 1. Under a suitable extension of f to [Fq[t]
(which we are free to choose, given that f is only defined on M by assumption), we may define
f*(G) at all monic G irrespective of the condition G(0) = 1. Then, f* acts as a multiplicative
function on M, and if g : M — U is a second such multiplicative function, then (fg)* = f*g*.

The next result, which is essentially contained in [18], shows that the *-operation maps short
intervals to arithmetic progressions modulo a power of ¢.

Lemma3.9. Let 1 < H < N and G, € My. There is a reduced residue class A modulo tN=H*1 for
which we have a bijection

{G € My : G €Iy(Gy),(G,t) =1} < {deg(F) = N: F = Amod t""* F(0) = 1};

the bijection is furnished by the map G — G*. Moreover, the class A = A(G,) depends at most on the
first N — H coefficients of G, after the leading coefficient.

Proof. This is implied by [18, Lemma 5.1], using the fact that I;(G,) = I;(t" G(’)) whenever
deg(G, — tG}) < H. O

The following lemma shows how the pretentious distance is affected by replacing a multiplica-
tive function f (whose behavior on [Fg is fixed) by its involution f*. In the following, we fix a
generator p for [FqX and write v, to be the minimal non-negative integer such that p”c = ¢ whenever
c eFx.

q

Lemma 3.10. Let{ € Mqg—1 and let 1 F,[t] — U be a multiplicative function. Extend f to F[t]
so that f(cF) = ¥ f(F) forallc € [F;. Let x be a Dirichlet character modulo t™, for M > 1. Then,
there is a character £ = £(¢, x) modulo t such that for any N > 1 we have

ngf(N) = Dj7(N) + O(1).

Moreover, if ¢ = y*(p) then & = 1.

Remark 3.11. Note that even though we are only concerned with the values of f on M, in order
to define f* we need to choose an extension of f to [FZ;.

Proof. We claim first that there is a unique character £ modulo ¢ such that " (c)¢?£(c) = 1. To see
this, note first that y*(1) = y(1) = 1, so that y*(p) € Mg—1- The group of characters mod ¢ may be
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identified with that of [Ff; via the isomorphism (F,[¢]/(¢F4[t]))* = [F;, so thereisa £ modulo ¢ such

that £(p) = ¢ xy*(p). Extending by complete multiplicativity, we obtain £(c) = y*(c){ " for all
¢ € FX. Moreover, if there is a second such character £’ modulo ¢, then we must have &£'(p) = £(p),
and thus &’ = £, as required.

We select & to be the character modulo ¢ determined above. Let 6, € [0,1] be fixed. We
will show that D(f™, xeg ; N) = D(f§, x*eg ; N) + O(1). By minimizing over 6, we deduce the
claimed estimate.

First, note thatif R € P, R # t, then R* /R(0) € P. For if R* = AB with deg(A)deg(B) > 0, then
as (R*,t) = 1 we have R = A*B*, with deg(A*)deg(B*) = deg(A)deg(B) > 0, a contradiction to
irreduciblity. In particular, for each ¢ € [FZ; and d > 2, we have a bijection

{ReP;: RO)=c} < {R €Py: R(0)=c"1},
implied by the map R = R’ := R*/R(0). Thus, we have
D(f*, x¢s,;N)* =logN —Re| > g e(=6,d) ), Y f*®F®R)|+0Q)

2<d<N ceFX REPy
9 R(0)=c

=logN —Re| )| gle(-6,d) D, D f(R)x"(cR)|+0Q).
2<d<N ceFX Rery
R!(0)=c~1

Since R’(0) = ¢ 1iff R” = ¢! (mod t), we get

1R’(O):c*1=$ Y HEFR),

& (mod t)
and thus for each 2 < d < N we obtain
—k 1 —k —k
> Y feRHX(eR) = ol YD T @@ Y fRYER)Y R
ce[F?; R'epry ¢ & (mod t) cefFf; R'eP,

R/ (0)=c—1

= Y fRERY R,

R'eP,
where £ is the character modulo ¢ constructed earlier. It follows then that

D(f*, xeg,;N)* =logN —Re| Y g %e(=6,d) Y, fFRDER)T'(R)|+0)
2<d<N RePy

= D(f¢, x"eg,; N)* + O(),

proving the first claim.
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For the second, note that if y*(p) = ¢, then by construction we have £(p) = 1, and thus & is
trivial modulo ¢, as required. O

3.4 | Hayes characters

We introduce here the following notation. Let F, G € I, [t]with G # 0,and consider F /G € Fq ().
When G is a power of ¢ this rational function admits a finite Laurent polynomial representation

(in1/t)

F/G)0)= Y, a7,

Jj=my

where m; < m, are integers and a,, # 0. We then set (F/G) :=q~"™. We note that the map
(-) satisfies the ultrametric inequality (f; — f,) < max{({f;), (f,)}, with equality if (f;) # (f>),
whenever f,, f, € F,(t) have finite Laurent polynomial representations (in Section 7 we will
extend this notation to all of [Fq(t)).

Let v > 1 and M € M. We define a relation Ry, 00 M as follows: If A, B € M, then we say
that

A =Bmod Ry, if, and only if, A = B mod M and <At‘deg(A) - Bt‘deg(B)> <q.

This latter condition says that the leading v + 1 coefficients of A and B are the same; In the
particular case where A, B € My for some N, it is equivalent to deg(A — B) < N — v.

It turns out that this defines an equivalence relation, and quotienting M by this relation yields
a monoid whose multiplicative group of invertible elements is abelian. It thus admits a set of
characters, which we call Hayes characters. We will denote by X, ,, the collection of all Hayes
characters associated with the pair (M, v). A Hayes character ¥ is characterized by the property
that it is constant on sets of the form

{GeEM: G=CmodM}In{G e M: <Gt‘deg(G) - Dt‘dEg(D)> <q™},

where C is a reduced residue class modulo M, and D € M,. Any Hayes character in X, can
be uniquely decomposed as a product ,,&,,, where 9,, is a Dirichlet character modulo M, and §,
is a short interval character of length len(§,) : = v, that is, for £ = v the multiplicative function &,
fixes the set {G € My : (Gt~9¢8(@) — pt=deeD)y < g=*} for all D, and the same does not hold for
any Z < v (see,e.g., [12, Theorem 8.6]). Thus, this definition agrees with Definition 1.3. We say that
X € Xy, is primitive if 1, is primitive and v > 0, and imprimitive otherwise. Likewise, a Hayes
character is non-principal if it is either non-principal in the Dirichlet character aspect or if the
length of its short interval character is non-zero. We define the Hayes conductor of y = p§ € X,
by condy(y) := cond(y) + len(§) := deg(M) + v.
The group X, , has size $(M)q”, and the orthogonality relations are given by

1 —_— =
SODT AngMy H(ATA) =155 1)
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and

1 ~ AN DN .
00T X% T(AZ(B) = Lizp mod Ry, (22)

these are proved in [12].
An important fact about the relationship between Hayes characters and the *-involution from
the previous subsection is the following.

Lemma 3.12. Letn > 2 and k > 2. Let y be a Dirichlet character modulo tk. Then, there is a short
interval character ¥ of length k — 1 such that y*(G) = ¥(G) for all G coprime to t. Moreover, if y is
non-principal, then 3 is also non-principal.

Proof. 1t is enough to show that if G, G, € F[t] satisfy (G,G,,t) = 1 and are close to each other
in the sense that (G, t~9¢(G1) — G,t=98(G2)y < g~k then y*(G,) = x*(G,).

Without loss of generality suppose that m, := deg(G,;) > deg(G,) =: m,. Then, we can write
G, =t™™"™G, + M, where r := deg(M) < m; — k. Writing G,(t) = ZOsjsmz b;t/ and M(t) =
Yo<j<r ajt! (with agh,, # 0 by assumption) we find

G =< > bumpt + ) ajt])
my

—my<jsmy osj<r

=fm1< > buympt T+ Zaﬂ_])
ml—

my<j<my o<j<r
_ sy —r Jj I — 1 my—r
=t N gt + Y by, yt'= Y b, gt mod ™
ogjsr o<glsm, o<glsm,

=G, mod ™" = G mod £k,
since k < my —r. Thus, x*(G,) — x*(G,) = x(G;}) — x(G3) = 0, as claimed.

For the second claim, if ) were principal, then y(G*) =1 for all (G*,t) = 1. The set {G €
[Fq[t] : G(0) # 0} is invariant under the involution, so this would imply that y(G) = 1 whenever
G(0) # 0; butsince y(G) = 0 whenever G(0) = 0, this implies that ¥(G) = 1(5 )1, which implies
that y is principal, and the claim follows. O

Remark 3.13. Note that if y is a character modulo t¥, then the previous lemma does not prescribe
avalue for y*(t). However, in keeping with our convention f*(¢) = 0 for multiplicative functions
f, we shall set y*(¢) = 0. In any case, this particular definition will play no significant role in
the sequel.

We shall distinguish between the following notions of non-pretentiousness.

Definition 3.14. Let N > 1. Let f: M — U be multiplicative. We say that f is Hayes
non-pretentious to level W = W(N) if,as N - oo,
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min min min D ,—(N) — oo.
w<W pmodM Eshort JX§
MeM,, len(§)KN

We say that f is Dirichlet non-pretentious to level W = W(N) if, as N — oo,

min min D(N) — oo.
w<W ¥ mod M fX( )
MeM,,

An immediate corollary of Lemma 3.12 relating to Hayes non-pretentiousness (and utilized in
Section 7) is the following.

Corollary 3.15 (Hayes non-pretentiousness implies Dirichlet non-pretentiousness of dual). Let
N > 1 andletW = W(N) < N. Let f : F[t] — Ube multiplicative and even, that is, f(cG) = f(G)
forallc [Ff;. Then,

min min D, -(N)< min min  min D,y (N) + O(1).
¥ mod M & short f¢§( )\MeMsW(N) % mod M y mod ) )(( ) (D
MEM w41 len(§)KN 1<v<N

In particular, if f is Hayes non-pretentious to level W' := W + 1, then

lim  min min D¢y (N) = oo.
N—oco PpmodM y modt” (f¢)*)(( )
MEMsW(N) 1<v<N

Proof. Let N be large and let ) mod M with deg(M) < W(N) and y mod t” with 1 <v < N be
chosen such that

Dy (N) = min min min D —(N).
N = IR e TR Dy )

1<V'<N

Since f is even and §(c) € pu,_, forallc € [F;(, we may apply Lemma 3.10 to conclude that there
is a character £ mod ¢, depending on 1 and y, such that

By Lemma 3.12, y* coincides with a short interval character of length v — 1 at all primes P # ¢, so
that & y* coincides at all P € P\{t} with a Hayes character whose Dirichlet part has conductor <
deg(Mt) < W(N) + 1 and whose short interval character part has conductor at most N. It follows
then that

i i i — < — < w .
MEEIWH(N)H ,in, gr&lélrt D (N) S Dyypn(N) + O(1) < Dipyyz(N) +0(1)
len(§)<N

This implies the first claim. The second claim follows upon taking N — oo and using the definition
of Hayes non-pretentiousness. [l
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4 | PRELIMINARIES II: CHARACTER SUMS AND SIEVE ESTIMATES

Beginning in this section, we set out to prove (a generalization of) Theorem 1.1, as well as Theo-
rem 1.4. We collect together the main general results we shall use for this purpose. Most of these
are simple translations of the corresponding result in the number field setting, but we have not
managed to locate such translations in the literature.

Remark 4.1. For brevity and to simplify notation, all of the lemmas below are stated for sums of
Dirichlet characters, but as we will note in Section 6, all of them work equally well if y mod Q
is replaced with y € &, , (i.e., we are summing over short interval characters of length v), and
deg(Q) is replaced with v and ¢(Q) is replaced with q”.

4.1 | Large sieve estimates in function fields

Lemma 4.2 (L2 Mean Value Theorem). Let N > 1. Let {aglge My €C and let Q € M. Then,

2

Y | X aax@| <2(¢@d* Q0 +4@Q) Y, lagl
x mod Q |GEMy GeMy
(G.Q=1

Remark 4.3. The short interval analog of this lemma reads as

2

gefvl,v

2

<2(q”qN_”+qV) Z |aG|2'
GeMy

Z a:§(G)

GeEMy

All the lemmas that follow in this section have short interval formulations in a completely
analogous fashion.

Proof. Denote the left-hand side by X. Expanding the square and swapping orders of summation
yields

T= Y ey Y, x@X@)=¢@| Y lacl’+ Y agag|
G,G'eMy x mod Q GeMy G.G'eMy
(G,Q)=1 G=G' mod Q
G#G' (GG’ ,Q)=1

Bounding the second sum trivially, using the AM-GM inequality in the form |agas/ | < %(laG 12 +
lag|?) and invoking symmetry in G and G’, we get

I<HQ Y lagl|1+ Y 1.
GEMN G’GMN
(G.Q)=1 Q|(G'=G)
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Since deg(G’ — G) < N for each G € My, and the number of polynomials in My divisible by Q
is precisely | Moy _geg()| < 2¢" €@, it follows that

2 < ($Q+ $QIMavtegior) Y, lagl’ <2($Q@ +¢@7" @) Y jagP,

GeEMy GeMy
G.Q=1 G.Q)=1

as claimed. O

Lemma 4.4 (Haldasz-Montgomery Lemma). Let N > 1. Let {ag}sc My €C and let Q € M,
deg(Q) < (1 + o(1))N. Let E C Xy,. Then,

2
Y| Y ax©)| < (#@g" Q) 4 [2]g1/2ON) B g,
XEE GEMN (C(;;Eé/\)/tN
,0)=1

Proof. We may obviously assume that E # J, since otherwise the claim is trivial. Moreover, by
duality (see, e.g., [27, Lemma 10]), it suffices to show that for any set of coefficients {c = CC,
we have

X}XG

2
< ($Q@¥ @ + |2]g"eD/2) F e, 2

XEE

>

GEMy

Y ¢, x(G)

XEE

Expanding the square in the left-hand side and swapping the order of summations, we get

Z c)m% Z X122(G).

