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Abstract
We develop an approach to study character sums,
weighted by a multiplicative function 𝑓∶ 𝔽𝑞[𝑡] → 𝑆1, of
the form ∑

deg(𝐺)=𝑁
𝐺 monic

𝑓(𝐺)𝜒(𝐺)𝜉(𝐺),

where 𝜒 is a Dirichlet character and 𝜉 is a short inter-
val character over 𝔽𝑞[𝑡]. We then deduce versions of
the Matomäki–Radziwiłł theorem and Tao’s two-point
logarithmic Elliott conjecture over function fields 𝔽𝑞[𝑡],
where 𝑞 is fixed. The former of these improves on work
of Gorodetsky, and the latter extends the work of Sawin–
Shusterman on correlations of the Möbius function for
various values of 𝑞. Compared with the integer setting,
we encounter a different phenomenon, specifically a low
characteristic issue in the case that 𝑞 is a power of 2. As
an application of our results, we give a short proof of the
function field version of a conjecture of Kátai on classify-
ingmultiplicative functionswith small increments, with
the classification obtained and the proof being different
from the existing one in the integer case. In a companion
paper, we use these results to characterize the limiting
behavior of partial sums of multiplicative functions in
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156 KLURMAN et al.

function fields and in particular to solve a “corrected”
form of the Erdős discrepancy problem over 𝔽𝑞[𝑡].

MSC 2020
11T55, 11N37 (primary)

1 INTRODUCTION AND RESULTS

In the integer setting, there has been a lot of progress in understanding short sums∑
𝑥<𝑛⩽𝑥+𝐻

𝑓(𝑛), with 1 ⩽ 𝐻 ⩽ 𝑥, (1)

of multiplicative functions 𝑓∶ ℕ → ℂ, as well as their correlations

1

𝑥

∑
𝑛⩽𝑥

𝑓1(𝑛)𝑓2(𝑛 + ℎ), for ℎ ⩾ 1. (2)

See [27], [29, Theorem A.1], [28] for some papers dealing with (1) and [20, 29, 33, 36] for some
papers dealing with (2). These results have also led to a number of applications, including a
solution by Tao [32] to the famous Erdős discrepancy problem.
Let 𝑞 be a fixed prime power and denote by 𝔽𝑞[𝑡] the ring of polynomials in 𝑡 over 𝔽𝑞. Our focus

in this paper is on analogs of (1) and (2) over 𝔽𝑞[𝑡]. These results have applications, in particular,
to the Erdős discrepancy problem over 𝔽𝑞[𝑡], which we study in our follow-up paper [24]. In the
course of the proofs of our main results, we develop a substantial amount of pretentious number
theory over 𝔽𝑞[𝑡].
Let  denote the set of monic polynomials in 𝔽𝑞[𝑡]. Also, denote by ⩽𝑁 and 𝑁 the sets

of monic polynomials of degree ⩽ 𝑁 or = 𝑁, respectively. Let  be the set of irreducible monic
polynomials in 𝔽𝑞[𝑡]. Again, define ⩽𝑁 and 𝑁 similarly. Finally, let 𝕌 stand for the unit disc of
the complex plane.
By a Dirichlet character 𝜒∶ 𝔽𝑞[𝑡] → ℂ modulo𝑀 ∈, we mean a multiplicative homomor-

phism 𝜒∶ (𝔽𝑞[𝑡]∕𝑀𝔽𝑞[𝑡])× → ℂ ⧵ {0}, extended to all of 𝔽𝑞[𝑡] by setting 𝜒(𝐺) = 0 whenever 𝐺
and𝑀 are not coprime.
We first describe our result on short sums of multiplicative functions. This provides an analog

of the celebrated Matomäki–Radziwiłł theorem [27] in function fields.
Matomäki and Radziwiłł showed that, for any bounded, real-valued multiplicative function

𝑓∶ ℕ → [−1, 1], one has

1

𝑋 ∫
2𝑋

𝑋

|||||| 1𝐻
∑

𝑥<𝑛⩽𝑥+𝐻

𝑓(𝑛) −
1

𝑋

∑
𝑋<𝑛⩽2𝑋

𝑓(𝑛)

||||||
2

𝑑𝑥 = 𝑜(1),

as soon as 𝐻 = 𝐻(𝑋) → ∞ with 𝑋. Thus, the short sums of 𝑓 over [𝑥, 𝑥 + 𝐻] are almost always
asymptotic to the corresponding long sum of 𝑓 over [𝑋, 2𝑋], which can either be understood
asymptotically or upper bounded non-trivially by Halász’s theorem (see [35, Section III.4.3] for
further details).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 157

In function fields, the role of a short interval is played by†

𝐼𝐻(𝐺0) ∶= {𝐺 ∈∶ deg(𝐺 − 𝐺0) < 𝐻}, 𝐺0 ∈.
We prove a function field version of the aforementioned result for sums over such short intervals,
following a line of approach which differs somewhat from the result over the integers. We state
this as follows.

Theorem 1.1 (Matomäki–Radziwiłł Theorem for Function Fields, Real Case). Let 𝑓∶ →

[−1, 1] be a multiplicative function. Let𝑁 be large and let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4 with𝐻 = 𝐻(𝑁) → ∞
as𝑁 → ∞.

(i) If 𝑞 is odd, we have

𝑞−𝑁
∑

𝐺0∈𝑁

||||||𝑞−𝐻
∑

𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺) − 𝑞−𝑁
∑
𝐺∈𝑁

𝑓(𝐺)

||||||
2

≪
log𝐻

𝐻
+𝑁−1∕18+𝑜(1).

(ii) If 𝑞 is even, we have

𝑞−𝑁
∑

𝐺0∈𝑁

||||||𝑞−𝐻
∑

𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺) − 𝑞−𝑁
∑
𝐺∈𝑁

𝑓(𝐺)𝜒∗
1
(𝐺)

||||||
2

≪
log𝐻

𝐻
+𝑁−1∕18+𝑜(1),

where 𝜒1 mod 𝑡𝑁−𝐻+1 is a real character that minimizes the map

𝜒 ↦ min
𝜃∈[0,1]

∑
𝑃∈⩽𝑁

1 − Re(𝑓(𝑃)𝜒(𝑃))
𝑞deg(𝑃)

, 𝜒 mod 𝑡𝑁−𝐻+1,

and where 𝜒∗
1
is the completely multiplicative function satisfying 𝜒∗

1
(𝑡) = 1 and 𝜒∗

1
(𝐺) ∶=

𝜒1(𝑡
deg(𝐺)𝐺(1∕𝑡)) for all 𝐺 coprime to 𝑡.

Remarks.

∙ The long sum
∑
𝐺∈𝑁

𝑓(𝐺) appearing in Theorem 1.1 is very well understood, as in the inte-
ger setting. This is thanks to a version of Halász’s theorem over function fields, established by
Granville, Harper, and Soundararajan [9].

∙ The savings (log𝐻)∕𝐻 obtained is of the same quality as the ℎ-dependence found in [27, The-
orems 1 and 2] (replacing 𝐻 by log ℎ there). This term arises from a sieve-theoretic bound that
allows us to restrict the support of the intervening sums in our analysis to polynomials 𝐺 hav-
ing prime factors with degrees in specified intervals, depending on𝐻 (see Lemma 4.10 below).
This term is not expected to be optimal in general, and standard “square-root cancellation”
heuristics for sufficiently pseudo-random multiplicative functions (such as the Liouville func-
tion 𝜆∶→ {−1, 1}, the completely multiplicative function defined at all prime polynomials
𝑃 by 𝜆(𝑃) = −1) suggests a bound of the shape 𝑞−𝐻(1∕2−𝜀). In this connection, it is worth not-

† For ease of comparison with prior function field literature, specifically the work of Keating and Rudnick [18, 19], we note
that our short interval 𝐼𝐻(𝐺0) corresponds to 𝐼(𝐺0;𝐻 − 1) in the notation of [18].
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158 KLURMAN et al.

ing that in the integer setting, Chinis [3, Theorem 1.2] has shown that, assuming the Riemann
Hypothesis, the short sums ℎ−1

∑
𝑥<𝑛⩽𝑥+ℎ 𝜆(𝑛) of the Liouville function 𝜆 exhibit a correspond-

ing error term of the quality ℎ−1∕2+𝜀 in mean square whenever ℎ ⩾ (log𝑋)𝐴 with𝐴 = 𝐴(𝜀) > 0.
It might be interesting to pursue a similar result in the 𝔽𝑞[𝑡] setting.

∙ Note that, interestingly, a low-characteristic issue emerges in the Matomäki–Radziwiłł theo-
rem: In 𝔽2[𝑡], for instance, a real-valuedmultiplicative function can indeed have differentmean
values on short and long intervals. This is the reason why we have stated the cases of 𝑞 odd
and even separately in Theorem 1.1. Functions of the form 𝜒∗

1
, where 𝜒1 is a character mod-

ulo a power of 𝑡, are examples of short interval characters; see Definition 1.3 below, as well as
Sections 3.3 and 3.4 for further details relating to the transformation 𝜒1 ↦ 𝜒∗1 .

∙ Theorem 1.1 can be viewed as generalizing and strengthening the work of Gorodetsky [7,
Theorem 1.3], who proved that for any factorization function† 𝑓 and for 𝐻 = 𝐻(𝑁) satisfying
𝐻 log log𝑁∕ log𝑁 → ∞, the sum of 𝑓 over a short interval 𝐼𝐻(𝐺0) is almost always asymp-
totic to the corresponding long sum. Neither the class of factorization functions nor the class of
multiplicative functions contains the other, but their intersection contains several interesting
number theoretic functions; for example, one of the most important functions in both classes
is the Möbius function 𝜇∶ → {−1, 0, +1} (defined as 𝜇(𝐺) ∶= (−1)𝑠 if 𝐺 is squarefree and
has 𝑠 irreducible factors, and 𝜇(𝐺) ∶= 0 otherwise). In Theorem 1.1, we do not have any lower
bound on how quickly the length 𝐻 of the interval must grow, which is vital when we use this
result to deduce Theorem 1.4.

We in fact establish a slightly more general version of Theorem 1.1 (namely, Theorem 6.1)
that applies to bounded complex-valued multiplicative functions as well, but omit the more
complicated statement here for the sake of simplicity.
It is also natural to study the variance of multiplicative functions in arithmetic progressions;

see [11, 14] for some works on this topic. In the integer setting, an estimate for the variance
of a multiplicative function in arithmetic progressions that is of comparable strength to the
Matomäki–Radziwiłł theorem was established in [23]. Here, we generalize this result to function
fields, obtaining in fact a stronger version that does not involve exceptional‡ moduli. For multi-
plicative factorization functions, this also improves on a corresponding result of Gorodetsky [7,
Theorem 1.3].

Theorem1.2 (Variance ofMultiplicative Functions inArithmetic Progressions). Let 1 ⩽ 𝐻 ⩽ 𝑁 −
𝑁3∕4, such that𝐻 = 𝐻(𝑁) → ∞ as𝑁 → ∞. Let 𝑓∶→ 𝕌 be a multiplicative function. For every
𝑄 ∈𝑁−𝐻 , there is a character 𝜒1 modulo 𝑄 such that

∑∗

𝐴mod 𝑄

|||||||||
∑
𝐺∈𝑁

𝐺≡𝐴mod 𝑄
𝑓(𝐺) −

𝜒1(𝐴)

𝜙(𝑄)

∑
𝐺∈𝑁

𝑓(𝐺)𝜒1(𝐺)

|||||||||
2

≪

(
log𝐻

𝐻
+ 𝑁−1∕18+𝑜(1)

)
𝑞2𝑁−deg(𝑄).

†A function 𝑓(𝐺) is called a factorization function if it only depends on the values of deg(𝑃) and 𝑣𝑃(𝐺), where 𝑃 runs
through the irreducible divisors of 𝐺, and 𝑣𝑃(𝐺) denotes the largest integer 𝑘 with 𝑃𝑘 ∣ 𝐺.
‡ It should be noted that if one assumes GRH (generalised Riemann hypothesis) in the integer setting then [23, Theo-
rem 1.4] also gives non-trivial estimates for the corresponding variance for all moduli 𝑞 without exception, at least as
long as 𝑞 does not have too many “small” prime factors. Note crucially that such a constraint on 𝑄 in our setting is not
needed for our result as it is stated, simply because our savings are given relative to the (possibly worse-than-trivial)
bound 𝑞2𝑁−deg(𝑄), rather than the sharper 𝜙(𝑄)𝑞2(𝑁−deg(𝑄)). It is the factor 𝜙(𝑄)𝑞−deg(𝑄), ignored here, that is affected by
the primes of small degree.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 159

Precisely, 𝜒1 is any character modulo 𝑄 that minimizes the map

𝜒 ↦ min
𝜃∈[0,1]

∑
𝑃∈⩽𝑁

𝑞−deg(𝑃)
(
1 − Re(𝑓(𝑃)𝜒(𝑃)𝑒−2𝜋𝑖𝜃deg(𝑃))

)
.

Next, we turn to our result on two-point correlations of multiplicative functions in function
fields, with the objective of analogizing Tao’s groundbreaking work in [33]. Tao’s result states that
if 𝑓1, 𝑓2 ∶ ℕ → 𝕌 are multiplicative functions such that at least one of 𝑓1 and 𝑓2, say 𝑓1, satisfies
the non-pretentiousness assumption

inf|𝑡|⩽𝑥
∑
𝑝⩽𝑥

1 − Re(𝑓1(𝑝)𝜒(𝑝)𝑝−𝑖𝑡)
𝑝

→ ∞ as 𝑥 → ∞

for any fixed Dirichlet character 𝜒, then we have

1

log 𝑥

∑
𝑛⩽𝑥

𝑓1(𝑛)𝑓2(𝑛 + ℎ)

𝑛
= 𝑜(1)

for any fixed ℎ ≠ 0. The analog of the logarithmic weight 𝑛 ↦ 1∕𝑛 in function fields is 𝐺 ↦
𝑞−deg(𝐺).
Tao’s result implies that if 𝑓1 does not pretend to be a twisted Dirichlet character 𝑛 ↦ 𝜒(𝑛)𝑛𝑖𝑡,

then the autocorrelations of𝑓1 are small. It turns out that in the function field setting there are two
collections of Archimedean characters that play a role similar to 𝑛 ↦ 𝑛𝑖𝑡, namely, the characters
𝐺 ↦ 𝑒2𝜋𝑖𝜃deg(𝐺) as well as the short interval characters, to be defined presently (the group they
generate will be discussed in further detail in Section 3). Dirichlet characters twisted by at least
one of these functions provide obstructions to 𝑓1 ∶→ 𝕌 having small autocorrelations in the
setting of 𝔽𝑞[𝑡]. While in terms of phenomenology this is consistent with the integer setting, some
of the arguments in the function field setting require some additional care to address both types
of twists.

Definition 1.3. A multiplicative function 𝜉 ∶ → ℂ which is not identically zero is called a
short interval character if there exists 𝜈 such that 𝜉(𝐴) = 𝜉(𝐵) whenever the 𝜈 + 1 highest degree
coefficients of 𝐴 and 𝐵 agree (i.e., 𝐴∕𝑡deg(𝐴) − 𝐵∕𝑡deg(𝐵) is a rational function of degree < −𝜈). If
𝜈 is the smallest positive integer with this property, then we refer to 𝜈 as the length of 𝜉, and write
len(𝜉) = 𝜈.

Theorem 1.4 (Two-point logarithmic Elliott conjecture in function fields). Let 𝐴, 𝐵 ∈ 𝔽𝑞[𝑡]∖{0}
be fixed, with𝐴monic. Let 𝑓1, 𝑓2 ∶→ 𝕌 be multiplicative functions. Assume that 𝑓1 satisfies the
non-pretentiousness assumption

min
𝑀∈⩽𝑊

min
𝜓 mod𝑀

min
𝜉 short
len(𝜉)⩽𝑁

min
𝜃∈[0,1]

∑
𝑃∈⩽𝑁

1 − Re(𝑓1(𝑃)𝜓(𝑃)𝜉(𝑃)𝑒−2𝜋𝑖𝜃deg(𝑃))
𝑞deg(𝑃)

→ ∞, (3)

as𝑁 → ∞ for every fixed𝑊 ⩾ 1. Then,

1

𝑁

∑
𝐺∈⩽𝑁

𝑞−deg(𝐺)𝑓1(𝐺)𝑓2(𝐴𝐺 + 𝐵) = 𝑜(1) (4)

as𝑁 → ∞.
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160 KLURMAN et al.

Moreover, if 𝑓1is real-valued and 𝑞 is odd, then the same conclusion follows provided only that

min
𝑀∈⩽𝑊

min
𝜓 mod𝑀

min
𝜃∈{0,1∕2}

∑
𝑃∈⩽𝑁

1 − Re(𝑓1(𝑃)𝜓(𝑃)𝑒−2𝜋𝑖𝜃deg(𝑃))
𝑞deg(𝑃)

→ ∞ (5)

as𝑁 → ∞.

Remark 1.5. Observe that if 𝜉 is a short interval character of length 𝜈,𝑚 ⩾ 2𝜈 and deg(𝐵) < 𝜈, then
𝜉(𝐴𝐺 + 𝐵) = 𝜉(𝐴)𝜉(𝐺) for any 𝐺 ∈𝑚. As 𝜉(𝐴) ∈ 𝑆1, it follows that as 𝑁 → ∞,|||||| 1𝑁

∑
𝐺∈⩽𝑁

𝑞−deg(𝐺)𝜉(𝐺)𝜉(𝐴𝐺 + 𝐵)

|||||| ⩾ 1 − 2𝜈𝑁 ,
so short interval characters clearly present a class of functions with large two-point correlations.
This explains why our non-pretentiousness assumption must rule out significant correlations of
𝑓1 with such characters.

Since the Möbius function 𝜇∶ → {−1, 0, +1} is non-pretentious in the sense of (3) (by
an application of Lemma 3.1 below), this result has the following corollary regarding Chowla’s
conjecture in function fields.

Corollary 1.6 (Two-point logarithmic Chowla conjecture in function fields). Let 𝐵 ∈ 𝔽𝑞[𝑡]∖{0} be
fixed. Let 𝜇∶ 𝔽𝑞[𝑡] → {−1, 0, +1} be the Möbius function. Then, as𝑁 → ∞,

1

𝑁

∑
𝐺∈⩽𝑁

𝑞−deg(𝐺)𝜇(𝐺)𝜇(𝐺 + 𝐵) = 𝑜(1).

Remarks.

∙ Theorem 1.4 indicates that functions 𝑓 that pretend to be twisted products of Dirichlet and
short interval characters 𝜒𝜉𝑒𝜃(𝐺) (where 𝑒𝜃(𝐺) ∶= 𝑒2𝜋𝑖𝜃deg(𝐺)) are obstructions to the autocor-
relations of 𝑓 being small. This shows a different phenomenon compared to mean values of
multiplicative functions in function fields, wherein the only obstructions to the mean value
being small are functions pretending to be 𝑒𝜃 (see, for instance, Lemma 3.5 below); this is not
necessarily unexpected since the problem of estimating mean values is not one that relates to
short interval averages.

∙ Theorem 1.4 and Corollary 1.6 compare to previous results as follows. A recent groundbreaking
result of Sawin and Shusterman [31] established the Chowla conjecture in function fields in the
form

1

𝑞𝑁

∑
𝐺∈⩽𝑁

𝜇(𝐺 + 𝐵1)⋯𝜇(𝐺 + 𝐵𝑘) = 𝑜(1),

as 𝑁 → ∞ for any 𝑘 ⩾ 1 and any distinct 𝐵1, … , 𝐵𝑘 ∈ 𝔽𝑞[𝑡] in the large field case 𝑞 > 𝑝2𝑘2𝑒2,
where 𝑝 = char(𝔽𝑞). In particular, if 𝑞 = 𝑝𝑎, then we must have 𝑎 ⩾ 3 for this condition to
hold. Theorem 1.4 is somewhat orthogonal to this result in the sense that, despite being limited
to two-point correlations, it works for any non-pretentious multiplicative functions, unlike the
theorem in [31] which is specific to the Möbius function, and Theorem 1.4 works in any finite
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 161

field 𝔽𝑞, which will be important for us. We also point out that the one-point case (𝑓2 ≡ 1)
of Theorem 1.4 is (a logarithmic version of) Halász’s theorem in function fields, proved by
Granville, Harper and Soundararajan in [9].
In a different direction, when 𝑁 is fixed and 𝑞 → ∞, Gorodetsky and Sawin [8, Theorem

3] obtained cancellation in two-point correlations 𝑞−𝑁
∑
𝐺∈𝑁

𝛼(𝐺)𝛽(𝐺 + 𝐵), where 𝛼 and
𝛽 are factorization functions; in the 𝑞-limit this yields cancellation for the unweighted sums
𝑞−𝑁

∑
𝐺∈⩽𝑁

𝜇(𝐺)𝜇(𝐺 + 𝐵), for example (see [8, Theorem 2] for the precise statement).

Finally, we describe a short application of our results on Elliott’s conjecture to the function
field analog of a question of Kátai. Kátai [16] conjectured in 1983 that if 𝑓∶ ℕ → 𝑆1 is completely
multiplicative and the consecutive values of 𝑓 are close to each other on average, in the sense
that ∑

𝑛⩽𝑥

|𝑓(𝑛 + 1) − 𝑓(𝑛)| = 𝑜(𝑥), (6)

then 𝑓(𝑛) = 𝑛𝑖𝑡 for some real number 𝑡. This was proved in [20] by the first author. Later, the
result was generalized by Kátai and Phong [17] who proved that if 𝑓, g ∶ ℕ → 𝑆1 are completely
multiplicative and ∑

𝑛⩽𝑥

|g(2𝑛 + 1) − 𝑧𝑓(𝑛)| = 𝑜(𝑥) (7)

for some complex number 𝑧, then 𝑓(𝑛) = g(𝑛) = 𝑛𝑖𝑡. Since in the function field setting there are
two varieties of Archimedean characters, namely 𝑒𝜃 and short interval characters 𝜉, our classi-
fication of completely multiplicative functions satisfying (6) (and in fact more generally (7)) in
function fields takes a slightly different form.

Theorem 1.7 (Kátai’s conjecture in function fields). Let 𝑓∶→ 𝑆1 be completely multiplicative,
and let 𝑄 ∈. Let 𝑧 ∈ 𝑆1. Suppose that∑

𝐺∈⩽𝑁

|𝑓(𝑄𝐺 + 1) + 𝑧𝑓(𝐺)| = 𝑜(𝑞𝑁) (8)

as 𝑁 → ∞. Then there exist 𝜃 ∈ [0, 1) and a short interval character 𝜉 ∶→ 𝕌 such that 𝑓(𝐺) =
𝜉(𝐺)𝑒2𝜋𝑖𝜃deg(𝐺). Conversely, any function of this form satisfies (8) for some 𝑧.

The proof we give for this result is different† in various aspects from the proof in the integer
setting in [20], and could be translated to produce a new proof of Kátai’s result over the integers.

1.1 Proof ideas

The proof of Matomäki and Radziwiłł [27] in the integer setting uses harmonic analysis methods
that do not translate directly to function fields. In particular, the characters that control the short

†While the method of proof in [20, Section 5] could in principle be adapted to the function field setting, it would require a
function field derivation of binary correlation formulas for multiplicative functions, as in [20, Corollary 3.4], which would
likely lengthen this paper even further.
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162 KLURMAN et al.

sum behavior in function fields are not the Archimedean characters 𝑛𝑖𝑡 as in the integer setting,
but rather the short interval characters from Definition 1.3. For our result on the variance in
arithmetic progressions, in turn, the set of characters that control it are the Dirichlet characters.
Thus, in order to deal with both theorems simultaneously, we study character sums weighted by
𝑓 of the form ∑

𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)𝜉(𝐺), (9)

where𝜒 is a Dirichlet character and 𝜉 is a short interval character. Products of Dirichlet characters
and short interval characters are calledHayes characters (the same terminology is used in [7] and
stems from the fact that Hayes introduced these characters in [12]). Roughly speaking, we are
able to follow the proof strategy of [23] with this set of characters rather than Dirichlet characters
alone. In [23], however, our results only applied to characters whose modulus lies outside a
small set of exceptional moduli, because of our incomplete understanding of zero-free regions for
Dirichlet 𝐿-functions. In the function field setting, however, we can make use of a consequence
of Weil’s Riemann hypothesis due to Rhin [30] that shows that the 𝐿-functions corresponding to
Hayes characters satisfy GRH, which implies that there are no exceptional moduli in this setting.
We gain some information in passing from the physical to the Fourier space versions of the

problem by applying an involution (which we learned from the work of Keating and Rudnick [18,
19] and which appears earlier in the work of Hayes [12, e.g., pp. 115–116]) that relates short interval
sums to sums over arithmetic progressions, that is,∑

deg(𝐺)=𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺) ↔
∑

deg(𝐺)=𝑁
𝐺≡𝐴(𝐺0)mod 𝑡𝑁−𝐻+1

𝑓∗(𝐺),

where 𝐴(𝐺0) is a residue class modulo 𝑡𝑁−𝐻+1 determined by 𝐺0, and 𝑓∗ is a kind of dual to 𝑓
under the correspondence,† see Section 3.3 for further details (as well as [18, Section 5] for a nice
exposition of this idea). For example, this allows us to gain some insight, in the case that 𝑞 is even
in Theorem 1.1, about the nature of the main term in the variance.
For proving our two-point Elliott result, we in fact need a generalized version of ourMatomäki–

Radziwiłł theorem in function fields, where we twist the multiplicative function by an additive
character, thus looking at the short exponential sum∑

𝐺∈𝑁∩𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝛼𝐺) (10)

for almost all 𝐺0 (see Section 2 for the relevant notation). This exponential sum is analyzed by
adapting the approach ofMatomäki–Radziwiłł–Tao from [29] to function fields (see Theorem 7.1).
In particular, this involves performing the circle method in function fields, which is perhaps of
independent interest.
To complete the proof, we develop a version of Tao’s entropy decrement argument from [33,

section 3] that allows us to express the two-point correlation as a two-variable correlation. By a bit
of Fourier analysis, we can reduce the necessary estimate for this two-variable correlation sum to
the estimate for (10) that we proved.

† Strictly speaking, one needs to restrict to 𝐺 with 𝐺(0) = 1 for this to work.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 163

We use our correlation results in the proof of Theorem 1.7 in order to reduce our classification
of functions 𝑓 to functions that are pretentious to a Hayes character 𝜒𝜉𝑒𝜃. We eschew the need
for correlation formulas, as found in [20], by instead appealing to a concentration inequality that
forces𝑓𝜒𝜉𝑒−𝜃 to be close to 1 along structured sequences of polynomials. A judicious construction
of such sequences leads to Theorem 1.7.

1.2 Structure of the paper

The paper is organized as follows. In Section 3, we present some preliminary lemmas on the
pretentious distance, the involution mentioned above, and Hayes characters. In Section 4, we
introduce the remaining relevant preliminaries relating especially to mean square and pointwise
estimates for character sums that will be needed in the proofs of Theorems 1.2, 6.1, and 1.4. In
Section 5, we prove Theorem 1.2 using these lemmas. The proof of the Matomäki–Radziwiłł theo-
rem (Theorem 1.1) proceeds completely analogously and is described in Section 6. In Section 7, we
establish cancellation in exponential sums over short intervals weighted by any non-pretentious
multiplicative function. Finally, in Section 8, we adapt the entropy decrement argument of [33]
to the function field setting and apply the short exponential sum estimate for multiplicative
functions from Section 7 to establish Theorem 1.4. Section 9 is then devoted to the proof of our
application, Theorem 1.7, on Kátai’s conjecture.

2 NOTATION

Throughout the paper, 𝑝 is the characteristic of 𝔽𝑞, and 𝑞 = 𝑝𝑘 for some 𝑘 ⩾ 1.
We denote by  the set of monic polynomials in 𝔽𝑞[𝑡] (we do not denote 𝑞 dependence in, since it will always be clear from the context), and  the set of monic irreducible (prime)

polynomials in 𝔽𝑞[𝑡]. For𝑁 ∈ ℕ, we write𝑁 ,⩽𝑁 , and<𝑁 to denote, respectively, the set of
monic polynomials of degree exactly𝑁, less than or equal𝑁, and strictly less than𝑁. Analogously,
we define 𝑁 , ⩽𝑁 , and <𝑁 to be the corresponding sets of monic irreducible polynomials. We
denote the degree of𝑀 ∈ 𝔽𝑞[𝑡] by deg(𝑀).
Given two polynomials 𝐹,𝐺 ∈, not both zero, we define their greatest common divisor

(𝐹, 𝐺) as the unique polynomial 𝐷 ∈ such that 𝐷 ∣ 𝐹, 𝐷 ∣ 𝐺 and such that for any 𝐷′ ∈
satisfying 𝐷′ ∣ 𝐹, 𝐷′ ∣ 𝐺 we have 𝐷′ ∣ 𝐷. The least common multiple [𝐹, 𝐺] of 𝐹 and 𝐺 is in turn
defined by [𝐹, 𝐺] ∶= 𝐹𝐺∕(𝐹, 𝐺).
Typically, 𝐺 will be used to denote an element of, whereas 𝑅 or 𝑃 denotes an element of 

and𝑀 denotes an element of 𝔽𝑞[𝑡], monic or otherwise.
Given two polynomials 𝐺0, 𝐺 ∈ and a parameter 𝐻 ⩾ 1, we write

𝐼𝐻(𝐺0) ∶= {𝐺 ∈∶ deg(𝐺 − 𝐺0) < 𝐻}
to denote the short interval centered at 𝐺0 of size𝐻.
As usual, given 𝑡 ∈ ℝ, we write 𝑒(𝑡) ∶= 𝑒2𝜋𝑖𝑡. Given a parameter 𝜃 ∈ [0, 1] and a polynomial

𝐺 ∈ 𝔽𝑞[𝑡], we also write 𝑒𝜃(𝐺) ∶= 𝑒(𝜃deg(𝐺)). Finally, given an element 𝛼 ∈ 𝕂∞(𝑡) (see Section 7)
with formal Laurent series 𝛼 =

∑∞
𝑘=𝑁 𝑎−𝑘(𝛼)𝑡

−𝑘, we define 𝑒𝔽(𝛼) ∶= 𝑒(tr𝔽𝑞∕𝔽𝑝𝑎−1(𝛼)∕𝑝), where
tr𝔽𝑞∕𝔽𝑝 denotes the usual field trace. We also define ⟨𝛼⟩ ∶= 𝑞−𝑁 .
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164 KLURMAN et al.

Throughout the paper, we write 𝕌 ∶= {𝑧 ∈ ℂ∶ |𝑧| ⩽ 1} and 𝑆1 ∶= {𝑧 ∈ 𝕌∶ |𝑧| = 1}. We say
that 𝑓∶ → ℂ is multiplicative if 𝑓(𝐺1𝐺2) = 𝑓(𝐺1)𝑓(𝐺2) whenever 𝐺1, 𝐺2 are coprime. Given
multiplicative functions 𝑓, g ∶→ 𝕌, we define the pretentious distance between them by

𝔻(𝑓, g ; 𝑁) ∶=
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

𝑞−deg(𝑃)(1 − Re(𝑓(𝑃)g(𝑃)))
⎞⎟⎟⎠
1∕2

, (11)

and define 𝔻(𝑓, g ;𝑀,𝑁) similarly, but with the summation being over 𝑃 ∈ ⩽𝑁 ⧵ ⩽𝑀 . We also
set

𝑓(𝑁) ∶= min
𝜃∈[0,1]

𝔻(𝑓, 𝑒𝜃; 𝑁)
2.

Given a monic polynomial 𝐺 ∈ with 𝐺(0) = 1, we put 𝐺∗(𝑡) ∶= 𝑡deg(𝐺)𝐺(1∕𝑡) (see Sec-
tion 3.3 for further discussion). For amultiplicative function 𝑓∶→ 𝕌, we define the associated
multiplicative function 𝑓∗ ∶ → 𝕌 as 𝑓∗(𝐺) ∶= 𝑓(𝐺∗), whenever 𝐺(0) = 1, and set 𝑓∗(𝐺) =
0 otherwise.
Given a Dirichlet character 𝜒 modulo 𝑄 (defined above), we define its conductor† as

cond(𝜒) ∶= deg(𝑄′) if 𝑄′ ∣ 𝑄 is such that 𝜒(𝑀) agrees with a primitive Dirichlet character
𝜒′ mod 𝑄′ for all𝑀 coprime to 𝑄. In this case, we say that 𝜒′ induces 𝜒. We write 𝑄 to denote
the set of Dirichlet characters modulo 𝑄.
A Hayes character is a character of the form �̃� = 𝜓𝑄𝜉𝜈, where 𝜓𝑄 is a Dirichlet character to

modulus𝑄 induced by a primitive character to somemodulus𝑄′ and 𝜉𝜈 is a length 𝜈 short interval
character for some 𝜈 ⩾ 0 (in Section 3 we first give a different definition and then note that it is
equivalent to this one). We define the conductor of �̃� by cond𝐻(�̃�) ∶= deg(𝑄′) + 𝜈. We say that �̃�
is non-principal if cond𝐻(�̃�) > 0. We further say that �̃�′ induces �̃� if �̃�′ = 𝜒′𝜉′ and �̃� = 𝜒𝜉, with
the Dirichlet character 𝜒′ inducing 𝜒 and 𝜉′ = 𝜉. We also write 𝑄,𝜈 to denote the collection of
Hayes characters of the form 𝜓𝑄𝜉𝜈, where 𝜓 has modulus 𝑄 and 𝜉 has length 𝜈. See Section 3.4
for further discussion.
We will sometimes write 𝜇𝑘 to denote the set of roots of unity of order 𝑘, where 𝑘 ∈ ℕ.
The functions Λ, 𝜔, 𝜆, 𝜇, 𝜙, rad, and 𝜈𝑃, defined on , are the analogs of the corresponding

arithmetic functions in the number field setting. Thus,

∙ Λ(𝐺) = deg(𝑃) if 𝐺 = 𝑃𝑘 for some 𝑘 ⩾ 1 and 𝑃 ∈  , and Λ(𝐺) = 0 otherwise.
∙ 𝜔(𝐺) is the number of distinct irreducible divisors of 𝐺.
∙ 𝜆∶→ {−1,+1} is the completely multiplicative function with 𝜆(𝑃) = −1 for all 𝑃 ∈  .
∙ 𝜇∶ → {−1, 0, +1} is given by 𝜇(𝐺) = (−1)𝜔(𝐺) for 𝐺 not divisible by 𝑃2 for any 𝑃 ∈  , and
𝜇(𝐺) = 0 otherwise.

