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Abstract. Given a velocity field u(x, t), we consider the evolution of a passive
tracer θ governed by ∂tθ + u · ∇θ = ∆θ + g with time-independent source

g(x). When u is small in some sense, Batchelor, Howells and Townsend (1959,
J. Fluid Mech. 5:134; henceforth BHT59) predicted that the tracer spectrum
scales as |θk|

2 ∝ |k|−4|uk|
2. Following our recent work for the two-dimensional

case, in this paper we prove that the BHT59 scaling does hold probabilistically,
asymptotically for large wavenumbers and for small enough random synthetic
three-dimensional incompressible velocity fields u(x, t). We also relaxed some

assumptions on the velocity and tracer source, allowing finite variances for
both and full power spectrum for the latter.

1. Introduction

Several theories relate the spectrum of a passive tracer to the energy spectrum of
the velocity that advects it. Now the velocity (energy) spectrum is conjectured to
obey the Kolmogorov–Obukhov scaling in three space dimensions or the Kraichnan–
Batchelor scaling in two dimensions, in an “inertial range” between the forcing scale
and some small limiting scale. Obtaining these from the Navier–Stokes equations
is a major open problem, with the three-dimensional case also dependent on the
resolution of the Navier–Stokes problem, so for the passive tracer problem one
often assumes the existence of such an inertial range, with an energy spectrum

scaling as E(k) ∼ |k|β̂ . Then in the case of small Prandtl number, when inertial
effects dominate (tracer) diffusion, which happens at larger scales for large velocity,
the Obukhov–Corrsin theory [7, 22] predicts that the tracer spectrum scales as

|k|−(β̂+5)/2.
On the other hand, tracer diffusion will inevitably dominate at smaller scales (but

still larger than the limiting scale). In this regime, it was predicted by Batchelor,
Howells and Townsend [2, henceforth BHT59] that the tracer spectrum should scale
as |k|−4E(k). An important ingredient in their argument is that, in the relevant
scales, the time-dependence of the velocity can be neglected, essentially reducing
the problem to a static one. Their second important assumption is that, where their
scaling obtains, correlations between the tracer and the velocity can be neglected.

In [17], Kraichnan proposed using a velocity that has the conjectured spatial cor-
relation but is white noise in time. The latter property circumvents the correlation
difficulty, allowing computations of higher-order structure functions, anomalous
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scalings, etc, using tools from theoretical physics [6, 10, 16, 18]; the approach has
also been applied to tracer decay, i.e. with g = 0 [27]. Although such white-noise
velocity “is rather artificial” [17], “[i]t is believed that the results should remain
valid for more general velocity fields” [18].

The model was extended to have more physical nonwhite temporal correlations
in a study of the symmetry of correlation functions [25], later exploited in [23] to
find anomalous scaling of the three-point correlator. Those authors also consider a
frozen random velocity in finding that one-point probability distribution functions
of the scalar and its gradient have exponential tails [24]. For synopses and later
developments regarding the BHT spectrum, see, e.g., [11, 26, 28, 31, 32]. There is
also considerable computational evidence for the BHT spectrum [4,5,11,13,33,34].

In the complementary case of large Prandtl number, one has the viscous–advective
regime, which Batchelor [1] predicted to obey the |k|−1 spectrum. Using dynamical
systems techniques they developed earlier, Bedrossian, Blumenthal and Punshon-
Smith recently made this rigorous in an important work [3], with velocity fields
arising from actual Navier–Stokes equations with stochastic forcing, plus hyper-
diffusion in the three-dimensional case.

Following our earlier work on the two-dimensional case [14], in this paper we
make rigorous the intuitive arguments of BHT59 in three dimensions. Our syn-
thetic velocity is slowly-varying, like BHT and unlike Kraichnan’s and subsequent
works. At leading order, we recover the BHT spectrum in a probabilistic sense,
as expected and in agreement with earlier works using both BHT and Kraichnan
velocity. Unable to obtain a probabilistic bound on the remainder (that part of the
tracer beyond leading order, asserted to be small in BHT59) due to correlations,
we bound it analytically. Unfortunately our bound of the remainder requires an
energy spectrum no shallower than |k|−2, which rules out an application to the
conjectured Kolmogorov |k|−5/3 energy spectrum. We expect that a probabilistic
bound, if possible, would admit shallower energy spectra.

As in [14], we also confirm the intuition of [2] that this holds for non-constant ve-
locity, as long as it does not vary too rapidly (in a precise scale-dependent manner),
and we give higher-order corrections to account for this. Relaxing some assump-
tions in [14], here we allow a more general modal random variable, only requiring it
to be circular, and a more general tracer (variance) source, only requiring sufficient
Sobolev regularity.

Our general approach is similar to [14], with some differences: As in the two-
dimensional case, our approach is to compute exactly the expectation of the spec-
trum for the first iterate of a fixed point iteration of the tracer, and show that the
error from the actual tracer can be made small by taking the velocity small. This,
coupled with a certain bound on the variance, establish the BHT scaling. Unlike
the 2d case, however, here we consider a random tracer source at all scales, except
for the bound on the variance. Also different is that rather than randomizing the
phases of the streamfunction in Fourier space, here we randomize components of
the coefficients in the Craya–Herring 3d basis [8,12,15].