X1 02€E GeMy
The diagonal contribution with y; = y, yields

1{G € My : (G,Q) =1} z e, > < $(Q)gN e @ Z e, I

XEE XEE

When y; # x,, X1X- iS non-principal, so by Lemma 3.3 we have

vl 1/2 1))N
Yoyl D nxa@)] <t ON N e e, .
X1:X2€E GEMyN X1:X2€E
X1#X2 X1#X2

Applying AM-GM as in the proof of the previous lemma, the sum above is bounded by
2] Y yeE lc, |2. Putting everything together, this proves the claim. O

Lemma 4.5 (Haldsz-Montgomery Lemma for Primes). Let N > 1. Let {aP}PepN cCandletQ €
M. Forany B C XQ, we have

2

<qN qN/z Z 5
< | 7 +deg(Q) IEI) lapl”.
N N PePy

)

XEE

2 apx(P)

PEPy
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Proof. We apply duality, as in the proof of Lemma 4.4. Given a sequence {c
lgep, < N7'A(G) to obtain

+}yez C C, we bound

2

A(G)
< XN

GEMy

2

2

PEPy

Y e x(G)

XEE

Y ey x(P)

XEE

1 -_— —
=5 2 % X MOnTG).
X1,X2€8 GEMy

When y; = yx,, the prime polynomial theorem gives ) My A(G) < gV, whence the diagonal
. . N 2

contribution to the sum becomes (g" /N) ). yez leyl”

When y; # x,, we may apply Lemma 3.1 to give

Y, MG X(G) < deg(Q)g™2.
GeEMy

It follows that

D ey lley,l

XI’XZEE
X17FX2

PR F2(E)

GEMy

< deg(Q)q"?IB] Y Ie, %,

XEE

upon applying AM-GM and using symmetry, as before.
Combined with the diagonal contribution, we get

? gV gN/? ,
2| 2 ex®) < (V +deg(@Q |a|> 2 lel.
€Py | XEE XEE
Invoking duality as discussed above, the claim follows. O

Lemma 4.6 (A large values estimate). Let N, Z > 1. Let{aP}PepN C U, andlet Q € M, with $(Q) >

q". Then,
1 1
. — > =

log(g™ 21 2
- 0g(q™¢(Q)) 210g (218 IR og (222))).
Nloggq Nloggq N
Proof. The proof is essentially the same as in the number fields case [27, Lemma 8]. Let k :=

L%J + 1. Let V' denote the cardinality of the set of characters on the left-hand side. By

Chebyshev’s inequality, we have

Z apx(P)

PEPy

2k 2

(&) 2

x mod Q

V< 7 2k
B <_> Z Z aPX(P)

x mod Q |PEPy

k
< Z aPX(P)>
PEPy
2

, (23)

“(2) 3|3 o

x mod Q [GEMN
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where we have defined

bG = apl "apk.
Py-P =G
PPy Vj
Applying Lemma 4.2, we get
2
Y| Y bex@| < (#@+gN) Y bl
x mod Q [GEMN GEMyN
kN T
<<q Z apl cee aPkan “ee an,
PyPp=Q, - Qy
P;Q;€Py

according to our choice of k. Since the P; and Q; are irreducible, up to permutation we have
P; = Q; forall 1 <i <k, and thus by the prime polynomial theorem

k
aPl vee aPkaQ1 cee an < (k')2< z |G,P|2> < (k')z(lqu/N)k
PyP=0Q,-Qy PePy

Pi,Q;€Py

Inserting this into our mean value estimate, we get that

2%k .
q2N

< <—> 1.1K(k1)2.
N

)

x mod Q

Z apx(P)

PEPy

Combining this with (23) and using log k! < klogk for k > 2, we find that

N < LIFKDA(Z2/NYF < exp ((1 + %) <210g <211\]“1g ¢(Q)> + log(22? /N))).

This implies the claim. O

Lemma 4.7 (A moment computation). Let 1 < d < m < N. Let {aP}Pepd, {bG}GeMN_m C U. Set

UQx) = dIP | 27;‘1 apx(P),
1
14 bsx(G).
00 = 75— mlceg;v_m c1(6)

Set ¢ := [m/d]. Then, for any Q € M, we have

Y WG VR < ($(Qg7™ +$(Qg @ ) 7.

x mod Q
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Proof. This is similar to [27, Lemma 13]. Expanding out the product for each y, we have

1
UV = e Y XD ¥ ap e ap b |
| d| |MN_"”|M€MN_m+m GPy--Pp=M
PiEPy Vj

We denote by g(M) the bracketed sum on the right-hand side. Taking squares, summing over
x mod Q, and then applying Lemma 4.2 (and the prime polynomial theorem) yields

> UG VP < $Q)(1+ g -oes@-med) : > lgnP

20 2 2
xmod Q NP IMN-ml* Me Ny

‘
< ($@a +9@q @) L — P P

|MN—m+fd| MEMN—m+t’d
Now, by the triangle inequality we can bound g as

lgdDI< Y 1< EDL = y(M) =: (£DFM),
GPy--Py=M
P;EP4Yj

where ¥ is the indicator function of monic polynomials all of whose prime factors belong to P;;
note that on prime powers, g(P¥) =1 + k1p, (P), which is <, qkdeg®) for any ¢ > 0 and k > 1,
and g(P) < 2 for all irreducibles P. We may thus apply Lemma 3.8 to get that

1 ~ 1 ~ _
M « —————exp| ), G(PyqiE?

_— ex
| My—mear | MEMy_miea N-m+7d PEP(N—m+¢d

< exp ( Z 22— l)q_deg(P)> <1

Pep,

Inserting this into the above estimate, we get

Y W VP < ($Q@q™ +¢(Qq @),

x mod Q

as claimed. O

4.2 | Sieve bounds in function fields

Our next result shows that most monics have irreducible factors whose degrees belong to
prescribed ranges, provided these ranges are large enough.
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182 | KLURMAN ET AL.

Lemma 4.8. Let P < Q. Then,

{G € My : R € P such that R|G = deg(R) ¢ [P, Q]}| <« gqN.

Proof. Let g denote the indicator function for the set on the left-hand side. Then,0 < g < 1and g
is multiplicative. By Lemma 3.8, the left-hand side is

N
- - p
z 9(G) < £ exp 2 g4 <gVexp| - 2 g YPl ) < =4V,
G N Q
EMy RePy P<d<Q
deg(R)¢[P.Q]
as claimed. O

Definition 4.9. LetJ > 1,andletP :={P j}ls jandQ = {Q j}1< j<s be collections of parameters
satisfying Pj<Pj,1,Q; <Qjy1, and P;<Q; for all j. We define the set Sp o(N) by

Spo :={GEM: V1L ]<JEIde[Pj,Qj],RePdsuchthatRlG}.
If J = 1 then, for convenience, we write Sp 5 = Sp o-

‘We will be able to restrict character-twisted sums over monic polynomials to monics belonging
to sets of the form Sp o(N), on average.

Lemma4.10. LetN > 1, andletQ € Mwithdeg(Q) < N. Let E C X, be a set of characters modulo
Q, and let f : M — U be multiplicative. Then,

2
2

1

2

XEE

Y, fGx(G)

| Nl GEMy

Mol Z FG)x(G)| + p(Q)g~9e@ Z

XEE GeMy 1<j<J QJ

Proof. Givenamap g : F,[t] — C,setM (N) := IM | EGeMN 9(G). For each y mod M, we have
IM (N> < 2M g, NI* + 2|Mf715;,0 (NI

Summing the first of these terms over y € E gives the first term in the estimate. Summing the
second term over y and applying Lemma 4.2 gives

2 ”""f;asfw(N)I2 < ) |Mf%15f)(2(N)|2 < ¢(Q)(qN—deg(Q) N 1)

XEE ’ x mod Q
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By the union bound and Lemma 4.8, we have

L > 1<) L {G € My : R € P,R|G = deg(R) & [P}, Q; ]}

| Ml GEMy 1< Myl
G¢&Spo
P.
< L
1<j<J QJ
This implies the claim. ]

We will also need the following estimate for smooth (otherwise known as friable) polynomials,
that is, polynomials with no irreducible factors of large degree. For 1 < M < N, we write

S(N,M) :={G € My : Re PandR|G = deg(R) < M}.
Lemma 4.11. Let 1 < M < N. Then, for some absolute constant ¢ > 0 we have
SN, M)| < gV exp(—cN/M).
Proof. This follows from [37]. O

Lemma 4.12 (Selberg upper bound sieve in function fields). Let 1 <y < z,H < N and let A C
My. Put

B.= ] @

QEP;\Pgy

Suppose g is a multiplicative function supported on squarefree monic polynomials such that for each
D € M squarefree with D € My,

Z 1= g(D)|A| +rp(A). (24)

GeA
DIG

Put] =J(H) =3 pip,, HRTP g(R)/(1 = g(R)). Then,

deg(D)<H
Y i<lAaT + Y DA,
GeA deg(D)<H
(G, By 2)=1

where 7;(D) = Y apcem L.
ABC=D

Proof. This follows from [38, Theorem 1] (take P := P, \P, and D :={D € D: deg(D) < H},
which is divisor closed, as needed according to the hypotheses there). 1

‘We have the following useful corollary.
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184 | KLURMAN ET AL.

Corollary 4.13 (Additive energy of irreducible polynomials). Let H > 1. If M € F[t] has
deg(M) < H, then

[{(P,,P,,P;,P,) € P}, Py +P,—P; —P, = M}| < ¢*"' /H".

Proof. We begin by considering the case M = 0. Given G € F[¢] of degree H, let r(G) denote
the number of representations of G as a sum of two irreducible polynomials of degree < H. Note
that if ¢ = 2, then r(G) > 0 only when deg(G) < H; otherwise, if ¢ > 2, then r(G) > 0 only when
deg(G) = H. We thus have

S - 3 e
Py,Py,P3,P4€PY deg(G)<H
P,+P,=P;+P,

Letz :=H/2,y=1and P, :=P, , = HPGPSZ\P@ P as in the previous lemma. We then have

< Y 1= ),

MeMy FeA
(M(G—M),3B,)=1 (F,B,)=1
G—MEMH

where A ={B(G —B): B € My}N M,y; as A and My are in bijection with one another, we
have |A| = M| < g'.
Note that for D|*B, with deg(D) < H

D 1= g(D)|Myl,
FeA
D|F

where g is the multiplicative function supported on squarefree polynomials and defined at irre-
ducibles via g(P) = 2q~98P) if P } G and g(P) = q~9¢¢P) otherwise; note that g(P) < 1/2 for all
P|B, and all q > 2, since such P must have deg(P) > 2. By Lemma 4.12, we deduce

-1 -1
H g(P) H
Z l1kq Z Hl——® <q Z 9(D) — Z 9(D)
Fed pp, Pp- Y DI'B, D|p,
(F.P)=1 deg(D)<H deg(D)>H

Note that the full bracketed sum over D|3, has order of magnitude

= H 1+ g(R)) < exp|2 Z gdee®) _ Z gdes® | < $(G) 2

deg(G)” °
REP, REP, I;€|g qies©@
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 185

The remaining sum over D|*B, with deg(D) > H can be bounded above as

<Ygk Y 0= gk ¥ I 2~

k>H DI|P, k>H ay+2ay+-+za,=k 1€j<z
deg(D)=k 0<a;<|P;l
1
< Z q_k Z 2q+2(2(12+ +za,)
k>H ay+2a,+--+za,=k
0<a;<|P|

< Y (V2/9)lla e NU{0}: a) +2a, + - +za, = k}|.
k>H

Using standard results on partitions (see, e.g., [5]), the cardinality above is < ec\/E, for somec > 0
absolute. Thus, as g > 2 the series over k converges, and in fact

Z g(D) < e “H,

D|B,
deg(D)>H
for a suitable absolute ¢’ > 0.
It follows that for large H,
deg(G) H deg(G) 4H
riG) < 2 4 g d

3G) 2 -~ ¢G) HE

Squaring this bound and summing over G € F[¢] of degree < H for which r(G) # 0, we get that

q2H qdeg(G) 2

|{(P1,P2,P3,P4)EPHZ P, +P, =P, + P} < Z r(G)2 < Z ]
d H* ¢$(G)

eg(G)<H deg(G)<H

We claim that the sum over G is < g/, which will then imply the claim for M = 0. To see this,
write %(G) := (q48(©) /$(G))?; note that 1 is independent of the leading coefficient of G, and so
we may replace G by G/G(0) and assume G is monic (this changes the sum by at most a factor

depending only on q). Note that for any k > 1, %(RF) = %(R) = (1 — g~9¢8®))~2 < 4 uniformly
over R € P. Hence, we may apply Lemma 3.8 to get

h

q —deg(R)
Y WG < ¥ expl 3 PR :
GEMy 0<h<H REP¢

We may directly evaluate the sum over R here for each i < H by the prime polynomial theorem,
getting

D BR)gER = _a > (1(1 — a2+ 0(g™?)) =logh + 0(1),

1P| =
— k)2
REP, jon 1=q7%) ik
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which leads to

D> VO < Y gt <d",

GEM y h<H

<

as required. Next, let M € M _p. Then,

[{(P1, Py, P, P) € Pl i P+ P, =Py =P, =M}l = Y r(@rM+G)< Y rG
deg(G)<H deg(G)<H

by the AM-GM inequality and the fact that deg(G + M) < H whenever max{deg(G), deg(M)} <
H. The second claim now follows from the first. O
4.3 | Dirichlet polynomial decompositions

Let Q > P > 1. Recall that S, , denotes the set of monic G that have an irreducible factor R
satisfying deg(R) € [P, Q].

Lemma 4.14 (Ramaré’s identity). Let P < Q. Let f : M — U be multiplicative. Then, for any G €
SP Q’

(RM)
f©) = SR ___
ritec  lwan=1 + @p (M)
REP
deg(R)E[P,Q]
where wp o)(M) := |{R € P : deg(R) € [P,Q],R|M}].
Proof. Since wyp 5)(G) > 1 by assumption we have
1 1 1
1= _ = _ = .
fe 2@ e w@r®RM) Rl Lra=1 + @ (M)
ReP REP ReP
deg(R)€[P,Q] deg(R)€[P,Q] deg(R)E[P,Q]
This implies the claim. O

We will use Ramaré’s identity to decompose Dirichlet polynomials supported on Sy, as in the
following lemma.

Lemma 4.15. Let N> 1 Let L € My and suppose E C X;. Finally, let f: M — U be
multiplicative. Then, foranyl1 < P < Q < N,

2

Dla™ Y FOxO1s, @ <@-P+1D) Y Y 140 By_ a0

XEE GEMYy P<d<Q x€E

+ @) (g + g IEB)g P,
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 187

where for d > 1 and a character y modulo L, we set

A400 == q7 Y, FRTR).