∙ 𝜙(𝐺) is the size of the finite multiplicative group (𝔽𝑞[𝑡]∕𝐺𝔽𝑞[𝑡])×.
∙ rad(𝐺) = 1 if 𝐺 = 1 and rad(𝐺) = 𝑃1⋯𝑃𝑘 if 𝑃1, … , 𝑃𝑘 are the distinct irreducible factors of 𝐺.
∙ 𝜈𝑃(𝐺), for 𝑃 ∈  , is the largest integer 𝑘 such that 𝑃𝑘 ∣ 𝐺.

† This is strictly speaking an abuse of notation/terminology, as the conductor of a function fieldDirichlet character𝜒 ought
to be a polynomial of least degree that is a period for 𝜒. Here, we use it as an integer-valued measure of complexity of the
character, which will be convenient for us in various estimates in the sequel.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 165

Throughout this paper, the cardinality 𝑞 of the underlying finite field 𝔽𝑞 is fixed. For the sake
of convenience, we have chosen to omit mention of dependencies of implicit constants in our
estimates on 𝑞. In particular, the implicit constants in any estimate may depend on 𝑞 throughout
this paper.

3 PRELIMINARIES I: MULTIPLICATIVE FUNCTIONS ANDHAYES
CHARACTERS

In this section, we establish some auxiliary lemmas, specifically related to multiplicative func-
tions, that will be necessary in the proofs of Theorems 1.1 and 1.4. Recall the definition of Hayes
characters from Section 2.

3.1 Lemmas on character sums

When working over 𝔽𝑞[𝑡], we have the generalized Riemann hypothesis at our disposal, arising
from an application of Weil’s Riemann hypothesis for curves over finite fields (see [39, p. 134]).†

Lemma 3.1 (Rhin). Let𝑁 ⩾ 1. Let �̃� be a non-principal Hayes character. Then,∑
𝐺∈𝑁

�̃�(𝐺)Λ(𝐺) ≪ cond𝐻(�̃�)𝑞𝑁∕2. (12)

Proof. This is [30, Theorem 3]. □

A useful corollary of Lemma 3.1 is the following.

Lemma 3.2 (A pretentious distance bound). Let 𝑁 ⩾ 3, 𝐴 ⩾ 1. Let �̃� be a non-principal Hayes
character of conductor cond𝐻(�̃�) ⩽ 𝑁𝐴. Then,

max
𝜃∈[0,1]

||||||
∑
𝑃∈⩽𝑁

�̃�(𝑃)𝑒𝜃(𝑃)𝑞
−deg(𝑃)

||||||≪𝐴 log log𝑁.
Proof. Splitting the sum according to degree, then separating the contribution of deg(𝑃) ⩽
10𝐴 log𝑁 from its complement, we get∑

𝑃∈⩽𝑁
�̃�(𝑃)𝑒𝜃(𝑃)𝑞

−deg(𝑃)

=
∑

𝑑⩽10𝐴 log𝑁

𝑒(𝜃𝑑)𝑞−𝑑
∑
𝑃∈𝑑

�̃�(𝑃) +
∑

10𝐴 log𝑁<𝑑⩽𝑁

𝑒(𝜃𝑑)𝑞−𝑑
∑
𝑃∈𝑑

�̃�(𝑃) =∶ 𝑇1 + 𝑇2.

†Even though GRH is useful for us in certain parts of our arguments, specifically Lemmas 3.2 and 3.3, we emphasize
that it is not the main driving force behind the proofs of our results. As noted implicitly in [27] and explicitly in [23],
obtaining non-trivial bounds on the variance in short intervals and arithmetic progressions, respectively, in the integer
setting only requires the existence of sufficiently wide zero-free regions, for example, of Korobov–Vinogradov type, for
Dirichlet 𝐿-functions to the left of Re(𝑠) = 1 (and for 𝐿-functions of Hayes characters in our setting).
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166 KLURMAN et al.

We bound the first sum trivially using the prime polynomial theorem, yielding

𝑇1 ≪
∑

𝑑⩽10𝐴 log𝑁

𝑞−𝑑|𝑑|≪ ∑
𝑑⩽10𝐴 log𝑁

1

𝑑
= log log𝑁 + 𝑂𝐴(1).

Wenow consider𝑇2. Replacing
∑
𝑃∈𝑑 �̃�(𝑃) by

∑
𝐺∈𝑑

�̃�(𝐺)Λ(𝐺)∕𝑑 in the inner sum over primes
in 𝑇2 incurs an error of size 𝑂(

∑
𝑑⩽𝑁 𝑞

−𝑑∕2) = 𝑂(1) from terms 𝑃𝑘 with 𝑘 ⩾ 2. This sum can thus
be expressed as

𝑇2 =
∑

10𝐴 log𝑁<𝑑⩽𝑁

𝑒(𝜃𝑑)

𝑑𝑞𝑑

∑
𝐺∈𝑑

Λ(𝐺)�̃�(𝐺) + 𝑂(1).

By Lemma 3.1, we can bound this as

|𝑇2| ⩽ ∑
10𝐴 log𝑁<𝑑⩽𝑁

1

𝑑𝑞𝑑

||||||
∑
𝐺∈𝑑

Λ(𝐺)�̃�(𝐺)

|||||| + 𝑂(1) ≪
∑

10𝐴 log𝑁<𝑑⩽𝑁

𝑁𝐴

𝑑𝑞𝑑∕2
+ 𝑂(1)

≪ 𝑁𝐴 ⋅ 2−5𝐴 log𝑁 + 1 ≪ 1.

Combining the contributions from 𝑇1 and 𝑇2, we obtain the claim. □

We will also need a bound on sums of Hayes characters over (as opposed to ).
Lemma 3.3 (Pointwise bound for character sums over monics). Let𝑀 > 𝑁 ⩾ 1. Let �̃� be either a
non-principal Dirichlet character or a non-principal short interval character of conductor𝑀. Then,
we have ∑

𝐺∈𝑁

�̃�(𝐺) ≪ 𝑞𝑁∕2
(
𝑀 − 1

𝑁

)
. (13)

Remark 3.4. This lemma will be applied in particular when𝑀 ⩽ (1 + 𝑜(1))𝑁. For Dirichlet char-
acters, we could instead have appealed to the Pólya–Vinogradov inequality (see [15, Proposition
2.1]) to produce a sharper bound in this range, rather than applying Weil’s RH; however, a corre-
sponding result for general Hayes characters does not exist in the literature. For this reason, we
have resorted to appealing to RH instead.
Note that the same quality bound, with an essentially identical proof, appears as [6, Lemma 2.1]

in the context of Dirichlet characters; for the sake of completeness, we include the short proof of
the general case.

Proof. By the GRH for 𝐿-functions corresponding to Hayes characters [30], we can write the
𝐿-function

(𝑧, �̃�) = ∑
𝐺∈

�̃�(𝐺)𝑧deg(𝐺)

as

(𝑧, �̃�) =
𝑀−1∏
𝑗=1

(1 − 𝛼𝑖𝑧) (14)
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 167

for some 𝛼𝑖 = 𝛼𝑖(�̃�) that all have modulus either 1 or 𝑞1∕2. Now, the sum in question is the
coefficient of 𝑧𝑁 on the right of (14), which by Vieta’s formulas is equal to∑

𝑆⊆[1,𝑀−1]∩ℕ|𝑆|=𝑁
∏
𝑗∈𝑆

(−𝛼𝑗).

This is trivially bounded in absolute value by 𝑞𝑁∕2
(𝑀−1
𝑁

)
, which yields the claim. □

3.2 Multiplicative functions in function fields

Let 𝑓∶→ 𝕌 be a one-boundedmultiplicative function. Define the Dirichlet series correspond-
ing to 𝑓 by

𝐿(𝑠, 𝑓) ∶=
∑
𝑁⩾0

∑
𝐺∈𝑁

𝑓(𝐺)𝑞−deg(𝐺)𝑠 =
∏
𝑃∈
∑
𝑘⩾0

𝑓(𝑃𝑘)𝑞−𝑘deg(𝑃)𝑠, (15)

for Re(𝑠) > 1; in this region, both expressions converge absolutely.
Recall the pretentious distance

𝔻(𝑓, g ; 𝑁) ∶=
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

𝑞−deg(𝑃)
(
1 − Re(𝑓(𝑃)g(𝑃))

)⎞⎟⎟⎠
1
2

.

One can show [21] that 𝔻 satisfies a triangle inequality of the shape

𝔻(𝑓, ℎ;𝑁) ⩽ 𝔻(𝑓, g ; 𝑁) + 𝔻(g , ℎ; 𝑁),

for any 𝑓, g , ℎ∶→ 𝕌multiplicative. Define also

𝑓(𝑁) ∶= min
𝜃∈[0,1]

𝔻(𝑓, 𝑒𝜃; 𝑁)
2.

The following variant of Halász’s theorem then holds:

Theorem 3.5 (Halász’s Theorem in Function Fields). Let𝑁 ⩾ 1. Let 𝑓∶→ 𝕌 be multiplicative.
Then,

1

𝑞𝑁

∑
𝐺∈𝑁

𝑓(𝐺) ≪ (1 +𝑓(𝑁))𝑒−𝑓(𝑁).

Proof. We will reduce this to the Granville–Harper–Soundararajan formulation of Halász’s
inequality in [9]. Define the multiplicative function 𝑓𝑁 on prime powers by†

† This is technically different from the definition of 𝑓⟂ used in [9]. However, it is always true that, in the notation there,
Λ𝑓𝑁 (𝑃) = Λ𝑓⟂(𝑃), and the difference lies only in values at powers 𝑃

𝑘 with 𝑘 ⩾ 2. It is easy to check, then, that |𝐿(𝑠, 𝑓⟂)|
and |𝐿(𝑠, 𝑓𝑁)| differ in at most a factor of an absolute constant whenever 𝑓 is one-bounded and Re(𝑠) = 1.
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168 KLURMAN et al.

𝑓𝑁(𝑃
𝑘) ∶=

{
𝑓(𝑃𝑘) if deg(𝑃𝑘) ⩽ 𝑁
0 otherwise.

Then, [9, Corollary 1.2] (in the case 𝜅 = 1) shows that

1

𝑞𝑁

∑
𝐺∈𝑁

𝑓(𝐺) ≪ (1 +𝑀)𝑒−𝑀,

where𝑀 ∶= minRe(𝑠)=1 log(2𝑁∕|𝐿(𝑠, 𝑓𝑁)|). Now, the prime polynomial theorem gives

∑
𝑃∈⩽𝑁

𝑞−deg(𝑃) =
∑
𝑑⩽𝑁

𝑞−𝑑|𝑑| = ∑
𝑑⩽𝑁

𝑞−𝑑
(
𝑞𝑑

𝑑
+ 𝑂(𝑞𝑑∕2)

)

=
∑
𝑑⩽𝑁

1

𝑑
+ 𝑂

(∑
𝑑⩽𝑁

𝑞−𝑑∕2

)
= log𝑁 + 𝑂(1).

Moreover, if 𝑠0 maximizes |𝐿(𝑠, 𝑓𝑁)| on Re(𝑠) = 1 and 𝑞−𝑠0 = 𝑒(𝜃)∕𝑞 for some 𝜃 ∈ [0, 1], then
log |𝐿(𝑠0, 𝑓𝑁)| = log ||||||

∏
𝑃∈⩽𝑁

(
1 + 𝑓(𝑃)𝑒(𝜃deg(𝑃))𝑞−deg(𝑃) + 𝑂

(∑
𝑘⩾2

𝑞−𝑘deg(𝑃)

))||||||
=
∑
𝑃∈⩽𝑁

Re(𝑓(𝑃)𝑒𝜃(𝑃))𝑞−deg(𝑃) + 𝑂(1).

It follows that

𝑀 = min
Re(𝑠)=1

log(2𝑁∕|𝐿(𝑠, 𝑓𝑁)|) = min
𝜃∈[0,1]

∑
𝑃∈⩽𝑁

𝑞−deg(𝑃)(1 − Re(𝑓(𝑃)𝑒𝜃(𝑃))) + 𝑂(1)

= 𝑓(𝑁) + 𝑂(1).
The claim follows immediately. □

Using Lemma 3.1, we can also show that for any𝑁 ⩾ 3, there is at most one Hayes character �̃�
with cond𝐻(�̃�) ⩽ 𝑁 for which𝑓�̃�(𝑁) can be “small” in some sense. In what follows, we denote
�̃�1 ∼ �̃�2 if �̃�1 and �̃�2 are induced by the same Hayes character, and otherwise write �̃�1 ≁ �̃�2.

Lemma 3.6 (Repulsion of pretentious distance). Let 𝑁 ⩾ 3. Let 𝑓∶→ 𝕌 be multiplicative. Let
�̃�1 ≁ �̃�2 be two Hayes characters of conductors ⩽ 𝑁. Then,

max{𝑓�̃�1(𝑁),𝑓�̃�2(𝑁)} ⩾
(
1

4
− 𝑜(1)

)
log𝑁.

Proof. For each 𝑗 = 1, 2, let 𝜃𝑗 be an angle for which 𝑓�̃�𝑗 (𝑁) = 𝔻(𝑓, �̃�𝑗𝑒𝜃𝑗 ; 𝑁)2. Suppose first
that 𝑓 is unimodular. Then, by the triangle inequality, we have

2max{𝑓�̃�1(𝑁)1∕2,𝑓�̃�2(𝑁)1∕2} ⩾ 𝔻(𝑓�̃�1, 𝑒𝜃1 ; 𝑁) + 𝔻(𝑓�̃�2, 𝑒𝜃2 ; 𝑁) ⩾ 𝔻(�̃�1, �̃�2𝑒𝜃2−𝜃1 ; 𝑁), (16)
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 169

where the unimodularity of 𝑓 was used in the second inequality to write (𝑓�̃�1)(𝑓�̃�2) = �̃�1�̃�2.
Now, by definition we have

𝔻(�̃�1, �̃�2𝑒𝜃2−𝜃1 ; 𝑁)
2 = log𝑁 − Re

⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

�̃�1�̃�2(𝑃)𝑒((𝜃1 − 𝜃2)deg(𝑃))𝑞−deg(𝑃)
⎞⎟⎟⎠ + 𝑂(1).

Since �̃�1�̃�2 has conductor ⩽ 𝑁2 and it is non-principal, Lemma 3.2 (with 𝜃 ∶= 𝜃1 − 𝜃2 and
�̃� ∶= �̃�1�̃�2) yields

Re
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

�̃�1�̃�2(𝑃)𝑒((𝜃1 − 𝜃2)deg(𝑃))𝑞−deg(𝑃)
⎞⎟⎟⎠≪ log log𝑁,

and so it follows that

𝔻(�̃�1, �̃�2𝑒𝜃2−𝜃1 ; 𝑁)
2 ⩾ log𝑁 − 𝑂(log log𝑁). (17)

Squaring both sides of (16), then inserting this last estimate into the result yields

max{𝑓�̃�1(𝑁),𝑓�̃�2(𝑁)} ⩾
(
1

4
− 𝑜(1)

)
log𝑁.

Suppose then that 𝑓 is not unimodular. Define a random completely multiplicative function
𝒇∶ → 𝑆1 (on some associated probability space) at irreducibles 𝑃 in such a way that 𝑓(𝑃) =
𝔼𝒇(𝑃) for every irreducible 𝑃. By linearity of expectation, it follows that for any multiplicative
function g , we have

𝔻(𝑓, g ; 𝑁)2 = 𝔼𝔻(𝒇, g ; 𝑁)2. (18)

It follows from this and (17) that for any 𝜃 ∈ [0, 1], we have

2max{𝑓�̃�1(𝑁),𝑓�̃�2(𝑁)} ⩾ 𝔻(𝑓�̃�1, 𝑒𝜃1 ; 𝑁)2 + 𝔻(𝑓�̃�2, 𝑒𝜃2 ; 𝑁)2

⩾
1

2
(𝔻(𝑓�̃�1, 𝑒𝜃1 ; 𝑁) + 𝔻(𝑓�̃�2, 𝑒𝜃2 ; 𝑁))

2

=
1

2
(𝔼(𝔻(𝒇�̃�1, 𝑒𝜃1 ; 𝑁) + 𝔻(𝒇�̃�2, 𝑒𝜃2 ; 𝑁)))

2

⩾
(
1

2
− 𝑜(1)

)
log𝑁,

and the claim follows. □

Combining Theorem 3.5 with Lemma 3.6 immediately produces the following.

Corollary 3.7 (Sup norm estimate for weighted character sums). Let 𝑁 ⩾ 3. Let 𝑓∶ → 𝕌

be multiplicative. Let �̃�1 be the Hayes character of conductor ⩽ 𝑁 that minimizes† the map

† If there are several minimizers, we choose one of them arbitrarily.
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170 KLURMAN et al.

�̃� ↦ 𝑓�̃�(𝑁). Then,

max
cond𝐻(�̃�)⩽𝑁
�̃�≁𝜒1

|||||| 1𝑞𝑁
∑
𝐺∈𝑁

𝑓(𝐺)�̃�(𝐺)

||||||≪ 𝑁−1∕4+𝑜(1). (19)

Finally,wewill need the following simple upper bound estimate for non-negativemultiplicative
functions later in this paper (for a corresponding result about functions over the integers, see [10]).

Lemma 3.8 (Halberstam–Richert bound in function fields). Let g ∶→ [0,∞) bemultiplicative,
and let 𝑁 ⩾ 1. Let 𝜅 > 0, and assume that for all 𝑃 ∈  and 𝑘 ⩾ 1 we have g(𝑃) ⩽ 𝜅 and g(𝑃𝑘) ≪𝜀
𝑞𝑘𝜀deg(𝑃) for any 𝜀 > 0. Then,

1|𝑁| ∑𝐺∈𝑁

g(𝐺) ≪
(𝜅 + 1)

𝑁
exp
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

g(𝑃)𝑞−deg(𝑃)
⎞⎟⎟⎠.

Proof. Observe that for any 𝐺 ∈𝑁 we have 𝑁 =
∑
𝑃𝑘||𝐺
𝑃∈

𝑘deg(𝑃) (where 𝑃𝑘 ∣∣ 𝐵 means 𝑃𝑘 ∣ 𝐵

and 𝑃𝑘+1 ∤ 𝐵), and thus∑
𝐺∈𝑁

g(𝐺) = 1
𝑁

∑
𝑃𝑘𝐵∈𝑁
(𝑃,𝐵)=1
𝑃∈

g(𝑃𝑘)g(𝐵)𝑘deg(𝑃)

⩽
1

𝑁

∑
𝐵∈⩽𝑁

g(𝐵)
∑

𝑃∈𝑁−deg(𝐵)
g(𝑃)deg(𝑃) + 1

𝑁

∑
𝑃𝑘𝐵∈𝑁
𝑃∈
𝑘⩾2

g(𝑃𝑘)g(𝐵)𝑘deg(𝑃)

=∶ 𝔖1 +𝔖2.

Consider𝔖1 first. Bounding g(𝑃) ⩽ 𝜅 for each𝑃 ∈ 𝑁−deg(𝐵) and thenusing the prime polynomial
theorem, we have ∑

𝑃∈𝑁−deg(𝐵)
g(𝑃)deg(𝑃) ⩽ 𝜅

∑
𝐺∈𝑁−deg(𝐵)

Λ(𝐺) ≪ 𝜅𝑞𝑁−deg(𝐵),

for every 𝐵 ∈⩽𝑁 . Summing over such 𝐵 now gives

𝔖1 ≪ 𝜅
𝑞𝑁

𝑁

∑
𝐵∈⩽𝑁

g(𝐵)𝑞−deg(𝐵) ⩽ 𝜅
𝑞𝑁

𝑁

∏
𝑃∈⩽𝑁

(∑
𝑘⩾0

g(𝑃𝑘)𝑞−𝑘deg(𝑃)
)
.

Using the condition g(𝑃𝑘) ≪ 𝑞
1
4
𝑘deg(𝑃) for 𝑘 ⩾ 2, we get∑

𝑃∈⩽𝑁

∑
𝑘⩾2

g(𝑃𝑘)𝑞−𝑘deg(𝑃) ≪
∑
𝑃∈⩽𝑁

𝑞−
3
2
deg(𝑃) ≪

∑
𝑑⩽𝑁

𝑞−𝑑∕2 ≪ 1.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 171

Thus, rewriting the product over 𝑃 ∈ ⩽𝑁 as an exponential, we get
∏
𝑃∈⩽𝑁

(
1 + g(𝑃)𝑞−deg(𝑃) +

∑
𝑘⩾2

g(𝑃𝑘)𝑞−𝑘deg(𝑃)
)

⩽
∏
𝑃∈⩽𝑁

(
1 + g(𝑃)𝑞−deg(𝑃)

)(
1 +
∑
𝑘⩾2

g(𝑃𝑘)𝑞−𝑘deg(𝑃)
)
≪ exp

⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

g(𝑃)𝑞−deg(𝑃)
⎞⎟⎟⎠. (20)

Inserting this into our bound for𝔖1 yields

𝔖1 ≪ 𝜅
𝑞𝑁

𝑁
exp
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

g(𝑃)𝑞−deg(𝑃)
⎞⎟⎟⎠.

To bound 𝔖2, we use the identity 1 = 𝑞𝑁∕𝑞deg(𝐵)+𝑘deg(𝑃) and the upper bound 𝑘deg(𝑃)g(𝑃𝑘) ≪
𝑞𝑘deg(𝑃)∕3 to get

𝔖2 =
𝑞𝑁

𝑁

∑
𝐵∈⩽𝑁

g(𝐵)𝑞−deg(𝐵)
∑

𝑃𝑘∈𝑁−deg(𝐵)
𝑘⩾2

𝑘deg(𝑃)g(𝑃𝑘)𝑞−𝑘deg(𝑃)

≪
𝑞𝑁

𝑁

⎛⎜⎜⎝
∏
𝑃1∈⩽𝑁

∑
𝓁⩾0

g(𝑃𝓁1 )𝑞
−𝓁deg(𝑃1)

⎞⎟⎟⎠
∑
𝑘⩾2

∑
𝑃2∈

𝑞−2𝑘deg(𝑃2)∕3.

The sum over 𝑃2 can be bounded by∑
𝑑⩾1

|𝑑|∑
𝑘⩾2

𝑞−2𝑘𝑑∕3 ≪
∑
𝑑⩾1

𝑞−𝑑∕3 ≪ 1.

Bounding the product in 𝑃1 as in (20), we obtain

𝔖2 ≪
𝑞𝑁

𝑁
exp
⎛⎜⎜⎝
∑
𝑃∈⩽𝑁

g(𝑃)𝑞−deg(𝑃)
⎞⎟⎟⎠.

Combining this with the bound for𝔖1 proves the claim. □

3.3 An involution for monic polynomials

Let 𝐺 ∈, and assume that (𝐺, 𝑡) = 1. Following Keating and Rudnick (see [18, section 5]), we
define†

𝐺∗(𝑡) ∶= 𝑡deg(𝐺)𝐺(1∕𝑡).

†We could extend this definition to other polynomials by writing 𝐺∗(𝑡) = 𝑡𝜈(𝐺)(𝐺∕𝑡𝜈(𝐺))∗, where 𝜈(𝐺) denotes the order
of vanishing of 𝐺 at 𝑡 = 0. We could also modify the definition here when 𝐺(0) ≠ 0 to give 𝐺∗ = 𝐺(0)−1𝑡deg(𝐺)𝐺(1∕𝑡), thus
ensuring that 𝐺∗ is monic whenever 𝐺 is; however, we will not need this variant of the involution here.
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172 KLURMAN et al.

The coefficients of 𝐺∗ are the same as those of 𝐺, but in reverse order. One can easily check that
when (𝐺, 𝑡) = 1 and 𝐺(0) = 1, 𝐺∗ is monic and (𝐺∗)∗ = 𝐺. Since deg(𝐺∗) = deg(𝐺), the ∗-map is
an involution on the set of monic degree 𝑁 polynomials with 𝐺(0) = 1, for each 𝑁 ⩾ 1.
We observe, furthermore, that this involution is amultiplicative homomorphismon. Indeed,

if (𝐹𝐺, 𝑡) = 1, then

(𝐹𝐺)∗(𝑡) = 𝑡deg(𝐹𝐺)𝐹𝐺(1∕𝑡) = 𝑡deg(𝐹)𝐹(1∕𝑡) ⋅ 𝑡deg(𝐺)𝐺(1∕𝑡) = 𝐹∗(𝑡)𝐺∗(𝑡).

In light of this, we can define a corresponding involution on the space of multiplicative functions.
That is, suppose that 𝑓∶→ 𝕌 is multiplicative. We define a map 𝑓 ↦ 𝑓∗ via 𝑓∗(𝐺) ∶= 𝑓(𝐺∗)
for all (𝐺, 𝑡) = 1 with 𝐺(0) = 1, and 𝑓∗(𝑡𝑘) = 0 for 𝑘 ⩾ 1. Under a suitable extension of 𝑓 to 𝔽𝑞[𝑡]
(which we are free to choose, given that 𝑓 is only defined on by assumption), we may define
𝑓∗(𝐺) at all monic 𝐺 irrespective of the condition 𝐺(0) = 1. Then, 𝑓∗ acts as a multiplicative
function on, and if g ∶→ 𝕌 is a second such multiplicative function, then (𝑓g)∗ = 𝑓∗g∗.
The next result, which is essentially contained in [18], shows that the ∗-operation maps short

intervals to arithmetic progressions modulo a power of 𝑡.

Lemma 3.9. Let 1 ⩽ 𝐻 ⩽ 𝑁 and 𝐺0 ∈𝑁 . There is a reduced residue class 𝐴modulo 𝑡𝑁−𝐻+1 for
which we have a bijection

{𝐺 ∈𝑁 ∶ 𝐺 ∈ 𝐼𝐻(𝐺0), (𝐺, 𝑡) = 1} ↔ {deg(𝐹) = 𝑁∶ 𝐹 ≡ 𝐴mod 𝑡𝑁−𝐻+1, 𝐹(0) = 1};
the bijection is furnished by the map𝐺 ↦ 𝐺∗. Moreover, the class𝐴 = 𝐴(𝐺0) depends at most on the
first𝑁 −𝐻 coefficients of 𝐺0 after the leading coefficient.

Proof. This is implied by [18, Lemma 5.1], using the fact that 𝐼𝐻(𝐺0) = 𝐼𝐻(𝑡𝐻𝐺′0) whenever
deg(𝐺0 − 𝑡𝐻𝐺′0) < 𝐻. □

The following lemma shows how the pretentious distance is affected by replacing a multiplica-
tive function 𝑓 (whose behavior on 𝔽×𝑞 is fixed) by its involution 𝑓

∗. In the following, we fix a
generator 𝜌 for 𝔽×𝑞 andwrite 𝜈𝑐 to be theminimal non-negative integer such that 𝜌

𝜈𝑐 = 𝑐whenever
𝑐 ∈ 𝔽×𝑞 .

Lemma 3.10. Let 𝜁 ∈ 𝜇𝑞−1 and let 𝑓∶ 𝔽𝑞[𝑡] → 𝕌 be a multiplicative function. Extend 𝑓 to 𝔽𝑞[𝑡]
so that 𝑓(𝑐𝐹) = 𝜁𝜈𝑐𝑓(𝐹) for all 𝑐 ∈ 𝔽×𝑞 . Let 𝜒 be a Dirichlet character modulo 𝑡

𝑀 , for𝑀 ⩾ 1. Then,
there is a character 𝜉 = 𝜉(𝜁, 𝜒)modulo 𝑡 such that for any𝑁 ⩾ 1 we have


𝑓𝜉𝜒∗
(𝑁) = 𝑓∗𝜒(𝑁) + 𝑂(1).

Moreover, if 𝜁 = 𝜒∗(𝜌) then 𝜉 ≡ 1.
Remark 3.11. Note that even though we are only concerned with the values of 𝑓 on, in order
to define 𝑓∗ we need to choose an extension of 𝑓 to 𝔽×𝑞 .

Proof. We claim first that there is a unique character 𝜉modulo 𝑡 such that𝜒∗(𝑐)𝜁𝜈𝑐𝜉(𝑐) = 1. To see
this, note first that𝜒∗(1) = 𝜒(1) = 1, so that𝜒∗(𝜌) ∈ 𝜇𝑞−1. The group of characters mod 𝑡may be
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 173

identifiedwith that of 𝔽×𝑞 via the isomorphism (𝔽𝑞[𝑡]∕(𝑡𝔽𝑞[𝑡]))
× ≅ 𝔽×𝑞 , so there is a 𝜉modulo 𝑡 such

that 𝜉(𝜌) = 𝜁𝜒∗(𝜌). Extending by complete multiplicativity, we obtain 𝜉(𝑐) = 𝜒∗(𝑐)𝜁−𝜈𝑐 for all
𝑐 ∈ 𝔽×𝑞 . Moreover, if there is a second such character 𝜉

′modulo 𝑡, thenwemust have 𝜉′(𝜌) = 𝜉(𝜌),
and thus 𝜉′ = 𝜉, as required.
We select 𝜉 to be the character modulo 𝑡 determined above. Let 𝜃0 ∈ [0, 1] be fixed. We

will show that 𝔻(𝑓∗, 𝜒𝑒𝜃0 ; 𝑁) = 𝔻(𝑓𝜉, 𝜒
∗𝑒𝜃0 ; 𝑁) + 𝑂(1). By minimizing over 𝜃0, we deduce the

claimed estimate.
First, note that if 𝑅 ∈  , 𝑅 ≠ 𝑡, then 𝑅∗∕𝑅(0) ∈  . For if 𝑅∗ = 𝐴𝐵 with deg(𝐴)deg(𝐵) > 0, then

as (𝑅∗, 𝑡) = 1 we have 𝑅 = 𝐴∗𝐵∗, with deg(𝐴∗)deg(𝐵∗) = deg(𝐴)deg(𝐵) > 0, a contradiction to
irreduciblity. In particular, for each 𝑐 ∈ 𝔽×𝑞 and 𝑑 ⩾ 2, we have a bijection

{𝑅 ∈ 𝑑 ∶ 𝑅(0) = 𝑐} ↔ {𝑅′ ∈ 𝑑 ∶ 𝑅′(0) = 𝑐−1},
implied by the map 𝑅 ↦ 𝑅′ ∶= 𝑅∗∕𝑅(0). Thus, we have

𝔻(𝑓∗, 𝜒𝑒𝜃0 ; 𝑁)
2 = log𝑁 − Re

⎛⎜⎜⎜⎝
∑
2⩽𝑑⩽𝑁

𝑞−𝑑𝑒(−𝜃0𝑑)
∑
𝑐∈𝔽×𝑞

∑
𝑅∈𝑑
𝑅(0)=𝑐

𝑓∗(𝑅)𝜒(𝑅)

⎞⎟⎟⎟⎠ + 𝑂(1)

= log𝑁 − Re
⎛⎜⎜⎜⎝
∑
2⩽𝑑⩽𝑁

𝑞−𝑑𝑒(−𝜃0𝑑)
∑
𝑐∈𝔽×𝑞

∑
𝑅′∈𝑑
𝑅′(0)=𝑐−1

𝑓(𝑐𝑅′)𝜒
∗
(𝑐𝑅′)

⎞⎟⎟⎟⎠ + 𝑂(1).
Since 𝑅′(0) = 𝑐−1 iff 𝑅′ ≡ 𝑐−1 (mod 𝑡), we get

1𝑅′(0)=𝑐−1 =
1

𝜙(𝑡)

∑
𝜉′ (mod 𝑡)

𝜉′(𝑐)𝜉′(𝑅′),

and thus for each 2 ⩽ 𝑑 ⩽ 𝑁 we obtain

∑
𝑐∈𝔽×𝑞

∑
𝑅′∈𝑑
𝑅′(0)=𝑐−1

𝑓(𝑐𝑅′)𝜒
∗
(𝑐𝑅′) =

1

𝜙(𝑡)

∑
𝜉′ (mod 𝑡)

⎛⎜⎜⎝
∑
𝑐∈𝔽×𝑞

𝜒
∗
(𝑐)𝜁𝜈𝑐𝜉′(𝑐)

⎞⎟⎟⎠
∑
𝑅′∈𝑑

𝑓(𝑅′)𝜉′(𝑅′)𝜒
∗
(𝑅′)

=
∑
𝑅′∈𝑑

𝑓(𝑅′)𝜉(𝑅′)𝜒
∗
(𝑅′),

where 𝜉 is the character modulo 𝑡 constructed earlier. It follows then that

𝔻(𝑓∗, 𝜒𝑒𝜃0 ; 𝑁)
2 = log𝑁 − Re

⎛⎜⎜⎝
∑
2⩽𝑑⩽𝑁

𝑞−𝑑𝑒(−𝜃0𝑑)
∑
𝑅′∈𝑑

𝑓(𝑅′)𝜉(𝑅′)𝜒
∗
(𝑅′)
⎞⎟⎟⎠ + 𝑂(1)

= 𝔻(𝑓𝜉, 𝜒∗𝑒𝜃0 ; 𝑁)
2 + 𝑂(1),

proving the first claim.
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174 KLURMAN et al.

For the second, note that if 𝜒∗(𝜌) = 𝜁, then by construction we have 𝜉(𝜌) = 1, and thus 𝜉 is
trivial modulo 𝑡, as required. □

3.4 Hayes characters

We introduce here the following notation. Let𝐹,𝐺 ∈ 𝔽𝑞[𝑡]with𝐺 ≠ 0, and consider𝐹∕𝐺 ∈ 𝔽𝑞(𝑡).
When 𝐺 is a power of 𝑡 this rational function admits a finite Laurent polynomial representation
(in 1∕𝑡)

(𝐹∕𝐺)(𝑡) =

𝑚2∑
𝑗=𝑚1

𝑎𝑗𝑡
−𝑗,

where 𝑚1 ⩽ 𝑚2 are integers and 𝑎𝑚1 ≠ 0. We then set ⟨𝐹∕𝐺⟩ ∶= 𝑞−𝑚1 . We note that the map⟨⋅⟩ satisfies the ultrametric inequality ⟨𝑓1 − 𝑓2⟩ ⩽ max{⟨𝑓1⟩, ⟨𝑓2⟩}, with equality if ⟨𝑓1⟩ ≠ ⟨𝑓2⟩,
whenever 𝑓1, 𝑓2 ∈ 𝔽𝑞(𝑡) have finite Laurent polynomial representations (in Section 7 we will
extend this notation to all of 𝔽𝑞(𝑡)).
Let 𝜈 ⩾ 1 and 𝑀 ∈. We define a relation 𝑀,𝜈 on as follows: If 𝐴, 𝐵 ∈, then we say

that

𝐴 ≡ 𝐵 mod𝑀,𝜈 if, and only if, 𝐴 ≡ 𝐵 mod𝑀 and
⟨
𝐴𝑡−deg(𝐴) − 𝐵𝑡−deg(𝐵)

⟩
< 𝑞−𝜈.