Through its obvious relationship to various Sobolev norms, the tracer spectrum
is related to the degree of tracer mixing and of the efficiency of mixing by the
advecting velocity [9, 19–21, 29, 30]. A steep tracer spectrum such as the BHT
suggests poor mixing, either throughout the entire range for small velocity (treated
here), or beyond the so-called diffusive wavenumber [31, (8.108)] for larger velocity
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(with the Obukhov–Corrsin tracer spectrum at larger scales, for which no rigorous
results are currently available).

Charlie Doering’s influence goes beyond mixing, turbulence, and science in gen-

eral. We remember him fondly in dedicating this paper to him.

2. Preliminaries

We consider the evolution of a passive scalar θ(x, t) under a prescribed velocity
field u(x, t) and source g(x),

(2.1) ∂tθ + u · ∇θ = ∆θ + g.

For simplicity, we take x ∈ D := [0, 2π]3 and assume periodic boundary conditions
in all directions. With no loss of generality, we assume that, for all t

(2.2)

∫

D

u(x, t) dx = 0 and

∫

D

θ(x, t) dx = 0.

We note that for the latter to hold for all t > 0, we must impose the same condition
on g and θ(·, 0).

We expand θ(x, t) in Fourier series as

(2.3) θ(x, t) =
∑′

k θk(t)e
ik·x,

where the prime indicates that the sum is taken over k ∈ Z
3\{0} to satisfy (2.2),

and denote spectral projection by

(2.4) (Pκ,κ′θ)(x, t) :=
∑

κ≤|k|<κ′

θk(t)e
ik·x.

For the tracer (variance) source, we take the deterministic

(2.5) (∆−1g)(x) =
∑′

k γke
ik·x

where γk ∈ C with γ−k = γk, γ0 = 0 and

(2.6) |γk| ≤ cg|k|
α when |k| ≥ κg

for some constants cg ≥ 0, κg > 1 and α < 0. The case cg = 0 gives the bandwidth-
limited source considered in [14], for which somewhat tighter estimates can be
obtained below. Alternately, and without altering the conclusion (see below), one
may also consider the random

(2.7) (∆−1gr)(x) =
∑′

k γkZke
ik·x.

One could generalise further, making g to depend on t as well as x, but this would
introduce another timescale that would enter into the computations, so we forego
this in the interest of clarity. In any case, we expect our results to carry overmutatis

mutandis with g(x, t), with the obvious stipulation that it be independent of u.
The complex random variable Zk is constructed as follows. For a fixed k ∈ Z3,

we write Zk = Rke
iζk where the random phase ζk ∼ U(0, 2π), implying that Zk is

circular , i.e. E(eiφZk) = EZk for any deterministic real φ. This in turn implies that
EZn

k = 0 for any integer n 6= 0. We constrain the random modulus Rk so that

(2.8) Ξ := sup{s : P (Rk > s) > 0} < ∞,

implying that Zk is bounded, |Zk| ≤ Ξ. (With circularity, this means that Zk is
a proper random variable.) With no loss of generality, we put as its variance and
fourth moment

(2.9) E|Zk|
2 = 1 and E|Zk|

4 = ̺.
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We note that by the Cauchy–Schwarz inequality, 1 = (E|Zk|
2)2 ≤ E|Zk|

4 = ̺, with
equality (i.e. ̺ = 1) attained iff |Zk| = 1 a.s. We denote Zk ∼ R̺.

Now for g(x, t) to be real-valued, we must require that Z−k = Zk, but other-
wise Zk are assumed to be uncorrelated, so EZjZk = δjk and EZjZk = δj,−k. A
convenient tool to handle this reality constraint is the wavenumber half-space

(2.10) Z
3
+ := {(l,m, n) : n > 0} ∪ {(l,m, 0) : m > 0} ∪ {(l, 0, 0) : l > 0}

with l, m, n ∈ Z; we thus have Z3
+ ∪ (−Z3

+) = Z3\{0}. With this, we can write

EZjZk = 0 and EZjZk = δjk for all j, k ∈ Z
3
+.

To set up our velocity, we recall the Craya–Herring basis [8, 12, 15]: Writing a
wavevector k = (kx, ky, kz), defining kh := (kx, ky, 0) and using spherical coordi-
nates (1, ϕ, φ), we define the (k-dependent) orthonormal vectors

dk =
k

|k|
=

(kx, ky, kz)

|k|
= (sinϕ cosφ, sinϕ sinφ, cosϕ),

ek =
k × ẑ

|k × ẑ|
=

(ky,−kx, 0)

|kh|
= (sinφ,− cosφ, 0),

fk =
k × k × ẑ

|k × k × ẑ|
=

(kxkz, kykz,−|kh|
2)

|k| |kh|
= (cosϕ cosφ, cosϕ sinφ,− sinϕ) ,

where ẑ = (0, 0, 1). With these basis vectors, any velocity field v(x, t) can be written
as