RePd

_N+d FD)x(D)

BN—d(X) =q T, .
J 1+ w[P,Q](D)

DeMy._,

Proof. This is analogous to [27, Lemma 12]. By Lemma 4.14, for any y € E we have

g Y f@xO)Ns, (6)

GEMy
_ N SXRfxM) (f(RM) — f(R)f(M))x(RM)
=q s g N Y
rafeiy, Lt @p (M) RMeMy 1+ wpp g(M)
+qN RM)Z(RM < 1 - L )
! RMGZMN JRMDEND Lran=1 +@poM) 1+ wpq(M)
L _ N+d FOMDF(M) )

= q JFRXR) || q L |+R,, +R

Psdsz ( Rez;d >< Me%N_d 1+ wpp q|(M) b 2
= Y AdCOBN_q0) + Ry + Ry . (25)

P<d<Q

Note that for each y € E, both of R, , and R, , are supported on polynomials M such that R|M
for some R € P, deg(R) € [P, Q]. We now take squares and sum the whole expression over all
X € E to see that the mean square of (25) is

2

+ IR+ D IR,

XEE XEE

<)

XEE

> A0By-a(0)

P<d<Q

To treat the first term, we use the Cauchy-Schwarz inequality in the inner sum to get

2

<@Q-P+1) Y D 14300PBy_g00P.

P<d<Q x€E

2

XEE

> AG0By—g(X)

P<d<Q

To treat ). vee IR, Xlz for j = 1,2 we use Lemma 4.2; since the arguments are similar, we shall
restrict ourselves to proving the bound for R, ,. By Lemma 4.2,

_ _ _ (f(RM) — f(R)f(M))
IR, I> < ¢@) (g™ + g4 g™V

;(ze:E o ( ) GEMy RI\;G 1+ wpp (M)

REP,RIM

deg(R)e[P,Q]
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188 | KLURMAN ET AL.

Expanding the square and bounding the summands trivially, we bound the sum on the right-hand
side as

DI 1<<qN<Z Palg+ ¥ |Pd1||7)d2|q—2<dl+dz>>
P

R{,R,EP GEMYy <d<Q P<d;,d,<Q
deg(R)€E[P.QI [R,,R,*|G

<« gV Z g4 <« g"P,
P<d<Q

which implies the claim. O

Lemma 4.16 (Pointwise bound with Ramaré weight). Let 1 < P < Q < N%°. Let f : M — U be
multiplicative. There is a Hayes character 1 of conductor < N such that

f(6)x(6)
1 + w[P,QJ (G)

1
max
condg (7)<N | MN |
XX

< (Q/P)3N_1/4+°(1).

GEMy

Moreover, we can take y7 to be the Hayes character of conductor < N that minimizes y — D f)—?(N ).
Proof. Let y7 be the character that minimizes D ﬁ(N ) among all y of conductor < N, and let

X ~ xi- Write T :=[P,Q] and I¢ := N\Z. We can express f = f; * fc, where for J € {I,T¢},
we define the multiplicative function f ; at powers of irreducibles via

0 otherwise.

fJ(Pk) 1= {f(Pk) it deg(P) € J

Let N’ := | N/2]|. By the hyperbola method,

» F@x6) y f1(A)f1:(B)Z(AB)

&y 1+ w;(G) B 1+ w;(A)

-y Dy erme Y feeim Yy LA

1+ w;(A 1+ w;(A
AEM 1 1(A) BEMy_deg(a) BEM y_pr AEMy_deg() 7(4)

ABEMYy

|y F1(AZA)

e | 2 BB = T T

AEMyr BeMy_nr

We first treat T;. Let 0 < K < N’. Since ¥ ~ ¥7, Lemma 3.6 implies that

—(N=K) = — — — — —d
D, =(N-K)=D, =(N)=0(1) > D5(N) ZMZ‘QQq P4l

> (% . 0(1)) log N — 21og(Q/P).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 189

Combining this with Theorem 3.5, we obtain

Y f1GFG) <V KD, ~(N-K)exp (—D (N - K)> < ¢V K(Q/PRN"/4+o),
J1eX f1eX
GEMN_K
(26)
Applying this with K = deg(A) in T} and summing over A € My, yields

T, < gN(Q/P)’N~1/++o) DI B
AeMgN’
R|A=deg(R)e[P,Q]

< qN (Q/P)ZN—1/4+O(1) eXp Z q—deg(R)
ReP
PSdegE(R)SQ

< qN(Q/P)3N_1/4+O(1).

We next consider T,. Using Lemma 4.11, for every 0 < K < N — N’ < N/2 + 1, we have

A
D TroA) f:’a() ()A) < A € My_g: RIA,R € P = deg(R) < Q} < ¢V K exp(—c(N —K)/Q)
AeMy_g 1
@7)
< " Kexp (—c%) (28)

for some ¢ > 0. Applying this with K = deg(B), then summing over B in T, yields

fI(A) N N —d
T, < — | < q"exp|—c—= eg(B)
2 BeMZ ., 2 T+ ST P30 2
<N-N/ [AEMN_deg(B) BEM NN
N N
< q'Nexp|—c— ).
e (o5

Finally, consider T5. Using the estimates (26) and (27) (with N — K replaced by N’ and N — N’,
respectively) yields

T, < q¢"Nexp <—c%>(Q/P)2N_1/4+0(1)

Nar3 N
< g"N —c— ).
q exp( C6Q>

Combining the estimates for T;,T,, and T; and noting that N> exp(—c%) < N7 establishes
the claim. O

100
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5 | VARIANCE OF MULTIPLICATIVE FUNCTIONS IN
PROGRESSIONS TO LARGE DEGREE MODULI

In this section, we will prove Theorem 1.2. In the next section, we will apply a very similar
argument to deduce the Matomé#ki-Radziwilt type theorem that we shall need.

Let1 < H < N — N3/*withH = H(N) - o0 asN — o0. Let f : M — U be multiplicative, and
let Q € My_p. Let x; € X, be the Dirichlet character mod Q that minimizes y — D+(N). By
orthogonality,

2

* X1(A) — 1 —
f(G) - FGNG)| = — FGxG)| . (29
AmZOdQ GezA:ALN $(Q) Gg@\, ' 1(0)] X;ﬁ GE;/IN
G=Amod Q
Letn € (0,1/6) be fixed, and set
Q, :=min{H,N'/?}, and P, := nngq log Q;.

FixJ > 1 to be the least integer such that J4 +2Q{ > NY2 andifJ > 2 set
AiA~j—1 A7 j
P;:=jYQ{"'P, and Q;:=jY"Q]

for each 2 < j < J. We define Sp as in Definition 4.9 with these collections of parameters P j
and Q It and for 1 < j <J, we let Sl(,jzg denote the set of G € M with an irreducible factor R with
deg(R) € [P;,Q;] for all i # j.

For each j, 1 < d < N and a character y modulo Q, set

e _
Ajax) = —ar, R;)d FR)X(R).
1 FD)x(D)
B; 1= .
1= g D§4d 1+ap o)D)
pesy,,

Thus, A j,d( x) = 0 except when d € [P i Q j]. Following [27] (see also [23, Section 5.2]), we split
the set E := X, \{x,} into the following sets.

Definition 5.1. For j > 1put; := ; — 2(1 +1/). Define

1
4

X i={x €51 1A (I <gP4VP <d<Qy}
X i={y€E: A I<q VP <d<Q | X @<is<)
1<i<j—1
vi=g\ [J ¥
1<j<d

We shall bound the contribution of the characters from each of &; and V" using the lemmata
from the previous sections.
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‘We begin by estimating the contribution from y ¢ U’. By Lemma 4.10, we have

2
2
1 _ _
30) FOTG)| < FGx(G)| +g*N—dee@
¢(Q) X;X1 Ge;/lzv ¢(Q) ){9&2}(1 Gg/lN 1<jZ<J
XEUV XEU |GESp g
2
1 = 2N—deg(@) L1
K — FGX(G)| +q= 7 —. (30)
¢(Q) X?EZX GEZWN Q1
XEU |GESp g
For each y € E\U', write
1 _
F = G)x(G).
00 = o GE%N fGx(G)
GESp

We apply Lemma 4.15 for each 1 < j < J (with P = P; and Q = Q; in the notation there) to get

D IFQP <@ =Pi+1) Y D 1A 40P 1B n—aCOP + $(Q)g~ Qg™

XEX; Pj<d<Q; x€X;
Summing the error terms arising from the terms 1 < j < J yields

2 R, <dQg Y g7 < Q1"9(Q)/q™?, (31)
1

using the definitions of P; and Q; above. We thus focus on the main terms arising in the
above estimate.

Casel: j=1

In this case, we bound |A; 4(x)| < q P19 for each y € X} and then apply Lemma 4.2 to get

M <(@Q-Pi+1) Y gP% Y By a(OP

P<d<Q x mod Q
<Q(p@g%™ +¢Qq Q) Y g
P1<d<Q,

< P(Q)g 8@ . Q,q7 M « p(Q)q 8@ . Q,q71/°,

since §; =1/4 —n > 1/12. Thus,
M < Q7 Y9(Q)/q" . (32)
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Case2:2< j<J

We know that for each y € &, wecanfindad, € [Pj_l, Qj_l] for which |AJ'—1’dx )l = q'ﬁi—ld?f.
Thus, similarly as in [27], we can estimate

M <@Q =P+ D D D 1A QPIB)N—a OO
Pj_] <r<Qj_1 ){EXJ Pj $d<Q1

x=r

<@Q;—P;+1DQj_,—Pj; +1)  max 2 Z q_zﬁjd|Bj,N—d()()|2
PrasrsQim &y, p ddzo,

d,=r

P;<d<Q; x mod Q

for somer, € [P;_;,Q;_1], with £, := [d/r,y]. Applying Lemma 4.7, we have

— 27
D 1A, (0 B N—a QO < $(Q)g e 1.
x mod Q

Combining this with the estimates from the previous line, we get

— . —dB;) L2
M) < pQg Q. Q2 Y e
P;<d<Q;

By definition, £; < d/ry + 1, so that since v, < Q i1

nd
CaroBj—1 —dBj < d(Bj_1 — Bj) + roBj_1 < _ZJ_'2 +Qj-1Bj-1-

Furthermore, we have

logd
0

d
tylogty < +logd < (logQ;)(d/P;_; +1).

We thus may bound I as

M; < Qg =D . QIg?UF1 3 240/ C1)~(108Q))/ Py log ),

We record the following easy-to-check bounds, contingent on Q, being sufficiently large and j >
2

. logQ; j(lo 1+5logj 5010 1 lo
) i< .ng)( j_zgj) < g8Q; 1< i %q‘
Pj (G-DY=4Q Py ! J 8)
(i) quzﬁj—le—l < qu—1/2.

(iil) Qj_; < J.4j_2Q{_1 < P;/(j*Py).
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Using these bounds, we get

M) < HQ Q. qU/2 Y g/ « g(Q)g D . jygi PGP /I

Pj$d<Qj

— . — . 2 _ L _
<, $(Q)q deg(Q) . 20=7Pi/(4%) ¢ p(Q)q 48 Q) . jm2gIUP1/4,

Summing over 2 < j < J, we get

Z M; <, ¢(Q)q—deg(Q) . q—nQ1P1/4 < Q1—100¢(Q)q—deg(o). (33)

2<)

Case3: U

We now treat the remaining characters y € U". We make an additional choice of parameters P : =
N?2/3,Q := N'3/13_ Combining Lemma 4.10 with Lemma 4.15, we find P < d, < Q such that

2

XEU

Y F6x©)

GEMy

2

< 2 Z f(G)x(G) +¢(Q)q—deg(o)£
XEV |GEMy )
GESP,Q

<@-P+1) Y Y IAQ0PIBy_qQOI” + $(Q)g @ (q—f’ + g)

P<d<Q x€V

<@ Y 144, 00F 1By, (0 + $(Q)g 5@ <q‘P + g)

XEU

where A; and By_y, P <d < O, are defined as in Lemma 4.15 with respect to the parameters p
and Q. We now split the set U" further. Following [27], we define the subsets

Vs :={x eV : 14, (0 <N,
Uy i={xeV: |A;,(0| >N

We begin by treating the contribution from V. By Lemma 4.4 and the fact that d;, < Q = o(N),
we have

> A4, QOPIBy_q, GO N7 Y [By_q (0
XEUg XEUS

< N-20 ¢(Q)q—deg(Q)(1 + V] q(1/2+o(1))N—N+d0>

<« N-20 ¢(Q)q—deg(Q)<1 + U q(—1/2+o(1))N>‘ (34)
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To estimate the size of V", we note that whenever y € U, there is d; € [P;,Q;] such that
|AJ,dJ()()| > g% and thus

i< | xmodQ: 14,400l > gP%}

Py<d;<Qy

SQJPmax [{x mod Q: |A; 4 (Xl > g Py

7<d;<Q;

By choice, we have that N'/2 < Q; < N'/2J*Q, <« N7/10+0() 5o that from (i) above we
have P; > % logQy,q > @ logN and ¢(Q)>q¥ >q% for all d; € [P;,Q;]. Hence,

(loglog $(Q))/P; < %n log g for N large enough, and Lemma 4.6 may be applied to give

log(q" $(Q)) <210 <10g(2¢(Q))

log(2g28r4r /d < l_n/z_

|U'| < Qyexp <

Inserting this into (34), the off-diagonal term becomes O(q(~/2t°(WNY) = (1). Thus, we find that

D A4, COPIBy_g, 0)I* < $(Q)g 8@ . N7,
XEVs

We now consider the contribution from V3. Since y; € U, and since 2(N — d;) > N, we may
apply Lemma 4.16 to obtain

By_g,(X) < (Q/PY(N — do)™/*+W) < $(Q)q Y - (Q/P)*N~/4+D),
since dy, < @ = o(N) and ¢(Q)q 98 > (log N)~!. It follows that

D 1A, QOPPIBy_q, 0O < ($(Q)g €)X Q/P) N>+ N A4, ()™
XEVL X€EV}

Applying Lemma 4.5, we deduce that

Y, 144,00 < = (1+ deg@q /2103 ) < P2(1 + deg(QI g ™"2).
XEUL 0

Since ¢(Q) 3 g(l—°WN** 5 4Q > gdo, we may appeal once again to Lemma 4.6, this time with
Z = N0, getting

log(qdo ¢(Q)) 10g(2¢(Q)) 19 N1+o()/p

Inserting this into the previous bound and using the fact that P = N%/3 > 2N191 /P yields

Z |Ad0()()|2 <P+ deg(Q)q—ﬁ/zeN1+o<1>/p <2
XEVY,
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It follows that

2
Y, 144, (0P IBy_g, (O < ($(Q)g 8@ ) N71/2400gop-s,
XEVL

Combined with the bounds for Uy, we get

> IFOP < ($(Qg €@y - (Q*(N71% + QPSN1/2+0) 1+ P/G +q7")

XEU
< Qg (N2 (G/P) + P/Q)
< N—1/18+o(1)¢(Q)q—deg(Q). (35)
Finally, putting (31), (32), (33), and (35) together with (29) and (30), Theorem 1.2 follows.