This latter condition says that the leading 𝜈 + 1 coefficients of 𝐴 and 𝐵 are the same; In the
particular case where 𝐴, 𝐵 ∈𝑁 for some 𝑁, it is equivalent to deg(𝐴 − 𝐵) < 𝑁 − 𝜈.
It turns out that this defines an equivalence relation, and quotienting by this relation yields

a monoid whose multiplicative group of invertible elements is abelian. It thus admits a set of
characters, which we call Hayes characters. We will denote by 𝑀,𝜈 the collection of all Hayes
characters associated with the pair (𝑀, 𝜈). A Hayes character �̃� is characterized by the property
that it is constant on sets of the form

{𝐺 ∈∶ 𝐺 ≡ 𝐶 mod𝑀} ∩ {𝐺 ∈∶ ⟨𝐺𝑡−deg(𝐺) − 𝐷𝑡−deg(𝐷)⟩ < 𝑞−𝜈},
where 𝐶 is a reduced residue class modulo 𝑀, and 𝐷 ∈⩽𝜈. Any Hayes character in 𝑀,𝜈 can
be uniquely decomposed as a product 𝜓𝑀𝜉𝜈, where 𝜓𝑀 is a Dirichlet character modulo𝑀, and 𝜉𝜈
is a short interval character of length len(𝜉𝜈) ∶= 𝜈, that is, for 𝓁 = 𝜈 the multiplicative function 𝜉𝜈
fixes the set {𝐺 ∈𝑁 ∶ ⟨𝐺𝑡−deg(𝐺) − 𝐷𝑡−deg(𝐷)⟩ < 𝑞−𝓁} for all 𝐷, and the same does not hold for
any 𝓁 < 𝜈 (see, e.g., [12, Theorem 8.6]). Thus, this definition agreeswithDefinition 1.3.We say that
�̃� ∈ 𝑀,𝜈 is primitive if 𝜓𝑀 is primitive and 𝜈 > 0, and imprimitive otherwise. Likewise, a Hayes
character is non-principal if it is either non-principal in the Dirichlet character aspect or if the
length of its short interval character is non-zero.We define theHayes conductor of 𝜒 = 𝜓𝜉 ∈ 𝑀,𝜈
by cond𝐻(𝜒) ∶= cond(𝜓) + len(𝜉) ∶= deg(𝑀) + 𝜈.
The group 𝑀,𝜈 has size 𝜙(𝑀)𝑞𝜈, and the orthogonality relations are given by

1

𝜙(𝑀)𝑞𝜈

∑
𝐴mod 𝑅𝑀,𝜈

𝜒1(𝐴)𝜒2(𝐴) = 1𝜒1=𝜒2 (21)

 20417942, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12181 by T

est, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 175

and

1

𝜙(𝑀)𝑞𝜈

∑
𝜒∈𝑀,𝜈

𝜒(𝐴)𝜒(𝐵) = 1𝐴≡𝐵 mod 𝑅𝑀,𝜈 ; (22)

these are proved in [12].
An important fact about the relationship between Hayes characters and the ∗-involution from

the previous subsection is the following.

Lemma 3.12. Let 𝑛 ⩾ 2 and 𝑘 ⩾ 2. Let 𝜒 be a Dirichlet character modulo 𝑡𝑘 . Then, there is a short
interval character 𝜓 of length 𝑘 − 1 such that 𝜒∗(𝐺) = 𝜓(𝐺) for all 𝐺 coprime to 𝑡. Moreover, if 𝜒 is
non-principal, then 𝜓 is also non-principal.

Proof. It is enough to show that if 𝐺1, 𝐺2 ∈ 𝔽𝑞[𝑡] satisfy (𝐺1𝐺2, 𝑡) = 1 and are close to each other
in the sense that ⟨𝐺1𝑡−deg(𝐺1) − 𝐺2𝑡−deg(𝐺2)⟩ ⩽ 𝑞−𝑘, then 𝜒∗(𝐺1) = 𝜒∗(𝐺2).
Without loss of generality suppose that 𝑚1 ∶= deg(𝐺1) ⩾ deg(𝐺2) =∶ 𝑚2. Then, we can write

𝐺1 = 𝑡
𝑚1−𝑚2𝐺2 +𝑀, where 𝑟 ∶= deg(𝑀) ⩽ 𝑚1 − 𝑘. Writing 𝐺2(𝑡) =

∑
0⩽𝑗⩽𝑚2

𝑏𝑗𝑡
𝑗 and 𝑀(𝑡) =∑

0⩽𝑗⩽𝑟 𝑎𝑗𝑡
𝑗 (with 𝑎0𝑏𝑚2 ≠ 0 by assumption) we find

𝐺∗1 =

( ∑
𝑚1−𝑚2⩽𝑗⩽𝑚1

𝑏𝑚2−(𝑚1−𝑗)𝑡
𝑗 +

∑
0⩽𝑗⩽𝑟

𝑎𝑗𝑡
𝑗

)∗

= 𝑡𝑚1

( ∑
𝑚1−𝑚2⩽𝑗⩽𝑚1

𝑏𝑚2−(𝑚1−𝑗)𝑡
−𝑗 +

∑
0⩽𝑗⩽𝑟

𝑎𝑗𝑡
−𝑗

)

= 𝑡𝑚1−𝑟
∑
0⩽𝑗⩽𝑟

𝑎𝑟−𝑗𝑡
𝑗 +

∑
0⩽𝑙⩽𝑚2

𝑏𝑚2−𝑙𝑡
𝑙 ≡ ∑

0⩽𝑙⩽𝑚2

𝑏𝑚2−𝑙𝑡
𝑙 mod 𝑡𝑚1−𝑟

≡ 𝐺∗2 mod 𝑡𝑚1−𝑟 ≡ 𝐺∗2 mod 𝑡𝑘,
since 𝑘 ⩽ 𝑚1 − 𝑟. Thus, 𝜒∗(𝐺1) − 𝜒∗(𝐺2) = 𝜒(𝐺∗1 ) − 𝜒(𝐺

∗
2
) = 0, as claimed.

For the second claim, if 𝜓 were principal, then 𝜒(𝐺∗) = 1 for all (𝐺∗, 𝑡) = 1. The set {𝐺 ∈
𝔽𝑞[𝑡]∶ 𝐺(0) ≠ 0} is invariant under the involution, so this would imply that 𝜒(𝐺) = 1 whenever
𝐺(0) ≠ 0; but since𝜒(𝐺) = 0whenever𝐺(0) = 0, this implies that𝜒(𝐺) = 1(𝐺,𝑡𝑘)=1, which implies
that 𝜒 is principal, and the claim follows. □

Remark 3.13. Note that if 𝜒 is a character modulo 𝑡𝑘, then the previous lemma does not prescribe
a value for 𝜒∗(𝑡). However, in keeping with our convention 𝑓∗(𝑡) = 0 for multiplicative functions
𝑓, we shall set 𝜒∗(𝑡) = 0. In any case, this particular definition will play no significant role in
the sequel.

We shall distinguish between the following notions of non-pretentiousness.

Definition 3.14. Let 𝑁 ⩾ 1. Let 𝑓∶ → 𝕌 be multiplicative. We say that 𝑓 is Hayes
non-pretentious to level𝑊 = 𝑊(𝑁) if, as 𝑁 → ∞,
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176 KLURMAN et al.

min
𝑤⩽𝑊

min
𝜓 mod𝑀
𝑀∈𝑤

min
𝜉 short
len(𝜉)⩽𝑁


𝑓𝜒𝜉
(𝑁) → ∞.

We say that 𝑓 is Dirichlet non-pretentious to level𝑊 = 𝑊(𝑁) if, as 𝑁 → ∞,

min
𝑤⩽𝑊

min
𝜓 mod𝑀
𝑀∈𝑤

𝑓𝜒(𝑁) → ∞.

An immediate corollary of Lemma 3.12 relating to Hayes non-pretentiousness (and utilized in
Section 7) is the following.

Corollary 3.15 (Hayes non-pretentiousness implies Dirichlet non-pretentiousness of dual). Let
𝑁 ⩾ 1, and let𝑊 = 𝑊(𝑁) ⩽ 𝑁. Let 𝑓∶ 𝔽𝑞[𝑡] → 𝕌 be multiplicative and even, that is, 𝑓(𝑐𝐺) = 𝑓(𝐺)
for all 𝑐 ∈ 𝔽×𝑞 . Then,

min
𝜓 mod𝑀

𝑀∈⩽𝑊(𝑁)+1

min
𝜉 short
len(𝜉)⩽𝑁


𝑓𝜓𝜉
(𝑁) ⩽ min

𝑀∈⩽𝑊(𝑁)

min
𝜓 mod𝑀

min
𝜒 mod 𝑡𝜈
1⩽𝜈⩽𝑁

(𝑓𝜓)∗𝜒(𝑁) + 𝑂(1).

In particular, if 𝑓 is Hayes non-pretentious to level𝑊′ ∶= 𝑊 + 1, then

lim
𝑁→∞

min
𝜓 mod𝑀
𝑀∈⩽𝑊(𝑁)

min
𝜒 mod 𝑡𝜈
1⩽𝜈⩽𝑁

(𝑓𝜓)∗𝜒(𝑁) = ∞.

Proof. Let 𝑁 be large and let 𝜓 mod𝑀 with deg(𝑀) ⩽ 𝑊(𝑁) and 𝜒 mod 𝑡𝜈 with 1 ⩽ 𝜈 ⩽ 𝑁 be
chosen such that

(𝑓𝜓)∗𝜒(𝑁) = min
𝑀′∈⩽𝑊(𝑁)

min
𝜓′ mod𝑀′

min
𝜒′ mod 𝑡𝜈′

1⩽𝜈′⩽𝑁


(𝑓𝜓′)∗𝜒′

(𝑁).

Since 𝑓 is even and 𝜓(𝑐) ∈ 𝜇𝑞−1 for all 𝑐 ∈ 𝔽×𝑞 , we may apply Lemma 3.10 to conclude that there
is a character 𝜉 mod 𝑡, depending on 𝜓 and 𝜒, such that


𝑓𝜓𝜉𝜒∗

(𝑁) = (𝑓𝜓)∗𝜒(𝑁) + 𝑂(1).
By Lemma 3.12, 𝜒∗ coincides with a short interval character of length 𝜈 − 1 at all primes 𝑃 ≠ 𝑡, so
that 𝜓𝜉𝜒∗ coincides at all 𝑃 ∈ ∖{𝑡}with a Hayes character whose Dirichlet part has conductor ⩽
deg(𝑀𝑡) ⩽ 𝑊(𝑁) + 1 and whose short interval character part has conductor at most𝑁. It follows
then that

min
𝑀∈⩽𝑊(𝑁)+1

min
𝜓 mod𝑀

min
𝜉 short
len(𝜉)⩽𝑁


𝑓𝜒𝜉
(𝑁) ⩽ 

𝑓𝜓𝜉𝜒∗
(𝑁) + 𝑂(1) ⩽ (𝑓𝜓)∗𝜒(𝑁) + 𝑂(1).

This implies the first claim. The second claim followsupon taking𝑁 → ∞ andusing the definition
of Hayes non-pretentiousness. □
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 177

4 PRELIMINARIES II: CHARACTER SUMS AND SIEVE ESTIMATES

Beginning in this section, we set out to prove (a generalization of) Theorem 1.1, as well as Theo-
rem 1.4. We collect together the main general results we shall use for this purpose. Most of these
are simple translations of the corresponding result in the number field setting, but we have not
managed to locate such translations in the literature.

Remark 4.1. For brevity and to simplify notation, all of the lemmas below are stated for sums of
Dirichlet characters, but as we will note in Section 6, all of them work equally well if 𝜒 mod 𝑄
is replaced with 𝜒 ∈ 1,𝜈 (i.e., we are summing over short interval characters of length 𝜈), and
deg(𝑄) is replaced with 𝜈 and 𝜙(𝑄) is replaced with 𝑞𝜈.

4.1 Large sieve estimates in function fields

Lemma 4.2 (𝐿2 Mean Value Theorem). Let𝑁 ⩾ 1. Let {𝑎𝐺}𝐺∈𝑁
⊂ ℂ, and let 𝑄 ∈. Then,

∑
𝜒 mod 𝑄

||||||
∑
𝐺∈𝑁

𝑎𝐺𝜒(𝐺)

||||||
2

⩽ 2
(
𝜙(𝑄)𝑞𝑁−deg(𝑄) + 𝜙(𝑄)

) ∑
𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2.
Remark 4.3. The short interval analog of this lemma reads as

∑
𝜉∈1,𝜈

||||||
∑
𝐺∈𝑁

𝑎𝐺𝜉(𝐺)

||||||
2

⩽ 2
(
𝑞𝜈𝑞𝑁−𝜈 + 𝑞𝜈

) ∑
𝐺∈𝑁

|𝑎𝐺|2.
All the lemmas that follow in this section have short interval formulations in a completely
analogous fashion.

Proof. Denote the left-hand side by Σ. Expanding the square and swapping orders of summation
yields

Σ =
∑

𝐺,𝐺′∈𝑁

𝑎𝐺𝑎𝐺′
∑

𝜒 mod 𝑄
𝜒(𝐺)𝜒(𝐺′) = 𝜙(𝑄)

⎛⎜⎜⎜⎜⎜⎜⎝
∑
𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2 + ∑
𝐺,𝐺′∈𝑁

𝐺≡𝐺′ mod 𝑄
𝐺≠𝐺′,(𝐺𝐺′,𝑄)=1

𝑎𝐺𝑎𝐺′

⎞⎟⎟⎟⎟⎟⎟⎠
.

Bounding the second sum trivially, using the AM–GM inequality in the form |𝑎𝐺𝑎𝐺′ | ⩽ 12 (|𝑎𝐺|2 +|𝑎𝐺′ |2) and invoking symmetry in 𝐺 and 𝐺′, we get
Σ ⩽ 𝜙(𝑄)

∑
𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2
⎛⎜⎜⎜⎜⎝
1 +

∑
𝐺′∈𝑁

𝑄|(𝐺′−𝐺)
1

⎞⎟⎟⎟⎟⎠
.
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178 KLURMAN et al.

Since deg(𝐺′ − 𝐺) ⩽ 𝑁 for each 𝐺 ∈𝑁 , and the number of polynomials in⩽𝑁 divisible by 𝑄
is precisely |⩽𝑁−deg(𝑄)| ⩽ 2𝑞𝑁−deg(𝑄), it follows that

Σ ⩽
(
𝜙(𝑄) + 𝜙(𝑄)|⩽𝑁−deg(𝑄)|) ∑

𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2 ⩽ 2(𝜙(𝑄) + 𝜙(𝑄)𝑞𝑁−deg(𝑄)) ∑
𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2,
as claimed. □

Lemma 4.4 (Halász–Montgomery Lemma). Let 𝑁 ⩾ 1. Let {𝑎𝐺}𝐺∈𝑁
⊂ ℂ, and let 𝑄 ∈,

deg(𝑄) ⩽ (1 + 𝑜(1))𝑁. Let Ξ ⊆ 𝑄. Then,
∑
𝜒∈Ξ

||||||
∑
𝐺∈𝑁

𝑎𝐺𝜒(𝐺)

||||||
2

≪
(
𝜙(𝑄)𝑞𝑁−deg(𝑄) + |Ξ|𝑞(1∕2+𝑜(1))𝑁) ∑

𝐺∈𝑁
(𝐺,𝑄)=1

|𝑎𝐺|2.
Proof. We may obviously assume that Ξ ≠ ∅, since otherwise the claim is trivial. Moreover, by
duality (see, e.g., [27, Lemma 10]), it suffices to show that for any set of coefficients {𝑐𝜒}𝜒∈Ξ ⊂ ℂ,
we have ∑

𝐺∈𝑁

||||||
∑
𝜒∈Ξ

𝑐𝜒𝜒(𝐺)

||||||
2

≪
(
𝜙(𝑄)𝑞𝑁−deg(𝑄) + |Ξ|𝑞deg(𝑄)∕2)∑

𝜒∈Ξ

|𝑐𝜒|2.
Expanding the square in the left-hand side and swapping the order of summations, we get∑

𝜒1,𝜒2∈Ξ

𝑐𝜒1𝑐𝜒2

∑
𝐺∈𝑁

𝜒1𝜒2(𝐺).

The diagonal contribution with 𝜒1 = 𝜒2 yields

|{𝐺 ∈𝑁 ∶ (𝐺, 𝑄) = 1}| ∑
𝜒∈Ξ

|𝑐𝜒|2 ≪ 𝜙(𝑄)𝑞𝑁−deg(𝑄)∑
𝜒∈Ξ

|𝑐𝜒|2.
When 𝜒1 ≠ 𝜒2, 𝜒1𝜒2 is non-principal, so by Lemma 3.3 we have

∑
𝜒1,𝜒2∈Ξ
𝜒1≠𝜒2

|𝑐𝜒1𝑐𝜒2 |||||||
∑
𝐺∈𝑁

𝜒1𝜒2(𝐺)

||||||≪ 𝑞(1∕2+𝑜(1))𝑁
∑

𝜒1,𝜒2∈Ξ
𝜒1≠𝜒2

|𝑐𝜒1 ||𝑐𝜒2 |.
Applying AM–GM as in the proof of the previous lemma, the sum above is bounded by|Ξ|∑𝜒∈Ξ |𝑐𝜒|2. Putting everything together, this proves the claim. □

Lemma 4.5 (Halász–Montgomery Lemma for Primes). Let 𝑁 ⩾ 1. Let {𝑎𝑃}𝑃∈𝑁 ⊂ ℂ, and let 𝑄 ∈. For any Ξ ⊆ 𝑄, we have

∑
𝜒∈Ξ

||||||
∑
𝑃∈𝑁

𝑎𝑃𝜒(𝑃)

||||||
2

≪

(
𝑞𝑁

𝑁
+ deg(𝑄)

𝑞𝑁∕2

𝑁
|Ξ|) ∑

𝑃∈𝑁
|𝑎𝑃|2.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 179

Proof. We apply duality, as in the proof of Lemma 4.4. Given a sequence {𝑐𝜒}𝜒∈Ξ ⊂ ℂ, we bound
1𝐺∈𝑁 ⩽ 𝑁−1Λ(𝐺) to obtain

∑
𝑃∈𝑁

||||||
∑
𝜒∈Ξ

𝑐𝜒𝜒(𝑃)

||||||
2

⩽
∑
𝐺∈𝑁

Λ(𝐺)

𝑁

||||||
∑
𝜒∈Ξ

𝑐𝜒𝜒(𝐺)

||||||
2

=
1

𝑁

∑
𝜒1,𝜒2∈Ξ

𝑐𝜒1𝑐𝜒2

∑
𝐺∈𝑁

Λ(𝐺)𝜒1𝜒2(𝐺).

When 𝜒1 = 𝜒2, the prime polynomial theorem gives
∑
𝐺∈𝑁

Λ(𝐺) ≪ 𝑞𝑁 , whence the diagonal
contribution to the sum becomes (𝑞𝑁∕𝑁)

∑
𝜒∈Ξ |𝑐𝜒|2.

When 𝜒1 ≠ 𝜒2, we may apply Lemma 3.1 to give∑
𝐺∈𝑁

Λ(𝐺)𝜒1𝜒2(𝐺) ≪ deg(𝑄)𝑞𝑁∕2.

It follows that

∑
𝜒1,𝜒2∈Ξ
𝜒1≠𝜒2

|𝑐𝜒1 ||𝑐𝜒2 |||||||
∑
𝐺∈𝑁

Λ(𝐺)𝜒1𝜒2(𝐺)

||||||≪ deg(𝑄)𝑞𝑁∕2|Ξ| ∑
𝜒∈Ξ

|𝑐𝜒|2,
upon applying AM–GM and using symmetry, as before.
Combined with the diagonal contribution, we get

∑
𝑃∈𝑁

||||||
∑
𝜒∈Ξ

𝑐𝜒𝜒(𝑃)

||||||
2

≪

(
𝑞𝑁

𝑁
+ deg(𝑄)

𝑞𝑁∕2

𝑁
|Ξ|) ∑

𝜒∈Ξ

|𝑐𝜒|2.
Invoking duality as discussed above, the claim follows. □

Lemma4.6 (A large values estimate). Let𝑁,𝑍 ⩾ 1. Let {𝑎𝑃}𝑃∈𝑁 ⊂ 𝕌, and let𝑄 ∈, with 𝜙(𝑄) ⩾
𝑞𝑁 . Then, ||||||

{
𝜒 mod 𝑄∶ 1

𝑞𝑁

||||||
∑
𝑃∈𝑁

𝑎𝑃𝜒(𝑃)

|||||| ⩾ 1𝑍
}||||||

≪ exp

(
log(𝑞𝑁𝜙(𝑄))

𝑁 log 𝑞

(
2 log

(
2 log 𝜙(𝑄)

𝑁 log 𝑞

)
+ log

(
2𝑍2

𝑁

)))
.

Proof. The proof is essentially the same as in the number fields case [27, Lemma 8]. Let 𝑘 ∶=⌊ log 𝜙(𝑄)
𝑁 log 𝑞

⌋ + 1. Let  denote the cardinality of the set of characters on the left-hand side. By
Chebyshev’s inequality, we have

 ⩽

(
𝑍

𝑞𝑁

)2𝑘 ∑
𝜒 mod 𝑄

||||||
∑
𝑃∈𝑁

𝑎𝑃𝜒(𝑃)

||||||
2𝑘

=

(
𝑍

𝑞𝑁

)2𝑘 ∑
𝜒 mod 𝑄

||||||
( ∑
𝑃∈𝑁

𝑎𝑃𝜒(𝑃)

)𝑘||||||
2

=

(
𝑍

𝑞𝑁

)2𝑘 ∑
𝜒 mod 𝑄

||||||
∑

𝐺∈𝑘𝑁

𝑏𝐺𝜒(𝐺)

||||||
2

, (23)
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180 KLURMAN et al.

where we have defined

𝑏𝐺 ∶=
∑

𝑃1⋯𝑃𝑘=𝐺
𝑃𝑗∈𝑁 ∀𝑗

𝑎𝑃1⋯𝑎𝑃𝑘 .

Applying Lemma 4.2, we get

∑
𝜒 mod 𝑄

||||||
∑

𝐺∈𝑘𝑁

𝑏𝐺𝜒(𝐺)

||||||
2

≪
(
𝜙(𝑄) + 𝑞𝑘𝑁

) ∑
𝐺∈𝑘𝑁

|𝑏𝐺|2
≪ 𝑞𝑘𝑁

∑
𝑃1⋯𝑃𝑘=𝑄1⋯𝑄𝑘
𝑃𝑖,𝑄𝑗∈𝑁

𝑎𝑃1⋯𝑎𝑃𝑘𝑎𝑄1⋯𝑎𝑄𝑘 ,

according to our choice of 𝑘. Since the 𝑃𝑖 and 𝑄𝑗 are irreducible, up to permutation we have
𝑃𝑖 = 𝑄𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑘, and thus by the prime polynomial theorem

∑
𝑃1⋯𝑃𝑘=𝑄1⋯𝑄𝑘
𝑃𝑖,𝑄𝑗∈𝑁

𝑎𝑃1⋯𝑎𝑃𝑘𝑎𝑄1⋯𝑎𝑄𝑘 ⩽ (𝑘!)
2

( ∑
𝑃∈𝑁

|𝑎𝑃|2)𝑘 ≪ (𝑘!)2(1.1𝑞𝑁∕𝑁)𝑘.
Inserting this into our mean value estimate, we get that

∑
𝜒 mod 𝑄

||||||
∑
𝑃∈𝑁

𝑎𝑃𝜒(𝑃)

||||||
2𝑘

≪

(
𝑞2𝑁

𝑁

)𝑘
1.1𝑘(𝑘!)2.

Combining this with (23) and using log 𝑘! ⩽ 𝑘 log 𝑘 for 𝑘 ⩾ 2, we find that

 ≪ 1.1𝑘(𝑘!)2(𝑍2∕𝑁)𝑘 ≪ exp

((
1 +
log 𝜙(𝑄)

𝑁 log 𝑞

)(
2 log

(
2 log 𝜙(𝑄)

𝑁 log 𝑞

)
+ log(2𝑍2∕𝑁)

))
.

This implies the claim. □

Lemma 4.7 (A moment computation). Let 1 ⩽ 𝑑 ⩽ 𝑚 ⩽ 𝑁. Let {𝑎𝑃}𝑃∈𝑑 , {𝑏𝐺}𝐺∈𝑁−𝑚
⊂ 𝕌. Set

𝑈(𝜒) ∶=
1

𝑑|𝑑| ∑𝑃∈𝑑 𝑎𝑃𝜒(𝑃),
𝑉(𝜒) ∶=

1|𝑁−𝑚| ∑
𝐺∈𝑁−𝑚

𝑏𝐺𝜒(𝐺).

Set 𝓁 ∶= ⌈𝑚∕𝑑⌉. Then, for any 𝑄 ∈, we have∑
𝜒 mod 𝑄

|𝑈(𝜒)𝓁𝑉(𝜒)|2 ≪ (𝜙(𝑄)𝑞−𝑁 + 𝜙(𝑄)𝑞−deg(𝑄))𝓁2𝓁 .
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 181

Proof. This is similar to [27, Lemma 13]. Expanding out the product for each 𝜒, we have

𝑈(𝜒)𝓁𝑉(𝜒) =
1

𝑑𝓁|𝑑|𝓁|𝑁−𝑚| ∑
𝑀∈𝑁−𝑚+𝓁𝑑

𝜒(𝑀)

⎛⎜⎜⎜⎜⎝
∑

𝐺𝑃1⋯𝑃𝓁=𝑀
𝑃𝑗∈𝑑 ∀𝑗

𝑎𝑃1⋯𝑎𝑃𝓁𝑏𝐺

⎞⎟⎟⎟⎟⎠
.

We denote by g(𝑀) the bracketed sum on the right-hand side. Taking squares, summing over
𝜒 mod 𝑄, and then applying Lemma 4.2 (and the prime polynomial theorem) yields∑
𝜒 mod 𝑄

|𝑈(𝜒)𝓁𝑉(𝜒)|2 ≪ 𝜙(𝑄)(1 + 𝑞𝑁−deg(𝑄)−𝑚+𝓁𝑑) 1

𝑑2𝓁|𝑑|2𝓁|𝑁−𝑚|2 ∑
𝑀∈𝑁−𝑚+𝓁𝑑

|g(𝑀)|2
≪
(
𝜙(𝑄)𝑞−𝑁 + 𝜙(𝑄)𝑞−deg(𝑄)

)
1.1𝓁|𝑁−𝑚+𝓁𝑑| ∑

𝑀∈𝑁−𝑚+𝓁𝑑

|g(𝑀)|2.
Now, by the triangle inequality we can bound g as

|g(𝑀)| ⩽ ∑
𝐺𝑃1⋯𝑃𝓁=𝑀
𝑃𝑗∈𝑑∀𝑗

1 ⩽ (𝓁!)1 ∗ 𝛾(𝑀) =∶ (𝓁!)g̃(𝑀),

where 𝛾 is the indicator function of monic polynomials all of whose prime factors belong to 𝑑;
note that on prime powers, g̃(𝑃𝑘) = 1 + 𝑘1𝑑 (𝑃), which is ≪𝜀 𝑞𝜀𝑘deg(𝑅) for any 𝜀 > 0 and 𝑘 ⩾ 1,
and g̃(𝑃) ⩽ 2 for all irreducibles 𝑃. We may thus apply Lemma 3.8 to get that

1|𝑁−𝑚+𝑑𝓁| ∑
𝑀∈𝑁−𝑚+𝓁𝑑

g̃(𝑀)2 ≪ 1

𝑁 −𝑚 + 𝓁𝑑
exp
⎛⎜⎜⎝

∑
𝑃∈⩽𝑁−𝑚+𝓁𝑑

g̃(𝑃)2𝑞−deg(𝑃)
⎞⎟⎟⎠

≪ exp

(∑
𝑃∈𝑑
(22 − 1)𝑞−deg(𝑃)

)
≪ 1.

Inserting this into the above estimate, we get∑
𝜒 mod 𝑄

|𝑈(𝜒)𝓁𝑉(𝜒)|2 ≪ (𝜙(𝑄)𝑞−𝑁 + 𝜙(𝑄)𝑞−deg(𝑄))𝓁2𝓁 ,
as claimed. □

4.2 Sieve bounds in function fields

Our next result shows that most monics have irreducible factors whose degrees belong to
prescribed ranges, provided these ranges are large enough.
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182 KLURMAN et al.

Lemma 4.8. Let 𝑃 < 𝑄. Then,

|{𝐺 ∈𝑁 ∶ 𝑅 ∈  such that 𝑅|𝐺 ⇒ deg(𝑅) ∉ [𝑃, 𝑄]}|≪ 𝑃
𝑄
𝑞𝑁.

Proof. Let g denote the indicator function for the set on the left-hand side. Then, 0 ⩽ g ⩽ 1 and g
is multiplicative. By Lemma 3.8, the left-hand side is

∑
𝐺∈𝑁

g(𝐺) ≪
𝑞𝑁

𝑁
exp

⎛⎜⎜⎜⎜⎝
∑
𝑅∈⩽𝑁

deg(𝑅)∉[𝑃,𝑄]

𝑞−𝑑

⎞⎟⎟⎟⎟⎠
≪ 𝑞𝑁 exp

(
−
∑
𝑃⩽𝑑⩽𝑄

𝑞−𝑑|𝑑|)≪ 𝑃𝑄𝑞𝑁,
as claimed. □

Definition 4.9. Let 𝐽 ⩾ 1, and let𝑷 ∶= {𝑃𝑗}1⩽𝑗⩽𝐽 and𝑸 ∶= {𝑄𝑗}1⩽𝑗⩽𝐽 be collections of parameters
satisfying 𝑃𝑗 < 𝑃𝑗+1, 𝑄𝑗 < 𝑄𝑗+1, and 𝑃𝑗 < 𝑄𝑗 for all 𝑗. We define the set 𝑷,𝑸(𝑁) by

𝑷,𝑸 ∶= {𝐺 ∈∶ ∀ 1 ⩽ 𝑗 ⩽ 𝐽 ∃ 𝑑 ∈ [𝑃𝑗, 𝑄𝑗], 𝑅 ∈ 𝑑 such that 𝑅|𝐺}.
If 𝐽 = 1 then, for convenience, we write 𝑆𝑃1,𝑄1 = 𝑆𝑷,𝑸.

We will be able to restrict character-twisted sums over monic polynomials to monics belonging
to sets of the form 𝑷,𝑸(𝑁), on average.
Lemma4.10. Let𝑁 ⩾ 1, and let𝑄 ∈with deg(𝑄) ⩽ 𝑁. LetΞ ⊆ 𝑄 be a set of charactersmodulo
𝑄, and let 𝑓∶→ 𝕌 be multiplicative. Then,

∑
𝜒∈Ξ

|||||| 1|𝑁| ∑𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

||||||
2

≪
∑
𝜒∈Ξ

|||||||||
1|𝑁| ∑𝐺∈𝑁

𝐺∈𝑷,𝑸

𝑓(𝐺)𝜒(𝐺)

|||||||||
2

+ 𝜙(𝑄)𝑞−deg(𝑄)
∑
1⩽𝑗⩽𝐽

𝑃𝑗

𝑄𝑗
.

Proof. Given amap g ∶ 𝔽𝑞[𝑡] → ℂ, set𝑀g (𝑁) ∶=
1|𝑁 | ∑𝐺∈𝑁

g(𝐺). For each𝜒 mod𝑀, we have

|𝑀𝑓𝜒(𝑁)|2 ⩽ 2|𝑀𝑓𝜒1𝑷,𝑸 (𝑁)|2 + 2|𝑀𝑓𝜒1𝑐𝑷,𝑸 (𝑁)|2.
Summing the first of these terms over 𝜒 ∈ Ξ gives the first term in the estimate. Summing the
second term over 𝜒 and applying Lemma 4.2 gives∑

𝜒∈Ξ

|𝑀𝑓𝜒1𝑐
𝑷,𝑸

(𝑁)|2 ⩽ ∑
𝜒 mod 𝑄

|𝑀𝑓𝜒1𝑐
𝑷,𝑸

(𝑁)|2 ≪ 𝜙(𝑄)(𝑞𝑁−deg(𝑄) + 1) 1|𝑁|2 ∑
𝐺∈𝑁
𝐺∉𝑷,𝑸

1.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 183

By the union bound and Lemma 4.8, we have

1|𝑁| ∑𝐺∈𝑁
𝐺∉𝑷,𝑸

1 ⩽
∑
1⩽𝑗⩽𝐽

1|𝑁| |{𝐺 ∈𝑁 ∶ 𝑅 ∈  , 𝑅|𝐺 ⇒ deg(𝑅) ∉ [𝑃𝑗, 𝑄𝑗]}|
≪
∑
1⩽𝑗⩽𝐽

𝑃𝑗

𝑄𝑗
.

This implies the claim. □

Wewill also need the following estimate for smooth (otherwise known as friable) polynomials,
that is, polynomials with no irreducible factors of large degree. For 1 ⩽ 𝑀 ⩽ 𝑁, we write

(𝑁,𝑀) ∶= {𝐺 ∈𝑁 ∶ 𝑅 ∈  and 𝑅|𝐺 ⇒ deg(𝑅) ⩽ 𝑀}.

Lemma 4.11. Let 1 ⩽ 𝑀 ⩽ 𝑁. Then, for some absolute constant 𝑐 > 0 we have

|(𝑁,𝑀)|≪ 𝑞𝑁 exp(−𝑐𝑁∕𝑀).
Proof. This follows from [37]. □

Lemma 4.12 (Selberg upper bound sieve in function fields). Let 1 ⩽ 𝑦 ⩽ 𝑧,𝐻 ⩽ 𝑁 and let  ⊆
𝑁 . Put

𝔓𝑦,𝑧 =
∏

𝑄∈⩽𝑧∖⩽𝑦
𝑄.

Suppose g is a multiplicative function supported on squarefree monic polynomials such that for each
𝐷 ∈ squarefree with 𝐷 ∈⩽𝐻 , ∑

𝐺∈
𝐷|𝐺
1 = g(𝐷)|| + 𝑟𝐷(). (24)

Put 𝐽 = 𝐽(𝐻) =
∑
𝐷|𝔓𝑦,𝑧

deg(𝐷)⩽𝐻

∏
𝑅∈
𝑅|𝐷 g(𝑅)∕(1 − g(𝑅)). Then,

∑
𝐺∈

(𝐺,𝔓𝑦,𝑧)=1

1 ⩽ ||𝐽−1 + ∑
deg(𝐷)⩽𝐻

𝜏3(𝐷)|𝑟𝐷()|,
where 𝜏3(𝐷) =

∑
𝐴,𝐵,𝐶∈
𝐴𝐵𝐶=𝐷

1.

Proof. This follows from [38, Theorem 1] (take  ∶= ⩽𝑧∖⩽𝑦 and  ∶= {𝐷 ∈ ∶ deg(𝐷) ⩽ 𝐻},
which is divisor closed, as needed according to the hypotheses there). □

We have the following useful corollary.
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184 KLURMAN et al.

Corollary 4.13 (Additive energy of irreducible polynomials). Let 𝐻 ⩾ 1. If 𝑀 ∈ 𝔽𝑞[𝑡] has
deg(𝑀) < 𝐻, then

|{(𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 4𝐻 ∶ 𝑃1 + 𝑃2 − 𝑃3 − 𝑃4 = 𝑀}|≪ 𝑞3𝐻∕𝐻4.
Proof. We begin by considering the case 𝑀 = 0. Given 𝐺 ∈ 𝔽𝑞[𝑡] of degree 𝐻, let 𝑟(𝐺) denote
the number of representations of 𝐺 as a sum of two irreducible polynomials of degree ⩽ 𝐻. Note
that if 𝑞 = 2, then 𝑟(𝐺) > 0 only when deg(𝐺) < 𝐻; otherwise, if 𝑞 > 2, then 𝑟(𝐺) > 0 only when
deg(𝐺) = 𝐻. We thus have ∑

𝑃1,𝑃2,𝑃3,𝑃4∈𝐻
𝑃1+𝑃2=𝑃3+𝑃4

1 =
∑

deg(𝐺)⩽𝐻
𝑟(𝐺)2.

Let 𝑧 ∶= 𝐻∕2, 𝑦 = 1, and𝔓𝑧 ∶= 𝔓𝑦,𝑧 =
∏
𝑃∈⩽𝑧∖⩽𝑦 𝑃 as in the previous lemma. We then have

𝑟(𝐺) ⩽
∑
𝑀∈𝐻

(𝑀(𝐺−𝑀),𝔓𝑧)=1
𝐺−𝑀∈𝐻

1 =
∑
𝐹∈

(𝐹,𝔓𝑧)=1

1,

where  = {𝐵(𝐺 − 𝐵)∶ 𝐵 ∈𝐻} ∩2𝐻 ; as  and 𝐻 are in bijection with one another, we
have || = |𝐻| ≍ 𝑞𝐻 .
Note that for 𝐷|𝔓𝑧 with deg(𝐷) ⩽ 𝐻∑

𝐹∈
𝐷|𝐹
1 = g(𝐷)|𝐻|,

where g is the multiplicative function supported on squarefree polynomials and defined at irre-
ducibles via g(𝑃) = 2𝑞−deg(𝑃) if 𝑃 ∤ 𝐺 and g(𝑃) = 𝑞−deg(𝑃) otherwise; note that g(𝑃) ⩽ 1∕2 for all
𝑃|𝔓𝑧 and all 𝑞 ⩾ 2, since such 𝑃 must have deg(𝑃) ⩾ 2. By Lemma 4.12, we deduce

∑
𝐹∈

(𝐹,𝔓𝑧)=1

1 ≪ 𝑞𝐻

⎛⎜⎜⎜⎜⎝
∑
𝐷|𝔓𝑧

deg(𝐷)⩽𝐻

∏
𝑃|𝐷

g(𝑃)
1 − g(𝑃)

⎞⎟⎟⎟⎟⎠

−1

≪ 𝑞𝐻

⎛⎜⎜⎜⎜⎝
∑
𝐷|𝔓𝑧 g(𝐷) −

∑
𝐷∣𝔓𝑧

deg(𝐷)>𝐻

g(𝐷)

⎞⎟⎟⎟⎟⎠

−1

.

Note that the full bracketed sum over 𝐷|𝔓𝑧 has order of magnitude
=
∏
𝑅∈⩽𝑧

(1 + g(𝑅)) ≍ exp

⎛⎜⎜⎜⎝2
∑
𝑅∈⩽𝑧

𝑞−deg(𝑅) −
∑
𝑅∈
𝑅|𝐺
𝑞−deg(𝑅)

⎞⎟⎟⎟⎠ ≍
𝜙(𝐺)

𝑞deg(𝐺)
𝑧2.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 185

The remaining sum over 𝐷|𝔓𝑧 with deg(𝐷) > 𝐻 can be bounded above as

⩽
∑
𝑘>𝐻

𝑞−𝑘
∑
𝐷|𝑃𝑧

deg(𝐷)=𝑘

2𝜔(𝐷) =
∑
𝑘>𝐻

𝑞−𝑘
∑

𝑎1+2𝑎2+⋯+𝑧𝑎𝑧=𝑘
0⩽𝑎𝑗⩽|𝑗|

∏
1⩽𝑗⩽𝑧

2𝑎𝑗

⩽
∑
𝑘>𝐻

𝑞−𝑘
∑

𝑎1+2𝑎2+⋯+𝑧𝑎𝑧=𝑘
0⩽𝑎𝑗⩽|𝑗|

2𝑞+
1
2
(2𝑎2+⋯+𝑧𝑎𝑧)

≪
∑
𝑘>𝐻

(
√
2∕𝑞)𝑘|{𝒂 ∈ ℕ ∪ {0}∶ 𝑎1 + 2𝑎2 +⋯ + 𝑧𝑎𝑧 = 𝑘}|.

Using standard results on partitions (see, e.g., [5]), the cardinality above is≪ 𝑒𝑐
√
𝑘, for some 𝑐 > 0

absolute. Thus, as 𝑞 ⩾ 2 the series over 𝑘 converges, and in fact∑
𝐷∣𝔓𝑧

deg(𝐷)>𝐻

g(𝐷) ≪ 𝑒−𝑐
′𝐻,

for a suitable absolute 𝑐′ > 0.
It follows that for large𝐻,

𝑟(𝐺) ≪
𝑞deg(𝐺)

𝜙(𝐺)

𝑞𝐻

𝑧2
≪
𝑞deg(𝐺)

𝜙(𝐺)

𝑞𝐻

𝐻2
.

Squaring this bound and summing over 𝐺 ∈ 𝔽𝑞[𝑡] of degree ⩽ 𝐻 for which 𝑟(𝐺) ≠ 0, we get that

|{(𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 𝐻 ∶ 𝑃1 + 𝑃2 = 𝑃3 + 𝑃4}| ⩽ ∑
deg(𝐺)⩽𝐻

𝑟(𝐺)2 ≪
𝑞2𝐻

𝐻4

∑
deg(𝐺)⩽𝐻

(
𝑞deg(𝐺)

𝜙(𝐺)

)2
.

We claim that the sum over 𝐺 is≪ 𝑞𝐻 , which will then imply the claim for 𝑀 = 0. To see this,
write 𝜓(𝐺) ∶= (𝑞deg(𝐺)∕𝜙(𝐺))2; note that 𝜓 is independent of the leading coefficient of 𝐺, and so
we may replace 𝐺 by 𝐺∕𝐺(0) and assume 𝐺 is monic (this changes the sum by at most a factor
depending only on 𝑞). Note that for any 𝑘 ⩾ 1, 𝜓(𝑅𝑘) = 𝜓(𝑅) = (1 − 𝑞−deg(𝑅))−2 ⩽ 4 uniformly
over 𝑅 ∈  . Hence, we may apply Lemma 3.8 to get

∑
𝐺∈⩽𝐻

𝜓(𝐺) ≪
∑
0⩽ℎ⩽𝐻

𝑞ℎ

ℎ
exp
⎛⎜⎜⎝
∑
𝑅∈⩽ℎ

𝜓(𝑅)𝑞−deg(𝑅)
⎞⎟⎟⎠.

We may directly evaluate the sum over 𝑅 here for each ℎ ⩽ 𝐻 by the prime polynomial theorem,
getting

∑
𝑅∈⩽ℎ

𝜓(𝑅)𝑞−deg(𝑅) =
∑
𝑘⩽ℎ

𝑞−𝑘

(1 − 𝑞−𝑘)2
|𝑘| =∑

𝑘⩽ℎ

(
1

𝑘
(1 − 𝑞−𝑘)−2 + 𝑂(𝑞−𝑘∕2)

)
= log ℎ + 𝑂(1),
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186 KLURMAN et al.

which leads to ∑
𝐺∈⩽𝐻

𝜓(𝐺) ≪
∑
ℎ⩽𝐻

𝑞ℎ ≪ 𝑞𝐻,

as required. Next, let𝑀 ∈<𝐻 . Then,

|{(𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 4𝐻 ∶ 𝑃1 + 𝑃2 − 𝑃3 − 𝑃4 = 𝑀}| = ∑
deg(𝐺)⩽𝐻

𝑟(𝐺)𝑟(𝑀 + 𝐺) ⩽
∑

deg(𝐺)⩽𝐻
𝑟(𝐺)2,

by the AM–GM inequality and the fact that deg(𝐺 +𝑀) ⩽ 𝐻 whenever max{deg(𝐺), deg(𝑀)} ⩽
𝐻. The second claim now follows from the first. □

4.3 Dirichlet polynomial decompositions

Let 𝑄 > 𝑃 ⩾ 1. Recall that 𝑃,𝑄 denotes the set of monic 𝐺 that have an irreducible factor 𝑅
satisfying deg(𝑅) ∈ [𝑃, 𝑄].

Lemma 4.14 (Ramaré’s identity). Let 𝑃 < 𝑄. Let 𝑓∶→ 𝕌 be multiplicative. Then, for any 𝐺 ∈
𝑃,𝑄,

𝑓(𝐺) =
∑
𝑅𝑀=𝐺
𝑅∈

deg(𝑅)∈[𝑃,𝑄]

𝑓(𝑅𝑀)

1(𝑅,𝑀)=1 + 𝜔[𝑃,𝑄](𝑀)
,

where 𝜔[𝑃,𝑄](𝑀) ∶= |{𝑅 ∈  ∶ deg(𝑅) ∈ [𝑃, 𝑄], 𝑅|𝑀}|.
Proof. Since 𝜔[𝑃,𝑄](𝐺) ⩾ 1 by assumption we have

1 =
∑
𝑅|𝐺
𝑅∈

deg(𝑅)∈[𝑃,𝑄]

1

𝜔[𝑃,𝑄](𝐺)
=

∑
𝑅𝑀=𝐺
𝑅∈

deg(𝑅)∈[𝑃,𝑄]

1

𝜔[𝑃,𝑄](𝑅𝑀)
=

∑
𝑅𝑀=𝐺
𝑅∈

deg(𝑅)∈[𝑃,𝑄]

1

1(𝑅,𝑀)=1 + 𝜔[𝑃,𝑄](𝑀)
.

This implies the claim. □

Wewill use Ramaré’s identity to decompose Dirichlet polynomials supported on 𝑃,𝑄, as in the
following lemma.

Lemma 4.15. Let 𝑁 ⩾ 1. Let 𝐿 ∈⩽𝑁 and suppose Ξ ⊆ 𝐿. Finally, let 𝑓∶ → 𝕌 be
multiplicative. Then, for any 1 ⩽ 𝑃 < 𝑄 ⩽ 𝑁,

∑
𝜒∈Ξ

||||||𝑞−𝑁
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)1𝑃,𝑄 (𝐺)
||||||
2

≪ (𝑄 − 𝑃 + 1)
∑
𝑃⩽𝑑⩽𝑄

∑
𝜒∈Ξ

|𝐴𝑑(𝜒)|2|𝐵𝑁−𝑑(𝜒)|2
+ 𝜙(𝐿)(𝑞−𝑁 + 𝑞−deg(𝐿))𝑞−𝑃,
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 187

where for 𝑑 ⩾ 1 and a character 𝜒 modulo 𝐿, we set

𝐴𝑑(𝜒) ∶= 𝑞
−𝑑
∑
𝑅∈𝑑

𝑓(𝑅)𝜒(𝑅).

𝐵𝑁−𝑑(𝜒) ∶= 𝑞
−𝑁+𝑑

∑
𝐷∈𝑁−𝑑

𝑓(𝐷)𝜒(𝐷)

1 + 𝜔[𝑃,𝑄](𝐷)
.

Proof. This is analogous to [27, Lemma 12]. By Lemma 4.14, for any 𝜒 ∈ Ξ we have

𝑞−𝑁
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)1𝑃,𝑄 (𝐺)

= 𝑞−𝑁
∑

𝑅𝑀∈𝑁

𝑓𝜒(𝑅)𝑓𝜒(𝑀)

1 + 𝜔[𝑃,𝑄](𝑀)
+ 𝑞−𝑁

∑
𝑅𝑀∈𝑁

(𝑓(𝑅𝑀) − 𝑓(𝑅)𝑓(𝑀))𝜒(𝑅𝑀)

1 + 𝜔[𝑃,𝑄](𝑀)

+ 𝑞−𝑁
∑

𝑅𝑀∈𝑁

𝑓(𝑅𝑀)𝜒(𝑅𝑀)

(
1

1(𝑅,𝑀)=1 + 𝜔[𝑃,𝑄](𝑀)
−

1

1 + 𝜔[𝑃,𝑄](𝑀)

)

=
∑
𝑃⩽𝑑⩽𝑄

(
𝑞−𝑑

∑
𝑅∈𝑑

𝑓(𝑅)𝜒(𝑅)

)(
𝑞−𝑁+𝑑

∑
𝑀∈𝑁−𝑑

𝑓(𝑀)𝜒(𝑀)

1 + 𝜔[𝑃,𝑄](𝑀)

)
+1,𝜒 +2,𝜒

=
∑
𝑃⩽𝑑⩽𝑄

𝐴𝑑(𝜒)𝐵𝑁−𝑑(𝜒) +1,𝜒 +2,𝜒. (25)

Note that for each 𝜒 ∈ Ξ, both of1,𝜒 and2,𝜒 are supported on polynomials𝑀 such that 𝑅|𝑀
for some 𝑅 ∈  , deg(𝑅) ∈ [𝑃, 𝑄]. We now take squares and sum the whole expression over all
𝜒 ∈ Ξ to see that the mean square of (25) is

≪
∑
𝜒∈Ξ

||||||
∑
𝑃⩽𝑑⩽𝑄

𝐴𝑑(𝜒)𝐵𝑁−𝑑(𝜒)

||||||
2

+
∑
𝜒∈Ξ

|1,𝜒|2 +∑
𝜒∈Ξ

|2,𝜒|2.
To treat the first term, we use the Cauchy–Schwarz inequality in the inner sum to get

∑
𝜒∈Ξ

||||||
∑
𝑃⩽𝑑⩽𝑄

𝐴𝑑(𝜒)𝐵𝑁−𝑑(𝜒)

||||||
2

⩽ (𝑄 − 𝑃 + 1)
∑
𝑃⩽𝑑⩽𝑄

∑
𝜒∈Ξ

|𝐴𝑑(𝜒)|2|𝐵𝑁−𝑑(𝜒)|2.
To treat

∑
𝜒∈Ξ |𝑗,𝜒|2 for 𝑗 = 1, 2 we use Lemma 4.2; since the arguments are similar, we shall

restrict ourselves to proving the bound for1,𝜒 . By Lemma 4.2,

∑
𝜒∈Ξ

|𝑅1,𝜒|2 ≪ 𝜙(𝐿)(𝑞−𝑁 + 𝑞−deg(𝐿))𝑞−𝑁 ∑
𝐺∈𝑁

|||||||||||
∑
𝑅𝑀=𝐺
𝑅∈ , 𝑅|𝑀

deg(𝑅)∈[𝑃,𝑄]

(𝑓(𝑅𝑀) − 𝑓(𝑅)𝑓(𝑀))

1 + 𝜔[𝑃,𝑄](𝑀)

|||||||||||

2

.
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188 KLURMAN et al.

Expanding the square and bounding the summands trivially, we bound the sum on the right-hand
side as

∑
𝑅1,𝑅2∈

deg(𝑅𝑗)∈[𝑃,𝑄]

∑
𝐺∈𝑁

[𝑅1,𝑅2]
2|𝐺
1 ≪ 𝑞𝑁

( ∑
𝑃⩽𝑑⩽𝑄

|𝑑|𝑞−2𝑑 + ∑
𝑃⩽𝑑1,𝑑2⩽𝑄

|𝑑1 ||𝑑2 |𝑞−2(𝑑1+𝑑2)
)

≪ 𝑞𝑁
∑
𝑃⩽𝑑⩽𝑄

𝑞−𝑑 ≪ 𝑞𝑁−𝑃,

which implies the claim. □

Lemma 4.16 (Pointwise bound with Ramaré weight). Let 1 ⩽ 𝑃 < 𝑄 < 𝑁0.9. Let 𝑓∶ → 𝕌 be
multiplicative. There is a Hayes character 𝜒1 of conductor ⩽ 𝑁 such that

max
cond𝐻(𝜒)⩽𝑁
𝜒≁𝜒1

1|𝑁|
||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

1 + 𝜔[𝑃,𝑄](𝐺)

||||||≪ (𝑄∕𝑃)3𝑁−1∕4+𝑜(1).
Moreover, we can take 𝜒1 to be the Hayes character of conductor ⩽ 𝑁 that minimizes 𝜒 ↦ 

𝑓𝜒
(𝑁).

Proof. Let 𝜒1 be the character that minimizes 𝑓𝜒(𝑁) among all 𝜒 of conductor ⩽ 𝑁, and let
𝜒 ≁ 𝜒1. Write  ∶= [𝑃, 𝑄] and 𝑐 ∶= ℕ∖. We can express 𝑓 = 𝑓 ∗ 𝑓𝑐 , where for  ∈ {,𝑐},
we define the multiplicative function 𝑓 at powers of irreducibles via

𝑓 (𝑃𝑘) ∶=
{
𝑓(𝑃𝑘) if deg(𝑃) ∈ 
0 otherwise.

Let 𝑁′ ∶= ⌊𝑁∕2⌋. By the hyperbola method,
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

1 + 𝜔(𝐺)
=
∑

𝐴𝐵∈𝑁

𝑓(𝐴)𝑓𝑐 (𝐵)𝜒(𝐴𝐵)
1 + 𝜔(𝐴)

=
∑

𝐴∈⩽𝑁′

𝑓(𝐴)𝜒(𝐴)
1 + 𝜔(𝐴)

∑
𝐵∈𝑁−deg(𝐴)

𝑓𝑐 (𝐵)𝜒(𝐵) +
∑

𝐵∈⩽𝑁−𝑁′

𝑓𝑐 (𝐵)𝜒(𝐵)
∑

𝐴∈𝑁−deg(𝐵)

𝑓(𝐴)𝜒(𝐴)
1 + 𝜔(𝐴)

−
⎛⎜⎜⎝
∑

𝐴∈𝑁′

𝑓(𝐴)𝜒(𝐴)
1 + 𝜔(𝐴)

⎞⎟⎟⎠
⎛⎜⎜⎝
∑

𝐵∈𝑁−𝑁′

𝑓𝑐 (𝐵)𝜒(𝐵)
⎞⎟⎟⎠ =∶ 𝑇1 + 𝑇2 − 𝑇3.

We first treat 𝑇1. Let 0 ⩽ 𝐾 ⩽ 𝑁′. Since 𝜒 ≁ 𝜒1, Lemma 3.6 implies that


𝑓𝑐 𝜒(𝑁 − 𝐾) = 

𝑓𝑐 𝜒(𝑁) − 𝑂(1) ⩾ 
𝑓𝜒
(𝑁) − 2

∑
𝑃⩽𝑑⩽𝑄

𝑞−𝑑|𝑑|
⩾
(
1

4
− 𝑜(1)

)
log𝑁 − 2 log(𝑄∕𝑃).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 189

Combining this with Theorem 3.5, we obtain∑
𝐺∈𝑁−𝐾

𝑓𝑐 (𝐺)𝜒(𝐺) ≪ 𝑞𝑁−𝐾𝑓𝑐 𝜒(𝑁 − 𝐾) exp
(
−

𝑓𝑐 𝜒(𝑁 − 𝐾)
)
≪ 𝑞𝑁−𝐾(𝑄∕𝑃)2𝑁−1∕4+𝑜(1).

(26)
Applying this with 𝐾 = deg(𝐴) in 𝑇1 and summing over 𝐴 ∈⩽𝑁′ yields

𝑇1 ≪ 𝑞
𝑁(𝑄∕𝑃)2𝑁−1∕4+𝑜(1)

∑
𝐴∈⩽𝑁′

𝑅|𝐴⇒deg(𝑅)∈[𝑃,𝑄]
𝑞−deg(𝐴)

≪ 𝑞𝑁(𝑄∕𝑃)2𝑁−1∕4+𝑜(1) exp

⎛⎜⎜⎜⎝
∑
𝑅∈

𝑃⩽deg(𝑅)⩽𝑄

𝑞−deg(𝑅)

⎞⎟⎟⎟⎠
≪ 𝑞𝑁(𝑄∕𝑃)3𝑁−1∕4+𝑜(1).

We next consider 𝑇2. Using Lemma 4.11, for every 0 ⩽ 𝐾 ⩽ 𝑁 −𝑁′ ⩽ 𝑁∕2 + 1, we have||||||
∑

𝐴∈𝑁−𝐾

𝑓(𝐴)
1 + 𝜔(𝐴)

|||||| ⩽ |{𝐴 ∈𝑁−𝐾 ∶ 𝑅|𝐴, 𝑅 ∈  ⇒ deg(𝑅) ⩽ 𝑄}|≪ 𝑞𝑁−𝐾 exp(−𝑐(𝑁 − 𝐾)∕𝑄)
(27)

≪ 𝑞𝑁−𝐾 exp

(
−𝑐
𝑁

3𝑄

)
(28)

for some 𝑐 > 0. Applying this with 𝐾 = deg(𝐵), then summing over 𝐵 in 𝑇2 yields

𝑇2 ≪
∑

𝐵∈⩽𝑁−𝑁′

||||||
∑

𝐴∈𝑁−deg(𝐵)

𝑓(𝐴)
1 + 𝜔(𝐴)

||||||≪ 𝑞𝑁 exp
(
−𝑐
𝑁

3𝑄

) ∑
𝐵∈⩽𝑁−𝑁′

𝑞−deg(𝐵)

≪ 𝑞𝑁𝑁 exp

(
−𝑐
𝑁

3𝑄

)
.

Finally, consider 𝑇3. Using the estimates (26) and (27) (with 𝑁 − 𝐾 replaced by 𝑁′ and 𝑁 −𝑁′,
respectively) yields

𝑇3 ≪ 𝑞
𝑁𝑁 exp

(
−𝑐
𝑁

6𝑄

)
(𝑄∕𝑃)2𝑁−1∕4+𝑜(1)

≪ 𝑞𝑁𝑁3 exp

(
−𝑐
𝑁

6𝑄

)
.

Combining the estimates for 𝑇1, 𝑇2, and 𝑇3 and noting that 𝑁3 exp(−𝑐
𝑁

6𝑄
) ≪ 𝑁−100 establishes

the claim. □
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190 KLURMAN et al.

5 VARIANCE OFMULTIPLICATIVE FUNCTIONS IN
PROGRESSIONS TO LARGE DEGREEMODULI

In this section, we will prove Theorem 1.2. In the next section, we will apply a very similar
argument to deduce the Matomäki–Radziwiłł type theorem that we shall need.
Let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4 with𝐻 = 𝐻(𝑁) → ∞ as𝑁 → ∞. Let 𝑓∶→ 𝕌 be multiplicative, and

let 𝑄 ∈𝑁−𝐻 . Let 𝜒1 ∈ 𝑄 be the Dirichlet character mod 𝑄 that minimizes 𝜒 ↦ 𝑓𝜒(𝑁). By
orthogonality,

∑∗

𝐴mod 𝑄

|||||||||
∑
𝐺∈𝑁

𝐺≡𝐴mod 𝑄
𝑓(𝐺) −

𝜒1(𝐴)

𝜙(𝑄)

∑
𝐺∈𝑁

𝑓(𝐺)𝜒1(𝐺)

|||||||||
2

=
1

𝜙(𝑄)

∑
𝜒≠𝜒1

||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

||||||
2

. (29)

Let 𝜂 ∈ (0, 1∕6) be fixed, and set

𝑄1 ∶= min{𝐻,𝑁
1∕5}, and 𝑃1 ∶=

400

𝜂 log 𝑞
log𝑄1.

Fix 𝐽 ⩾ 1 to be the least integer such that 𝐽4𝐽+2𝑄𝐽
1
⩾ 𝑁1∕2, and if 𝐽 ⩾ 2 set

𝑃𝑗 ∶= 𝑗
4𝑗𝑄

𝑗−1
1
𝑃1 and 𝑄𝑗 ∶= 𝑗

4𝑗+2𝑄
𝑗
1

for each 2 ⩽ 𝑗 ⩽ 𝐽. We define 𝑷,𝑸 as in Definition 4.9 with these collections of parameters 𝑃𝑗
and 𝑄𝑗 , and for 1 ⩽ 𝑗 ⩽ 𝐽, we let  (𝑗)𝑷,𝑸 denote the set of 𝐺 ∈ with an irreducible factor 𝑅 with
deg(𝑅) ∈ [𝑃𝑖, 𝑄𝑖] for all 𝑖 ≠ 𝑗.
For each 𝑗, 1 ⩽ 𝑑 ⩽ 𝑁 and a character 𝜒 modulo 𝑄, set

𝐴𝑗,𝑑(𝜒) ∶=
1[𝑃𝑗,𝑄𝑗](𝑑)

𝑑|𝑑| ∑
𝑅∈𝑑

𝑓(𝑅)𝜒(𝑅).

𝐵𝑗,𝑑(𝜒) ∶=
1|𝑑| ∑𝐷∈𝑑

𝐷∈(𝑗)
𝑷,𝑸

𝑓(𝐷)𝜒(𝐷)

1 + 𝜔[𝑃𝑗,𝑄𝑗](𝐷)
.

Thus, 𝐴𝑗,𝑑(𝜒) = 0 except when 𝑑 ∈ [𝑃𝑗, 𝑄𝑗]. Following [27] (see also [23, Section 5.2]), we split
the set Ξ ∶= 𝑄∖{𝜒1} into the following sets.
Definition 5.1. For 𝑗 ⩾ 1 put 𝛽𝑗 ∶=

1

4
−
𝜂

2
(1 + 1∕𝑗). Define

1 ∶= {𝜒 ∈ Ξ∶ |𝐴1,𝑑(𝜒)| ⩽ 𝑞−𝛽1𝑑 ∀𝑃1 ⩽ 𝑑 ⩽ 𝑄1}
𝑗 ∶= {𝜒 ∈ Ξ∶ |𝐴𝑗,𝑑(𝜒)| ⩽ 𝑞−𝛽𝑗𝑑 ∀𝑃𝑗 ⩽ 𝑑 ⩽ 𝑄𝑗}∖ ⋃

1⩽𝑖⩽𝑗−1

𝑖 (2 ⩽ 𝑗 ⩽ 𝐽)

 ∶= Ξ∖ ⋃
1⩽𝑗⩽𝐽

𝑗.

We shall bound the contribution of the characters from each of 𝑗 and  using the lemmata
from the previous sections.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 191

We begin by estimating the contribution from 𝜒 ∉  . By Lemma 4.10, we have

1

𝜙(𝑄)

∑
𝜒≠𝜒1
𝜒∉

||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

||||||
2

≪
1

𝜙(𝑄)

∑
𝜒≠𝜒1
𝜒∉

|||||||||
∑
𝐺∈𝑁
𝐺∈𝑷,𝑸

𝑓(𝐺)𝜒(𝐺)

|||||||||
2

+ 𝑞2𝑁−deg(𝑄)
∑
1⩽𝑗⩽𝐽

𝑃𝑗

𝑄𝑗

≪
1

𝜙(𝑄)

∑
𝜒≠𝜒1
𝜒∉

|||||||||
∑
𝐺∈𝑁
𝐺∈𝑷,𝑸

𝑓(𝐺)𝜒(𝐺)

|||||||||
2

+ 𝑞2𝑁−deg(𝑄)
𝑃1
𝑄1
. (30)

For each 𝜒 ∈ Ξ∖ , write

𝐹(𝜒) ∶=
1|𝑁| ∑𝐺∈𝑁

𝐺∈𝑷,𝑸

𝑓(𝐺)𝜒(𝐺).

We apply Lemma 4.15 for each 1 ⩽ 𝑗 ⩽ 𝐽 (with 𝑃 = 𝑃𝑗 and 𝑄 = 𝑄𝑗 in the notation there) to get∑
𝜒∈𝑗

|𝐹(𝜒)|2 ≪ (𝑄𝑗 − 𝑃𝑗 + 1) ∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

∑
𝜒∈𝑗

|𝐴𝑗,𝑑(𝜒)|2|𝐵𝑗,𝑁−𝑑(𝜒)|2 + 𝜙(𝑄)𝑞−deg(𝑄)𝑞−𝑃𝑗
=∶ 𝔐𝑗 +ℜ𝑗.

Summing the error terms arising from the terms 1 ⩽ 𝑗 ⩽ 𝐽 yields∑
1⩽𝑗⩽𝐽

ℜ𝑗 ≪ 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑞−𝑃1 ≪ 𝑄−1001 𝜙(𝑄)∕𝑞deg(𝑄), (31)

using the definitions of 𝑃𝑗 and 𝑄𝑗 above. We thus focus on the main terms arising in the
above estimate.

Case 1: 𝒋 = 𝟏

In this case, we bound |𝐴1,𝑑(𝜒)| ⩽ 𝑞−𝛽1𝑑 for each 𝜒 ∈ 1 and then apply Lemma 4.2 to get
𝔐1 ≪ (𝑄1 − 𝑃1 + 1)

∑
𝑃1⩽𝑑⩽𝑄1

𝑞−2𝛽1𝑑
∑

𝜒 mod 𝑄
|𝐵1,𝑁−𝑑(𝜒)|2

⩽ 𝑄1

(
𝜙(𝑄)𝑞𝑄1−𝑁 + 𝜙(𝑄)𝑞−deg(𝑄)

) ∑
𝑃1⩽𝑑⩽𝑄1

𝑞−2𝛽1𝑑

≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅ 𝑄1𝑞
−2𝛽1𝑃1 ≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅ 𝑄1𝑞

−𝑃1∕6,

since 𝛽1 = 1∕4 − 𝜂 ⩾ 1∕12. Thus,

𝔐1 ≪ 𝑄
−100
1 𝜙(𝑄)∕𝑞deg(𝑄). (32)
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192 KLURMAN et al.

Case 2: 𝟐 ⩽ 𝒋 ⩽ 𝑱

We know that for each𝜒 ∈ 𝑗 , we can find a 𝑑𝜒 ∈ [𝑃𝑗−1, 𝑄𝑗−1] for which |𝐴𝑗−1,𝑑𝜒 (𝜒)| ⩾ 𝑞−𝛽𝑗−1𝑑𝜒 .
Thus, similarly as in [27], we can estimate

𝔐𝑗 ≪ (𝑄𝑗 − 𝑃𝑗 + 1)
∑

𝑃𝑗−1⩽𝑟⩽𝑄𝑗−1

∑
𝜒∈𝑗
𝑑𝜒=𝑟

∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

|𝐴𝑗,𝑑(𝜒)|2|𝐵𝑗,𝑁−𝑑(𝜒)|2
⩽ (𝑄𝑗 − 𝑃𝑗 + 1)(𝑄𝑗−1 − 𝑃𝑗−1 + 1) max

𝑃𝑗−1⩽𝑟⩽𝑄𝑗−1

∑
𝜒∈𝑗
𝑑𝜒=𝑟

∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

𝑞−2𝛽𝑗𝑑|𝐵𝑗,𝑁−𝑑(𝜒)|2
⩽ 𝑄2𝑗

∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

𝑞−2𝛽𝑗𝑑𝑞2𝓁𝑑𝑟0𝛽𝑗−1
∑

𝜒 mod 𝑄
|𝐴𝑗−1,𝑟0 (𝜒)𝓁𝑑𝐵𝑗,𝑁−𝑑(𝜒)|2,

for some 𝑟0 ∈ [𝑃𝑗−1, 𝑄𝑗−1], with 𝓁𝑑 ∶= ⌈𝑑∕𝑟0⌉. Applying Lemma 4.7, we have∑
𝜒 mod 𝑄

|𝐴𝑗−1,𝑟0 (𝜒)𝓁𝑑𝐵𝑗,𝑁−𝑑(𝜒)|2 ≪ 𝜙(𝑄)𝑞−deg(𝑄)𝓁2𝓁𝑑𝑑 .
Combining this with the estimates from the previous line, we get

𝔐𝑗 ≪ 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑄2𝑗

∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

𝑞2(𝓁𝑑𝑟0𝛽𝑗−1−𝑑𝛽𝑗)𝓁2𝓁𝑑
𝑑
.

By definition, 𝓁𝑑 ⩽ 𝑑∕𝑟0 + 1, so that since 𝑟0 ⩽ 𝑄𝑗−1,

𝓁𝑑𝑟0𝛽𝑗−1 − 𝑑𝛽𝑗 ⩽ 𝑑(𝛽𝑗−1 − 𝛽𝑗) + 𝑟0𝛽𝑗−1 ⩽ −
𝜂𝑑

2𝑗2
+ 𝑄𝑗−1𝛽𝑗−1.

Furthermore, we have

𝓁𝑑 log𝓁𝑑 ⩽
𝑑 log 𝑑

𝑟0
+ log 𝑑 ⩽ (log𝑄𝑗)(𝑑∕𝑃𝑗−1 + 1).

We thus may bound𝔐𝑗 as

𝔐𝑗 ≪ 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑄4𝑗𝑞

2𝑄𝑗−1𝛽𝑗−1
∑

𝑃𝑗⩽𝑑⩽𝑄𝑗

𝑞−2𝑑(𝜂∕(2𝑗
2)−(log𝑄𝑗)∕(𝑃𝑗−1 log 𝑞)).

We record the following easy-to-check bounds, contingent on 𝑄1 being sufficiently large and 𝑗 ⩾
2:

(i) log𝑄𝑗
𝑃𝑗−1

⩽
𝑗(log𝑄1)(1+5 log 𝑗)

(𝑗−1)4𝑗−4𝑄
𝑗−2
1
𝑃1
⩽
50 log𝑄1
𝑃1

⋅ 1
𝑗2
⩽
𝜂 log 𝑞

8𝑗2
.

(ii) 𝑄4
𝑗
𝑞2𝛽𝑗−1𝑄𝑗−1 ⩽ 𝑞𝑄𝑗−1∕2.

(iii) 𝑄𝑗−1 ⩽ 𝑗4𝑗−2𝑄
𝑗−1
1
⩽ 𝑃𝑗∕(𝑗

2𝑃1).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 193

Using these bounds, we get

𝔐𝑗 ≪ 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑞𝑄𝑗−1∕2

∑
𝑃𝑗⩽𝑑⩽𝑄𝑗

𝑞−𝜂𝑑∕(2𝑗
2) ≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅ 𝑗2𝜂−1𝑞𝑃𝑗∕(2𝑗

2𝑃1)𝑞−𝜂𝑃𝑗∕(2𝑗
2)

≪𝜂 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑗2𝑞−𝜂𝑃𝑗∕(4𝑗

2) ⩽ 𝜙(𝑄)𝑞−deg(𝑄) ⋅ 𝑗−2𝑞−𝜂𝑄1𝑃1∕4.