Remark5.2. Note that if we began by assuming that the sums in the variable G in (29) are supported
on Sp o, then the same proof would give the sharper estimate

2
. x1(4) -
2| Y Ns0@-55r X 500
AmodQ| GeEMy ¢ GeEMy
G=A mod Q
< q2N—deg(Q)(Ql g~F1/o 4 N—1/18+o(1)>‘ (36)

We will use this sharper version of the theorem in Section 7.

6 | MATOMAKI-RADZIWIH THEOREM IN FUNCTION FIELDS

In this section, we prove the following analog of the main result in [27] (see Section 3.3 for the
definition of g*, for ¢ multiplicative).

Theorem 6.1 (Matoméki-Radziwitt Theorem in Function Fields). Let f : M — U be a multiplica-
tive function and let 1 < H < N — N3/* with H = H(N) tending to infinity with N. Then,

2
o 2 | X @ Y fO50) 37)
I NIGOEMN | <H| GeEMy I NIGEMN
Gely(Gy)

< (logH)/H + N~'/18+0(1),
where x; is the Dirichlet character modulo tN=H+1 that minimizes the map y — D f?(N ).

Theorem 1.1 will follow as a special case, as we will see later in this section.
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Remark 6.2. In light of Remark 5.2, if we replace f by f1 Spo’ with the choice of parameters
P,Q, P; = j4jP1Q{_1, and Q; = j4j+2Q{ for j > 2, then the bound in Theorem 6.1 improves to
< Qi/ q~P1/12 4 N~1/18+0()_The additional flexibility in choosing P, and Q, will be used in the
next section.

Remark 6.3. We can obtain the same estimate as in Theorem 6.1 if (37) is replaced with

2

1 —
1 1 1 X17 X0 -
f(G)— fG) - —— FG)x; G .
|MN| Gog/ll\l |M<H| Gg/lN |MN| GE;/IN |MN| GE;AN !
Gely(Gy)

The proof is the same, and in fact it will be clear from the application of the orthogonality relations
in the proof that this quantity is never larger than (37).

Proof of Theorem 6.1. The proof is very similar to the proof of Theorem 1.2, just with a different
set of characters.
By the orthogonality relation (22), we can write (37) as

2
= Y Y feEo).
q §€X) n_p |GEMY

§#xy

This is analogous to (29), just with a different group of characters (see also [7, (2.12)]). Now the rest
of the proof follows precisely as the proof of Theorem 1.2 up to notation. Indeed, the only properties
of the Dirichlet characters used in the proof of Theorem 1.2 were the lemmas from Sections 3
and 4. In Section 3, all the lemmas are readily stated for Hayes characters, which includes both
short interval characters and Dirichlet characters as special cases. Also in Section 4, all the mean
value estimates have perfect analogs for short interval characters, and the proofs are identical, as
noted in Remark 4.1. Moreover, the pointwise bound offered by Lemma 4.16 is written for more
general Hayes characters, and we can take 7 there to be the short interval character of length
N — H that minimizes ¥ —» D ff(N ). Hence, all the steps in the proof of Theorem 1.2 work in the
same way. [l

To deduce the real-valued case of the Matoméiki-Radziwill theorem from this, we will need the
following variant of Corollary 3.7, applicable to real-valued multiplicative functions twisted by
Dirichlet characters modulo powers t™, m > 2.

Lemma 6.4 (Sup norm estimate for weighted Dirichlet character sums). Assume char([Fq) #* 2.
LetN >1and2 <k < N. Let f : M — [—1,1] be multiplicative. Let 2 < k < N. Then,

maniN Y f(GOx(G)| < N7+,
x mod t* g GEMy

X#Xo
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Proof. In light of Theorem 3.5, it suffices to show that

min D5(N) > (1/4—o0(1))logN.
x mod tk
X#Xo

Note that if y is a character modulo t* and y’ is the primitive character inducing y, then

so it suffices to consider primitive characters modulo t*. Now, suppose y is a primitive character
thatis not real. Since y? is not principal, arguing precisely as in the proof of Lemma 3.6, we obtain

D(f, xeg; N)* > (1/4 — 0(1)) log N

(for instance, when f takes values in S! the triangle inequality immediately yields D(f, yep; N) >
%ID(I, Xx’ex0; N), and the general case follows from this as in the proof of Lemma 3.6). Thus, we
may conclude that for any primitive non-quadratic Dirichlet character modulo t¥, we have

D(N) > <‘—11 - o(l)) log N.

Furthermore, it is easy to see that there are no primitive quadratic (non-principal) characters mod-
ulo t* for any k > 2. Indeed, suppose y is real and primitive modulo tX. Then, y cannot be periodic
modulo ¢/, for any j < k. To deduce a contradiction from this, set now m := [k/2] < k. Since
q > 3isodd and y is real, we have y9 = x, and also mq > k. Thus, for any A, B € F[t], we have

X(B+ At™) = x1(B + At™) = x((B + At™)?) = x(B? + gABI't"™) = x(B)? = x(B).

Thus, in fact, y is periodic modulo t™, contradicting the fact that y is primitive modulo t¥.
Therefore, we obtain

min DfY(N) = min Dﬁ(N) +0(1) > (1/4—-0(1))logN,
x mod tk x mod tk

X#Xo X*#x0
X primitive

as claimed. [l

Proof of Theorem 1.1. Assume that f : M — [—1,1]. We extend f to a map on F[¢] by requiring
that f(c) = xj(c) forallc € [Fg, where y; is given by Theorem 6.1.

Theorem 1.1 follows immediately from Theorem 6.1 when q is even, aside from the claim that
X1 may be assumed to be real. To see this, note that by Lemma 6.4, if y; were not real since then
the mean value of f7; would contribute << N~1/4+°() which is anyway dwarfed by the error term
in the statement of the theorem.

When gq is odd, it suffices to show that if y; # x,, then D f?f_i*(N )= (1/4 —o0(1))logN, so that

once again the sum in f)(_ik contributes negligibly.
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Since f(c) = xj(c) on [F;< and f* is necessarily real, Lemma 3.10 combines with Lemma 6.4 to
show that

D 7=(N) = Dypz(N) + 0(1) > 3 = o(1) ) log V.

This completes the proof. Ol

7 | SHORT EXPONENTIAL SUMS OF NON-PRETENTIOUS
FUNCTIONS

In this section, we apply the results of the previous section to derive two function field analogs
of estimates for short exponential sums weighted by a multiplicative function, due to Matomiki,
Radziwilt, and Tao [29]. To explain the formulation of our results, we begin by recording some of
the relevant definitions. See [26] for an excellent reference to the definitions given here.

We write F,(t) to denote the field of rational functions of ¢ over F,. This comes equipped with
the non-Archimedean valuation (-) such that if G = Zj’;N a_ jt_j for an integer N with ay #
0, then (G) = g~N. The completion of Fo(t) = F4(1/t) with respect to this valuation is the set
Koo (£) 1= F4((1/1)) of formal Laurent series in 1/t with a finite number of non-negative power
terms. We define T to be the unit ball of K (¢) with respect to (-), that is,

Ti={a € Ko(D): (@) < 1} 2 Ky, ()/F,lt].

That is, T is the set of formal power series in 1/t. This set forms a compact abelian group under
addition, and thus comes equipped with a normalized Haar measure, which we shall denote by
da. The Pontryagin dual group consists of the characters {a — e[F(Goc)}Ge[Fq[t |» Where, given a €

Ko (t), we have written
) tr[Fq/[Fp(a_1(a))
ep(a) 1=e — )

writing a_, (a) to denote the coefficient of the term ¢! in the expansion of @. An important feature

of these characters is that
1 ifG=0
/ er(Ga)da = ]
T 0 otherwise,

in analogy to the orthogonality of additive characters on R/Z.

Our goal in this section will be to prove the following two results. The first is an estimate for
exponential sums with multiplicative coefficients over short intervals that applies to complex-
valued f, provided that f is Hayes non-pretentious (see Definition 3.14). The second result
concerns such exponential sums with real-valued functions f, for which only the usual notion
of (Dirichlet) non-pretentiousness needs to be assumed. The first of these theorems will be of
relevance in proving the logarithmically averaged binary Chowla conjecture in this context.
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In the theorems below, given 1 < H < N — N34 and f : M — U a multiplicative function, set

Myayes(fs N, H) = M?EH ,min gliﬂcfit Dz (),
len(§)<N

It is clear from the definitions that Myy,y.,(f; N, H) < Mp;(f; N, H).

Theorem 7.1. Let1 < H < N — N3/* Let f : M — U be multiplicative. Then,

log H
sup 1 2 f(G)e(Ga)| < D8 | N-1/(2000l0gq) + MeM/100,
acT |MN| GOEMN |M<H| GGMN H

Gelyr(Gy)

where M 1= 1+ Myyaye(f3 N, H).

Theorem 7.2. Assume q is odd. Let 1 <H < N — N3/ Let f : M — [—1,1] be a multiplicative
function. Then,

logH
sup D 1 Y FC)er(Ca)| « —2m 4 NTHCOVIED | pgemM/10 - (3g)
acT |MN| GOEMN |M<H| GGMN H
Gely(Gy)

where M :=1+ Mp;(f; N, H).

We will deduce both of these results from the following result about completely multiplicative
functions.

Theorem 7.3. Let 1<H <N —N3* Let f: M — U be completely multiplicative. Then,
Theorem 7.1 holds for f. Moreover, if f is real-valued and q is odd, then Theorem 7.2 holds for f.

‘We will begin by proving Theorem 7.3; we will prove the deduction of Theorems 7.1 and 7.2 for
general one-bounded multiplicative functions at the end of this section. The proofs of the complex
and real cases begin the same way. We shall thus begin both simultaneously, then highlight where
the differences arise below.

We proceed using the circle method, as in [29], splitting into cases according to whether « lies
in a major or minor arc (to be defined momentarily). In the function field setting, arcs can be
determined via the following form of Dirichlet’s theorem.

Lemma 7.4 (Dirichlet’s Theorem in Function Fields). Suppose a € T. Given M > 1, we can find
g € My and a € Fy[t] coprime to g with deg(a) < deg(g) such that (ga — a) < q™.

Proof. This follows from the pigeonhole principle, just as in the integer setting. [l
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We are now ready to embark on the proof of Theorem 7.3. We will first prove the following
closely related statement.

Proposition 7.5. Let 1 <H <N — N3/ Let f: M — U be completely multiplicative. Suppose
that

10log H < min{(logN)/(100logq),H/10, M .(f; N, H)/100}, (39)

where M, (f;N,H) :=1+ Mp,(f;N,H) if f is real-valued and q is odd, and M, (f; N,H) :=1+
Myayes(fs N, H) otherwise. Then,

sup 1 Y f(G)ep(Ga)| < (log H)/H + N4 4 ¢ Mitwes SNAD/20,
aeT |MN| GOEMN |M<H| GEMN
Gely(Gy)

Moreover, if f is real-valued and q is odd, we can replace My, With M.
By (39), we can choose 1 < W < X < H such that
10log H < W < min{(log N)/(100logq), H/10, M .(f; N,H)/10},
and set X = H — W (so that W < X /2). In general, we define arcs of the form
M, ,(X) :={a€T: (ga—a) <q*}.
The major arcs of length X and degree W are defined by

mx,w):= ) J M, &)
deg(g)<W amod g
(a,9)=1

and the minor arcs are then defined by
m=mX,W) := T\MX,W).
LetP; :=100W and Q, := H/3,andletS = Sp o, with P}, Q; defined in terms of P; and Q, as

in Section 5. For the same reason as in Section 5, it will be advantageous to replace the expression
on the left-hand side in (38) by

1 1
sup f1s(Gep(Ga)|. (40)
aet My GoeEMy Ml Gezj\;t,\, [F
Gely(Gy)

By Lemma 4.8 and the triangle inequality, the difference between this latter expression and the
one in (38) is O(P; /Q;). We will thus focus our attention mostly on the estimation of (40).
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As mentioned, the expression in (40) will be treated differently according to whether « lies
in a major arc or a minor arc. We start with the minor arc case, where the argument has some
resemblance to the derivation of the orthogonality criterion for multiplicative functions [2], and
which can be derived independently of the results of the last two sections.

7.1 | The minor arcs

We fix @ € m. In order to proceed in estimating (40), we shall need the following basic result.

Lemma 7.6. Leta € K (t) and H > 1. Then,

Z ep(Fa) = qH1<a mod 1)gg—H-1-
deg(F)<H

Proof. This is standard, see, for example, [25, Lemma 7]. O
We will also need the following estimate, connected with Lemma 7.6.

Lemma 7.7. Let a € M, (X), where W < deg(g) <X and (a,g) = 1. Let 100W <k < H/3.
Then,

[{deg(F) < k: (Famod 1) < g "+ 1} « ¢ W.

Proof. Write 8 := a — a/g. By assumption, we have (8) < g~X~4¢€(9), Since (A4, B) — (A — B) is
an ultrametric, for any F € [Fq[t], we have

(Fa mod 1) < max{(Fa/g mod 1), (Ff3 mod 1)},
with equality whenever the two valuations on the right-hand side differ.
Note that if ¢ } F, then as (a, g) = 1, we can write Fa = Mg + L with L # 0 mod g. Hence, if
deg(F) < k, then

(Fa/g mod 1) = qdeg(L)—deg(g) > q—deg(g) > qdeg(F)—X—deg(g) > (FB mod 1),

using X > H/2 > k. On the other hand, if ¢|F, then (Fa/g mod1) =0 < (Ff mod1). In
particular, we have

=(Fa/gmod1l) ifg}F

(Fa mod 1){ )
< (FB mod 1) if g|F.

Let £ :={deg(F) < k: (Fa mod 1) < g~H#*+*~1}. Consider separately the number of F € £ with
g | Fand g } F. Note that

[{F € £: g|F}| < l{deg(F) < k: g|F}| <1+ q" 989 « gk=W,
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Next, consider the contribution to £ from F that are not divisible by g. We first observe that
there are no F € &€ with deg(F) > deg(g). Indeed, if such an F belonged to &, then (Fa mod 1) =
(Fa/g mod 1) > q~9¢8(9), This implies the chain of inequalities
q—k < q—deg(F) < q—deg(g) < <F0( mod 1> < q—H+k—1’

which are conflicting since k < H/3.

We may therefore assume that deg(F) < deg(g). Suppose next that deg(Fa) < deg(g) as well.
Then,

<F(x mod 1> = <Fa/g mod 1> = qdeg(Fa)_deg(g) > qdeg(F)—deg(g).
Thus, if F € £, then we must have
deg(F)<deg(g)+k—-H-1<k-H+X-1<k-W,

since W = H — X. Hence,

{F € £&: g + F, and deg(F) > deg(g) or deg(Fa) < deg(g)}| < |{deg(F) < k —W}| < qk_W.
It remains to consider those F with deg(F) < deg(g) < deg(Fa). Observe that

{F € €: gt F,deg(F) < deg(g) < deg(Fa)}|

= Z Z |{F : deg(g) — deg(a) < deg(F) < min{k,deg(g)}: Fa =B mod g
Osm<deg(g) deg(B)=m

and (Fa/g mod1) < g A+k-1y.
Note that (Fa/g mod 1) = (B/g) = q¢"™9¢(9) whenever deg(B) = m and Fa = B mod g, and so
F € € under these conditions only if 0 < m < deg(g) — H + k — 1. This condition is empty if

deg(g) < H — k + 1, so we assume otherwise (and hence deg(g) > k). We may thus bound the
above by

< Z Z |{deg(g) — deg(a) < deg(F) < k: F =aB mod g}|,
0O<m<deg(g)—H+k—1 deg(B)=m

where a is the inverse of a mod g. Since deg(F) < deg(g), the cardinality above is < 1, and thus

{F € £: gt F,deg(F) < deg(g) < deg(Fa)}| <1+ D >
Osm<deg(g)—H+k—1 deg(B)=m
<l+gq D g™ < 1+ qleslo)-Hrk

osm<deg(g)—H+k—1

<« gX—H+He = gk
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 203

It follows that

IEI<SHF € &: glF}| + [{F € £: g 1 F,deg(F) > deg(g) or deg(Fa) < deg(g)}I

+ |{F € £: deg(F) < deg(g) < deg(Fa)}| < g,
as claimed. ]

Let o € m. For each G, € My, let 6(G,) € S* be chosen so as to write (40) as

1 8(Gy)
So(a) 1= —— f15(G)e(aG). (41)
| Myl GoEMy Ml Gg/lN
Gely(Gy)

Since f is completely multiplicative, upon applying Lemma 4.14, we obtain

Zs(@)
1 0(G,) f(G"
Y v TR —e > F(Re:(RG')
| Nl GoEMy | <H| G'eMy + w[Pl’Qll( ) Rep
b P, <deg(R)<min{Q, ,N—deg(G")}
RG'eIy(Gy)
deg(RG")=N
+o<q—N—H Y. D D HGeIuGy: R2|G}|>
GoEMy P1<d<Q; REP,
1 8(G,) (G
Y g TR —er) > f(Re(RG )
| Nl GoeMy | <H| G'eEMoy +w[P1,Q1]( ) Rep
h P; <deg(R)<min{Q; ,N—deg(G")}
RG'€I(Gy)
deg(RG")=N
+0(q").

We pull the summation over G’ out, split the sum over R according to degree and apply the triangle
inequality to get

1 1 _
Zs@l< Y R D Zf(R)e(G’Roc)l v Y, 6(Gy|+O0H™),
Pi<k<Qy "IN GreMy_y |REP <Hl Giemy
G'ReI(Gy)

since P; > 1000 log H. We apply Holder’s inequality to the sum over G’, getting

Zs(@)] < g VA3 gAY g, (42)
Py<k<Qq

where for each P; < k < Q, we define
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Toi= Y FRIFRIFRIR) Y, 6(GEGEGE(G,)

Ry,Ry,R3,R4EPy G1,G,,G3,G4EMy

D> e(G'a(R, + R, — Ry —Ry)).
G,EMN_]{
G'Rj€ly(G)) Vj

Fix P; < k < Q for the time being. Split the sums over G; according to their residue classes
A mod R;. WritingG; = D;R; + A, we knowthatIH(Gj) = IH(DjRj)since deg(Aj) < deg(Rj) <
Q; < H. Thus, we can rewrite 7, as

Te= D fRIFRIFRIFR) ) Y 6DiR, +Ay)
Ry,Ry,R3,R4EPy A1 AyA5Ay DiEMy_
1gj<4 Ajmod R; V1<j<4

D O(D,R, + A,)0(D;R; + A;)8(D,R, + A,)
D;.D3,D4€EMy_i

D e(G'a(R, + R, — R; — R,)).
GIEMN_k
G’eIH_k(Dj) Vigjg<4

‘We observe now that

G' € () Inu-w(D;)) < G’ €Iy_(D;) and deg(D; — D;) < H —k forall 1 < j < 4.

1<j<4

Hence, making the change of variables L := G’ — D,, we can recast the above expression for 7,
as

Z FRDFR)f(R3)f(Ry) Z Z 8(D1R; + Ay)ep(Dra(Ry + R, — Ry = Ry))

R;EP DieMy_k Aj mod R;
1<j<4 1<j<4
D 6(D,R, + A,)O(D3R; + A3)8(D,R, + A,)

D;.D3,DyeMy_i
deg(D;—D)<H-k Vj

Y e(La(R, + R, — Ry —Ry)).
deg(L)<H—-k

Note that now the inner sum over L is decoupled from the sums over 4; and D;. Given D, €
My fixed, there are < "'~ choices of each of D,, D, and D, to satisfy the condition deg(D =
D,) < H — k. Furthermore, there are <« q‘”‘ choices of four-tuples of residue classes A,, A,, A3, A4
to their, respective, moduli R;, R,, R;, and R,. Recalling that 8(:) is unimodular and bounding
trivially in D; € My_y, it follows that

4k . 3(H-k N—-k
R{,R),R3,R4EPy

Z er(La(R; + R, —R3 — Ry))
deg(L)<H—-k

3H+N

<q Z er(La(R; + R, —R; —Ry))

deg(L)<H—-k

R1,R),R3,R4EPy
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We arrange the four-tuples (R;,R,,R3,R,) € 73;1 according to the values of F :=R; + R, — R; —
R, € F4[t]; note that since the R; are all monic, deg(F) < k. By Corollary 4.13, there are < g /k*
such representations of F in terms of irreducibles R; € P.. It follows that

3(H+k)+N
— er(LFa)|.
deg(F)<k |deg(L)<H—k

T <

By Lemma 7.6, we can evaluate the exponential sum to yield

3(H+k)+N

q —
T T Z qH k1<Fa mod 1)<q—H+k-1
deg(F)<k
q4H+2k+N
= Tl{deg(F) <k: (Famod1) < g H+k=1y.

Since & € m, there mustbe a g € M and a reduced residue class a mod g such that W < deg(g) <
X, (a,9) =1 and a € M, 4(X). Since P; < k < Q; and given our choice of P;,Q,, Lemma 7.7
yields

[{deg(F) < k : (Famod 1) < ¢~ 1} « ¢*V,

so that we finally obtain the estimate

4H+3k+N
q -w

Te< a4

Taking fourth roots of both sides and inserting this into (42), we get

ISg(a)] < g N/AH Z q—3k/4(q3k+4H+N—W/k4)1/4+H—50 <q WM Z 1/k + H-
Pi<k<Qq Py<k<Qq

<1og(Q,/P)g"/* + H™.

In light of the choices W > 10log H, P, = 100W, Q, = H /3, this leads, finally, to the bound

1 1 P,
max f(Gep(Ga)l « max |Zg(a)|+ —
aem(X,W) |MN| GoeMy |M<H| Ge;/lN F aem(X,W) o Q1
Gely(Gy)
P P
< log(Q,/P)g W/* + Q—l +H < Q—l
1 1

7.2 | The major arcs

Next, we turn to the estimation of the major arcs, where the Matoméiki-Radziwilt theorem in
function fields will be put into use. Fix g € My, and a reduced residue class a modulo g coprime
to g. Suppose that a € I, /(X). We shall estimate Z ¢(e) (given by (40)) in this case as well.

85Ue0| 7 SuowiWoD aAee.) a|qeal|dde sy Aq peusenob ae Seoiiie YO ‘8sn JO S9|nJ Joy Akelqi 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIWOY A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S [£202/50/72] Uo ARidi8ulluo /8|1 1581 Aq T8TZT MIW/ZTTT 0T/I0P/L0D A3 | Im Aelq 1 pul|uo-00syTewpuO|//:Sdny woly pepeojumod ‘T ‘€202 ‘Zv6.LT0Z



206 | KLURMAN ET AL.

Write ep(Ga) = ex(Ga/g)ep(GB),and sety :=deg(g) — 1.Since X + y < H,foreach G, € My
we may decompose

;G = || Ixey(Go+ G,
deg(G')<H-X—y

As B =Y isx+y41 bjt 7/, it follows that e-(BG) is constant on Iy, (G, + ¥*7G’), for each G’ in
the union. Splitting the inner sum over G in X ¢(«) into pieces supported on each of these shorter
intervals and applying the triangle inequality, we obtain

1
GoEMy <H! deg(G")<H-X—-y GeEMy
GElx, (Gy+tX*7G")

1 1
= T > ] Y IEs(@ Gy, G
Nl Goemy <H! deg(G")<H-X—y

[Zs(e)] <

1
Myl

For a Dirichlet character ) mod Q, recall that the Gauss sum 7()) of ¢ is defined as

@) = ), $(G)e(G/M).

G mod Q

1
It is well known, as in the number field setting, that |7(3)| < g2 . Expanding e(Ga/g) in
terms of Dirichlet characters mod g, separating G according to the greatest common divisor D =
(G, g), we can rewrite

deg(Q)

Z4(a; Gy, G') = > f15(@ex(Ga/g)
GEMN
Gely,, (Gy+tX*7G")

f(D) - _
= B(a)r(®) F15(G)P(G)
DZ; ¢(g/D) M%:g i 2 s

GEMN_deg(D)
GDEely ., (Gy+X*7G")

for each G, G’ in their respective ranges; here, we have used the fact that as deg(D) < W < P; we
have 14(DG) = 14(G).
As in the minor arc case, we separate G, and G’ according to residue classes modulo D. Write
G, = DGy + A,G' = DG” + B, and t**7 = DT, + C, so that
t**7G' = D(DG"'T + CG" + BT,) + BC.
Then, as deg(D) < W < X /2, we have deg(A), deg(BC) < X + y and thus

Iy, (Gy + t**7G") = Iy, (D(Gy + DG"Tp, + BT, + CG")) = Iy, (D(G} + t**7G" + BTp)).
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Hence, we see that
GD € Iy,,(Gy+ **G")ifand only if G € Iy, _geg(p)(Gf + X' G + BTp).
It follows, using the triangle inequality and the bound |7()| < q9¢8(¢/P)/2 that

[Zs(a)]

queg@/m

< Z Z 1 Z |M x4y —deg) M <H-X—y—deg(D)]

oo P9/D) s an'moan MV by SR u, M|
1 1 —

T | 2z T E——— > f15(0)(6)

<H—X—y—deg(D) deg(DG”+B)<H—X—y <X+y—deg(D) GEMNfdeg(D)

GEly yy—deg(p)(G}+t* G +BTp)

1 3

< g298®) Z g 298D max max max
Dly P mod g/D deg(G")<H—-X—y—deg(D) B mod D
1 1 —

M > More o D f15(G(G)|.

N—deg(D) G(I)EMN—deg(D) <X+y—deg(D) GGMN—deg(D)

GElyyy_deg(p)(Gy+t*17G" +BTp)

We observe that deg(BTp) < X + 7 < deg(G"'tX*7), so that deg(G"'t**7 + BT},) < H — deg(D) <
N — deg(D). We can thus make the change of variables G|’ := G| + G”t**" + BT}, to finally
obtain

1
IZs(a)] < g% max 1
Dlg  |My_deg(p)!
1 mod g/D

1 —
I v D M AR O (O
G(,),EMN—deg(D) <X+y—deg(D) GEMN—deg(D)
GEIX+y—deg(D)(G(,),)

Let D, be a divisor of g such that some character ¢); mod D, yields the maximal contribution
among the characters whose modulus divides g. Put d := deg(D,), so that d < W < N/2. By
Theorem 3.5 and Lemma 4.8, we get

1 —
| RS
_1 e 1 —
S hvvie WP ORRICTIC Ry view! IPIRRCIICIEG)

GEMpy_g4 GEMpy_4
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208 KLURMAN ET AL.

< (1+D 5, (N))e P )+min{Q (1+D (N))e DgngeW )}
1

)

<@+Dg e H Y+ gl min {1,/ + D,y e MY,

1

where in the last step we used the fact that

1~ Re(f (R (R)1se(R)e_o(R) _ v 1= Re(f(R)y(R)e_g(R)) -
RZ qtieg(R)S —> qdegé%) o
EPgN REPSN i
P;<deg(R)<Q,
_y LoRURBRE SR 100, /8y + 00D,

deg(R
REPy q g(R)

By the triangle inequality and the assumption deg(g) < W, we thus have
1Zs(@)l

w
qz 1
<Ml Z Mol z f1s9,(G) -
N=dl glremy_4 X+y=dl Gemy_4
Gelysy-a(GL)

Y, [15(G3i(6)

|MN dl GEMN_4

()

+qz< 5 (e 7 gmm{l(Ql/Pl) (1+D g (e m})

1

Applying Theorem 6.1 (in the form given in Remarks 6.2 and 6.3, bounding the long sum using
Theorem 3.5), the first expression above is

1 1

W /2 -Lp ~1/36+0(1) o™

<q /<Q12q 11 4 NT1/360%0 + 17 ot real X1¢X0(1+D(f¢)_(N))e P ,
or2|q

where y; denotes the character modulo t¥=X=7*! guch that y — D (N) is minimal (and

(fx
Xo is the principal character to the same modulus). Recalling that P; = 100W and Q, = H/3, it

follows that

max |Zg(a)] < qW/z(Hl/zq_SW + N~1/36+0(1)

aeMX,W)
T <(1+D‘(N))e PN 4 (P /@) min{1, (Qu/PY (1 + D g (N)e 1 ‘N)})) (43)
MeMqy I
% mod M
W /2 1+D, — _(N)e 2upra®™, 44
T MG, ymeaw Ao A+ D7 (Ne (44)
f not real X#xo mod tN=J+1

if2}4q

In order to estimate this quantity further and to prove Proposition 7.5, we split the remainder
of the analysis into two cases.