Summing over 2 ⩽ 𝑗 ⩽ 𝐽, we get∑
2⩽𝑗⩽𝐽

𝔐𝑗 ≪𝜂 𝜙(𝑄)𝑞
−deg(𝑄) ⋅ 𝑞−𝜂𝑄1𝑃1∕4 ≪ 𝑄−1001 𝜙(𝑄)𝑞−deg(𝑄). (33)

Case 3:

We now treat the remaining characters 𝜒 ∈  . Wemake an additional choice of parameters �̃� ∶=
𝑁2∕3, �̃� ∶= 𝑁13∕18. Combining Lemma 4.10 with Lemma 4.15, we find �̃� ⩽ 𝑑0 ⩽ �̃� such that∑

𝜒∈

||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

||||||
2

≪
∑
𝜒∈

|||||||||
∑
𝐺∈𝑁
𝐺∈�̃�,�̃�

𝑓(𝐺)𝜒(𝐺)

|||||||||
2

+ 𝜙(𝑄)𝑞−deg(𝑄)
�̃�

�̃�

≪ (�̃� − �̃� + 1)
∑
�̃�⩽𝑑⩽�̃�

∑
𝜒∈

|𝐴𝑑(𝜒)|2|𝐵𝑁−𝑑(𝜒)|2 + 𝜙(𝑄)𝑞−deg(𝑄)(𝑞−�̃� + �̃�
�̃�

)

≪ �̃�2
∑
𝜒∈

|𝐴𝑑0(𝜒)|2|𝐵𝑁−𝑑0(𝜒)|2 + 𝜙(𝑄)𝑞−deg(𝑄)(𝑞−�̃� + �̃��̃�
)
,

where 𝐴𝑑 and 𝐵𝑁−𝑑, �̃� ⩽ 𝑑 ⩽ �̃�, are defined as in Lemma 4.15 with respect to the parameters �̃�
and �̃�. We now split the set further. Following [27], we define the subsets

𝑆 ∶= {𝜒 ∈  ∶ |𝐴𝑑0(𝜒)| ⩽ 𝑁−10},
𝐿 ∶= {𝜒 ∈  ∶ |𝐴𝑑0(𝜒)| > 𝑁−10}.

We begin by treating the contribution from 𝑆 . By Lemma 4.4 and the fact that 𝑑0 ⩽ �̃� = 𝑜(𝑁),
we have ∑

𝜒∈𝑆
|𝐴𝑑0(𝜒)|2|𝐵𝑁−𝑑0(𝜒)|2 ⩽ 𝑁−20 ∑

𝜒∈𝑆
|𝐵𝑁−𝑑0(𝜒)|2

≪ 𝑁−20𝜙(𝑄)𝑞−deg(𝑄)
(
1 + |𝑆|𝑞(1∕2+𝑜(1))𝑁−𝑁+𝑑0)

≪ 𝑁−20𝜙(𝑄)𝑞−deg(𝑄)
(
1 + | |𝑞(−1∕2+𝑜(1))𝑁). (34)
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194 KLURMAN et al.

To estimate the size of  , we note that whenever 𝜒 ∈  , there is 𝑑𝐽 ∈ [𝑃𝐽, 𝑄𝐽] such that|𝐴𝐽,𝑑𝐽 (𝜒)| ⩾ 𝑞−𝛽𝐽𝑑𝐽 , and thus
| | ⩽ ||||||

⋃
𝑃𝐽⩽𝑑𝐽⩽𝑄𝐽

{𝜒 mod 𝑄∶ |𝐴𝐽,𝑑𝐽 (𝜒)| ⩾ 𝑞−𝛽𝐽𝑑𝐽 }|||||| ⩽ 𝑄𝐽 max𝑃𝐽⩽𝑑𝐽⩽𝑄𝐽
|{𝜒 mod 𝑄∶ |𝐴𝐽,𝑑𝐽 (𝜒)| ⩾ 𝑞−𝛽𝐽𝑑𝐽 }|.

By choice, we have that 𝑁1∕2 ⩽ 𝑄𝐽 ≪ 𝑁1∕2𝐽4𝑄1 ≪ 𝑁7∕10+𝑜(1), so that from (i) above we
have 𝑃𝐽 ⩾

8𝐽2

𝜂 log 𝑞
log𝑄𝐽+1 ⩾

4

𝜂 log 𝑞
log𝑁 and 𝜙(𝑄) ⩾ 𝑞𝑄𝐽 ⩾ 𝑞𝑑𝐽 for all 𝑑𝐽 ∈ [𝑃𝐽, 𝑄𝐽]. Hence,

(log log 𝜙(𝑄))∕𝑃𝐽 <
1

2
𝜂 log 𝑞 for 𝑁 large enough, and Lemma 4.6 may be applied to give

| |≪ 𝑄𝐽 exp( log(𝑞𝑑𝐽𝜙(𝑄))𝑑𝐽 log 𝑞

(
2 log

(
log(2𝜙(𝑄))

𝑑𝐽 log 𝑞

)
+ log(2𝑞2𝛽𝐽𝑑𝐽∕𝑑𝐽)

))
⩽ 𝜙(𝑄)

1
2
−𝜂∕2.

Inserting this into (34), the off-diagonal term becomes𝑂(𝑞(−𝜂∕2+𝑜(1))𝑁) = 𝑜(1). Thus, we find that∑
𝜒∈𝑆

|𝐴𝑑0(𝜒)|2|𝐵𝑁−𝑑0(𝜒)|2 ≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅𝑁−20.
We now consider the contribution from 𝐿. Since 𝜒1 ∉  , and since 2(𝑁 − 𝑑0) > 𝑁, we may
apply Lemma 4.16 to obtain

𝐵𝑁−𝑑0(𝜒) ≪ (�̃�∕�̃�)
3(𝑁 − 𝑑0)

−1∕4+𝑜(1) ≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅ (�̃�∕�̃�)3𝑁−1∕4+𝑜(1),

since 𝑑0 ⩽ �̃� = 𝑜(𝑁) and 𝜙(𝑄)𝑞−deg(𝑄) ≫ (log𝑁)−1. It follows that∑
𝜒∈𝐿

|𝐴𝑑0(𝜒)|2|𝐵𝑁−𝑑0(𝜒)|2 ≪ (𝜙(𝑄)𝑞−deg(𝑄))2(�̃�∕�̃�)6𝑁−1∕2+𝑜(1) ∑
𝜒∈𝐿

|𝐴𝑑0(𝜒)|2.
Applying Lemma 4.5, we deduce that∑

𝜒∈𝐿
|𝐴𝑑0(𝜒)|2 ≪ 1

𝑑2
0

(
1 + deg(𝑄)𝑞−𝑑0∕2|𝐿|)≪ �̃�−2(1 + deg(𝑄)|𝐿|𝑞−�̃�∕2).

Since 𝜙(𝑄) ⩾ 𝑞(1−𝑜(1))𝑁3∕4 ⩾ 𝑞�̃� ⩾ 𝑞𝑑0 , we may appeal once again to Lemma 4.6, this time with
𝑍 = 𝑁10, getting

|𝐿|≪ exp( log(𝑞𝑑0𝜙(𝑄))𝑑0 log 𝑞

(
2 log

(
log(2𝜙(𝑄))

𝑑0 log 𝑞

)
+ log(2𝑁19)

))
⩽ 𝑒𝑁

1+𝑜(1)∕�̃�.

Inserting this into the previous bound and using the fact that �̃� = 𝑁2∕3 ⩾ 2𝑁1.01∕�̃� yields∑
𝜒∈𝐿

|𝐴𝑑0(𝜒)|2 ≪ �̃�−2 + deg(𝑄)𝑞−�̃�∕2𝑒𝑁1+𝑜(1)∕�̃� ≪ �̃�−2.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 195

It follows that ∑
𝜒∈𝐿

|𝐴𝑑0(𝜒)|2|𝐵𝑁−𝑑0(𝜒)|2 ≪ (𝜙(𝑄)𝑞−deg(𝑄))2 ⋅𝑁−1∕2+𝑜(1)�̃�6�̃�−8.
Combined with the bounds for𝑆 , we get∑

𝜒∈
|𝐹(𝜒)|2 ≪ (𝜙(𝑄)𝑞−deg(𝑄))2 ⋅ (�̃�2(𝑁−18 + �̃�6�̃�−8𝑁−1∕2+𝑜(1)) + �̃�∕�̃� + 𝑞−�̃�)

≪ 𝜙(𝑄)𝑞−deg(𝑄) ⋅
(
𝑁−1∕2+𝑜(1)

(
�̃�∕�̃�

)8
+ �̃�∕�̃�

)
≪ 𝑁−1∕18+𝑜(1)𝜙(𝑄)𝑞−deg(𝑄). (35)

Finally, putting (31), (32), (33), and (35) together with (29) and (30), Theorem 1.2 follows.

Remark 5.2. Note that ifwe began by assuming that the sums in the variable𝐺 in (29) are supported
on 𝑷,𝑸, then the same proof would give the sharper estimate

∑∗

𝐴mod 𝑄

|||||||||
∑
𝐺∈𝑁

𝐺≡𝐴mod 𝑄
𝑓1𝑷,𝑸(𝐺) −

𝜒1(𝐴)

𝜙(𝑄)

∑
𝐺∈𝑁

𝑓1𝑷,𝑸𝜒1(𝐺)

|||||||||
2

≪ 𝑞2𝑁−deg(𝑄)
(
𝑄1𝑞

−𝑃1∕6 + 𝑁−1∕18+𝑜(1)
)
. (36)

We will use this sharper version of the theorem in Section 7.

6 MATOMÄKI–RADZIWIłł THEOREM IN FUNCTION FIELDS

In this section, we prove the following analog of the main result in [27] (see Section 3.3 for the
definition of g∗, for g multiplicative).

Theorem6.1 (Matomäki–Radziwiłł Theorem in Function Fields).Let𝑓∶→ 𝕌 be amultiplica-
tive function and let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4, with𝐻 = 𝐻(𝑁) tending to infinity with𝑁. Then,

1|𝑁| ∑𝐺0∈𝑁

|||||||||
1|<𝐻| ∑

𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺) −
1|𝑁| ∑𝐺∈𝑁

𝑓(𝐺)𝜒∗
1
(𝐺)

|||||||||
2

(37)

≪ (log𝐻)∕𝐻 + 𝑁−1∕18+𝑜(1),

where 𝜒1 is the Dirichlet character modulo 𝑡𝑁−𝐻+1 that minimizes the map 𝜒 ↦ 
𝑓𝜒∗
(𝑁).

Theorem 1.1 will follow as a special case, as we will see later in this section.
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196 KLURMAN et al.

Remark 6.2. In light of Remark 5.2, if we replace 𝑓 by 𝑓1𝑷,𝑸 , with the choice of parameters

𝑃1, 𝑄1, 𝑃𝑗 = 𝑗4𝑗𝑃1𝑄
𝑗−1
1

, and 𝑄𝑗 = 𝑗4𝑗+2𝑄
𝑗
1
for 𝑗 ⩾ 2, then the bound in Theorem 6.1 improves to

≪ 𝑄
1∕2
1
𝑞−𝑃1∕12 + 𝑁−1∕18+𝑜(1). The additional flexibility in choosing 𝑃1 and 𝑄1 will be used in the

next section.

Remark 6.3. We can obtain the same estimate as in Theorem 6.1 if (37) is replaced with

1|𝑁| ∑𝐺0∈𝑁

|||||||||
1|<𝐻| ∑

𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺) −
1|𝑁| ∑𝐺∈𝑁

𝑓(𝐺) −
1𝜒1≠𝜒0|𝑁| ∑𝐺∈𝑁

𝑓(𝐺)𝜒∗
1
(𝐺)

|||||||||
2

.

The proof is the same, and in fact it will be clear from the application of the orthogonality relations
in the proof that this quantity is never larger than (37).

Proof of Theorem 6.1. The proof is very similar to the proof of Theorem 1.2, just with a different
set of characters.
By the orthogonality relation (22), we can write (37) as

1

𝑞2𝑁

∑
𝜉∈1,𝑁−𝐻
𝜉≠𝜒∗

1

||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜉(𝐺)

||||||
2

.

This is analogous to (29), just with a different group of characters (see also [7, (2.12)]). Now the rest
of the proof follows precisely as the proof of Theorem 1.2 up to notation. Indeed, the only properties
of the Dirichlet characters used in the proof of Theorem 1.2 were the lemmas from Sections 3
and 4. In Section 3, all the lemmas are readily stated for Hayes characters, which includes both
short interval characters and Dirichlet characters as special cases. Also in Section 4, all the mean
value estimates have perfect analogs for short interval characters, and the proofs are identical, as
noted in Remark 4.1. Moreover, the pointwise bound offered by Lemma 4.16 is written for more
general Hayes characters, and we can take 𝜒1 there to be the short interval character of length
𝑁 −𝐻 that minimizes �̃� ↦ 𝑓�̃�(𝑁). Hence, all the steps in the proof of Theorem 1.2 work in the
same way. □

To deduce the real-valued case of theMatomäki–Radziwiłł theorem from this, we will need the
following variant of Corollary 3.7, applicable to real-valued multiplicative functions twisted by
Dirichlet characters modulo powers 𝑡𝑚,𝑚 ⩾ 2.

Lemma 6.4 (Sup norm estimate for weighted Dirichlet character sums). Assume char(𝔽𝑞) ≠ 2.
Let𝑁 ⩾ 1 and 2 ⩽ 𝑘 ⩽ 𝑁. Let 𝑓∶→ [−1, 1] be multiplicative. Let 2 ⩽ 𝑘 ⩽ 𝑁. Then,

max
𝜒 mod 𝑡𝑘
𝜒≠𝜒0

1

𝑞𝑁

||||||
∑
𝐺∈𝑁

𝑓(𝐺)𝜒(𝐺)

||||||≪ 𝑁−1∕4+𝑜(1).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 197

Proof. In light of Theorem 3.5, it suffices to show that

min
𝜒 mod 𝑡𝑘
𝜒≠𝜒0

𝑓𝜒(𝑁) ⩾ (1∕4 − 𝑜(1)) log𝑁.

Note that if 𝜒 is a character modulo 𝑡𝑘 and 𝜒′ is the primitive character inducing 𝜒, then

𝑓𝜒(𝑁) = 
𝑓𝜒′
(𝑁) + 𝑂(1),

so it suffices to consider primitive characters modulo 𝑡𝑘. Now, suppose 𝜒 is a primitive character
that is not real. Since𝜒2 is not principal, arguing precisely as in the proof of Lemma 3.6, we obtain

𝔻(𝑓, 𝜒𝑒𝜃;𝑁)
2 ⩾ (1∕4 − 𝑜(1)) log𝑁

(for instance, when 𝑓 takes values in 𝑆1 the triangle inequality immediately yields 𝔻(𝑓, 𝜒𝑒𝜃;𝑁) ⩾
1

2
𝔻(1, 𝜒2𝑒2𝜃; 𝑁), and the general case follows from this as in the proof of Lemma 3.6). Thus, we

may conclude that for any primitive non-quadratic Dirichlet character modulo 𝑡𝑘, we have

𝑓𝜒(𝑁) ⩾
(
1

4
− 𝑜(1)

)
log𝑁.

Furthermore, it is easy to see that there are no primitive quadratic (non-principal) charactersmod-
ulo 𝑡𝑘 for any 𝑘 ⩾ 2. Indeed, suppose𝜒 is real and primitivemodulo 𝑡𝑘. Then,𝜒 cannot be periodic
modulo 𝑡𝑗 , for any 𝑗 < 𝑘. To deduce a contradiction from this, set now 𝑚 ∶= ⌈𝑘∕2⌉ < 𝑘. Since
𝑞 ⩾ 3 is odd and 𝜒 is real, we have 𝜒𝑞 = 𝜒, and also𝑚𝑞 > 𝑘. Thus, for any𝐴, 𝐵 ∈ 𝔽𝑞[𝑡], we have

𝜒(𝐵 + 𝐴𝑡𝑚) = 𝜒𝑞(𝐵 + 𝐴𝑡𝑚) = 𝜒((𝐵 + 𝐴𝑡𝑚)𝑞) = 𝜒(𝐵𝑞 + 𝑞𝐴𝐵𝑞−1𝑡𝑚) = 𝜒(𝐵)𝑞 = 𝜒(𝐵).

Thus, in fact, 𝜒 is periodic modulo 𝑡𝑚, contradicting the fact that 𝜒 is primitive modulo 𝑡𝑘.
Therefore, we obtain

min
𝜒 mod 𝑡𝑘
𝜒≠𝜒0

𝑓𝜒(𝑁) = min
𝜒 mod 𝑡𝑘
𝜒2≠𝜒0
𝜒 primitive

𝑓𝜒(𝑁) + 𝑂(1) ⩾ (1∕4 − 𝑜(1)) log𝑁,

as claimed. □

Proof of Theorem 1.1. Assume that 𝑓∶→ [−1, 1]. We extend 𝑓 to a map on 𝔽𝑞[𝑡] by requiring
that 𝑓(𝑐) = 𝜒∗

1
(𝑐) for all 𝑐 ∈ 𝔽×𝑞 , where 𝜒1 is given by Theorem 6.1.

Theorem 1.1 follows immediately from Theorem 6.1 when 𝑞 is even, aside from the claim that
𝜒1 may be assumed to be real. To see this, note that by Lemma 6.4, if 𝜒1 were not real since then
themean value of 𝑓𝜒1 would contribute≪ 𝑁−1∕4+𝑜(1), which is anyway dwarfed by the error term
in the statement of the theorem.
When 𝑞 is odd, it suffices to show that if 𝜒1 ≠ 𝜒0, then 

𝑓𝜒∗
1

(𝑁) ⩾ (1∕4 − 𝑜(1)) log𝑁, so that

once again the sum in 𝑓𝜒∗
1
contributes negligibly.
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198 KLURMAN et al.

Since 𝑓(𝑐) = 𝜒∗
1
(𝑐) on 𝔽×𝑞 and 𝑓

∗ is necessarily real, Lemma 3.10 combines with Lemma 6.4 to
show that


𝑓𝜒1

∗(𝑁) = 𝑓∗𝜒1(𝑁) + 𝑂(1) ⩾
(
1

4
− 𝑜(1)

)
log𝑁.

This completes the proof. □

7 SHORT EXPONENTIAL SUMS OF NON-PRETENTIOUS
FUNCTIONS

In this section, we apply the results of the previous section to derive two function field analogs
of estimates for short exponential sums weighted by a multiplicative function, due to Matomäki,
Radziwiłł, and Tao [29]. To explain the formulation of our results, we begin by recording some of
the relevant definitions. See [26] for an excellent reference to the definitions given here.
We write 𝔽𝑞(𝑡) to denote the field of rational functions of 𝑡 over 𝔽𝑞. This comes equipped with

the non-Archimedean valuation ⟨⋅⟩ such that if 𝐺 =
∑∞
𝑗=𝑁 𝑎−𝑗𝑡

−𝑗 for an integer 𝑁 with 𝑎𝑁 ≠
0, then ⟨𝐺⟩ = 𝑞−𝑁 . The completion of 𝔽𝑞(𝑡) = 𝔽𝑞(1∕𝑡) with respect to this valuation is the set
𝕂∞(𝑡) ∶= 𝔽𝑞((1∕𝑡)) of formal Laurent series in 1∕𝑡 with a finite number of non-negative power
terms. We define 𝕋 to be the unit ball of 𝕂∞(𝑡) with respect to ⟨⋅⟩, that is,

𝕋 ∶= {𝛼 ∈ 𝕂∞(𝑡)∶ ⟨𝛼⟩ < 1} ≅ 𝕂∞(𝑡)∕𝔽𝑞[𝑡].
That is, 𝕋 is the set of formal power series in 1∕𝑡. This set forms a compact abelian group under
addition, and thus comes equipped with a normalized Haar measure, which we shall denote by
𝑑𝛼. The Pontryagin dual group consists of the characters {𝛼 ↦ 𝑒𝔽(𝐺𝛼)}𝐺∈𝔽𝑞[𝑡], where, given 𝛼 ∈
𝕂∞(𝑡), we have written

𝑒𝔽(𝛼) ∶= 𝑒

(
tr𝔽𝑞∕𝔽𝑝 (𝑎−1(𝛼))

𝑝

)
,

writing 𝑎−1(𝛼) to denote the coefficient of the term 𝑡−1 in the expansion of𝛼. An important feature
of these characters is that

∫𝕋 𝑒𝔽(𝐺𝛼)𝑑𝛼 =
{
1 if 𝐺 = 0
0 otherwise,

in analogy to the orthogonality of additive characters on ℝ∕ℤ.
Our goal in this section will be to prove the following two results. The first is an estimate for

exponential sums with multiplicative coefficients over short intervals that applies to complex-
valued 𝑓, provided that 𝑓 is Hayes non-pretentious (see Definition 3.14). The second result
concerns such exponential sums with real-valued functions 𝑓, for which only the usual notion
of (Dirichlet) non-pretentiousness needs to be assumed. The first of these theorems will be of
relevance in proving the logarithmically averaged binary Chowla conjecture in this context.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 199

In the theorems below, given 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4 and 𝑓∶→ 𝕌 a multiplicative function, set

𝑀Hayes(𝑓;𝑁,𝐻) ∶= min
𝑀∈⩽𝐻

min
𝜓 mod𝑀

min
𝜉 short
len(𝜉)⩽𝑁


𝑓𝜓𝜉
(𝑁),

𝑀Dir(𝑓;𝑁,𝐻) ∶= min
𝑀∈⩽𝐻

min
𝜓 mod𝑀


𝑓𝜓
(𝑁).

It is clear from the definitions that𝑀Hayes(𝑓;𝑁,𝐻) ⩽ 𝑀Dir(𝑓;𝑁,𝐻).

Theorem 7.1. Let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4. Let 𝑓∶→ 𝕌 be multiplicative. Then,

sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪
log𝐻

𝐻
+𝑁−1∕(2000 log 𝑞) + 𝑀𝑒−𝑀∕100,

where𝑀 ∶= 1 +𝑀Hayes(𝑓;𝑁,𝐻).

Theorem 7.2. Assume 𝑞 is odd. Let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4. Let 𝑓∶ → [−1, 1] be a multiplicative
function. Then,

sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪
log𝐻

𝐻
+𝑁−1∕(2000 log 𝑞) + 𝑀𝑒−𝑀∕100, (38)

where𝑀 ∶= 1 +𝑀Dir(𝑓;𝑁,𝐻).

We will deduce both of these results from the following result about completely multiplicative
functions.

Theorem 7.3. Let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4. Let 𝑓∶ → 𝕌 be completely multiplicative. Then,
Theorem 7.1 holds for 𝑓. Moreover, if 𝑓 is real-valued and 𝑞 is odd, then Theorem 7.2 holds for 𝑓.

We will begin by proving Theorem 7.3; we will prove the deduction of Theorems 7.1 and 7.2 for
general one-boundedmultiplicative functions at the end of this section. The proofs of the complex
and real cases begin the sameway.We shall thus begin both simultaneously, then highlight where
the differences arise below.
We proceed using the circle method, as in [29], splitting into cases according to whether 𝛼 lies

in a major or minor arc (to be defined momentarily). In the function field setting, arcs can be
determined via the following form of Dirichlet’s theorem.

Lemma 7.4 (Dirichlet’s Theorem in Function Fields). Suppose 𝛼 ∈ 𝕋. Given𝑀 ⩾ 1, we can find
g ∈⩽𝑀 and 𝑎 ∈ 𝔽𝑞[𝑡] coprime to g with deg(𝑎) < deg(g) such that ⟨g𝛼 − 𝑎⟩ ⩽ 𝑞−𝑀 .
Proof. This follows from the pigeonhole principle, just as in the integer setting. □
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200 KLURMAN et al.

We are now ready to embark on the proof of Theorem 7.3. We will first prove the following
closely related statement.

Proposition 7.5. Let 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4. Let 𝑓∶ → 𝕌 be completely multiplicative. Suppose
that

10 log𝐻 ⩽ min{(log𝑁)∕(100 log 𝑞),𝐻∕10,𝑀∗(𝑓;𝑁,𝐻)∕100}, (39)

where𝑀∗(𝑓;𝑁,𝐻) ∶= 1 +𝑀Dir(𝑓;𝑁,𝐻) if 𝑓 is real-valued and 𝑞 is odd, and𝑀∗(𝑓;𝑁,𝐻) ∶= 1 +
𝑀Hayes(𝑓;𝑁,𝐻) otherwise. Then,

sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ (log𝐻)∕𝐻 + 𝑁−1∕40 + 𝑒−𝑀Hayes(𝑓;𝑁,𝐻)∕20.

Moreover, if 𝑓 is real-valued and 𝑞 is odd, we can replace𝑀Hayes with𝑀Dir.

By (39), we can choose 1 ⩽ 𝑊 ⩽ 𝑋 ⩽ 𝐻 such that

10 log𝐻 ⩽ 𝑊 ⩽ min{(log𝑁)∕(100 log 𝑞),𝐻∕10,𝑀∗(𝑓;𝑁,𝐻)∕10},

and set 𝑋 = 𝐻 −𝑊 (so that𝑊 ⩽ 𝑋∕2). In general, we define arcs of the form

𝔐𝑎,g (𝑋) ∶= {𝛼 ∈ 𝕋∶ ⟨g𝛼 − 𝑎⟩ ⩽ 𝑞−𝑋}.
The major arcs of length 𝑋 and degree𝑊 are defined by

𝔐(𝑋,𝑊) ∶=
⋃

deg(g)⩽𝑊

⋃
𝑎 mod g
(𝑎,g)=1

𝔐𝑎,g (𝑋),

and the minor arcs are then defined by

𝔪 = 𝔪(𝑋,𝑊) ∶= 𝕋∖(𝑋,𝑊).
Let 𝑃1 ∶= 100𝑊 and𝑄1 ∶= 𝐻∕3, and let  = 𝑷,𝑸, with 𝑃𝑗, 𝑄𝑗 defined in terms of 𝑃1 and𝑄1 as

in Section 5. For the same reason as in Section 5, it will be advantageous to replace the expression
on the left-hand side in (38) by

sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓1 (𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
. (40)

By Lemma 4.8 and the triangle inequality, the difference between this latter expression and the
one in (38) is 𝑂(𝑃1∕𝑄1). We will thus focus our attention mostly on the estimation of (40).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 201

As mentioned, the expression in (40) will be treated differently according to whether 𝛼 lies
in a major arc or a minor arc. We start with the minor arc case, where the argument has some
resemblance to the derivation of the orthogonality criterion for multiplicative functions [2], and
which can be derived independently of the results of the last two sections.

7.1 The minor arcs

We fix 𝛼 ∈ 𝔪. In order to proceed in estimating (40), we shall need the following basic result.

Lemma 7.6. Let 𝛼 ∈ 𝕂∞(𝑡) and𝐻 ⩾ 1. Then,∑
deg(𝐹)<𝐻

𝑒𝔽(𝐹𝛼) = 𝑞
𝐻1⟨𝛼 mod 1⟩⩽𝑞−𝐻−1 .

Proof. This is standard, see, for example, [25, Lemma 7]. □

We will also need the following estimate, connected with Lemma 7.6.

Lemma 7.7. Let 𝛼 ∈ 𝔐𝑎,g (𝑋), where 𝑊 < deg(g) ⩽ 𝑋 and (𝑎, g) = 1. Let 100𝑊 ⩽ 𝑘 ⩽ 𝐻∕3.
Then,

|{deg(𝐹) < 𝑘∶ ⟨𝐹𝛼 mod 1⟩ < 𝑞−𝐻+𝑘−1}|≪ 𝑞𝑘−𝑊.
Proof. Write 𝛽 ∶= 𝛼 − 𝑎∕g . By assumption, we have ⟨𝛽⟩ ⩽ 𝑞−𝑋−deg(g). Since (𝐴, 𝐵) ↦ ⟨𝐴 − 𝐵⟩ is
an ultrametric, for any 𝐹 ∈ 𝔽𝑞[𝑡], we have

⟨𝐹𝛼 mod 1⟩ ⩽ max{⟨𝐹𝑎∕g mod 1⟩, ⟨𝐹𝛽 mod 1⟩},
with equality whenever the two valuations on the right-hand side differ.
Note that if g ∤ 𝐹, then as (𝑎, g) = 1, we can write 𝐹𝑎 = 𝑀g + 𝐿 with 𝐿 ≢ 0mod g . Hence, if

deg(𝐹) ⩽ 𝑘, then

⟨𝐹𝑎∕g mod 1⟩ = 𝑞deg(𝐿)−deg(g) ⩾ 𝑞−deg(g) > 𝑞deg(𝐹)−𝑋−deg(g) ⩾ ⟨𝐹𝛽 mod 1⟩,
using 𝑋 ⩾ 𝐻∕2 > 𝑘. On the other hand, if g|𝐹, then ⟨𝐹𝑎∕g mod 1⟩ = 0 ⩽ ⟨𝐹𝛽 mod 1⟩. In
particular, we have

⟨𝐹𝛼 mod 1⟩{= ⟨𝐹𝑎∕g mod 1⟩ if g ∤ 𝐹
⩽ ⟨𝐹𝛽 mod 1⟩ if g|𝐹.

Let  ∶= {deg(𝐹) < 𝑘∶ ⟨𝐹𝛼 mod 1⟩ < 𝑞−𝐻+𝑘−1}. Consider separately the number of 𝐹 ∈  with
g ∣ 𝐹 and g ∤ 𝐹. Note that

|{𝐹 ∈  ∶ g|𝐹}| ⩽ |{deg(𝐹) < 𝑘∶ g|𝐹}| ⩽ 1 + 𝑞𝑘−deg(g) ≪ 𝑞𝑘−𝑊.
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202 KLURMAN et al.

Next, consider the contribution to  from 𝐹 that are not divisible by g . We first observe that
there are no 𝐹 ∈  with deg(𝐹) ⩾ deg(g). Indeed, if such an 𝐹 belonged to  , then ⟨𝐹𝛼 mod 1⟩ =⟨𝐹𝑎∕g mod 1⟩ ⩾ 𝑞−deg(g). This implies the chain of inequalities

𝑞−𝑘 < 𝑞−deg(𝐹) ⩽ 𝑞−deg(g) ⩽ ⟨𝐹𝛼 mod 1⟩ < 𝑞−𝐻+𝑘−1,
which are conflicting since 𝑘 ⩽ 𝐻∕3.
We may therefore assume that deg(𝐹) < deg(g). Suppose next that deg(𝐹𝑎) < deg(g) as well.

Then,

⟨𝐹𝛼 mod 1⟩ = ⟨𝐹𝑎∕g mod 1⟩ = 𝑞deg(𝐹𝑎)−deg(g) ⩾ 𝑞deg(𝐹)−deg(g).
Thus, if 𝐹 ∈  , then we must have

deg(𝐹) ⩽ deg(g) + 𝑘 − 𝐻 − 1 ⩽ 𝑘 − 𝐻 + 𝑋 − 1 < 𝑘 −𝑊,

since𝑊 = 𝐻 − 𝑋. Hence,

|{𝐹 ∈  ∶ g ∤ 𝐹, and deg(𝐹) ⩾ deg(g) or deg(𝐹𝑎) < deg(g)}| ⩽ |{deg(𝐹) < 𝑘 −𝑊}|≪ 𝑞𝑘−𝑊.
It remains to consider those 𝐹 with deg(𝐹) < deg(g) ⩽ deg(𝐹𝑎). Observe that

|{𝐹 ∈  ∶ g ∤ 𝐹, deg(𝐹) < deg(g) ⩽ deg(𝐹𝑎)}|
=

∑
0⩽𝑚<deg(g)

∑
deg(𝐵)=𝑚

|{𝐹 ∶ deg(g) − deg(𝑎) ⩽ deg(𝐹) < min{𝑘, deg(g)}∶ 𝐹𝑎 ≡ 𝐵 mod g

and ⟨𝐹𝑎∕g mod 1⟩ < 𝑞−𝐻+𝑘−1}|.
Note that ⟨𝐹𝑎∕g mod 1⟩ = ⟨𝐵∕g⟩ = 𝑞𝑚−deg(g) whenever deg(𝐵) = 𝑚 and 𝐹𝑎 ≡ 𝐵 mod g , and so
𝐹 ∈  under these conditions only if 0 ⩽ 𝑚 < deg(g) − 𝐻 + 𝑘 − 1. This condition is empty if
deg(g) ⩽ 𝐻 − 𝑘 + 1, so we assume otherwise (and hence deg(g) > 𝑘). We may thus bound the
above by

⩽
∑

0⩽𝑚<deg(g)−𝐻+𝑘−1

∑
deg(𝐵)=𝑚

|{deg(g) − deg(𝑎) ⩽ deg(𝐹) < 𝑘∶ 𝐹 ≡ 𝑎𝐵 mod g}|,
where 𝑎 is the inverse of 𝑎 mod g . Since deg(𝐹) < deg(g), the cardinality above is ⩽ 1, and thus

|{𝐹 ∈  ∶ g ∤ 𝐹, deg(𝐹) < deg(g) ⩽ deg(𝐹𝑎)}| ⩽ 1 + ∑
0⩽𝑚<deg(g)−𝐻+𝑘−1

∑
deg(𝐵)=𝑚

1

⩽ 1 + 𝑞
∑

0⩽𝑚<deg(g)−𝐻+𝑘−1
𝑞𝑚 ≪ 1 + 𝑞deg(g)−𝐻+𝑘

≪ 𝑞𝑋−𝐻+𝑘 = 𝑞𝑘−𝑊.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 203

It follows that

|| ⩽ |{𝐹 ∈  ∶ g|𝐹}| + |{𝐹 ∈  ∶ g ∤ 𝐹, deg(𝐹) ⩾ deg(g) or deg(𝐹𝑎) < deg(g)}|
+ |{𝐹 ∈  ∶ deg(𝐹) < deg(g) ⩽ deg(𝐹𝑎)}|≪ 𝑞𝑘−𝑊,

as claimed. □

Let 𝛼 ∈ 𝔪. For each 𝐺0 ∈𝑁 let 𝜃(𝐺0) ∈ 𝑆1 be chosen so as to write (40) as

Σ (𝛼) ∶= 1|𝑁| ∑𝐺0∈𝑁

𝜃(𝐺0)|<𝐻| ∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓1 (𝐺)𝑒𝔽(𝛼𝐺). (41)

Since 𝑓 is completely multiplicative, upon applying Lemma 4.14, we obtain

Σ (𝛼)

=
1|𝑁| ∑𝐺0∈𝑁

𝜃(𝐺0)|<𝐻| ∑
𝐺′∈⩽𝑁

𝑓(𝐺′)

1 + 𝜔[𝑃1,𝑄1](𝐺
′)

∑
𝑅∈

𝑃1⩽deg(𝑅)⩽min{𝑄1,𝑁−deg(𝐺′)}
𝑅𝐺′∈𝐼𝐻(𝐺0)

deg(𝑅𝐺′)=𝑁

𝑓(𝑅)𝑒𝔽(𝑅𝐺
′𝛼)

+ 𝑂

(
𝑞−𝑁−𝐻

∑
𝐺0∈𝑁

∑
𝑃1⩽𝑑⩽𝑄1

∑
𝑅∈𝑑

|{𝐺 ∈ 𝐼𝐻(𝐺0)∶ 𝑅2|𝐺}|)

=
1|𝑁| ∑𝐺0∈𝑁

𝜃(𝐺0)|<𝐻| ∑
𝐺′∈⩽𝑁

𝑓(𝐺′)

1 + 𝜔[𝑃1,𝑄1](𝐺
′)

∑
𝑅∈

𝑃1⩽deg(𝑅)⩽min{𝑄1,𝑁−deg(𝐺′)}
𝑅𝐺′∈𝐼𝐻(𝐺0)

deg(𝑅𝐺′)=𝑁

𝑓(𝑅)𝑒𝔽(𝑅𝐺
′𝛼)

+ 𝑂(𝑞−𝑃1).

Wepull the summation over𝐺′ out, split the sumover𝑅 according to degree and apply the triangle
inequality to get

|Σ (𝛼)| ⩽ ∑
𝑃1⩽𝑘⩽𝑄1

1|𝑁| ∑
𝐺′∈𝑁−𝑘

|||||||||
∑
𝑅∈𝑘

𝑓(𝑅)𝑒(𝐺′𝑅𝛼)
1|<𝐻| ∑

𝐺0∈𝑁

𝐺′𝑅∈𝐼𝐻(𝐺0)

𝜃(𝐺0)

|||||||||
+ 𝑂(𝐻−50),

since 𝑃1 ⩾ 1000 log𝐻. We apply Hölder’s inequality to the sum over 𝐺′, getting

|Σ (𝛼)|≪ 𝑞−𝑁∕4−𝐻 ∑
𝑃1⩽𝑘⩽𝑄1

𝑞−3𝑘∕4 1∕4
𝑘
+ 𝐻−50, (42)

where for each 𝑃1 ⩽ 𝑘 ⩽ 𝑄1 we define
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204 KLURMAN et al.

𝑘 ∶=
∑

𝑅1,𝑅2,𝑅3,𝑅4∈𝑘
𝑓(𝑅1)𝑓(𝑅2)𝑓(𝑅3)𝑓(𝑅4)

∑
𝐺1,𝐺2,𝐺3,𝐺4∈𝑁

𝜃(𝐺1)𝜃(𝐺2)𝜃(𝐺3)𝜃(𝐺4)

∑
𝐺′∈𝑁−𝑘

𝐺′𝑅𝑗∈𝐼𝐻(𝐺𝑗) ∀𝑗

𝑒𝔽(𝐺
′𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4)).

Fix 𝑃1 ⩽ 𝑘 ⩽ 𝑄1 for the time being. Split the sums over 𝐺𝑗 according to their residue classes
𝐴𝑗 mod 𝑅𝑗 .Writing𝐺𝑗 = 𝐷𝑗𝑅𝑗 + 𝐴𝑗, we know that 𝐼𝐻(𝐺𝑗) = 𝐼𝐻(𝐷𝑗𝑅𝑗) since deg(𝐴𝑗) < deg(𝑅𝑗) ⩽
𝑄1 < 𝐻. Thus, we can rewrite 𝑘 as

𝑘 =
∑

𝑅1,𝑅2,𝑅3,𝑅4∈𝑘
1⩽𝑗⩽4

𝑓(𝑅1)𝑓(𝑅2)𝑓(𝑅3)𝑓(𝑅4)
∑

𝐴1,𝐴2,𝐴3,𝐴4
𝐴𝑗 mod 𝑅𝑗 ∀1⩽𝑗⩽4

∑
𝐷1∈𝑁−𝑘

𝜃(𝐷1𝑅1 + 𝐴1)

⋅
∑

𝐷2,𝐷3,𝐷4∈𝑁−𝑘

𝜃(𝐷2𝑅2 + 𝐴2)𝜃(𝐷3𝑅3 + 𝐴3)𝜃(𝐷4𝑅4 + 𝐴4)

⋅
∑

𝐺′∈𝑁−𝑘

𝐺′∈𝐼𝐻−𝑘(𝐷𝑗) ∀1⩽𝑗⩽4

𝑒𝔽(𝐺
′𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4)).

We observe now that

𝐺′ ∈
⋂
1⩽𝑗⩽4

𝐼𝐻−𝑘(𝐷𝑗)⟺ 𝐺′ ∈ 𝐼𝐻−𝑘(𝐷1) and deg(𝐷𝑗 − 𝐷1) < 𝐻 − 𝑘 for all 1 ⩽ 𝑗 ⩽ 4.

Hence, making the change of variables 𝐿 ∶= 𝐺′ − 𝐷1, we can recast the above expression for 𝑘
as ∑

𝑅𝑗∈𝑘
1⩽𝑗⩽4

𝑓(𝑅1)𝑓(𝑅2)𝑓(𝑅3)𝑓(𝑅4)
∑

𝐷1∈𝑁−𝑘

∑
𝐴𝑗 mod 𝑅𝑗
1⩽𝑗⩽4

𝜃(𝐷1𝑅1 + 𝐴1)𝑒𝔽(𝐷1𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4))

⋅
∑

𝐷2,𝐷3,𝐷4∈𝑁−𝑘
deg(𝐷𝑗−𝐷1)<𝐻−𝑘 ∀𝑗

𝜃(𝐷2𝑅2 + 𝐴2)𝜃(𝐷3𝑅3 + 𝐴3)𝜃(𝐷4𝑅4 + 𝐴4)

⋅
∑

deg(𝐿)<𝐻−𝑘
𝑒𝔽(𝐿𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4)).

Note that now the inner sum over 𝐿 is decoupled from the sums over 𝐴𝑗 and 𝐷𝑗 . Given 𝐷1 ∈𝑁−𝑘 fixed, there are≪ 𝑞𝐻−𝑘 choices of each of𝐷2,𝐷3, and𝐷4 to satisfy the condition deg(𝐷𝑗 −
𝐷1) < 𝐻 − 𝑘. Furthermore, there are≪ 𝑞4𝑘 choices of four-tuples of residue classes𝐴1,𝐴2, 𝐴3, 𝐴4
to their, respective, moduli 𝑅1, 𝑅2, 𝑅3, and 𝑅4. Recalling that 𝜃(⋅) is unimodular and bounding
trivially in 𝐷1 ∈𝑁−𝑘, it follows that

𝑘 ≪ 𝑞4𝑘 ⋅ 𝑞3(𝐻−𝑘) ⋅ 𝑞𝑁−𝑘
∑

𝑅1,𝑅2,𝑅3,𝑅4∈𝑘

||||||
∑

deg(𝐿)<𝐻−𝑘
𝑒𝔽(𝐿𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4))

||||||
≪ 𝑞3𝐻+𝑁

∑
𝑅1,𝑅2,𝑅3,𝑅4∈𝑘

||||||
∑

deg(𝐿)<𝐻−𝑘
𝑒𝔽(𝐿𝛼(𝑅1 + 𝑅2 − 𝑅3 − 𝑅4))

||||||.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 205

We arrange the four-tuples (𝑅1, 𝑅2, 𝑅3, 𝑅4) ∈ 4
𝑘
according to the values of 𝐹 ∶= 𝑅1 + 𝑅2 − 𝑅3 −

𝑅4 ∈ 𝔽𝑞[𝑡]; note that since the 𝑅𝑗 are all monic, deg(𝐹) < 𝑘. By Corollary 4.13, there are≪ 𝑞3𝑘∕𝑘4
such representations of 𝐹 in terms of irreducibles 𝑅𝑗 ∈ 𝑘. It follows that

𝑘 ≪ 𝑞
3(𝐻+𝑘)+𝑁

𝑘4

∑
deg(𝐹)<𝑘

||||||
∑

deg(𝐿)<𝐻−𝑘
𝑒𝔽(𝐿𝐹𝛼)

||||||.
By Lemma 7.6, we can evaluate the exponential sum to yield

𝑘 ≪ 𝑞
3(𝐻+𝑘)+𝑁

𝑘4

∑
deg(𝐹)<𝑘

𝑞𝐻−𝑘1⟨𝐹𝛼 mod 1⟩<𝑞−𝐻+𝑘−1

=
𝑞4𝐻+2𝑘+𝑁

𝑘4
|{deg(𝐹) < 𝑘∶ ⟨𝐹𝛼 mod 1⟩ < 𝑞−𝐻+𝑘−1}|.

Since 𝛼 ∈ 𝔪, theremust be a g ∈ and a reduced residue class 𝑎 mod g such that𝑊 < deg(g) ⩽
𝑋, (𝑎, g) = 1 and 𝛼 ∈ 𝔐𝑎,𝑞(𝑋). Since 𝑃1 ⩽ 𝑘 ⩽ 𝑄1 and given our choice of 𝑃1, 𝑄1, Lemma 7.7
yields |{deg(𝐹) < 𝑘∶ ⟨𝐹𝛼 mod 1⟩ < 𝑞−𝐻+𝑘−1}|≪ 𝑞𝑘−𝑊,
so that we finally obtain the estimate

𝑘 ≪ 𝑞
4𝐻+3𝑘+𝑁

𝑘4
𝑞−𝑊.

Taking fourth roots of both sides and inserting this into (42), we get

|Σ (𝛼)|≪ 𝑞−𝑁∕4−𝐻 ∑
𝑃1⩽𝑘⩽𝑄1

𝑞−3𝑘∕4
(
𝑞3𝑘+4𝐻+𝑁−𝑊∕𝑘4

)1∕4
+ 𝐻−50 ≪ 𝑞−𝑊∕4

∑
𝑃1⩽𝑘⩽𝑄1

1∕𝑘 + 𝐻−50

≪ log(𝑄1∕𝑃1)𝑞
−𝑊∕4 + 𝐻−50.

In light of the choices𝑊 ⩾ 10 log𝐻, 𝑃1 = 100𝑊, 𝑄1 = 𝐻∕3, this leads, finally, to the bound

max
𝛼∈𝔪(𝑋,𝑊)

1|𝑁| ∑𝐺0∈𝑁

|||||||||
1|<𝐻| ∑

𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ max
𝛼∈𝔪(𝑋,𝑊)

|Σ (𝛼)| + 𝑃1𝑄1
≪ log(𝑄1∕𝑃1)𝑞

−𝑊∕4 +
𝑃1
𝑄1
+ 𝐻−50 ≪

𝑃1
𝑄1
.

7.2 The major arcs

Next, we turn to the estimation of the major arcs, where the Matomäki–Radziwiłł theorem in
function fields will be put into use. Fix g ∈⩽𝑊 and a reduced residue class 𝑎modulo g coprime
to g . Suppose that 𝛼 ∈ 𝔐𝑎,g (𝑋). We shall estimate Σ (𝛼) (given by (40)) in this case as well.
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206 KLURMAN et al.

Write 𝑒𝔽(𝐺𝛼) = 𝑒𝔽(𝐺𝑎∕g)𝑒𝔽(𝐺𝛽), and set 𝛾 ∶= deg(g) − 1. Since𝑋 + 𝛾 < 𝐻, for each𝐺0 ∈𝑁

we may decompose

𝐼𝐻(𝐺0) =
⨆

deg(𝐺′)<𝐻−𝑋−𝛾
𝐼𝑋+𝛾(𝐺0 + 𝑡

𝑋+𝛾𝐺′).

As 𝛽 =
∑
𝑗⩾𝑋+𝛾+1 𝑏𝑗𝑡

−𝑗 , it follows that 𝑒𝔽(𝛽𝐺) is constant on 𝐼𝑋+𝛾(𝐺0 + 𝑡𝑋+𝛾𝐺′), for each 𝐺′ in
the union. Splitting the inner sum over 𝐺 in Σ (𝛼) into pieces supported on each of these shorter
intervals and applying the triangle inequality, we obtain

|Σ (𝛼)| ⩽ 1|𝑁| ∑𝐺0∈𝑁

1|<𝐻| ∑
deg(𝐺′)<𝐻−𝑋−𝛾

||||||||||
∑
𝐺∈𝑁

𝐺∈𝐼𝑋+𝛾(𝐺0+𝑡
𝑋+𝛾𝐺′)

𝑓1 (𝐺)𝑒𝔽(𝐺𝑎∕g)

||||||||||
.

=∶
1|𝑁| ∑𝐺0∈𝑁

1|<𝐻| ∑
deg(𝐺′)<𝐻−𝑋−𝛾

|Σ (𝛼; 𝐺0, 𝐺′)|.
For a Dirichlet character 𝜓 mod 𝑄, recall that the Gauss sum 𝜏(𝜓) of 𝜓 is defined as

𝜏(𝜓) ∶=
∑

𝐺 mod 𝑄
𝜓(𝐺)𝑒𝔽(𝐺∕𝑀).

It is well known, as in the number field setting, that |𝜏(𝜓)| ⩽ 𝑞 12deg(𝑄). Expanding 𝑒𝔽(𝐺𝑎∕g) in
terms of Dirichlet characters mod g , separating 𝐺 according to the greatest common divisor 𝐷 =
(𝐺, g), we can rewrite

Σ (𝛼; 𝐺0, 𝐺′) =
∑
𝐺∈𝑁

𝐺∈𝐼𝑋+𝛾(𝐺0+𝑡
𝑋+𝛾𝐺′)

𝑓1 (𝐺)𝑒𝔽(𝐺𝑎∕g)

=
∑
𝐷|g

𝑓(𝐷)

𝜙(g∕𝐷)

∑
𝜓 mod g∕𝐷

𝜓(𝑎)𝜏(𝜓)
∑

𝐺∈𝑁−deg(𝐷)
𝐺𝐷∈𝐼𝑋+𝛾(𝐺0+𝑡

𝑋+𝛾𝐺′)

𝑓1 (𝐺)𝜓(𝐺)

for each 𝐺0, 𝐺′ in their respective ranges; here, we have used the fact that as deg(𝐷) ⩽ 𝑊 < 𝑃1 we
have 1 (𝐷𝐺) = 1 (𝐺).
As in the minor arc case, we separate 𝐺0 and 𝐺′ according to residue classes modulo 𝐷. Write

𝐺0 = 𝐷𝐺
′
0
+ 𝐴, 𝐺′ = 𝐷𝐺′′ + 𝐵, and 𝑡𝑋+𝛾 = 𝐷𝑇𝐷 + 𝐶, so that

𝑡𝑋+𝛾𝐺′ = 𝐷(𝐷𝐺′′𝑇 + 𝐶𝐺′′ + 𝐵𝑇𝐷) + 𝐵𝐶.

Then, as deg(𝐷) ⩽ 𝑊 < 𝑋∕2, we have deg(𝐴), deg(𝐵𝐶) < 𝑋 + 𝛾 and thus

𝐼𝑋+𝛾(𝐺0 + 𝑡
𝑋+𝛾𝐺′) = 𝐼𝑋+𝛾(𝐷(𝐺

′
0 + 𝐷𝐺

′′𝑇𝐷 + 𝐵𝑇𝐷 + 𝐶𝐺
′′)) = 𝐼𝑋+𝛾(𝐷(𝐺

′
0 + 𝑡

𝑋+𝛾𝐺′′ + 𝐵𝑇𝐷)).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 207

Hence, we see that

𝐺𝐷 ∈ 𝐼𝑋+𝛾(𝐺0 + 𝑡
𝑋+𝛾𝐺′) if and only if 𝐺 ∈ 𝐼𝑋+𝛾−deg(𝐷)(𝐺′0 + 𝑡

𝑋+𝛾𝐺′′ + 𝐵𝑇𝐷).

It follows, using the triangle inequality and the bound |𝜏(𝜓)| ⩽ 𝑞deg(g∕𝐷)∕2 that
|Σ (𝛼)|
≪
∑
𝐷|g
𝑞
1
2
deg(g∕𝐷)

𝜙(g∕𝐷)

∑
𝜓 mod g∕𝐷

∑
𝐴,𝐵 mod 𝐷

1|𝑁| ∑
𝐷𝐺′
0
+𝐴∈𝑁

|<𝑋+𝛾−deg(𝐷)||<𝐻−𝑋−𝛾−deg(𝐷)||<𝐻|
⋅

1|<𝐻−𝑋−𝛾−deg(𝐷)| ∑
deg(𝐷𝐺′′+𝐵)<𝐻−𝑋−𝛾

||||||||||
1|<𝑋+𝛾−deg(𝐷)| ∑

𝐺∈𝑁−deg(𝐷)
𝐺∈𝐼𝑋+𝛾−deg(𝐷)(𝐺

′
0
+𝑡𝑋+𝛾𝐺′′+𝐵𝑇𝐷)

𝑓1 (𝐺)𝜓(𝐺)

||||||||||
≪ 𝑞

1
2
deg(g)∑

𝐷|g 𝑞
−3
2
deg(𝐷) max

𝜓 mod g∕𝐷
max

deg(𝐺′′)<𝐻−𝑋−𝛾−deg(𝐷)
max
𝐵 mod 𝐷

⋅
1|𝑁−deg(𝐷)| ∑

𝐺′
0
∈𝑁−deg(𝐷)

||||||||||
1|<𝑋+𝛾−deg(𝐷)| ∑

𝐺∈𝑁−deg(𝐷)
𝐺∈𝐼𝑋+𝛾−deg(𝐷)(𝐺

′
0
+𝑡𝑋+𝛾𝐺′′+𝐵𝑇𝐷)

𝑓1 (𝐺)𝜓(𝐺)

||||||||||
.

We observe that deg(𝐵𝑇𝐷) < 𝑋 + 𝛾 ⩽ deg(𝐺′′𝑡𝑋+𝛾), so that deg(𝐺′′𝑡𝑋+𝛾 + 𝐵𝑇𝐷) ⩽ 𝐻 − deg(𝐷) <
𝑁 − deg(𝐷). We can thus make the change of variables 𝐺′′

0
∶= 𝐺′

0
+ 𝐺′′𝑡𝑋+𝛾 + 𝐵𝑇𝐷 to finally

obtain

|Σ (𝛼)|≪ 𝑞12deg(g) max
𝐷|g

𝜓 mod g∕𝐷

1|𝑁−deg(𝐷)|

⋅
∑

𝐺′′
0
∈𝑁−deg(𝐷)

||||||||||
1|<𝑋+𝛾−deg(𝐷)| ∑

𝐺∈𝑁−deg(𝐷)
𝐺∈𝐼𝑋+𝛾−deg(𝐷)(𝐺

′′
0
)

𝑓1 (𝐺)𝜓(𝐺)

||||||||||
.

Let 𝐷1 be a divisor of g such that some character 𝜓1 mod 𝐷1 yields the maximal contribution
among the characters whose modulus divides g . Put 𝑑 ∶= deg(𝐷1), so that 𝑑 ⩽ 𝑊 < 𝑁∕2. By
Theorem 3.5 and Lemma 4.8, we get

1|𝑁−𝑑|
||||||
∑

𝐺∈𝑁−𝑑

𝑓1 (𝐺)𝜓1(𝐺)
||||||

⩽
1|𝑁−𝑑|

||||||
∑

𝐺∈𝑁−𝑑

𝑓(𝐺)𝜓1(𝐺)

|||||| + 1|𝑁−𝑑|
||||||
∑

𝐺∈𝑁−𝑑

𝑓(𝐺)𝜓1(𝐺)1𝑐 (𝐺)
||||||
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208 KLURMAN et al.

≪ (1 +
𝑓𝜓1
(𝑁))𝑒

−
𝑓𝜓1
(𝑁)
+ min

{
𝑃1
𝑄1
, (1 +

𝑓𝜓11𝑐 (𝑁))𝑒
−
𝑓𝜓11𝑐 (𝑁)

}
≪ (1 +

𝑓𝜓1
(𝑁))𝑒

−
𝑓𝜓1
(𝑁)
+
𝑃1
𝑄1
min

{
1, (𝑄1∕𝑃1)

3(1 +
𝑓𝜓1
(𝑁))𝑒

−
𝑓𝜓1
(𝑁)
}
,

where in the last step we used the fact that

∑
𝑅∈⩽𝑁

1 − Re(𝑓(𝑅)𝜓1(𝑅)1𝑐 (𝑅)𝑒−𝜃(𝑅))
𝑞deg(𝑅)

⩾
∑
𝑅∈⩽𝑁

1 − Re(𝑓(𝑅)𝜓1(𝑅)𝑒−𝜃(𝑅))
𝑞deg(𝑅)

− 2
∑
𝑅∈

𝑃1⩽deg(𝑅)⩽𝑄1

𝑞−deg(𝑅)

=
∑
𝑅∈⩽𝑁

1 − Re(𝑓(𝑅)𝜓1(𝑅)𝑒−𝜃(𝑅))
𝑞deg(𝑅)

− 2 log(𝑄1∕𝑃1) + 𝑂(1).

By the triangle inequality and the assumption deg(g) ⩽ 𝑊, we thus have|Σ (𝛼)|
≪

𝑞
𝑊
2|𝑁−𝑑| ∑

𝐺′′
0
∈𝑁−𝑑

||||||||||
1|<𝑋+𝛾−𝑑| ∑

𝐺∈𝑁−𝑑

𝐺∈𝐼𝑋+𝛾−𝑑(𝐺
′′
0
)

𝑓1𝜓1(𝐺) − 1|𝑁−𝑑| ∑
𝐺∈𝑁−𝑑

𝑓1 (𝐺)𝜓1(𝐺)

||||||||||
+ 𝑞

𝑊
2

(

𝑓𝜓1
(𝑁)𝑒

−
𝑓𝜓1
(𝑁)
+
𝑃1
𝑄1
min

{
1, (𝑄1∕𝑃1)

3(1 +
𝑓𝜓1
(𝑁))𝑒

−
𝑓𝜓1
(𝑁)
})
.

Applying Theorem 6.1 (in the form given in Remarks 6.2 and 6.3, bounding the long sum using
Theorem 3.5), the first expression above is

≪ 𝑞𝑊∕2

(
𝑄
1
2

1
𝑞−

1
12
𝑃1 + 𝑁−1∕36+𝑜(1) + 1

𝑓𝜓1 not real
or 2|𝑞 1𝜒1≠𝜒0(1 +

(𝑓𝜓1)
∗𝜒1
(𝑁))𝑒

−
(𝑓𝜓1)

∗𝜒1
(𝑁)

)
,

where 𝜒1 denotes the character modulo 𝑡𝑁−𝑋−𝛾+1 such that 𝜒 ↦ 
(𝑓𝜓1)

∗𝜒
(𝑁) is minimal (and

𝜒0 is the principal character to the same modulus). Recalling that 𝑃1 = 100𝑊 and 𝑄1 = 𝐻∕3, it
follows that

max
𝛼∈(𝑋,𝑊) |Σ (𝛼)|≪ 𝑞𝑊∕2(𝐻1∕2𝑞−8𝑊 + 𝑁−1∕36+𝑜(1)
+ max
𝑀∈⩽𝑊

𝜓 mod𝑀

(
(1 +

𝑓𝜓
(𝑁))𝑒

−
𝑓𝜓
(𝑁)
+ (𝑃1∕𝑄1)min{1, (𝑄1∕𝑃1)

3(1 +
𝑓𝜓
(𝑁))𝑒

−
𝑓𝜓
(𝑁)
})
)

(43)

+𝑞𝑊∕2 max
𝑀∈⩽𝑊

max
𝜓 mod𝑀
𝑓𝜓 not real
if 2 ∤ 𝑞

max
𝑋<𝑗⩽𝐻

𝜒≠𝜒0 mod 𝑡𝑁−𝑗+1
(1 +

(𝑓𝜓)∗𝜒
(𝑁))𝑒

−
(𝑓𝜓)∗𝜒

(𝑁)
. (44)

In order to estimate this quantity further and to prove Proposition 7.5, we split the remainder
of the analysis into two cases.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 209

Case 1: 𝒇 is not real-valued or 𝒒 is even

By Corollary 3.15, we have

𝑀Hayes(𝑓;𝑁,𝐻) ⩽ min
𝑀∈⩽𝑋

min
𝜓 mod𝑀
𝑓𝜓 not real

min
𝑋<𝑗⩽𝐻

min
𝜒 mod 𝑡𝑁−𝑗+1
𝜒≠𝜒0


(𝑓𝜓)∗𝜒

(𝑁) + 𝑂(1).

Of course, we also have

𝑀Hayes(𝑓;𝑁,𝐻) ⩽ 𝑀Dir(𝑓;𝑁,𝐻) ⩽ min
𝑀∈⩽𝑋

min
𝜓 mod𝑀


𝑓𝜓
(𝑁).

Inserting these bounds into (44) and using 10 log𝐻 ⩽ 𝑊 ⩽ (log𝑁)∕(100 log 𝑞), we get

max
𝛼∈(𝑋,𝑊) |Σ (𝛼)|
≪ 𝐻−50 + 𝑁−1∕40

+ 𝑞𝑊∕2
(
𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕2 + (𝑃1∕𝑄1)min{1, (𝑄1∕𝑃1)

3𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕2} + 𝑒−𝑀Hayes(𝑓;𝑁,𝐻)∕2
)
.

By assumption, we also have 𝑊 ⩽ 𝑀Hayes(𝑓;𝑁,𝐻)∕10 ⩽ 𝑀Dir(𝑓;𝑁,𝐻)∕10. Furthermore, if
𝑄1∕𝑃1 ⩾ 𝑒

𝑀Dir(𝑓;𝑁,𝐻)∕5, then

𝑞𝑊∕2𝑃1∕𝑄1 ⩽ 𝑒
𝑀Dir(𝑓;𝑁,𝐻)∕20−𝑀Dir(𝑓;𝑁,𝐻)∕5 ⩽ 𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕10,

whereas if 𝑄1∕𝑃1 < 𝑒𝑀Dir(𝑓;𝑁,𝐻)∕5, then

𝑞𝑊∕2(𝑄1∕𝑃1)
2𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕2 < 𝑒𝑀Dir(𝑓;𝑁,𝐻)(1∕20+2∕5−1∕2) = 𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕20.

Thus, we deduce the bound

max
𝛼∈(𝑋,𝑊) |Σ (𝛼)|≪ (log𝐻)𝐻−1 + 𝑁−1∕40 + 𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕20 + 𝑒−𝑀Hayes(𝑓;𝑁,𝐻)∕2𝑞𝑊∕2

≪ 𝐻−50 + 𝑁−1∕40 + 𝑒−𝑀Hayes(𝑓;𝑁,𝐻)∕20,

since 10 log𝐻 ⩽ 𝑊 ⩽ min{𝐻∕10, (log𝑁)∕(100 log 𝑞),𝑀Hayes(𝑓;𝑁,𝐻)∕10}.

Case 2: 𝒇 is real-valued and 𝒒 odd

We claim that

max
𝑀∈⩽𝑊

max
𝜓 mod𝑀
𝑓𝜓 not real

max
𝑋<𝑗⩽𝐻

𝜒≠𝜒0 mod 𝑡𝑁−𝑗

(𝑓𝜓)∗𝜒

(𝑁)𝑒−(𝑓𝜓)∗𝜒(𝑁) ≪ 𝑁−1∕4+𝑜(1). (45)
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210 KLURMAN et al.

Inserting this into (44) and then repeating the arguments in Case 1 to simplify the terms in (43),
we obtain

max
𝛼∈(𝑋,𝑊) |Σ (𝛼)|≪ 𝐻−50 + 𝑁−1∕40 + 𝑒−𝑀Dir(𝑓;𝑁,𝐻)∕20.

Let 𝜓 be a character of modulus 𝑀 with deg(𝑀) ⩽ 𝑊 ⩽ log𝑁 for which 𝑓𝜓 is not real-valued.
Since 𝑓 is real-valued, it follows that 𝜓 is not, nor is (𝑓𝜓)∗. Put𝑀 = �̃�𝑡𝑟, where (�̃�, 𝑡) = 1, and
write 𝜓 = 𝜓�̃�𝜓𝑡𝑟 . We consider two subcases, depending on whether or not 𝜓�̃� is real-valued.
Case 2.1. Suppose first that 𝜓�̃� is real. Since 𝜓2 is non-principal, it follows that 𝜓2

𝑡𝑟
is non-

principal. Applying the triangle inequality as in the proof of Lemma 6.4, we can show that


(𝑓𝜓)∗𝜒

(𝑁) ⩾
1

4
(𝜓2

𝑡𝑟
)∗𝜒2(𝑁).

By Lemma 3.12, (𝜓2
𝑡𝑟
)∗ is a non-principal short interval character of length ⩽ 𝑟, so that (𝜓2

𝑡𝑟
)∗𝜒2 is

a non-principal Hayes character of conductor ⩽ 𝑟 + cond(𝜒2) ⩽ 𝑊 +𝑁 −𝐻 + 1 < 𝑁. Lemma 3.2
now implies that, for some 𝜃0 ∈ [0, 1],

(𝜓2
𝑡𝑟
)∗𝜒2(𝑁) = log𝑁 − Re

(∑
𝑑⩽𝑁

𝑒(−𝜃0𝑑)

𝑑𝑞𝑑

∑
𝐺∈𝑑

(𝜓2𝑡𝑟 )
∗𝜒2(𝐺)Λ(𝐺)

)
+ 𝑂(1)

= (1 − 𝑜(1)) log𝑁.

In particular, we find that


(𝑓𝜓)∗𝜒

(𝑁) ⩾ (1∕4 − 𝑜(1)) log𝑁,

which implies (45) in this case.
Case 2.2. Next, suppose 𝜓�̃� is not real, so that 𝜓2

�̃�
is non-principal. Without loss of generality,

we may assume that 𝑓 is extended to 𝔽𝑞[𝑡] by 𝑓(𝑐)𝜓(𝑐) = 𝜒(𝑐). By Lemma 3.10, we see that


(𝑓𝜓)∗𝜒

(𝑁) ⩾ 
𝑓𝜓�̃�𝜓𝑡𝑟 𝜒

∗(𝑁) + 𝑂(1).

Applying a similar argument as in the previous subcase, we have then that


(𝑓𝜓)∗𝜒

(𝑁) ⩾
1

4
𝜓2

�̃�
(𝜓𝑡𝑟 )

2(𝜒2)∗(𝑁) + 𝑂(1).

Since (�̃�, 𝑡) = 1, 𝜓2
�̃�
(𝜓𝑡𝑟 )

2(𝜒2)∗ is a non-principal Hayes character. Similarly as in the previous
subcase, we obtain


(𝑓𝜓)∗𝜒

(𝑁) ⩾ (1∕4 − 𝑜(1)) log𝑁.

Thus, (45) is valid in this case aswell, and thus in all cases inwhich𝑓 is real-valued. This completes
the proof of Proposition 7.5.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 211

Proof of Theorem 7.3. Let 1 ⩽ 𝑊,𝐻′ ⩽ 𝑁, and put 𝑃1 ∶= 100𝑊 and𝑄1 ∶= 𝐻′∕3. If we assume the
condition

10 log𝐻′ ⩽ 𝑊 ⩽ min{𝑀∗(𝑓;𝑁,𝐻
′)∕10, (log𝑁)∕(100 log 𝑞),𝐻′∕10}, (46)

where we recall that𝑀∗ = 𝑀Hayes unless 𝑓 is real and 𝑞 is odd in which case𝑀∗ = 𝑀Dir, then we
have

max
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻′ (𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ 𝑞𝐻

′
(
(log𝐻′)(𝐻′)−1 + 𝑃1∕𝑄1 + 𝑁

−1∕40 + 𝑒−𝑀∗(𝑓;𝑁,𝐻
′)∕20
)
.

Suppose now that 1 ⩽ 𝐻 ⩽ 𝑁 −𝑁3∕4, and define 1 ⩽ 𝐻0 ⩽ 𝑁 by

log𝐻0 ∶= min{𝑀∗(𝑓;𝑁,𝐻)∕100, (log𝑁)∕(1000 log 𝑞),𝐻∕100}.

We will make a choice of𝑊 that suits our current choice of𝐻.
If 𝐻 ⩽ 𝐻0, then𝑊 ∶= 10 log𝐻 is admissible in (46) with 𝐻′ = 𝐻, and Theorem 7.3 is verified

in this case (here 𝑃1 ≪ log𝐻, so 𝑃1∕𝑄1 ≪ (log𝐻)𝐻−1).
Next, suppose 𝐻 > 𝐻0. For each 𝐺0 ∈𝑁 we can split 𝐼𝐻(𝐺0) into ≪ 𝑞𝐻−𝐻0 short intervals

𝐼𝐻0(𝐺0 + 𝑡
𝐻0𝑀), where deg(𝑀) < 𝐻 −𝐻0. We then have

max
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ 𝑞𝐻−𝐻0 max

deg(𝑀)<𝐻−𝐻0
max
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

||||||||||
∑
𝐺∈𝑁

𝐺∈𝐼𝐻0 (𝐺0+𝑡
𝐻0𝑀)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

||||||||||
= 𝑞𝐻−𝐻0 max

𝛼∈𝕋

1|𝑁| ∑𝐺′
0
∈𝑁

||||||||||
∑
𝐺∈𝑁

𝐺∈𝐼𝐻0 (𝐺
′
0
)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

||||||||||
.