85Ue0| 7 SuowiWoD aAee.) a|qeal|dde sy Aq peusenob ae Seoiiie YO ‘8sn JO S9|nJ Joy Akelqi 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIWOY A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S [£202/50/72] Uo ARidi8ulluo /8|1 1581 Aq T8TZT MIW/ZTTT 0T/I0P/L0D A3 | Im Aelq 1 pul|uo-00syTewpuO|//:Sdny woly pepeojumod ‘T ‘€202 ‘Zv6.LT0Z
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Case 1: f is not real-valued or q is even

By Corollary 3.15, we have

M ;N,H) < min min min min D, - .—(N)+ O0(1).
Hayes(/ )< MeMoy pmod M X<j<H y mod (N-i+1  S¥I'X (N)+0(1)
f¥ not real XF#Xo

Of course, we also have

Myayes(f3 N, H) < Mp;(fs N, H) < i min D 5(N).

Inserting these bounds into (44) and using 10log H < W < (log N)/(100log q), we get

max |Zc(a
aeM(X,W)| s(a)]

< H0 4 N1/

+ qW/2 <e_MDir(f;NxH)/2 + (Pl /Ql) min{l, (Ql/Pl)g’e_MDir(f;N’H)/z} + e_MHayes(f;N’H)/z ) X

By assumption, we also have W < Myyyes(f; N, H)/10 < Mp; (f; N, H)/10. Furthermore, if
Ql/P1 > eMDir(f;N,H)/S, then

q"/?P, /Q, < Mo [SNHD/20-Mpir(iNH/5  o=Mpir(SNHD/10,
whereas if Q, /P, < eMpir(/iN.H)/5 then
q7/2(Q, /Py )Pe M [iINH)/2 o oMpilfiNH)(1/20+2/5-1/2) — o=Mpir(fiN.H)/20,
Thus, we deduce the bound
max ) 1Zg(a)] < (log HYH™" + N7V/40 4 ¢=MoilfiNHD/20 1 o= Myayes(FiNH)/2 W /2

aeMX,W

< H™% 4 N71/40 4 g Muayes(fiN.H)/20,

since 10log H < W < min{H /10, (log N)/(100 log q),MHayeS(f;N, H)/10}.

Case 2: f is real-valued and q odd
We claim that

max max max D, .
MeMyy ypmodM  X<j<H )

£ not real X#xo mod N~

Y(N)E_D(flp)*Y(N) < N_1/4+0(1). (45)
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Inserting this into (44) and then repeating the arguments in Case 1 to simplify the terms in (43),
we obtain

max  |Zg(a)] < H™ 4 N71/40 4 o~ Moil/iN.H)/20,
aEMX,W)

Let 1 be a character of modulus M with deg(M) < W < logN for which fi is not real-valued.
Since f is real-valued, it follows that 1 is not, nor is (f E)*. Put M = M¢", where (M, t) = 1, and
write P = PyP,-. We consider two subcases, depending on whether or not ¥y is real-valued.
Case 2.1. Suppose first that 1;; is real. Since %2 is non-principal, it follows that z,btz, is non-
principal. Applying the triangle inequality as in the proof of Lemma 6.4, we can show that

1
DigyzN) 2 7D(y2 )2 (N).

By Lemma 3.12, (z,bf,)* is a non-principal short interval character of length < r, so that (gb[z,)* xis
a non-principal Hayes character of conductor < r + cond(¥?) < W + N —H + 1 < N.Lemma 3.2
now implies that, for some 8, € [0, 1],

—0od
Diy2 2 (N) = logN ~ Re( y LoD 5 (Abfr)*xZ(G)A(G)) +0(1)

d
i 49 &R,

=(1—o0(1))logN.
In particular, we find that

which implies (45) in this case.
Case 2.2. Next, suppose 3,7 is not real, so that 1,012\2 is non-principal. Without loss of generality,

we may assume that f is extended to F,[¢] by f (c)a(c) = x(c). By Lemma 3.10, we see that

(N)>D (N)+0(Q1).

Doz Foub T

Applying a similar argument as in the previous subcase, we have then that
1

Since (M, t) = 1, lp,z\;,(ll’zr)z( x?)* is a non-principal Hayes character. Similarly as in the previous
subcase, we obtain

Thus, (45) isvalid in this case as well, and thus in all cases in which f is real-valued. This completes
the proof of Proposition 7.5.
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Proof of Theorem 7.3. Let1 < W,H’ < N,and put P, := 100W and Q, := H’/3.If we assume the
condition

10log H' < W < min{M_(f;N,H’)/10,(logN)/(1001og q), H' /10}, (46)

where we recall that M, = M,y unless f is real and g is odd in which case M, = My, then we
have

1
| Myl

Y f(Ger(Ga)
GoEMy | GeMy
GEIH/(GO)

max
a€eT

< g ((logH’)(H’)_1 +P,/Q, + N7/ 4 e_M*(f;N’H,)/ZO).

Suppose now that 1 < H < N — N3/, and define 1 < Hy < N by
logH, := min{M,(f;N,H)/100, (log N)/(10001log q), H/100}.

We will make a choice of W that suits our current choice of H.

If H < Hy, then W :=10log H is admissible in (46) with H' = H, and Theorem 7.3 is verified
in this case (here P; < logH, so P,/Q; < (log H)H™1).

Next, suppose H > H,. For each G, € My we can split I;;(G,) into < g"’=*o short intervals
Iy, (Gy + tHoM), where deg(M) < H — H,,. We then have

max —1 Z Z f(Ge(Ga)

ael IMNl GyEMy | GEMy
GeIy(Gy)
H-H, 1
<q 0 max max Z 2 f(Ger(Ga)
deg(M)<H—Ho a€T [ Myl o &4 GEMy
GElp, (Go+tHoM)

_ 1
= g"~Ho max 2 2 f(Gep(Ga)|.
GoeMy | GEMy
GEly, (G))

We have thus reduced matters to the case H = H,,, which was addressed previously. Since H
M. (f; N, H) is non-increasing, we see that

log H,, < min{M, (f; N, Hy)/100, (log N)/(1000 log q), H,/100}

when N (and therefore H) is large enough. Selecting W := 10log H,, gives an admissible choice
in relation to (46) with H = H,,, picking P;, Q, in terms of H,, so that P, /Q, <« (logH,)/H,. We
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thus have

1
max f(Gep(Ga)
P2 TR 2 | o2,
Gely(Gy)

< gffHo . gHo ((logHO)HO_1 + N0 4 e‘M*(f;N’Ho)/Z())
< qH <N—1/(2000 logg) 4 M.,(f;N, H)e—M*(f;N,H)/wO)’

using the fact that H' — M, (f; N, H') is non-increasing and the definition of H,, in the last line.
Theorem 7.3 then follows in this case as well. O

Proof of Theorems 7.1 and 7.2. We will only prove Theorem 7.1 from the first statement in
Theorem 7.3, as Theorem 7.2 follows in the same way from the second statement in Theorem 7.3.

Let f : M — U be a multiplicative function. Define f to be the completely multiplicative func-
tion such that f(P) = f(P) for all P € P. We may thus find a multiplicative function h : M — C,
supported on squarefull monic polynomials (i.e., if #(P¥) # 0 for P € P and k € N then k > 2)
such that f = f  h;in particular, h is bounded by the divisor function d(G) = Y p|c 1, and hence

|h(G)| <, q°4¢8(©) for any G € M, a fact we will use shortly. We thus have

sup—=— ¥ 1| 3 f(G)er(Gar)

acT |MN| GOGMN |M<H| GEMN
Gely(Gy)

< X Ol ¥ Y f@e@'D
D€M<N aeT N GOEMN <H G/EMN—deg(D)
DG’ €Iy (Gy)

We first estimate TZH’ which corresponds to the terms with deg(D) > H above. If deg(D) > H,

then if Gy € My is such that I;(Gy) N DMy _geq(py # 9, then in fact [1;;(Gy) N DMy _gegmy| = 1
and G, lies in one of at most < g residue classes modulo D. It follows that

1 N+H—deg(D) —deg(D)
Ty < |h(D)| - ——— - q 8 « |h(D)|g~ ",
- ngl IMn M p] D;M
deg(D)>H deg(D)>H

Since h is supported on squarefull polynomials, all of which are of the form A?B? for some A, B €
M, and moreover |h(D)| < q4e&P)/5 for all D, we obtain

T;H < Z |h(D)|q—deg(D) < q—H/S Z q—0.6(2deg(A)+3deg(B)) < q—H/S‘ (47)

Dem A2B3eM
deg(D)>H

85Ue0| 7 SuowiWoD aAee.) a|qeal|dde sy Aq peusenob ae Seoiiie YO ‘8sn JO S9|nJ Joy Akelqi 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIWOY A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S [£202/50/72] Uo ARidi8ulluo /8|1 1581 Aq T8TZT MIW/ZTTT 0T/I0P/L0D A3 | Im Aelq 1 pul|uo-00syTewpuO|//:Sdny woly pepeojumod ‘T ‘€202 ‘Zv6.LT0Z



CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS | 213

Next, we estimate 7_j;. Writing G, = DG/, + B for some B mod D and D € M_y;, we have

Ten= ), |h(D)|sup > > | Ml > J(Ge(G'Da).

aeT |M | |
DEM_y N1 Bmod D GleMy_aegmy ' | 6" €My _degn)
DG’ €l (DG} +B)

Since deg(B) < deg(D) < H, we see that I;;(DG; + B) = I;(DG,) for all B mod D. Moreover, we
also have that DG’ € I;(DG) if and only if G’ € Ip;_geg(py(Gy)- Thus,

dEg(D) 1 3
Tar= Y, Ih(D)Isupd L] > ] Y f(G)ex(G'Da)
DeEM _y a€eT N G(’J EMy_degD) <Hl| gr¢ My _deg()
G/EIH—deg(D)(Gé)
h(D ~
< Z |d§ ([))|) M - Z Mo = Z f(G"eg(G'Dax)
2 aeT | N— deg(D)| G ! € My _deq(D) | <H—deg(D)| G,EMN—deg(D)
G,EIH—deg(D)(G(/))
|h(D)| 1 1 5
< 2 sup S o ¥ f@e@s)|

DeM_y qdeg(D) BeT |MN—deg(D)| |M<H—deg(D)| el

GyEMN _deg(D) EMN—deg(D)

G/EIH—deg(D) (Gé)

Since the supremum over § is < 1 for all D € M _y, we may further bound the contribution from
deg(D) > H /2 (as in (47), with H replaced by H/2) by O(qg—H/19). Applying Theorem 7.3 for each
D € My, we find

log(H — deg(D
Ty < q—H/IO + Z Ih(D)Iq—deg(D)< og( eg(D))

DeM y )y H- deg(D) (48)

+(N — deg(D))~1/(2000logq) |, MDe—MD/IOO)’

where we have set My 1= My f;N —deg(D),H — deg(D)) + 1. We note from its definition
that My, is non-increasing in H, and since f takes the same values as f on primes we get

Mp > Mygape(f3 N — deg(D), H) = Mypyes(f3 N — deg(D), H).

Finally, as D g(N —deg(D)) > Dg(N /2)=D g(N ) — O(1) for any one-bounded function g : M —
U, it follows that

Mp > Migyes(f;N,H) = O(1) =0 M —1-0(1)
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forall D € M_y /. Invoking this in (48), we obtain the bound

logH
Ty < q 110 4 < 981 | N—1/(2000l0g9) +Me—M/1()O> Z |h(D)|g~dee®)
Dem

< IOIgJH 4 N-1/(2000l0gg) 4 pro—M/100.

Combining this with our earlier estimate for 7., the proof of Theorem 7.1 follows. O

8 | ELLIOTT’S CONJECTURE

In this section, we shall prove the two-point case of the logarithmically averaged Elliott’s conjec-
ture on correlations of non-pretentious multiplicative functions in function fields, Theorem 1.4.
Here, we only treat the case A = 1 for simplicity; the proof of the general case of fixed monic A,
which is essentially the same, is left to the interested reader.

In the sequel, we will adopt the following notational conventions: If S C Fy[t] and g : F,[t] —
C, then

Egesg(G) :=ISI71 ) 9(G),
GeS

-1
Egt g(G) := <2 q‘deg(G)> Y 9(G)g @D if o¢s.

GeS GeS

To prove Theorem 1.4, we will combine the exponential sum estimate of Theorem 7.2 with
a function field version of the entropy decrement argument that Tao developed in [33] for
the corresponding problem in the integer setting. The key proposition arising from this is the
following.

Proposition 8.1 (Introducing an extra averaging variable). Let N > 100, and let B € F,[t]\{0}
be fixed. For any 1 < K < logloglogN, there exists H € [K, exp(exp(10K))] such that the follow-
ing is true. Suppose that f,, f, satisfy the hypotheses of Theorem 1.4. For each R € Py set cp :=

S1(R)f>(R). Then,

1 - 1 —

Egeni 4 “FON1(G) oG +B) = Epep, crEgE |y [1(G)f(G +PB)+O(K ™).

Proposition 8.1 will be deduced from the following proposition, which is based on our version
of the entropy decrement argument.

Proposition 8.2 (Entropy decrement argument in function fields). Let k > 1, and let
ay, .., ay : Fg[t] — U be arbitrary one-bounded functions. Also let By, ..., B € Fy[t] be any fixed
polynomials. Then, for any large enough N and for 1 <K <logloglogN, there exists H €
[K, exp(exp(10K))] such that

1 _
E % Epep, @1(G +PBy) - ai(G + PB)(q*¢ P10 — 1| < K70

GeM,
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Proof of Proposition 8.1 assuming Proposition 8.2. We may assume that K is larger than any fixed
constant, otherwise the claim of Proposition 8.1 (with a suitably large implicit constant in the error
term).

Thus, let H € [K,exp(exp(10K))], which may be assumed to be sufficiently large. By
multiplicativity, for each P € Py, we have

F1(G)f2(G + B) = ¢p f1(GP)f,(PG + BP),
unless P|G or P|(G + B). Averaging over P € Py, for a suitable choice of H we have
E! - -
Egeni J1Of2(G +B) = Epep, 0oEge 1O+ PB)G* ¥y + 07" + N7,
since (accounting for G = —B in case this is monic)
1 _
Epep, Egeq o 1G=0 or —Bmod P <qg"+NT
By Proposition 8.2 with a; = f; and the triangle inequality, we have
1
[EPePHCP[E;iM<Nf1(G)f2(G + PB)q &)1,
= Epep, cpE%  £1(G)f,(G + PB) + O(K~1)
— “pPepPy*tpP GEMy 1 2 ’
and the claim follows. ]

In the next subsection, we will establish Proposition 8.2.