We have thus reduced matters to the case 𝐻 = 𝐻0, which was addressed previously. Since 𝐻 ↦
𝑀∗(𝑓;𝑁,𝐻) is non-increasing, we see that

log𝐻0 ⩽ min{𝑀∗(𝑓;𝑁,𝐻0)∕100, (log𝑁)∕(1000 log 𝑞),𝐻0∕100}

when 𝑁 (and therefore 𝐻) is large enough. Selecting𝑊 ∶= 10 log𝐻0 gives an admissible choice
in relation to (46) with 𝐻 = 𝐻0, picking 𝑃1, 𝑄1 in terms of 𝐻0 so that 𝑃1∕𝑄1 ≪ (log𝐻0)∕𝐻0. We
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212 KLURMAN et al.

thus have

max
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ 𝑞𝐻−𝐻0 ⋅ 𝑞𝐻0

(
(log𝐻0)𝐻

−1
0 + 𝑁

−1∕40 + 𝑒−𝑀∗(𝑓;𝑁,𝐻0)∕20
)

≪ 𝑞𝐻
(
𝑁−1∕(2000 log 𝑞) + 𝑀∗(𝑓;𝑁,𝐻)𝑒

−𝑀∗(𝑓;𝑁,𝐻)∕100
)
,

using the fact that 𝐻′ ↦ 𝑀∗(𝑓;𝑁,𝐻′) is non-increasing and the definition of 𝐻0 in the last line.
Theorem 7.3 then follows in this case as well. □

Proof of Theorems 7.1 and 7.2. We will only prove Theorem 7.1 from the first statement in
Theorem 7.3, as Theorem 7.2 follows in the same way from the second statement in Theorem 7.3.
Let 𝑓∶→ 𝕌 be a multiplicative function. Define 𝑓 to be the completely multiplicative func-

tion such that 𝑓(𝑃) = 𝑓(𝑃) for all 𝑃 ∈  . We may thus find a multiplicative function ℎ∶→ ℂ,
supported on squarefull monic polynomials (i.e., if ℎ(𝑃𝑘) ≠ 0 for 𝑃 ∈  and 𝑘 ∈ ℕ then 𝑘 ⩾ 2)
such that 𝑓 = 𝑓 ∗ ℎ; in particular, ℎ is bounded by the divisor function 𝑑(𝐺) =

∑
𝐷|𝐺 1, and hence|ℎ(𝐺)|≪𝜀 𝑞𝜀deg(𝐺) for any 𝐺 ∈, a fact we will use shortly. We thus have

sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
|||||||||
∑
𝐺∈𝑁
𝐺∈𝐼𝐻(𝐺0)

𝑓(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
⩽
∑

𝐷∈⩽𝑁

|ℎ(𝐷)| sup
𝛼∈𝕋

1|𝑁| ∑𝐺0∈𝑁

1|<𝐻|
||||||||||

∑
𝐺′∈𝑁−deg(𝐷)
𝐷𝐺′∈𝐼𝐻(𝐺0)

𝑓(𝐺′)𝑒𝔽(𝐺
′𝐷𝛼)

||||||||||
=∶ <𝐻 + ⩾𝐻.

We first estimate ⩾𝐻 , which corresponds to the terms with deg(𝐷) ⩾ 𝐻 above. If deg(𝐷) ⩾ 𝐻,
then if 𝐺0 ∈𝑁 is such that 𝐼𝐻(𝐺0) ∩ 𝐷𝑁−deg(𝐷) ≠ ∅, then in fact |𝐼𝐻(𝐺0) ∩ 𝐷𝑁−deg(𝐷)| = 1
and 𝐺0 lies in one of at most≪ 𝑞𝐻 residue classes modulo 𝐷. It follows that

⩾𝐻 ≪
∑
𝐷∈

deg(𝐷)⩾𝐻

|ℎ(𝐷)| ⋅ 1|𝑁||<𝐻| ⋅ 𝑞𝑁+𝐻−deg(𝐷) ≪ ∑
𝐷∈

deg(𝐷)⩾𝐻

|ℎ(𝐷)|𝑞−deg(𝐷).
Since ℎ is supported on squarefull polynomials, all of which are of the form𝐴2𝐵3 for some𝐴, 𝐵 ∈
, and moreover |ℎ(𝐷)|≪ 𝑞deg(𝐷)∕5 for all 𝐷, we obtain

⩾𝐻 ≪
∑
𝐷∈

deg(𝐷)⩾𝐻

|ℎ(𝐷)|𝑞−deg(𝐷) ≪ 𝑞−𝐻∕5 ∑
𝐴2𝐵3∈

𝑞−0.6(2deg(𝐴)+3deg(𝐵)) ≪ 𝑞−𝐻∕5. (47)
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 213

Next, we estimate <𝐻 . Writing 𝐺0 = 𝐷𝐺′0 + 𝐵 for some 𝐵 mod 𝐷 and 𝐷 ∈<𝐻 , we have

<𝐻 =
∑

𝐷∈<𝐻

|ℎ(𝐷)| sup
𝛼∈𝕋

1|𝑁| ∑𝐵 mod 𝐷
∑

𝐺′
0
∈𝑁−deg(𝐷)

1|<𝐻|
||||||||||

∑
𝐺′∈𝑁−deg(𝐷)
𝐷𝐺′∈𝐼𝐻(𝐷𝐺

′
0
+𝐵)

𝑓(𝐺′)𝑒𝔽(𝐺
′𝐷𝛼)

||||||||||
.

Since deg(𝐵) < deg(𝐷) < 𝐻, we see that 𝐼𝐻(𝐷𝐺′0 + 𝐵) = 𝐼𝐻(𝐷𝐺
′
0
) for all 𝐵 mod 𝐷. Moreover, we

also have that 𝐷𝐺′ ∈ 𝐼𝐻(𝐷𝐺′0) if and only if 𝐺
′ ∈ 𝐼𝐻−deg(𝐷)(𝐺

′
0
). Thus,

<𝐻 =
∑

𝐷∈<𝐻

|ℎ(𝐷)| sup
𝛼∈𝕋

𝑞deg(𝐷)|𝑁| ∑
𝐺′
0
∈𝑁−deg(𝐷)

1|<𝐻|
||||||||||

∑
𝐺′∈𝑁−deg(𝐷)
𝐺′∈𝐼𝐻−deg(𝐷)(𝐺

′
0
)

𝑓(𝐺′)𝑒𝔽(𝐺
′𝐷𝛼)

||||||||||
≪

∑
𝐷∈<𝐻

|ℎ(𝐷)|
𝑞deg(𝐷)

sup
𝛼∈𝕋

1|𝑁−deg(𝐷)| ∑
𝐺′
0
∈𝑁−deg(𝐷)

1|<𝐻−deg(𝐷)|
||||||||||

∑
𝐺′∈𝑁−deg(𝐷)
𝐺′∈𝐼𝐻−deg(𝐷)(𝐺

′
0
)

𝑓(𝐺′)𝑒𝔽(𝐺
′𝐷𝛼)

||||||||||
⩽
∑

𝐷∈<𝐻

|ℎ(𝐷)|
𝑞deg(𝐷)

sup
𝛽∈𝕋

1|𝑁−deg(𝐷)| ∑
𝐺′
0
∈𝑁−deg(𝐷)

1|<𝐻−deg(𝐷)|
||||||||||

∑
𝐺′∈𝑁−deg(𝐷)
𝐺′∈𝐼𝐻−deg(𝐷)(𝐺

′
0
)

𝑓(𝐺′)𝑒𝔽(𝐺
′𝛽)

||||||||||
.

Since the supremum over 𝛽 is ⩽ 1 for all 𝐷 ∈<𝐻 , we may further bound the contribution from
deg(𝐷) ⩾ 𝐻∕2 (as in (47), with𝐻 replaced by𝐻∕2) by 𝑂(𝑞−𝐻∕10). Applying Theorem 7.3 for each
𝐷 ∈<𝐻∕2, we find

<𝐻 ≪ 𝑞−𝐻∕10 +
∑

𝐷∈<𝐻∕2

|ℎ(𝐷)|𝑞−deg(𝐷)( log(𝐻 − deg(𝐷))
𝐻 − deg(𝐷)

+(𝑁 − deg(𝐷))−1∕(2000 log 𝑞) + 𝑀𝐷𝑒−𝑀𝐷∕100
)
,

(48)

where we have set 𝑀𝐷 ∶= 𝑀Hayes(𝑓;𝑁 − deg(𝐷),𝐻 − deg(𝐷)) + 1. We note from its definition
that𝑀Hayes is non-increasing in𝐻, and since 𝑓 takes the same values as 𝑓 on primes we get

𝑀𝐷 ⩾ 𝑀Hayes(𝑓;𝑁 − deg(𝐷),𝐻) = 𝑀Hayes(𝑓;𝑁 − deg(𝐷),𝐻).

Finally, asg (𝑁 − deg(𝐷)) ⩾ g (𝑁∕2) = g (𝑁) − 𝑂(1) for any one-bounded function g ∶→

𝕌, it follows that

𝑀𝐷 ⩾ 𝑀Hayes(𝑓;𝑁,𝐻) − 𝑂(1) =∶ 𝑀 − 1 − 𝑂(1)
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214 KLURMAN et al.

for all 𝐷 ∈<𝐻∕2. Invoking this in (48), we obtain the bound

<𝐻 ≪ 𝑞−𝐻∕10 +
(
log𝐻

𝐻
+ 𝑁−1∕(2000 log 𝑞) + 𝑀𝑒−𝑀∕100

) ∑
𝐷∈

|ℎ(𝐷)|𝑞−deg(𝐷)
≪
log𝐻

𝐻
+𝑁−1∕(2000 log 𝑞) + 𝑀𝑒−𝑀∕100.

Combining this with our earlier estimate for ⩾𝐻 , the proof of Theorem 7.1 follows. □

8 ELLIOTT’S CONJECTURE

In this section, we shall prove the two-point case of the logarithmically averaged Elliott’s conjec-
ture on correlations of non-pretentious multiplicative functions in function fields, Theorem 1.4.
Here, we only treat the case 𝐴 = 1 for simplicity; the proof of the general case of fixed monic 𝐴,
which is essentially the same, is left to the interested reader.
In the sequel, we will adopt the following notational conventions: If 𝑆 ⊂ 𝔽𝑞[𝑡] and g ∶ 𝔽𝑞[𝑡] →

ℂ, then

𝔼𝐺∈𝑆g(𝐺) ∶= |𝑆|−1∑
𝐺∈𝑆

g(𝐺),

𝔼
log

𝐺∈𝑆
g(𝐺) ∶=

(∑
𝐺∈𝑆

𝑞−deg(𝐺)

)−1∑
𝐺∈𝑆

g(𝐺)𝑞−deg(𝐺) if 0 ∉ 𝑆.

To prove Theorem 1.4, we will combine the exponential sum estimate of Theorem 7.2 with
a function field version of the entropy decrement argument that Tao developed in [33] for
the corresponding problem in the integer setting. The key proposition arising from this is the
following.

Proposition 8.1 (Introducing an extra averaging variable). Let 𝑁 ⩾ 100, and let 𝐵 ∈ 𝔽𝑞[𝑡]∖{0}
be fixed. For any 1 ⩽ 𝐾 ⩽ log log log𝑁, there exists 𝐻 ∈ [𝐾, exp(exp(10𝐾))] such that the follow-
ing is true. Suppose that 𝑓1, 𝑓2 satisfy the hypotheses of Theorem 1.4. For each 𝑅 ∈ 𝐻 set 𝑐𝑅 ∶=
𝑓1(𝑅)𝑓2(𝑅). Then,

𝔼
log

𝐺∈⩽𝑁
𝑞−deg(𝐺)𝑓1(𝐺)𝑓2(𝐺 + 𝐵) = 𝔼𝑃∈𝐻𝑐𝑃𝔼

log

𝐺∈⩽𝑁
𝑓1(𝐺)𝑓2(𝐺 + 𝑃𝐵) + 𝑂(𝐾

−0.1).

Proposition 8.1 will be deduced from the following proposition, which is based on our version
of the entropy decrement argument.

Proposition 8.2 (Entropy decrement argument in function fields). Let 𝑘 ⩾ 1, and let
𝑎1, … , 𝑎𝑘 ∶ 𝔽𝑞[𝑡] → 𝕌 be arbitrary one-bounded functions. Also let 𝐵1, … , 𝐵𝑘 ∈ 𝔽𝑞[𝑡] be any fixed
polynomials. Then, for any large enough 𝑁 and for 1 ⩽ 𝐾 ⩽ log log log𝑁, there exists 𝐻 ∈
[𝐾, exp(exp(10𝐾))] such that

𝔼
log

𝐺∈⩽𝑁
|𝔼𝑃∈𝐻𝑎1(𝐺 + 𝑃𝐵1)⋯𝑎𝑘(𝐺 + 𝑃𝐵𝑘)(𝑞deg(𝑃)1𝑃∣𝐺 − 1)|≪ 𝐾−0.1.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 215

Proof of Proposition 8.1 assuming Proposition 8.2. We may assume that 𝐾 is larger than any fixed
constant, otherwise the claim of Proposition 8.1 (with a suitably large implicit constant in the error
term).
Thus, let 𝐻 ∈ [𝐾, exp(exp(10𝐾))], which may be assumed to be sufficiently large. By

multiplicativity, for each 𝑃 ∈ 𝐻 , we have
𝑓1(𝐺)𝑓2(𝐺 + 𝐵) = 𝑐𝑃𝑓1(𝐺𝑃)𝑓2(𝑃𝐺 + 𝐵𝑃),

unless 𝑃|𝐺 or 𝑃|(𝐺 + 𝐵). Averaging over 𝑃 ∈ 𝐻 , for a suitable choice of𝐻 we have

𝔼
log

𝐺∈⩽𝑁
𝑓1(𝐺)𝑓2(𝐺 + 𝐵) = 𝔼𝑃∈𝐻𝑐𝑃𝔼

log

𝐺∈⩽𝑁
𝑓1(𝐺)𝑓2(𝐺 + 𝑃𝐵)𝑞

deg(𝑃)1𝑃|𝐺 + 𝑂(𝑞−𝐻 + 𝑁−1),
since (accounting for 𝐺 = −𝐵 in case this is monic)

𝔼𝑃∈𝐻𝔼
log

𝐺∈⩽𝑁
1𝐺≡0 or −𝐵 mod 𝑃 ≪ 𝑞−𝐻 + 𝑁−1.

By Proposition 8.2 with 𝑎𝑖 = 𝑓𝑖 and the triangle inequality, we have

𝔼𝑃∈𝐻𝑐𝑃𝔼
log

𝐺∈⩽𝑁
𝑓1(𝐺)𝑓2(𝐺 + 𝑃𝐵)𝑞

deg(𝑃)1𝑃|𝐺
= 𝔼𝑃∈𝐻𝑐𝑃𝔼

log

𝐺∈⩽𝑁
𝑓1(𝐺)𝑓2(𝐺 + 𝑃𝐵) + 𝑂(𝐾

−0.1),

and the claim follows. □

In the next subsection, we will establish Proposition 8.2.

8.1 The entropy decrement argument in function fields

Definition 8.3. Let 𝑿,𝒀 be random variables on a probability space (Ω, ℙ) with finite ranges
 , , respectively. We define the entropy

ℍ(𝑿) ∶=
∑
𝑥∈
ℙ(𝑿 = 𝑥) log

1

ℙ(𝑿 = 𝑥)

and the joint entropy

ℍ(𝑿,𝒀) ∶=
∑

𝑥∈ ,𝑦∈
ℙ(𝑿 = 𝑥,𝒀 = 𝑦) log

1

ℙ(𝑿 = 𝑥,𝒀 = 𝑦)
.

Let 𝐸 ⊂ Ω. We define the conditional entropy of 𝑿 with respect to the event 𝐸 by

ℍ(𝑿|𝐸) = ∑
𝑥∈
ℙ(𝑿 = 𝑥 ∣ 𝐸) log

1

ℙ(𝑿 = 𝑥 ∣ 𝐸)
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216 KLURMAN et al.

and further define the conditional entropy of 𝑿 given 𝒀 by

ℍ(𝑿|𝒀) = ∑
𝑦∈
ℍ(𝑿|𝒀 = 𝑦)ℙ(𝒀 = 𝑦).

Note that this satisfies the identity

ℍ(𝑿,𝒀) = ℍ(𝑿|𝒀) + ℍ(𝒀).
Finally, we define the mutual information between 𝑿 and 𝒀 by

𝕀(𝑿, 𝒀) ∶= ℍ(𝑿) + ℍ(𝒀) − ℍ(𝑿,𝒀).

The non-negativity of 𝕀(𝑿, 𝒀) follows from the following lemma.

Lemma 8.4 (Shannon inequalities). Let 𝑿,𝒀 be random variables on a probability space (Ω, ℙ)
with finite ranges  , . Then, we have the bounds

0 ⩽ ℍ(𝑿) ⩽ log ||
and

ℍ(𝑿) ⩽ ℍ(𝑿,𝒀) ⩽ ℍ(𝑿) + ℍ(𝒀).

Proof. These inequalities are proved by applying Jensen’s inequality to the concave function 𝑥 ↦
𝑥 log 1

𝑥
; see [1] for the details. □

Proof of Proposition 8.2. Wemay assume that𝐾 (and thus𝑁) are sufficiently large, since otherwise
the claim of the proposition is trivial. We adapt Tao’s proof in [33] to the function field setting. Let
𝜀 = 𝐾−0.1. It suffices to show that there exists𝐻 ∈ [𝐾, exp(exp(10𝐾))] for which

|𝔼log
𝐺∈⩽𝑁

𝔼𝑃∈𝐻𝑐𝑃𝑎1(𝐺 + 𝑃𝐵1)⋯𝑎𝑘(𝐺 + 𝑃𝐵𝑘)(𝑞deg(𝑃)1𝑃∣𝐺 − 1)|≪ 𝜀
uniformly for all choices of 𝑐𝑃 ∈ 𝕌. We discretize the functions 𝑎𝑖 by defining �̃�𝑖(𝐹) for each 𝐹 ∈
𝔽𝑞[𝑡] to be 𝑎𝑖(𝐹) rounded to the nearest element in the Gaussian lattice 𝜀ℤ[𝑖], breaking ties using
the lexicographic ordering, say. Then, it suffices to prove

|𝔼𝑃∈𝐻𝔼log𝐺∈⩽𝑁
𝑐𝑃�̃�1(𝐺 + 𝑃𝐵1)⋯ �̃�𝑘(𝐺 + 𝑃𝐵𝑘)(𝑞

deg(𝑃)1𝑃∣𝐺 − 1)|≪ 𝜀 (49)

for some𝐻 as above and for any 𝑐𝑃 ∈ 𝕌. Since each polynomial 𝐺 ∈⩽𝑁 of degree ⩾ 𝐻 belongs
to the same number of short intervals 𝐼𝐻(𝐺0), where 𝐺0 ranges through⩽𝑁 , and𝐻∕𝑁 ≪ 𝜀, the
left-hand side of (49) can be rewritten as

|𝔼log
𝐺0∈⩽𝑁

𝔼 𝐺∈⩽𝑁

𝐺∈𝐼𝐻(𝐺0)

𝔼𝑃∈𝐻𝑐𝑃�̃�1(𝐺 + 𝑃𝐵1)⋯ �̃�𝑘(𝐺 + 𝑃𝐵𝑘)(𝑞deg(𝑃)1𝑃∣𝐺 − 1)| + 𝑂(𝜀). (50)
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 217

Let (Ω, ℙ) be the probability space where Ω =⩽𝑁 and ℙ is the probability measure

ℙ(𝐴) ∶= 𝔼
log

𝐺∈⩽𝑁
1𝐴(𝐺),

for any 𝐴 ⊂ Ω. Since each 𝑐𝑃 and each map �̃�𝑖 is uniformly bounded in absolute value, (50) can
be bounded trivially by

≪ 𝜀 + ℙ(𝐺0 ∈⩽𝑁 ∶ |𝔼 𝐺∈⩽𝑁

𝐺∈𝐼𝐻(𝐺0)

𝔼𝑃∈𝐻𝑐𝑃�̃�1(𝐺 + 𝑃𝐵1)⋯ �̃�𝑘(𝐺 + 𝑃𝐵𝑘)(𝑞deg(𝑃)1𝑃∣𝐺 − 1)| ⩾ 𝜀).
(51)

Let 𝑏 ∶= max𝑗⩽𝑘 deg(𝐵𝑗). Introduce the random variables𝑿𝐻 and𝒀𝐻 defined onΩ and given by

𝑿𝐻(𝐺0) ∶= (�̃�1(𝐹), … , �̃�𝑘(𝐹))𝐹∈𝐼𝐻+𝑏(𝐺0), 𝒀𝐻(𝐺0) ∶= (𝐺0 mod 𝑃)𝑃∈𝐻 , 𝐺0 ∈ Ω.

Then, there is a deterministic function  such that we can write the probability in (51) as

ℙ(𝐺0 ∈⩽𝑁 ∶ |(𝑿𝐻(𝐺0), 𝒀𝐻(𝐺0))| ⩾ 𝜀);
more precisely,  is of the form

(𝑥, 𝑦) = 𝔼𝑃∈𝐻𝑐𝑃𝑃(𝑥, 𝑦) ∶= 𝔼𝑃∈𝐻𝑐𝑃𝔼deg(𝐽)<𝐻+𝑏𝜙𝐽(𝑥, 𝑃)(𝑞deg(𝑃)1𝑃∣𝑦+𝐽 − 1) (52)

for some one-bounded functions 𝜙𝐽 and for 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐻 , where 𝐻,𝐻 are the ranges of
𝑿𝐻,𝒀𝐻 , respectively. Therefore, by the triangle inequality we have the bound |𝑃(𝑥, 𝑦)| ⩽ 2 for
all 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐻 .
It suffices to show that ℙ(|(𝑿𝐻, 𝒀𝐻)| ⩾ 𝜀) ≪ 𝜀, for some 𝐻 ∈ [𝐾, exp(exp(10𝐾))]. To do this,

we start by bounding the probabilities ℙ(|(𝑥, 𝒀𝐻)| ⩾ 𝜀) without conditioning and then we will
deduce a bound on the corresponding conditional probabilities with 𝑿𝐻 = 𝑥.
By theChinese remainder theorem,𝒀𝐻(𝐹) = 𝑦 for any 𝑦 ∈ 𝐻 corresponds to a unique congru-

ence for 𝐹 modulo
∏
𝑃∈𝐻 𝑃. Thus, this happens with probability exactly equal to 𝑞

−
∑
𝑃∈𝐻 deg(𝑃)

as long as ∑
𝑃∈𝐻

deg(𝑃) < 𝑁,

which by the prime polynomial theorem holds whenever 𝐻 ⩽ log𝑁

4 log 𝑞
for 𝑁 large enough, say.

Hence, 𝒀𝐻 is a uniform random variable on 𝐻 under the aforementioned condition. In partic-
ular, all the random variables 𝐺0 ↦ 𝐺0 mod 𝑃 for 𝑃 ∈ 𝐻 are jointly independent of each other.
By (52), we may write

(𝑥, 𝒀𝐻) = 𝔼𝑃∈𝐻𝑐𝑃𝑃(𝑥, 𝒀𝐻),
and the randomvariables {𝑃(𝑥, 𝒀𝐻)∶ 𝑃 ∈ 𝐻} are jointly independent, all havingmean 0.More-
over, the number of different 𝑃 here is ⩾ 1

2
𝑞𝐻∕𝐻, say, again by the prime polynomial theorem. By
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218 KLURMAN et al.

Hoeffding’s inequality [13], there is an absolute constant 𝐶 > 0 such that

ℙ(|(𝑥, 𝒀𝐻)| ⩾ 𝜀) = ℙ(|𝔼𝑃∈𝐻𝑐𝑃𝑃(𝑥, 𝒀𝐻)| ⩾ 𝜀) ⩽ exp(−𝐶𝜀2𝑞𝐻∕𝐻) (53)

for any 𝑥 ∈ 𝐻 .
To bound the conditional probability ℙ(|(𝑥, 𝒀𝐻)| ⩾ 𝜀|𝑿𝐻 = 𝑥), we use a Pinsker-type

inequality from [34]. This is applicable since 𝒀𝐻 is a uniform random variable. We get

ℙ(|(𝑥, 𝒀𝐻)| ⩾ 𝜀|𝑿𝐻 = 𝑥) ⩽ ℍ(𝒀𝐻) − ℍ(𝒀𝐻|𝑿𝐻 = 𝑥) + log 2
log 1

ℙ(|(𝑥,𝒀𝐻)|⩾𝜀)
.

Since 𝐻 ⩾ 𝐾 and 𝐾 is large, we may bound this from above using (53) and the prime polynomial
theorem, obtaining

⩽ 𝜀 + 𝐶−1𝜀−2
ℍ(𝒀𝐻) − ℍ(𝒀𝐻|𝑿𝐻 = 𝑥)

𝑞𝐻∕𝐻
. (54)

Recalling that

ℙ(|(𝑿𝐻, 𝒀𝐻)| ⩾ 𝜀) = ∑
𝑥∈𝐻

ℙ(|(𝑥, 𝒀𝐻)| ⩾ 𝜀|𝑿𝐻 = 𝑥)ℙ(𝑿𝐻 = 𝑥),
we multiply the bound in (54) by ℙ(𝑿𝐻 = 𝑥) and sum over 𝑥 ∈ 𝐻 to get

ℙ(|(𝑿𝐻, 𝒀𝐻)| ⩾ 𝜀) ⩽ 𝜀 + 𝐶−1𝜀−2 ℍ(𝒀𝐻) − ℍ(𝒀𝐻|𝑿𝐻)𝑞𝐻∕𝐻
= 𝜀 + 𝐶−1𝜀−2

𝕀(𝑿𝐻, 𝒀𝐻)

𝑞𝐻∕𝐻

by the definition of mutual information 𝕀(𝑿𝐻, 𝒀𝐻) from Definition 8.3. Now what remains to be
shown is that

𝕀(𝑿𝐻, 𝒀𝐻) ⩽ 𝜀
3 𝑞
𝐻

𝐻
(55)

holds for some 𝐻 satisfying the conditions in Proposition 8.2. We will prove (55) by appealing to
Shannon’s inequality (Lemma 8.4) and pigeonholing in the parameter𝐻.
Consider the conditional entropy

ℍ(𝑿𝐻+𝑗|𝒀𝐻)
for𝐻, 𝑗 ⩽ log𝑁

4 log 𝑞
, say. We may write

𝑿𝐻+𝑗 =
⨂

deg(𝑀)⩽𝑗
𝑿(𝑀)
𝐻
,

where each 𝑿(𝑀)
𝐻

is a shifted copy of 𝑿𝐻 given by

𝑿(𝑀)
𝐻
(𝐺0) ∶= 𝑿𝐻(𝐺0 +𝑀𝑡

𝐻+𝑏).
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 219

Define also

𝒀(𝑀)
𝐻
(𝐺0) ∶= 𝒀𝐻(𝐺0 +𝑀𝑡

𝐻+𝑏).

Then, by Shannon’s inequality

ℍ(𝑿𝐻+𝑗|𝒀𝐻) ⩽ ℍ(𝑿𝐻+𝑗, 𝒀𝐻) ⩽ ∑
deg(𝑀)⩽𝑗

ℍ(𝑿(𝑀)
𝐻
|𝒀𝐻).

Since the sigma algebra given by 𝒀𝐻 is shift-invariant and ℙ is almost shift-invariant in the sense
that

sup
𝐴⊂⩽𝑁

|ℙ(𝐺 ∈ 𝐴) − ℙ(𝐺 + 𝐽 ∈ 𝐴)| ⩽ deg(𝐽)∕𝑁
we obtain

ℍ(𝑿𝐻+𝑗|𝒀𝐻) ⩽ ∑
deg(𝑀)⩽𝑗

ℍ(𝑿(𝑀)
𝐻
|𝒀(𝑀)
𝐻
) + 𝜀𝑞𝑗

≪ 𝑞𝑗ℍ(𝑿𝐻 ∣ 𝒀𝐻) + 𝜀𝑞
𝑗

= 𝑞𝑗ℍ(𝑿𝐻,𝒀𝐻) − 𝑞
𝑗ℍ(𝒀𝐻) + 𝜀𝑞

𝑗

= 𝑞𝑗ℍ(𝑿𝐻) − 𝑞
𝑗𝕀(𝑿𝐻, 𝒀𝐻) + 𝜀𝑞

𝑗.

On the other hand, from Shannon’s inequality, we also have the lower bound

ℍ(𝑿𝐻+𝑗|𝒀𝐻) = ℍ(𝑿𝐻+𝑗, 𝒀𝐻) − ℍ(𝒀𝐻) ⩾ ℍ(𝑿𝐻+𝑗) − ℍ(𝒀𝐻).
Comparing the upper and lower bounds for ℍ(𝑿𝐻+𝑗|𝒀𝐻), we now have

𝕀(𝑿𝐻, 𝒀𝐻)

𝑞𝐻
⩽
ℍ(𝑿𝐻)

𝑞𝐻
−
ℍ(𝑿𝐻+𝑗)

𝑞𝐻+𝑗
+
ℍ(𝒀𝐻) + 𝜀𝑞

𝑗

𝑞𝐻+𝑗
. (56)

Since 𝒀𝐻 is a uniform random variable, we have ℍ(𝒀𝐻) = log |𝐻| ⩽ 2𝑞𝐻 by the prime poly-
nomial theorem. Since 𝑿𝐻 has 𝑘𝑞𝐻+𝑏 components, each taking values in 𝜀ℤ[𝑖] ∩ 𝕌, we have
ℍ(𝑿𝐻) ⩽ 10(log

1

𝜀
)𝑘𝑞𝐻+𝑏 ⩽ 𝐶𝑘,𝑏𝜀

−1𝑞𝐻 for some 𝐶𝑘,𝑏 > 0. Now, if we denote 𝑤𝐻 ∶= ℍ(𝑿𝐻)∕𝑞𝐻 ,
then from (56) we have the information bound

𝕀(𝑿𝐻, 𝒀𝐻)

𝑞𝐻
⩽ 𝑤𝐻 − 𝑤𝐻+𝑗 +

𝜀

𝑞𝐻
,

and 𝑤𝐻 ∈ [0, 𝜀−1𝐶𝑘,𝑏]. Suppose that (55) failed for all 𝐻 ∈ [𝐾, exp(exp(𝐾∕2))]. Then, we would
have

𝜀3

𝐻
⩽ 𝑤𝐻 − 𝑤𝐻+𝑗 +

𝜀

𝑞𝐻
+ 2𝑞−𝑗 (57)
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220 KLURMAN et al.

for all𝐻 ∈ [𝐾, exp(exp(𝐾∕2))], 𝑗 ⩽ log𝑁

4 log 𝑞
. Define𝐻1,𝐻2, … recursively by𝐻1 = ⌈𝐾⌉ and𝐻𝑟+1 ∶=

𝐻𝑟 + 2 log𝐻𝑟 + 1000 log
1

𝜀
. Then, 𝐻𝑟 ⩽ exp(exp(𝐾∕2)) for 𝑟 ⩽ exp(exp(𝐾∕3)), say. Telescop-

ing (57) with𝐻 = 𝐻𝑟 and 𝑗 = 𝐻𝑟+1 − 𝐻𝑟 then yields∑
𝑟⩽exp(exp(𝐾∕3))

𝜀3

2𝐻𝑟
⩽

∑
𝑟⩽exp(exp(𝐾∕3))

(𝑤𝐻𝑟 − 𝑤𝐻𝑟+1 +
𝜀

𝑞𝐻𝑟
+ 2𝑞𝐻𝑟−𝐻𝑟+1) ⩽ 𝜀−1𝐶𝑘,𝑏 + 1.

Since, by telescoping, we have

𝐻𝑟 = 𝐻1 + 2
∑

1⩽𝑗⩽𝑟−1

log𝐻𝑗 + 1000(𝑟 − 1) log(1∕𝜀),

by induction on 𝑟 we find that 𝐻𝑟 ⩽ 𝐶0(𝑟 log 𝑟 + 𝑟 log
1

𝜀
) for some absolute constant 𝐶0 > 0

whenever 𝑟 ⩾ 𝐾 ⩾ 1000 log(1∕𝜀). Therefore,

𝜀4
∑

𝐾⩽𝑟⩽exp(exp(𝐾∕3))

1

10𝐶0𝑟 log 𝑟
⩽ 𝐶𝑘,𝑏 + 𝜀.

However, given our choice 𝜀 = 𝐾−0.1, the left-hand side is

≫ 𝐾−0.4(𝐾 − 𝑂(log𝐾)),

which is a contradiction for 𝐾 large enough. This completes the proof. □

Now that we have established Proposition 8.2, which relates one-variable correlations to two-
variable ones, we can apply the circle method to complete the proof of Theorem 1.4.

Proposition 8.5. Assume the hypotheses of Proposition 8.1 and let𝐻 be chosen as in the conclusion
of that proposition. Let 𝑓1, 𝑓2 ∶ → 𝕌 be multiplicative functions. Set 𝐻′ ∶= 𝐻 + deg(𝐵). Then,
for any 𝜀 > 0,

𝔼
log

𝐺∈⩽𝑁

|||𝔼𝑃∈𝐻𝑐𝑃𝔼deg(𝐽)<𝐻′𝑓1(𝐺 + 𝐽)𝑓2(𝐺 + 𝐽 + 𝑃𝐵)||| (58)

≪ 𝜀−8
(
(log𝐻)𝐻−1 + 𝑁−1∕(100 log 𝑞) + 𝑒−𝑀Hayes(𝑓1;𝑁∕𝐻,𝐻

′)∕100
)
+ 𝜀2.

Moreover, if 𝑓1 is real-valued and 𝑞 is odd, we may replace𝑀Hayes with𝑀Dir in (58).

Proof. Let  denote the expression on the left-hand side in (58). Fix 𝐺 ∈⩽𝑁 for the time being.
For each 𝑗 = 1, 2, define the sequence 𝑥𝑗,𝐽 ∶= 𝑓𝑗(𝐺 + 𝐽) for all deg(𝐽) < 𝐻 + deg(𝐵). For each
𝐺 ∈⩽𝑁 , consider the double sum

𝐺 ∶= 𝔼𝑃∈𝐻𝑐𝑃𝔼deg(𝐽)<𝐻′𝑥1,𝐽𝑥2,𝐽+𝑃𝐵,

noting that  = 𝔼log
𝐺∈⩽𝑁

|𝐺|. We may view the set of polynomials 𝐽 with deg(𝐽) < 𝐻′ as the rep-

resentatives of residue classes modulo 𝑡𝐻′ , and thus extending the sequences {𝑥1,𝐽}𝐽 and {𝑥2,𝐽}𝐽
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 221

periodically in modulo 𝑡𝐻′ , we can consider them as maps on 𝔽𝑞[𝑡]∕(𝑡𝐻
′
𝔽𝑞[𝑡]). We may thus

expand these sequences in the corresponding Fourier basis, giving in the inner sum over 𝐽:

𝔼deg(𝐽)<𝐻′𝑥1,𝐽𝑥2,𝐽+𝑃𝐵

=
∑

𝜉1,𝜉2 mod 𝑡𝐻
′

�̂�1(𝜉1)�̂�2(𝜉2)𝑒𝔽(−𝜉2𝑃𝐵∕𝑡
𝐻′)𝔼𝐽 mod 𝑡𝐻′ 𝑒𝔽

(
𝐽

𝑡𝐻′
(𝜉1 − 𝜉2)

)

=
∑

𝜉 mod 𝑡𝐻′
�̂�1(𝜉)�̂�2(𝜉)𝑒𝔽(−𝜉𝑃𝐵∕𝑡

𝐻′),

where we have defined

�̂�𝑗(𝜉) ∶= 𝑞
−𝐻′

∑
𝐽 mod 𝑡𝐻′

𝑥𝑗,𝐽𝑒𝔽(−𝐽𝜉∕𝑡
𝐻′).

Inserting this into the definition of 𝐺 thus gives
𝐺 =

∑
𝜉 mod 𝑡𝐻′

�̂�1(𝜉)�̂�2(𝜉) ⋅ 𝔼𝑃∈𝐻𝑐𝑃𝑒𝔽(−𝜉𝑃𝐵∕𝑡𝐻
′
).