8.1 | The entropy decrement argument in function fields

Definition 8.3. Let X,Y be random variables on a probability space (Q,P) with finite ranges
X, Y, respectively. We define the entropy

HX) 1= ) P(X = x)log ———— -

xeX

(X)

and the joint entropy

1

HX,Y):= ) PX=xY =Vleg e S =y

xeX,yey

Let E C Q. We define the conditional entropy of X with respect to the event E by

HX|E) = ) P(X = x| E)log

1
= PX = x | E)
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and further define the conditional entropy of X given Y by

HX|Y) = ) HX|Y = y)P(Y = y).
yey

Note that this satisfies the identity
HX,Y) = HX|Y) + H(Y).
Finally, we define the mutual information between X and Y by
I(X,Y) := H(X) + H(Y) — H(X, Y).
The non-negativity of I(X, Y') follows from the following lemma.

Lemma 8.4 (Shannon inequalities). Let X,Y be random variables on a probability space (Q, P)
with finite ranges X, Y. Then, we have the bounds

0 < HX) < log|X|
and
HX) < HX,Y) < H(X) + H(Y).

Proof. These inequalities are proved by applying Jensen’s inequality to the concave function x +—
xlog %; see [1] for the details. O

Proof of Proposition 8.2. We may assume that K (and thus N) are sufficiently large, since otherwise
the claim of the proposition is trivial. We adapt Tao’s proof in [33] to the function field setting. Let
¢ = K01, It suffices to show that there exists H € [K, exp(exp(10K))] for which

lo;

|Eo2

d
Gty Eper,;cpa1(G + PBy) - ai(G + PBi)(g &P 1pe — Dl <€

uniformly for all choices of ¢, € U. We discretize the functions qg; by defining 4;(F) for each F €
Fq [¢] to be a;(F) rounded to the nearest element in the Gaussian lattice Z[i], breaking ties using
the lexicographic ordering, say. Then, it suffices to prove

1 N N
|Epepy, [E((;)iM<NCPa1(G +PBy) - 4, (G + PBk)(qdeg(P)lmG -Dl<e (49)

for some H as above and for any ¢, € U. Since each polynomial G € My of degree > H belongs
to the same number of short intervals I;; (G, ), where G, ranges through My, and H/N < ¢, the
left-hand side of (49) can be rewritten as

log

|[EG06M§N

E Gemoy Epep, Cp@1 (G + PB)) -+ @ (G + PB)(@* P15 — 1] + 0().  (50)
GEI(Go)
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Let (Q, P) be the probability space where Q = My and P is the probability measure

1
P(A) 1= Ege . 1a(6),
for any A C Q. Since each ¢p and each map §; is uniformly bounded in absolute value, (50) can
be bounded trivially by

<&+ PGy € My : |Egemoy Epep, cp@r (G + PB)) - @ (G + PB)(q ¥ P15 — 1)] > ).
Gely(Go)
(1)

Letb := max ;. deg(B;). Introduce the random variables X ;; and Y ; defined on Q and given by

Xy(Go) 1= (ay(F), e, (F)pery,, 6p)»  YH(Go) 1= (Gymod P)pcp,, Gy € Q.
Then, there is a deterministic function F such that we can write the probability in (51) as
P(Gy € Myt [F(Xy(Gp), Y(Gp))l > e);
more precisely, F is of the form

F(X,Y) = Epep, pZp(%,¥) 1= Epep, CpEaeg(narrss®s (6 PYQE 1 pyyy — 1) (52)

for some one-bounded functions ¢; and for x € X,y € YV, where &}, YV are the ranges of
X, Yy, respectively. Therefore, by the triangle inequality we have the bound | Zp(x, y)| < 2 for
allx € Xy, y € Yy

It suffices to show that P(|F(X 4, Y )| = €) < ¢, for some H € [K, exp(exp(10K))]. To do this,
we start by bounding the probabilities P(|F(x, Y ;)| > €) without conditioning and then we will
deduce a bound on the corresponding conditional probabilities with X = x.

By the Chinese remainder theorem, Y ;;(F) = y forany y € Y;; corresponds to a unique congru-
ence for F modulo [] pepy, P- Thus, this happens with probability exactly equal to g~ Zrery deg(P)
as long as

Z deg(P) < N,
PEPy
which by the prime polynomial theorem holds whenever H < i‘ﬁé\; for N large enough, say.

Hence, Y; is a uniform random variable on Y, under the aforementioned condition. In partic-
ular, all the random variables G, = G, mod P for P € Py are jointly independent of each other.
By (52), we may write

F(x, YH) = [EPEPHCPZP(X’ YH),

and the random variables {Zp(x,Y ;) : P € Py}arejointly independent, all having mean 0. More-
over, the number of different P here is > %qH /H, say, again by the prime polynomial theorem. By
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Hoeffding’s inequality [13], there is an absolute constant C > 0 such that
P(F(x, Y1)l > €) = P(|Epep, cp Zp(x, Y i)l 2 €) < exp(=Ce’q" /H) (53)

for any x € &y.
To bound the conditional probability P(|F(x,Yy)| > €|Xy = x), we use a Pinsker-type
inequality from [34]. This is applicable since Y ; is a uniform random variable. We get

1 .
P(F(x.Y )l>e)

log

Since H > K and K is large, we may bound this from above using (53) and the prime polynomial
theorem, obtaining

1 LHY ) —H(Y 4| Xy = x)

<e+C ¢
H/H

(54)

Recalling that

PUFX 0, Y)l 2 )= Y PUFCY )l > elX)y = 0P(Xy = x),

XEXY
we multiply the bound in (54) by P(X;; = x) and sum over x € X} to get

H(Y ) —H(Y X)) .
q"/H - q"/H

P(IFXy, Yl 2e) <e+Cle?

by the definition of mutual information I(X ;;, Y;) from Definition 8.3. Now what remains to be
shown is that

H

q
X, Yy <e— 55
Xy, Yg) EH (55)

holds for some H satisfying the conditions in Proposition 8.2. We will prove (55) by appealing to
Shannon’s inequality (Lemma 8.4) and pigeonholing in the parameter H.
Consider the conditional entropy

H(XH+j|YH)

log N

forH, j < say We may write

Xig= @ i
deg(M)<j

where each X ;11\4) is a shifted copy of X; given by

X(Gy) 1= X1y(Gy + Mt!+D),
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Define also
YU(Gy) 1= Y (Gy + M0,
Then, by Shannon’s inequality

HX 1Y) SHX 1Y) < ) HEXGD1Y ).
deg(M)<j

Since the sigma algebra given by Y ; is shift-invariant and P is almost shift-invariant in the sense
that

sup |P(G € A)—P(G +J € A)| < deg(J)/N
ACMSN

we obtain

HX 4 1Y ) < Z I]-I](ng)IYgVI)) +eq/
deg(M)<j

< @HX | Yy) +eq/
= g/HX, Yy) — ¢H(Y ) + g/

= qj[H](XH) — qu](XH, Y+ qu.
On the other hand, from Shannon’s inequality, we also have the lower bound
HX 4 j1Y ) = HX gy, Yi) = H(Y ) > HX ) — H(Y ).

Comparing the upper and lower bounds for H(X ;. ;1Y ;;), we now have

Xy, Yy)  HXpy) HWXpy)  HYR)+eq/
< _ X £ (56)

qH qH qH+ Jj qH+ J

Since Y, is a uniform random variable, we have H(Y ;) = log | Yy | < 2q by the prime poly-

nomial theorem. Since X;; has kq'’*? components, each taking values in £Z[i] N U, we have

H(X ;) < 10(log %)kq’“b < Cpe ' g! for some Cy j, > 0. Now, if we denote wy; 1= H(X)/q",

then from (56) we have the information bound

Xy, Yy) 3
q—HSwH—wH_'_j'i'q—H,

and wy; € [0, s‘lck,b]. Suppose that (55) failed for all H € [K, exp(exp(K/2))]. Then, we would
have

<wH—wH+j+iH+2q_j (57)
q

Tl W
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forall H € [K, exp(exp(K/2))], j < iﬁg}. Define H,, H,, ... recursivelyby H; = [K|and H,,; :=

H, + 2logH, + 1000 log % Then, H, < exp(exp(K/2)) for r < exp(exp(K/3)), say. Telescop-
ing (57) with H = H, and j = H,,; — H, then yields

e3

3 H.—H —
2H < Z (wy, —wy,,, + ﬁ +2q"rTHryge 1Ck,b +1.
r<exp(exp(K/3)) = " r<exp(exp(K/3))

Since, by telescoping, we have

H,=H, +2 Y logH;+1000(r —1)log(1/e),

1<j<sr—1

by induction on r we find that H, < Cy(rlogr + rlog é) for some absolute constant C, > 0
whenever r > K > 1000 log(1/¢). Therefore,

1
et Z ————— < Cyp te

Ker<exp(axp(k/3)) 10C0T 1087
However, given our choice ¢ = K=%1, the left-hand side is
> K %K — 0(logK)),
which is a contradiction for K large enough. This completes the proof. [l

Now that we have established Proposition 8.2, which relates one-variable correlations to two-
variable ones, we can apply the circle method to complete the proof of Theorem 1.4.

Proposition 8.5. Assume the hypotheses of Proposition 8.1 and let H be chosen as in the conclusion
of that proposition. Let f, f5 : M — U be multiplicative functions. Set H' := H + deg(B). Then,
foranye > 0,

It
Egeaty |[EP€7,H cpEqegy<ir f1(G + I f2(G +T + PB)| (58)

<8 ((log H)H ™' 4 N~1/(0010g0) 4 o=Mriayes(/1 ;N/H’H')/lo‘)) + &%
Moreover, if f1 is real-valued and q is odd, we may replace My,yes With My, in (58).

Proof. Let 7 denote the expression on the left-hand side in (58). Fix G € My for the time being.
For each j = 1,2, define the sequence x;; := f;(G +J) for all deg(J) < H + deg(B). For each
G € My, consider the double sum

Tg 1= Epep, CpEdeg()<m’ X1,7%2,14PB>

log
GeMgN

resentatives of residue classes modulo ', and thus extending the sequences {x1 7}y and {x, ;};

noting that 7 = E |75 |. We may view the set of polynomials J with deg(J) < H’ as the rep-
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periodically in modulo tH' we can consider them as maps on F[t]/ (tH' Fylt]). We may thus
expand these sequences in the corresponding Fourier basis, giving in the inner sum over J:

Edeg()<H'X1,7X2,7+PB

= Y ARG PBIE, g e 6~ )

£,6, mod ¢H'

= Z £,(6)%,(E)eg(—EPB/tH),

£ mod tH’

where we have defined

%) =g D x; res(=JE /).

J mod tH'

Inserting this into the definition of 7;; thus gives

To= D %O - Epep,cpes(~EPB/E).

£ mod tH’

Now, define the large spectrum set
Ey :={£mod ¢! |[EP€pHcPeD:(—§PB /] > ).

We decompose 7; = T s + T, where
Tos i= D X(O2E) - Epep, cper(—EPB/ET),
§EBy

Toyi= Y £21(O%,(8) - Epep, cpep(—EPB/1).

{€Ey

If £ ¢ 5}, then we can bound the inner sum over P by &2. It follows from the Cauchy-Schwarz
inequality and Plancherel’s theorem that

[STE

2
ITosl <& Y, 15Ol <& > %P

{EEy J=1\ £ mod tH’

1
2 2

g/
=82H<q H Z |x]J|2) < EZ.

J=1 J mod tH'

85Ue0| 7 SuowiWoD aAee.) a|qeal|dde sy Aq peusenob ae Seoiiie YO ‘8sn JO S9|nJ Joy Akelqi 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIWOY A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S [£202/50/72] Uo ARidi8ulluo /8|1 1581 Aq T8TZT MIW/ZTTT 0T/I0P/L0D A3 | Im Aelq 1 pul|uo-00syTewpuO|//:Sdny woly pepeojumod ‘T ‘€202 ‘Zv6.LT0Z



222 | KLURMAN ET AL.

It remains to consider the case £ € Ej;. In this case, bounding the exponential sum in P trivially,
this contribution is

Tl < D) 18Ol

{eBy
Note that [|%/||,, < 1for j = 1,2. Averaging over G € My yields

1 —_H' ’
T <+ ) ESE a4 Y FiG+Des(=E1 /)
teBy h deg(J)<H'

2 = log —H' 2
<& +[EylmaxEy g f1(Gep(Ga)).
GEMaeg(Gy)

Gely (Gy)

To estimate |E |, we use a fourth moment estimate. Indeed,

4

2 Z cpe(—PBf/tH')

mod tH' |PEPy

g8

1Byl < =
|PH|4§

— —_ — !
< e 8Htqg™H 2 Cp,Cp,Cp,Cp, 2 eg(—B(P; + P, — Py — P&/t
P1,P;,P3,P,€PY & mod tH’

< e 8H4g3H Z 1,
P,.P5.P3.P,€Py
P, +P,=P5+P,

since deg(B(P; + P, — P; — P,)) < H'. By Lemma 4.13, the sum over tuples (P;, P,, P;, P,) above
is bounded by O(q*” /H*), and hence |2 | < ¢78. Splitting the average in G, € My according
to degree, we get

g1 _ _i
T <e?+¢ Sﬁ Z max g k Z gt Z [, (Glep(Ga)|.
k<N GOEMk GeMk
Gely (Gy)

The inner sum is trivially bounded as « 1 for 1 < k < N/H, which contributes a term of size
< H™'. Since H < N'/4, say, for each N/H < k < N we may apply Theorem 7.1 to get

g Y e Y £, (G)er(Ga)| < (log HYH™! + N71/ 20001080 4 o~ Mutayes [1:N/HHD/100
GoEM|, GeMy
Gely (Gy)
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in this range. Averaging this estimate over N/H < k < N gives
T <e?+¢8 <(log H)H™! 4 N~1/(0001gq) 1. e‘MHayes(fl?N/H’H')/loo).

This implies the first claim.
The second claim is proved in an identical manner, except that at the end we appeal to
Theorem 7.2. O

Proof of Theorem 1.4. Let W be fixed but large, and let K = W /100. Set

¢ = minfe Mimes(joN/HH+deg(B)/1600 0.1y

where H is chosen as in Proposition 8.1. Combining Propositions 8.1 and 8.5, we find

% Y gD f(6)f,(G +B)| < K*F (N—1/<2°°01°M> - (logH)H_l)
GEMy

+ e—MHayes(fl;N/H,H+deg(B))/200 + K_O'l,

where H € [K, exp(exp(10K)))] is chosen as in Proposition 8.1. Since f; is Hayes non-pretentious
tolevel W and H + deg(B) < 2H < (log N)/(2logq) < log N, it follows that Myy,ye(f1; N/H, H +
deg(B)) —» o as N — 0. Since H > K > W /100 the above is oy, _, (1) as N — oo, and letting W
tend to infinity very slowly in terms of N, the first part of Theorem 1.4 follows.

Consider then the second part of the theorem, where f; is real-valued and q is odd. Apply-
ing the same argument as before, save that My, is replaced in every instance by Mp;,, we see
that (4) holds unless there exists an infinite sequence N; — oo, Dirichlet characters 3; mod M;
with deg(Mj) = 0(1), and 0, € [0,1] such that

D(flﬂxbjeej;Nj) = O(D). (59)
If (59) holds, then by the pretentious triangle inequality also
D(f1.$jex,:N;) = O(1).

By pigeonholing, we may assume that 1; =7 is independent of j. Moreover, by passing to a
subsequence, we may assume that 6; converges to some 6 € [0, 1]. Then,

D(f7,%%ex; N;) = O(D), (60)
since by (59) and the triangle inequality we have

D(e@,eej;Nj) = ligisol:p D(e9j+k,esj;Nj) < D(f19, eej;Nj) + ligl—igp D(flz,b,e@j+k;Nj+k) = 0(1).
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Assume first that D(1, f?; 00) < co. Then by another application of the pretentious triangle
inequality, we deduce that

D(L, e N;) = O(1). (61)

By Lemma 3.2, this implies that 1? is principal, so we may assume that? = 1in (61). Then arguing
asin [9, p. 15] we have

z cos(47on)
n

[[IJ(I,eze;Nj)2 =logN; — + 0(1) = log(max{N;,||26]|,1}) + O(1),

nij

which in view of (61) implies that 26 = 0 mod 1. But this contradicts (5). Hence, we must have
D(1, f1; 00) = co. But as f? is non-negative, we have

1— | f1(PYY(P)e_g(P)I? - 1— f1(P)?

qdeg(P) qdeg(P )

D(f1, %€ N> > ),

PEPy;

PEPy;

so upon letting j — oo this contradicts (60). The claim follows. 1

9 | A CONJECTURE OF KATAI IN FUNCTION FIELDS

In this section, we establish Theorem 1.7 as an application of our two-point Elliott conjecture
result (Theorem 1.4). Since short interval characters and Archimedean characters satisfy

§(QG +1) = §(QG) = §(Q)5(G) and  €4(QG + 1) = €g(Q)e(G) (62)

whenever deg(QG) is sufficiently large relative to len(£), the function f = £e, clearly obeys (8) for
suitably chosen z € S'. Thus, the essence of Theorem 1.7 lies in showing that there are no other
such functions.

Before beginning with the proof of Theorem 1.7, we state the following useful proposition.

Proposition 9.1 (Concentration inequality for multiplicative functions). Let f : M — Ubea mul-
tiplicative for which D(f,1;N) < 1 as N — oo, and let € > 0. Then, there is an infinite increasing
sequence {M};>, C [1, o0), depending only on f and ¢, for which the following holds:

LetW € MsatisfyP | W forallP € Pij- Then, for any B coprime to W and of degree < deg(W),
and for N := M, j with j' large enough as a function of M j and g, we have

Y IfWG+B)—1] < qV (e +D(f,1;M},00) +0;_,(1)).
GeEMy

To prove this proposition, we begin with the following general lemma. In the sequel, given
scales 1 < A < B, we define

Im(f(P))
Sr(A,B) = Z —_—
f )
PEP gdee®)
A<deg(P)<B
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Lemma 9.2. Let N > M > 1 and let f: M — U be multiplicative. Let W € M satisfy P | W for
all P € Py;. Then, for any B coprime to W and of degree < deg(W), and for N large enough as a
function of M, we have

Z |f(WG + B) — esf(M’N)l < qN max D(f,1; M, 00)5 + oM_,oo(qN).

Proof. Leth : M — C be the additive function given by h(P%) = f(P%) — 1. Note that Re(h(P%)) <
0, so that ") e UforallPand a > 1
We apply the Taylor approximation

z=e"14+0(z—1)), for |z] < 1
withz = f(P%) =1+ h(P*) for P € P and « > 1, together with the simple inequality

|2y 2 —wy - wel < Y 1z —

1€j<k

valid whenever z;, w; € Uforall 1 < j < k (with z; and wj, respectively, playing the roles of eh(P*)

and f(P%) here). Ultimately, this yields
f(WG + B) = e"WG+B) 4 o< D |h(P°‘)|2>.
P|[WG+B

Since (B, W) = 1, note that P* || WG + B = deg(P) > M and P 4 W. Summing over G € My
thus leads to

|f(WG + B) _ eh(WG+B)‘ < qN Z |h(P0£)|2q—deg(P“)‘ (63)

GeEMy pep
deg(P)>M
deg(P*)KN

Next, set
A, (Y,X) = Z h(P¥)g P — g=e®) x>y >1.
pep
Y <deg(P*)<X

Since Re(h(M)) < 0 for all M € M, we have Re(4,(M, N)) < 0 as well, thus
|e"WG+B) _ pAnMN)|  |n(WG + B) — A,(M,N)|.

Summing this expression over G € My, then applying the Cauchy-Schwarz inequality followed
by the Turan-Kubilius inequality for h (see [4, Lemma 7] for the function field version of this"),

"1In [4], the Turan-Kubilius inequality was stated for the linear forms G + G + B, but the same proof works for any linear
forms G —» WG + B.
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we obtain
1/2

D [hVOE) — oMM « gN2[ N |R(WG + B) — A, (M, N)|?

GEMy GeEMy
1/2
<g"[ Y In@PgeEt?
Pep
deg(P)>M
deg(P*)<N
We note that
Y, h@HPgET = N 1= fPPg ) o),
PepP PepP
deg((}e’))>M M <de§(P)<N
deg(P*)XN

and this simplifies to 2D(f, 1; M, N)? + O(M~'/2). Combining this with (63), we thus find that

> WG +B) = eMMN| < g (D(f,1;M, 00) + D(f, ;M 0P + M7/4). (64)
G€M<N

Now, observe that

+O(M~/?%)

ANy =y RUGIZL e ImGR)

pep qiee®) & gle®
M<deg(P)XN M<deg(P)XN
= -D(f,1;M,N)* + iS;(M,N) + omM~1/2).

When M is large enough, we thus have
eAnMN) = oIS (MN) L o(D(f,1; M, 00)? + M~1/?),
which, when combined with (64) yields the claim. O
The following result allows us to pick suitable scales M and N in order to control the distribution
of § f(M ,N) mod 27, and therefore the direction of e!SrMN) Below, as usual we write I
min,,c, |t —m|fort € R.
Lemma 9.3. Let 7 > 0. Then there is an infinite increasing sequence {M j} j»1 C [1, ) such that

13, (Mj, M 1)/ 27|l <7

for any choice of j, j' sufficiently large relative to 1.
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Proof. A proof of this claim appears implicitly in the proof of [22, Lemma 2.11] in the integer
setting. We give here a shorter proof in the function field setting that would also be applicable
(without change) over the integers.

Write S¢(T) :=S;(1,T) for T > 1, and define J((oc0) 1= limy_, , S ((T).

As |0, 1] is compact, the sequence {J ;(n)/27 mod 1}, has alimit point, say a. We select {M ;} .,

. M . . . .
to be a sequence for which i 2(7r » mod 1 — a.Let j’ > 1. By the triangle inequality, we then have
SrMi ) SpM;) S (M) (M )
IS ;M M) /2| = | 2520 — L) < 1= —all + lla — 2| <,
provided j is chosen large enough. [l

Proof of Proposition 9.1. Let € > 0. Applying Lemma 9.3 with 7 = ¢, we may choose an infinite
increasing sequence {M};;, such that, if j, j' are large then upon setting M := M jand N :=

M, y we find that

| 1| < 115, (M, N <
Combining this with Lemma 9.2 and the condition D(f, 1; 00) < o0, we deduce that

Y, 1fWG +B) = 1] < g"(e + D(f, 1;M, 00) + 0y oo (1),
GEM N

which implies the claim. O

Proof of Theorem 1.7. By partial summation, if (S,)) is a non-negative sequence for which
g N Y,y Sy = 0(1), then ]iv Ynen Sn/q" = 0(1). Thus, (8) implies

Y, If(QG + 1) +zf(B)I/¢"E? = o(N).

GeEM

Since | f(QG + 1) + zf(G)| < 2, this further gives

Y, If(QG + 1) +zf(B)1P/¢*E D = o(N),

GEM N

<

so that expanding the modulus squared and recalling that f is unimodular, we find

2, (L+Re(zf(G)f(QG + 1))g *¥) = o(N), (65)

GeEM oy

We will use this in two ways as follows. First, since the summands are all € [0, 2], for a logarithmic
proportion 1 —o(1) of G € My we have

Re(zf(G)f(QG + 1)) = —1 + o(1), that is, f(G)f(QG + 1) = —z + o(1), (66)

by unimodularity. This will be applied shortly.
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Second, from (65) and the triangle inequality we deduce that

1+0(1) < % Relz Y FOFQC+1g% @ <=| ¥ fG)FQC+1g ). (67)

GeEMoy GeEMoy

By Theorem 1.4, (67) implies that for every N > 1 there exists a Dirichlet character y,; of bounded
conductor, a short interval character &y of bounded length, and an angle 6,y € [0, 1] such that

D(f, xnéneg, s N) < 1.
By pigeonholing, we may assume that y, = y and &y = & for some fixed Dirichlet character y,
short interval character £, and for an infinite sequence of integers N. Since the interval [0, 1] is

compact, we may find an infinite strictly increasing subsequence (N;) and a fixed 6 € [0, 1) such
thatlim;_, eNj = 0 exists and

D(f, xSeqy iNj) < 1. (68)
By the triangle inequality and the fact that N; < N, from (68) we see that

ID(eeNj , eQNj+k N <1
uniformly for k > 1. Letting k — oo yields

D(ey. ,eq;N;) <1,
( QNj 0 J)
and hence
D(f, x§es; Nj) < D(f, x§eg, ;N;) + D(eg, €9, ;Nj) < 1.
J J

Since every N belongs to some interval [N, N}, ), we finally see that

D(f, xéeg; N) < 1

uniformly in N.
Let us now write

f(G) = x1(G(G)f1(G), (69)
where y; is the completely multiplicative function given at irreducibles P by y,(P) = y(P)if P }

cond(y) and y;(P) = 1 otherwise, and where f; satisfies D(f,1;N) < 1.
Recalling (62), (66) gives

11f1G)x f1(QG +1) = 2/ +0(1) (70)

for logarithmic proportion 1 — o(1) of G € M and some complex number z’ € S*.
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Suppose first that{P € P: f,(P) # z’x,f1(Q + 1)} is infinite. Let P, be an element of this set
of degree > max{cond(y), deg(Q)}, and let > 0 be such that | f,(P,) — z’ x; f1(Q + 1)| > n; since
this condition becomes less stringent as 7 decreases, we may assume that 7 is smaller than any
fixed constant. Let w be a large integer to be chosen shortly, subject in particular to the condition
w > deg(Q)cond(y). Consider the infinite sets

A:={GeM: G=1mod [] P“, G=P,modP},
PEP,\(Po}

B:={(QG+1)/(Q+1): G € A}

By the Chinese remainder theorem, the elements of .A may be parameterized by an arithmetic pro-
gression Po(WG + B), where W € M is divisible by all P € P, and B = B(P,)) is some residue
class modulo W, necessarily coprime to W. Moreover, as G — 1 is divisible by a P4¢&Q for every
P|(Q + 1), it follows that whenever G € A,

QG+l _ . G-1
Q+1 Q+1

eM

Hence, B C M, and as deg(P,) > deg(Q + 1) the set B may similarly be parameterized as
P,WG’ + D, for D = D(P,)) coprime to P,,.

For G € A,wehave y,(G) =1, y;(QG + 1) = x;(Q + 1),and G/P,, (QG + 1)/(Q + 1) are both
coprime to ]_[Pep< P. We apply Proposition 9.1 with f = f, and € = 7?, say, along both .4 and B:
thus, we may find 2 common choice of parameters M, N (depending only on f; and ) such that,
upon taking w = M, along both A and B a proportion 1 —o,,_, (1) of G € My satisfy

[f1(G) = f1(Py)l <n/10, [f1(QG +1)— f1(Q + 1)| < n/10.

Combined with (70) restricted to A, we see that |f;(P,) — 2z’ x1f1(Q + 1)| < 7. However, this is a
contradiction to our assumption, so{P € P: f,(P) # z' y; f1(Q + 1)} must be finite. Now, since
f1 pretends to be 1, we must have z’ y; f1(Q + 1) = 1.

Now, let N, be such that f,(P) =1 whenever P € P, deg(P) > N,. Let M, be the modu-
lus of y. Let w’ be large enough in terms of the aforementioned quantities, and set W’ =
I1 Pep_, pmaxilop(Mo)} et C be arbitrary, subject to (C, W’) = 1. By the Chinese remainder theo-
rem, there exists a residue class G, mod W’ such that G = G, mod W' implies G = C mod M,, and
G =1mod W'/M,. Thus, if G = W'F, for any F = G, mod W/, then f,(F) = f1(QG+1) =1,
and thus

1) f1(G) = ;WL W)Hx(C), x(QG+1)f1(QG+1)=f1(QG+1) =1.

By (70) restricted to such G, we conclude that
XK1 W1 W)x(C) = 2" + o(1).

But this implies that y is constant on residue classes coprime to M, so y is principal.
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Now, (70) simplifies to
f1(G) =2/ f1(QG +1) + o(1)

for logarithmic proportion 1 —o0(1) of G. Let us restrict to polynomials G of the form G =
W'F, where W' is as above (in particular, P | W' for P € P.y,)- Since QW'F+1,W) =1,
we deduce that f;(W’)f,(F) =z’ + o(1) for logarithmic proportion 1 —o(1) of F € M. Since
L") = HPGPsNO fs(PymaxiLye(M} which is independent of w, there exists a constant ¢ such

that f,(F) = c + o(1) log-almost everywhere. But now if P, € P is arbitrary, we can find an infi-
nite sequence of polynomials G for which f,(P,G) = f1(G) + 0(1), so f,(Py) =1+ o(1), which
means that f;(Py) = 1. Thus, f; =1, and so f = &e,. O
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