Now, define the large spectrum set

Ξ𝐻 ∶= {𝜉 mod 𝑡𝐻
′
∶
|||𝔼𝑃∈𝐻𝑐𝑃𝑒𝔽(−𝜉𝑃𝐵∕𝑡𝐻′)||| ⩾ 𝜀2}.

We decompose 𝐺 = 𝐺,𝑠 + 𝐺,𝑙, where

𝐺,𝑠 ∶=
∑
𝜉∉Ξ𝐻

�̂�1(𝜉)�̂�2(𝜉) ⋅ 𝔼𝑃∈𝐻𝑐𝑃𝑒𝔽(−𝜉𝑃𝐵∕𝑡𝐻
′
),

𝐺,𝑙 ∶=
∑
𝜉∈Ξ𝐻

�̂�1(𝜉)�̂�2(𝜉) ⋅ 𝔼𝑃∈𝐻𝑐𝑃𝑒𝔽(−𝜉𝑃𝐵∕𝑡𝐻
′
).

If 𝜉 ∉ Ξ𝐻 , then we can bound the inner sum over 𝑃 by 𝜀2. It follows from the Cauchy–Schwarz
inequality and Plancherel’s theorem that

|𝐺,𝑠|≪ 𝜀2 ∑
𝜉∉Ξ𝐻

|�̂�1(𝜉)||�̂�2(𝜉)| ⩽ 𝜀2 2∏
𝑗=1

⎛⎜⎜⎝
∑

𝜉 mod 𝑡𝐻′
|�̂�𝑗(𝜉)|2⎞⎟⎟⎠

1
2

= 𝜀2
2∏
𝑗=1

(
𝑞−𝐻

′ ∑
𝐽 mod 𝑡𝐻′

|𝑥𝑗,𝐽|2)
1
2

≪ 𝜀2.
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222 KLURMAN et al.

It remains to consider the case 𝜉 ∈ Ξ𝐻 . In this case, bounding the exponential sum in 𝑃 trivially,
this contribution is

|𝐺,𝑙|≪ ∑
𝜉∈Ξ𝐻

|�̂�1(𝜉)||�̂�2(𝜉)|.
Note that ‖�̂�𝑗‖∞ ⩽ 1 for 𝑗 = 1, 2. Averaging over 𝐺 ∈⩽𝑁 yields

 ≪ 𝜀2 + ∑
𝜉∈Ξ𝐻

𝔼
log

𝐺∈⩽𝑁
𝑞−𝐻

′
||||||
∑

deg(𝐽)<𝐻′
𝑓1(𝐺 + 𝐽)𝑒𝔽(−𝜉𝐽∕𝑡

𝐻′)

||||||
⩽ 𝜀2 + |Ξ𝐻|max

𝛼∈𝕋
𝔼
log

𝐺0∈⩽𝑁

||||||||||
𝑞−𝐻

′ ∑
𝐺∈deg(𝐺0)
𝐺∈𝐼𝐻′ (𝐺0)

𝑓1(𝐺)𝑒𝔽(𝐺𝛼)

||||||||||
.

To estimate |Ξ𝐻|, we use a fourth moment estimate. Indeed,
|Ξ𝐻| ⩽ 𝜀−8|𝐻|4 ∑

𝜉 mod 𝑡𝐻′

||||||
∑
𝑃∈𝐻

𝑐𝑃𝑒(−𝑃𝐵𝜉∕𝑡
𝐻′)

||||||
4

≪ 𝜀−8𝐻4𝑞−4𝐻
|||||||

∑
𝑃1,𝑃2,𝑃3,𝑃4∈𝐻

𝑐𝑃1𝑐𝑃2𝑐𝑃3𝑐𝑃4

∑
𝜉 mod 𝑡𝐻′

𝑒𝔽(−𝐵(𝑃1 + 𝑃2 − 𝑃3 − 𝑃4)𝜉∕𝑡
𝐻′)

|||||||
≪ 𝜀−8𝐻4𝑞−3𝐻

∑
𝑃1,𝑃2,𝑃3,𝑃4∈𝐻
𝑃1+𝑃2=𝑃3+𝑃4

1,

since deg(𝐵(𝑃1 + 𝑃2 − 𝑃3 − 𝑃4)) < 𝐻′. By Lemma 4.13, the sum over tuples (𝑃1, 𝑃2, 𝑃3, 𝑃4) above
is bounded by 𝑂(𝑞3𝐻∕𝐻4), and hence |Ξ𝐻|≪ 𝜀−8. Splitting the average in 𝐺0 ∈⩽𝑁 according
to degree, we get

 ≪ 𝜀2 + 𝜀−8 1
𝑁

∑
𝑘⩽𝑁

max
𝛼∈𝕋
𝑞−𝑘

∑
𝐺0∈𝑘

|||||||||
𝑞−𝐻

′ ∑
𝐺∈𝑘
𝐺∈𝐼𝐻′ (𝐺0)

𝑓𝑗0(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
.

The inner sum is trivially bounded as ≪ 1 for 1 ⩽ 𝑘 ⩽ 𝑁∕𝐻, which contributes a term of size
≪ 𝐻−1. Since𝐻 < 𝑁1∕4, say, for each 𝑁∕𝐻 < 𝑘 ⩽ 𝑁 we may apply Theorem 7.1 to get

𝑞−𝑘
∑
𝐺0∈𝑘

|||||||||
𝑞−𝐻

′ ∑
𝐺∈𝑘
𝐺∈𝐼𝐻′ (𝐺0)

𝑓𝑗0(𝐺)𝑒𝔽(𝐺𝛼)

|||||||||
≪ (log𝐻)𝐻−1 + 𝑁−1∕(2000 log 𝑞) + 𝑒−𝑀Hayes(𝑓1;𝑁∕𝐻,𝐻

′)∕100
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 223

in this range. Averaging this estimate over 𝑁∕𝐻 < 𝑘 ⩽ 𝑁 gives

 ≪ 𝜀2 + 𝜀−8((log𝐻)𝐻−1 + 𝑁−1∕(2000 log 𝑞) + 𝑒−𝑀Hayes(𝑓1;𝑁∕𝐻,𝐻
′)∕100

)
.

This implies the first claim.
The second claim is proved in an identical manner, except that at the end we appeal to

Theorem 7.2. □

Proof of Theorem 1.4. Let𝑊 be fixed but large, and let 𝐾 = 𝑊∕100. Set

𝜀 ∶= min{𝑒−𝑀Hayes(𝑓𝑗0 ;𝑁∕𝐻,𝐻+deg(𝐵))∕1600, 𝐾−0.1},

where𝐻 is chosen as in Proposition 8.1. Combining Propositions 8.1 and 8.5, we find

|||||| 1𝑁
∑

𝐺∈⩽𝑁

𝑞−deg(𝐺)𝑓1(𝐺)𝑓2(𝐺 + 𝐵)

||||||≪ 𝐾0.8
(
𝑁−1∕(2000 log 𝑞) + (log𝐻)𝐻−1

)
+ 𝑒−𝑀Hayes(𝑓1;𝑁∕𝐻,𝐻+deg(𝐵))∕200 + 𝐾−0.1,

where𝐻 ∈ [𝐾, exp(exp(10𝐾)))] is chosen as in Proposition 8.1. Since 𝑓1 is Hayes non-pretentious
to level𝑊 and𝐻 + deg(𝐵) ⩽ 2𝐻 < (log𝑁)∕(2 log 𝑞) ⩽ log𝑁, it follows that𝑀Hayes(𝑓1;𝑁∕𝐻,𝐻 +

deg(𝐵)) → ∞ as 𝑁 → ∞. Since𝐻 ⩾ 𝐾 ⩾ 𝑊∕100 the above is 𝑜𝑊→∞(1) as 𝑁 → ∞, and letting𝑊
tend to infinity very slowly in terms of 𝑁, the first part of Theorem 1.4 follows.
Consider then the second part of the theorem, where 𝑓1 is real-valued and 𝑞 is odd. Apply-

ing the same argument as before, save that 𝑀Hayes is replaced in every instance by 𝑀Dir, we see
that (4) holds unless there exists an infinite sequence 𝑁𝑗 → ∞, Dirichlet characters 𝜓𝑗 mod𝑀𝑗
with deg(𝑀𝑗) = 𝑂(1), and 𝜃𝑗 ∈ [0, 1] such that

𝔻(𝑓1, 𝜓𝑗𝑒𝜃𝑗 ; 𝑁𝑗) = 𝑂(1). (59)

If (59) holds, then by the pretentious triangle inequality also

𝔻(𝑓21, 𝜓
2
𝑗 𝑒2𝜃𝑗 ; 𝑁𝑗) = 𝑂(1).

By pigeonholing, we may assume that 𝜓𝑗 = 𝜓 is independent of 𝑗. Moreover, by passing to a
subsequence, we may assume that 𝜃𝑗 converges to some 𝜃 ∈ [0, 1]. Then,

𝔻(𝑓21, 𝜓
2𝑒2𝜃; 𝑁𝑗) = 𝑂(1), (60)

since by (59) and the triangle inequality we have

𝔻(𝑒𝜃, 𝑒𝜃𝑗 ; 𝑁𝑗) = lim sup
𝑘→∞

𝔻(𝑒𝜃𝑗+𝑘 , 𝑒𝜃𝑗 ; 𝑁𝑗) ⩽ 𝔻(𝑓1𝜓, 𝑒𝜃𝑗 ; 𝑁𝑗) + lim sup
𝑘→∞

𝔻(𝑓1𝜓, 𝑒𝜃𝑗+𝑘 ; 𝑁𝑗+𝑘) = 𝑂(1).
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224 KLURMAN et al.

Assume first that 𝔻(1, 𝑓2
1
;∞) < ∞. Then by another application of the pretentious triangle

inequality, we deduce that

𝔻(1, 𝜓2𝑒2𝜃; 𝑁𝑗) = 𝑂(1). (61)

By Lemma3.2, this implies that𝜓2 is principal, sowemay assume that𝜓2 ≡ 1 in (61). Then arguing
as in [9, p. 15] we have

𝔻(1, 𝑒2𝜃; 𝑁𝑗)
2 = log𝑁𝑗 −

∑
𝑛⩽𝑁𝑗

cos(4𝜋𝜃𝑛)

𝑛
+ 𝑂(1) = log(max{𝑁𝑗‖2𝜃‖, 1}) + 𝑂(1),

which in view of (61) implies that 2𝜃 ≡ 0mod 1. But this contradicts (5). Hence, we must have
𝔻(1, 𝑓2

1
;∞) = ∞. But as 𝑓2

1
is non-negative, we have

𝔻(𝑓21, 𝜓
2𝑒2𝜃; 𝑁𝑗)

2 ⩾
∑
𝑃∈⩽𝑁𝑗

1 − |𝑓1(𝑃)𝜓(𝑃)𝑒−𝜃(𝑃)|2
𝑞deg(𝑃)

⩾
∑
𝑃∈⩽𝑁𝑗

1 − 𝑓1(𝑃)
2

𝑞deg(𝑃)
= 𝔻(𝑓21, 1; 𝑁𝑗)

2,

so upon letting 𝑗 → ∞ this contradicts (60). The claim follows. □

9 A CONJECTURE OF KÁTAI IN FUNCTION FIELDS

In this section, we establish Theorem 1.7 as an application of our two-point Elliott conjecture
result (Theorem 1.4). Since short interval characters and Archimedean characters satisfy

𝜉(𝑄𝐺 + 1) = 𝜉(𝑄𝐺) = 𝜉(𝑄)𝜉(𝐺) and 𝑒𝜃(𝑄𝐺 + 1) = 𝑒𝜃(𝑄)𝑒𝜃(𝐺) (62)

whenever deg(𝑄𝐺) is sufficiently large relative to len(𝜉), the function 𝑓 = 𝜉𝑒𝜃 clearly obeys (8) for
suitably chosen 𝑧 ∈ 𝑆1. Thus, the essence of Theorem 1.7 lies in showing that there are no other
such functions.
Before beginning with the proof of Theorem 1.7, we state the following useful proposition.

Proposition9.1 (Concentration inequality formultiplicative functions).Let𝑓∶→ 𝕌 be amul-
tiplicative for which 𝔻(𝑓, 1;𝑁) ≪ 1 as 𝑁 → ∞, and let 𝜀 > 0. Then, there is an infinite increasing
sequence {𝑀𝑗}𝑗⩾1 ⊂ [1,∞), depending only on 𝑓 and 𝜀, for which the following holds:
Let𝑊 ∈ satisfy𝑃 ∣ 𝑊 for all𝑃 ∈ ⩽𝑀𝑗 . Then, for any𝐵 coprime to𝑊 and of degree< deg(𝑊),

and for𝑁 ∶= 𝑀𝑗+𝑗′ with 𝑗′ large enough as a function of𝑀𝑗 and 𝜀, we have∑
𝐺∈⩽𝑁

|𝑓(𝑊𝐺 + 𝐵) − 1|≪ 𝑞𝑁(𝜀 + 𝔻(𝑓, 1;𝑀𝑗,∞) + 𝑜𝑗→∞(1)).
To prove this proposition, we begin with the following general lemma. In the sequel, given

scales 1 ⩽ 𝐴 < 𝐵, we define

ℑ𝑓(𝐴, 𝐵) ∶=
∑
𝑃∈

𝐴<deg(𝑃)⩽𝐵

Im(𝑓(𝑃))
𝑞deg(𝑃)

.

 20417942, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12181 by T

est, W
iley O

nline L
ibrary on [24/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 225

Lemma 9.2. Let 𝑁 ⩾ 𝑀 ⩾ 1 and let 𝑓∶ → 𝕌 be multiplicative. Let 𝑊 ∈ satisfy 𝑃 ∣ 𝑊 for
all 𝑃 ∈ ⩽𝑀 . Then, for any 𝐵 coprime to𝑊 and of degree < deg(𝑊), and for 𝑁 large enough as a
function of𝑀, we have∑

𝐺∈⩽𝑁

|𝑓(𝑊𝐺 + 𝐵) − 𝑒ℑ𝑓(𝑀,𝑁)|≪ 𝑞𝑁 max
𝛽∈{1,2}

𝔻(𝑓, 1;𝑀,∞)𝛽 + 𝑜𝑀→∞(𝑞
𝑁).

Proof. Let ℎ∶→ ℂ be the additive function given by ℎ(𝑃𝛼) = 𝑓(𝑃𝛼) − 1. Note that Re(ℎ(𝑃𝛼)) ⩽
0, so that 𝑒ℎ(𝑃𝛼) ∈ 𝕌 for all 𝑃 and 𝛼 ⩾ 1.
We apply the Taylor approximation

𝑧 = 𝑒𝑧−1 + 𝑂(|𝑧 − 1|2), for |𝑧| ⩽ 1
with 𝑧 = 𝑓(𝑃𝛼) = 1 + ℎ(𝑃𝛼) for 𝑃 ∈  and 𝛼 ⩾ 1, together with the simple inequality

|𝑧1⋯ 𝑧𝑘 − 𝑤1⋯𝑤𝑘| ⩽ ∑
1⩽𝑗⩽𝑘

|𝑧𝑗 − 𝑤𝑗|,
valid whenever 𝑧𝑗, 𝑤𝑗 ∈ 𝕌 for all 1 ⩽ 𝑗 ⩽ 𝑘 (with 𝑧𝑗 and𝑤𝑗 , respectively, playing the roles of 𝑒ℎ(𝑃

𝛼)

and 𝑓(𝑃𝛼) here). Ultimately, this yields

𝑓(𝑊𝐺 + 𝐵) = 𝑒ℎ(𝑊𝐺+𝐵) + 𝑂

( ∑
𝑃𝛼∣∣𝑊𝐺+𝐵

|ℎ(𝑃𝛼)|2).
Since (𝐵,𝑊) = 1, note that 𝑃𝛼 ∣∣ 𝑊𝐺 + 𝐵 ⇒ deg(𝑃) > 𝑀 and 𝑃 ∤ 𝑊. Summing over 𝐺 ∈⩽𝑁

thus leads to ∑
𝐺∈⩽𝑁

|||𝑓(𝑊𝐺 + 𝐵) − 𝑒ℎ(𝑊𝐺+𝐵)|||≪ 𝑞𝑁 ∑
𝑃∈

deg(𝑃)>𝑀
deg(𝑃𝛼)⩽𝑁

|ℎ(𝑃𝛼)|2𝑞−deg(𝑃𝛼). (63)

Next, set

𝐴ℎ(𝑌,𝑋) ∶=
∑
𝑃∈

𝑌<deg(𝑃𝛼)⩽𝑋

ℎ(𝑃𝛼)𝑞−deg(𝑃
𝛼)(1 − 𝑞−deg(𝑃)), 𝑋 > 𝑌 ⩾ 1.

Since Re(ℎ(𝑀)) ⩽ 0 for all𝑀 ∈, we have Re(𝐴ℎ(𝑀,𝑁)) ⩽ 0 as well, thus

|𝑒ℎ(𝑊𝐺+𝐵) − 𝑒𝐴ℎ(𝑀,𝑁)|≪ |ℎ(𝑊𝐺 + 𝐵) − 𝐴ℎ(𝑀,𝑁)|.
Summing this expression over𝐺 ∈⩽𝑁 , then applying the Cauchy–Schwarz inequality followed
by the Turán–Kubilius inequality for ℎ (see [4, Lemma 7] for the function field version of this†),

† In [4], the Turán–Kubilius inequality was stated for the linear forms𝐺 ↦ 𝐺 + 𝐵, but the same proof works for any linear
forms 𝐺 ↦ 𝑊𝐺 + 𝐵.
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226 KLURMAN et al.

we obtain

∑
𝐺∈⩽𝑁

|𝑒ℎ(𝑊𝐺+𝐵) − 𝑒𝐴ℎ(𝑀,𝑁)|≪ 𝑞𝑁∕2⎛⎜⎜⎝
∑

𝐺∈⩽𝑁

|ℎ(𝑊𝐺 + 𝐵) − 𝐴ℎ(𝑀,𝑁)|2⎞⎟⎟⎠
1∕2

≪ 𝑞𝑁

⎛⎜⎜⎜⎜⎜⎝
∑
𝑃∈

deg(𝑃)>𝑀
deg(𝑃𝛼)⩽𝑁

|ℎ(𝑃𝛼)|2𝑞−deg(𝑃𝛼)
⎞⎟⎟⎟⎟⎟⎠

1∕2

.

We note that∑
𝑃∈

deg(𝑃)>𝑀
deg(𝑃𝛼)⩽𝑁

|ℎ(𝑃𝛼)|2𝑞−deg(𝑃𝛼) = ∑
𝑃∈

𝑀<deg(𝑃)⩽𝑁

|1 − 𝑓(𝑃𝛼)|2𝑞−deg(𝑃𝛼) + 𝑂(𝑀−1∕2),

and this simplifies to 2𝔻(𝑓, 1;𝑀,𝑁)2 + 𝑂(𝑀−1∕2). Combining this with (63), we thus find that∑
𝐺∈⩽𝑁

|𝑓(𝑊𝐺 + 𝐵) − 𝑒𝐴ℎ(𝑀,𝑁)|≪ 𝑞𝑁(𝔻(𝑓, 1;𝑀,∞) + 𝔻(𝑓, 1;𝑀,∞)2 +𝑀−1∕4). (64)

Now, observe that

𝐴ℎ(𝑀,𝑁) =
∑
𝑃∈

𝑀<deg(𝑃)⩽𝑁

Re(𝑓(𝑃)) − 1
𝑞deg(𝑃)

+ 𝑖
∑
𝑃∈

𝑀<deg(𝑃)⩽𝑁

Im(𝑓(𝑃))
𝑞deg(𝑃)

+ 𝑂(𝑀−1∕2)

= −𝔻(𝑓, 1;𝑀,𝑁)2 + 𝑖ℑ𝑓(𝑀,𝑁) + 𝑂(𝑀
−1∕2).

When𝑀 is large enough, we thus have

𝑒𝐴ℎ(𝑀,𝑁) = 𝑒𝑖ℑ𝑓(𝑀,𝑁) + 𝑂(𝔻(𝑓, 1;𝑀,∞)2 +𝑀−1∕2),

which, when combined with (64) yields the claim. □

The following result allowsus to pick suitable scales𝑀 and𝑁 in order to control the distribution
of ℑ𝑓(𝑀,𝑁)mod 2𝜋, and therefore the direction of 𝑒

𝑖ℑ𝑓(𝑀,𝑁). Below, as usual we write ‖𝑡‖ ∶=
min𝑚∈ℤ |𝑡 − 𝑚| for 𝑡 ∈ ℝ.
Lemma 9.3. Let 𝜂 > 0. Then there is an infinite increasing sequence {𝑀𝑗}𝑗⩾1 ⊂ [1,∞) such that

‖ℑ𝑓(𝑀𝑗,𝑀𝑗+𝑗′)∕2𝜋‖ < 𝜂
for any choice of 𝑗, 𝑗′ sufficiently large relative to 𝜂.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 227

Proof. A proof of this claim appears implicitly in the proof of [22, Lemma 2.11] in the integer
setting. We give here a shorter proof in the function field setting that would also be applicable
(without change) over the integers.
Write ℑ𝑓(𝑇) ∶= ℑ𝑓(1, 𝑇) for 𝑇 ⩾ 1, and define ℑ𝑓(∞) ∶= lim𝑇→∞ℑ𝑓(𝑇).
As [0, 1] is compact, the sequence {ℑ𝑓(𝑛)∕2𝜋 mod 1}𝑛 has a limit point, say𝛼.We select {𝑀𝑗}𝑗⩾1

to be a sequence for which ℑ𝑓(𝑀𝑗)
2𝜋

mod 1 → 𝛼. Let 𝑗′ ⩾ 1. By the triangle inequality, we then have

‖ℑ𝑓(𝑀𝑗,𝑀𝑗+𝑗′)∕2𝜋‖ = ‖ℑ𝑓(𝑀𝑗+𝑗′ )2𝜋
−
ℑ𝑓(𝑀𝑗)

2𝜋
‖ ⩽ ‖ℑ𝑓(𝑀𝑗)

2𝜋
− 𝛼‖ + ‖𝛼 − ℑ𝑓(𝑀𝑗+𝑗′ )

2𝜋
‖ < 𝜂,

provided 𝑗 is chosen large enough. □

Proof of Proposition 9.1. Let 𝜀 > 0. Applying Lemma 9.3 with 𝜂 = 𝜀, we may choose an infinite
increasing sequence {𝑀𝑗}𝑗⩾1 such that, if 𝑗, 𝑗′ are large then upon setting 𝑀 ∶= 𝑀𝑗 and 𝑁 ∶=
𝑀𝑗+𝑗′ we find that |||𝑒𝑖ℑ𝑓(𝑀,𝑁) − 1|||≪ ‖ℑ𝑓(𝑀,𝑁)‖≪ 𝜀.
Combining this with Lemma 9.2 and the condition 𝔻(𝑓, 1;∞) < ∞, we deduce that∑

𝐺∈⩽𝑁

|𝑓(𝑊𝐺 + 𝐵) − 1|≪ 𝑞𝑁(𝜀 + 𝔻(𝑓, 1;𝑀,∞) + 𝑜𝑀→∞(1)),
which implies the claim. □

Proof of Theorem 1.7. By partial summation, if (𝑆𝑛) is a non-negative sequence for which
𝑞−𝑁

∑
𝑛⩽𝑁 𝑆𝑛 = 𝑜(1), then

1

𝑁

∑
𝑛⩽𝑁 𝑆𝑛∕𝑞

𝑛 = 𝑜(1). Thus, (8) implies∑
𝐺∈⩽𝑁

|𝑓(𝑄𝐺 + 1) + 𝑧𝑓(𝐺)|∕𝑞deg(𝐺) = 𝑜(𝑁).
Since |𝑓(𝑄𝐺 + 1) + 𝑧𝑓(𝐺)| ⩽ 2, this further gives∑

𝐺∈⩽𝑁

|𝑓(𝑄𝐺 + 1) + 𝑧𝑓(𝐺)|2∕𝑞deg(𝐺) = 𝑜(𝑁),
so that expanding the modulus squared and recalling that 𝑓 is unimodular, we find∑

𝐺∈⩽𝑁

(1 + Re(𝑧𝑓(𝐺)𝑓(𝑄𝐺 + 1)))𝑞−deg(𝐺) = 𝑜(𝑁), (65)

Wewill use this in twoways as follows. First, since the summands are all∈ [0, 2], for a logarithmic
proportion 1 − 𝑜(1) of 𝐺 ∈⩽𝑁 we have

Re(𝑧𝑓(𝐺)𝑓(𝑄𝐺 + 1)) = −1 + 𝑜(1), that is, 𝑓(𝐺)𝑓(𝑄𝐺 + 1) = −𝑧 + 𝑜(1), (66)

by unimodularity. This will be applied shortly.
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228 KLURMAN et al.

Second, from (65) and the triangle inequality we deduce that

1 + 𝑜(1) ⩽
1

𝑁

|||||||Re
⎛⎜⎜⎝𝑧

∑
𝐺∈⩽𝑁

𝑓(𝐺)𝑓(𝑄𝐺 + 1)𝑞−deg(𝐺)
⎞⎟⎟⎠
||||||| ⩽
1

𝑁

||||||
∑

𝐺∈⩽𝑁

𝑓(𝐺)𝑓(𝑄𝐺 + 1)𝑞−deg(𝐺)
||||||. (67)

By Theorem 1.4, (67) implies that for every𝑁 ⩾ 1 there exists a Dirichlet character 𝜒𝑁 of bounded
conductor, a short interval character 𝜉𝑁 of bounded length, and an angle 𝜃𝑁 ∈ [0, 1] such that

𝔻(𝑓, 𝜒𝑁𝜉𝑁𝑒𝜃𝑁 ;𝑁) ≪ 1.

By pigeonholing, we may assume that 𝜒𝑁 = 𝜒 and 𝜉𝑁 = 𝜉 for some fixed Dirichlet character 𝜒,
short interval character 𝜉, and for an infinite sequence of integers 𝑁. Since the interval [0, 1] is
compact, we may find an infinite strictly increasing subsequence (𝑁𝑗) and a fixed 𝜃 ∈ [0, 1) such
that lim𝑗→∞ 𝜃𝑁𝑗 = 𝜃 exists and

𝔻(𝑓, 𝜒𝜉𝑒𝜃𝑁𝑗
; 𝑁𝑗) ≪ 1. (68)

By the triangle inequality and the fact that 𝑁𝑗 < 𝑁𝑗+𝑘, from (68) we see that

𝔻(𝑒𝜃𝑁𝑗
, 𝑒𝜃𝑁𝑗+𝑘

; 𝑁𝑗) ≪ 1

uniformly for 𝑘 ⩾ 1. Letting 𝑘 → ∞ yields

𝔻(𝑒𝜃𝑁𝑗
, 𝑒𝜃; 𝑁𝑗) ≪ 1,

and hence

𝔻(𝑓, 𝜒𝜉𝑒𝜃;𝑁𝑗) ⩽ 𝔻(𝑓, 𝜒𝜉𝑒𝜃𝑁𝑗
; 𝑁𝑗) + 𝔻(𝑒𝜃, 𝑒𝜃𝑁𝑗

; 𝑁𝑗) ≪ 1.

Since every 𝑁 belongs to some interval [𝑁𝑗,𝑁𝑗+1), we finally see that

𝔻(𝑓, 𝜒𝜉𝑒𝜃;𝑁) ≪ 1

uniformly in 𝑁.
Let us now write

𝑓(𝐺) = 𝜒1(𝐺)𝜉(𝐺)𝑓1(𝐺), (69)

where 𝜒1 is the completely multiplicative function given at irreducibles 𝑃 by 𝜒1(𝑃) = 𝜒(𝑃) if 𝑃 ∤
cond(𝜒) and 𝜒1(𝑃) = 1 otherwise, and where 𝑓1 satisfies 𝔻(𝑓1, 1;𝑁) ≪ 1.
Recalling (62), (66) gives

𝜒1𝑓1(𝐺)𝜒1𝑓1(𝑄𝐺 + 1) = 𝑧
′ + 𝑜(1) (70)

for logarithmic proportion 1 − 𝑜(1) of 𝐺 ∈ and some complex number 𝑧′ ∈ 𝑆1.
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CORRELATIONS OF MULTIPLICATIVE FUNCTIONS IN FUNCTION FIELDS 229

Suppose first that {𝑃 ∈  ∶ 𝑓1(𝑃) ≠ 𝑧′𝜒1𝑓1(𝑄 + 1)} is infinite. Let 𝑃0 be an element of this set
of degree> max{cond(𝜒), deg(𝑄)}, and let 𝜂 > 0 be such that |𝑓1(𝑃0) − 𝑧′𝜒1𝑓1(𝑄 + 1)| > 𝜂; since
this condition becomes less stringent as 𝜂 decreases, we may assume that 𝜂 is smaller than any
fixed constant. Let 𝑤 be a large integer to be chosen shortly, subject in particular to the condition
𝑤 > deg(𝑄)cond(𝜒). Consider the infinite sets

 ∶= {𝐺 ∈∶ 𝐺 ≡ 1mod ∏
𝑃∈⩽𝑤⧵{𝑃0}

𝑃𝑤, 𝐺 ≡ 𝑃0 mod 𝑃20},

 ∶= {(𝑄𝐺 + 1)∕(𝑄 + 1)∶ 𝐺 ∈ }.
By theChinese remainder theorem, the elements ofmay be parameterized by an arithmetic pro-
gression 𝑃0(𝑊𝐺 + 𝐵), where𝑊 ∈ is divisible by all 𝑃 ∈ ⩽𝑤, and 𝐵 = 𝐵(𝑃0) is some residue
class modulo𝑊, necessarily coprime to𝑊. Moreover, as 𝐺 − 1 is divisible by a 𝑃deg(𝑄) for every
𝑃|(𝑄 + 1), it follows that whenever 𝐺 ∈ ,

𝑄𝐺 + 1

𝑄 + 1
= 𝐺 −

𝐺 − 1

𝑄 + 1
∈.

Hence,  ⊂, and as deg(𝑃0) > deg(𝑄 + 1) the set  may similarly be parameterized as
𝑃0𝑊𝐺

′ + 𝐷, for 𝐷 = 𝐷(𝑃0) coprime to 𝑃0.
For𝐺 ∈ , we have 𝜒1(𝐺) = 1, 𝜒1(𝑄𝐺 + 1) = 𝜒1(𝑄 + 1), and𝐺∕𝑃0, (𝑄𝐺 + 1)∕(𝑄 + 1) are both

coprime to
∏
𝑃∈⩽𝑤 𝑃. We apply Proposition 9.1 with 𝑓 = 𝑓1 and 𝜀 = 𝜂2, say, along both and :

thus, we may find a common choice of parameters𝑀,𝑁 (depending only on 𝑓1 and 𝜂) such that,
upon taking 𝑤 = 𝑀, along both and  a proportion 1 − 𝑜𝑤→∞(1) of 𝐺 ∈⩽𝑁 satisfy

|𝑓1(𝐺) − 𝑓1(𝑃0)| < 𝜂∕10, |𝑓1(𝑄𝐺 + 1) − 𝑓1(𝑄 + 1)| < 𝜂∕10.
Combined with (70) restricted to, we see that |𝑓1(𝑃0) − 𝑧′𝜒1𝑓1(𝑄 + 1)| < 𝜂. However, this is a
contradiction to our assumption, so {𝑃 ∈  ∶ 𝑓1(𝑃) ≠ 𝑧′𝜒1𝑓1(𝑄 + 1)}must be finite. Now, since
𝑓1 pretends to be 1, we must have 𝑧′𝜒1𝑓1(𝑄 + 1) = 1.
Now, let 𝑁0 be such that 𝑓1(𝑃) = 1 whenever 𝑃 ∈  , deg(𝑃) ⩾ 𝑁0. Let 𝑀0 be the modu-

lus of 𝜒. Let 𝑤′ be large enough in terms of the aforementioned quantities, and set 𝑊′ =∏
𝑃∈⩽𝑤′ 𝑃

max{1,𝑣𝑃(𝑀0)}. Let 𝐶 be arbitrary, subject to (𝐶,𝑊′) = 1. By the Chinese remainder theo-
rem, there exists a residue class𝐺0 mod𝑊′ such that𝐺 ≡ 𝐺0 mod𝑊′ implies𝐺 ≡ 𝐶 mod𝑀0 and
𝐺 ≡ 1mod𝑊′∕𝑀0. Thus, if 𝐺 = 𝑊′𝐹, for any 𝐹 ≡ 𝐺0 mod𝑊′, then 𝑓1(𝐹) = 𝑓1(𝑄𝐺 + 1) = 1,
and thus

𝜒1(𝐺)𝑓1(𝐺) = 𝜒1(𝑊
′)𝑓1(𝑊

′)𝜒(𝐶), 𝜒1(𝑄𝐺 + 1)𝑓1(𝑄𝐺 + 1) = 𝑓1(𝑄𝐺 + 1) = 1.

By (70) restricted to such 𝐺, we conclude that

𝜒1(𝑊
′)𝑓1(𝑊

′)𝜒(𝐶) = 𝑧′ + 𝑜(1).

But this implies that 𝜒 is constant on residue classes coprime to𝑀0, so 𝜒 is principal.
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230 KLURMAN et al.

Now, (70) simplifies to

𝑓1(𝐺) = 𝑧
′𝑓1(𝑄𝐺 + 1) + 𝑜(1)

for logarithmic proportion 1 − 𝑜(1) of 𝐺. Let us restrict to polynomials 𝐺 of the form 𝐺 =
𝑊′𝐹, where 𝑊′ is as above (in particular, 𝑃 ∣ 𝑊′ for 𝑃 ∈ ⩽𝑁0). Since (𝑄𝑊′𝐹 + 1,𝑊′) = 1,
we deduce that 𝑓1(𝑊′)𝑓1(𝐹) = 𝑧′ + 𝑜(1) for logarithmic proportion 1 − 𝑜(1) of 𝐹 ∈. Since
𝑓1(𝑊

′) =
∏
𝑃∈⩽𝑁0 𝑓1𝑠(𝑃)

max{1,𝜈𝑃(𝑀)}, which is independent of 𝑤, there exists a constant 𝑐 such
that 𝑓1(𝐹) = 𝑐 + 𝑜(1) log-almost everywhere. But now if 𝑃0 ∈  is arbitrary, we can find an infi-
nite sequence of polynomials 𝐺 for which 𝑓1(𝑃0𝐺) = 𝑓1(𝐺) + 𝑜(1), so 𝑓1(𝑃0) = 1 + 𝑜(1), which
means that 𝑓1(𝑃0) = 1. Thus, 𝑓1 ≡ 1, and so 𝑓 = 𝜉𝑒𝜃. □
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