(2.11) v(x, t) =
∑′

k [Ũd(k, t)dk + Ũe(k, t)ek + Ũf (k, t)fk ]e
ik·x

for some (Ũd, Ũe, Ũf ) ∈ C
3. Now since div v(x, t) = i

∑

k Ũd(k, t)|k|e
ik·x, for v(·, t)

to be incompressible we must have Ũd(k, t) ≡ 0. We thus write our incompressible
velocity field as

(2.12) u(x, t) =
∑′

k |k|
β [UeekVk(t) + UffkWk(t)] e

ik·x

where β < 0, Ue and Uf are real constants, and Vk(t) and Wk(t) complex ran-
dom processes whose time behaviour will be precised below.1 For now, we require
that, for each fixed t, Vk(t) and Wk(t) ∼ Rς , proper random variables with unit
variance and E|Vk(t)|

4 = E|Wk(t)|
4 = ς , and bounded as |Vk(t)|, |Wk(t)| ≤ Ξ. As

with g(x), for u(x, t) to be real-valued, we must require that V−k(t) = Vk(t) and

W−k(t) = Wk(t). Aside from this constraint, we assume that Vk(t) and Wk(t) are

uncorrelated, so EVj(t)Vk(t) = EWj(t)Wk(t) = δjk and EVj(t)Wk(t) = 0 for all
j, k ∈ Z

3
+. Unlike dk, which gives the divergent component of u, the ek and fk

components have no special meaning when u is isotropic, although they do carry
physical significance in, e.g., stratified flows (as the “vortex” and “wave” compo-
nents, respectively).

We turn to the energy spectrum. First, we compute [suppressing dependence on
t where no confusion may arise]

(2.13)

‖Pκ,2κu(·, t)‖
2
L2

=
(
∑

j |j|
β(UeejVj + UffjWj)e

ij·x,
∑

k |k|
β(UeekVk + UffkWk)e

ik·x
)

L2

= 8π3∑

k |k|
2β(U2

e |Vk|
2 + U2

f |Wk|
2),

1We note that in this paper |uk| ∼ |k|β whereas in [14] |uk| ∼ |k|β+1, so the βs are different;
in hindsight, we feel the present notation more natural.
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where for the second equality we have used the facts that (eij·x, eik·x)L2 = (2π)3δjk,
ek ·ek = fk ·fk = 1 and ek ·fk = 0. Unlike in our previous work on the 2d case [14],
here ‖Pκ,2κu‖

2 contains the random variables |Vk|
2 and |Wk|

2, so we compute

(2.14)
E‖Pκ,2κu(·, t)‖

2
L2 = 8π3∑

k |k|
2β(U2

e E|Vk|
2 + U2

fE|Wk|
2)

= 8π3(U2
e + U2

f )
∑

κ≤|k|<2κ|k|
2β .

Approximating the sum as an integral over the corresponding region in R
d, we

find this scales as κ2β+d for sufficiently large κ, so for the classical Kolmogorov − 5
3

spectrum in d = 3 (i.e. 2β+d−1 = − 5
3 ), we must take β = − 11

6 . Next, we compute

the variance var‖Pκ,2κu‖
2
L2 , by first using (2.9) to obtain

(2π)−6
E‖Pκ,2κu‖

4
L2 = E

(
∑

k |k|
2β(U2

e |Vk|
2 + U2

f |Wk|
2)
)2

=
∑

jk |j|
2β |k|2β(U4

e E|Vj |
2|Vk|

2 + 2U2
eU

2
fE|Vj |

2|Wk|
2 + U4

fE|Wj |
2|Wk|

2)

=
∑

j 6=k |j|
2β |k|2β(U4

e E|Vj |
2|Vk|

2 + U4
fE|Wj |

2|Wk|
2)

+
∑

k |k|
4β(U4

e E|Vk|
4 + U4

fE|Wk|
4) + 2

∑

jk |j|
2β |k|2βU2

eU
2
fE|Vj |

2|Wk|
2

=
∑

j 6=k |j|
2β |k|2β(U4

e + U4
f ) + ς

∑

j=k |j|
2β |k|2β(U4

e + U4
f )

+ 2
∑

jk |j|
2β |k|2βU2

eU
2
f

=
(

(U2
e + U2

f )
∑

k |k|
2β
)2

+ (ς − 1)(U4
e + U4

f )
∑

k |k|
4β ,

whence

(2.15)
var‖Pκ,2κu‖

2
L2 = E‖Pκ,2κu‖

4
L2 −

(

E‖Pκ,2κu‖
2
L2

)2

= (2π)6(ς − 1)(U4
e + U4

f )
∑

κ≤|k|<2κ |k|
4β .

For large κ, this scales as κ4β+d, so (var‖Pκ,2κu‖
2)1/2/E‖Pκ,2κu‖

2 ∝ κ−d/2, giving
asymptotic convergence (over dyads) to an energy spectrum that is κ2β+d−1.

For the time dependence, we assume that, for all j, k ∈ Z3
+,

(2.16) EVj(s)Vk(t) = EWj(s)Wk(t) = δjkΦk(s− t).

We take a time correlation function of the form

(2.17) Φk(t) = Φ(χk|t|)

with Φ ∈ Cn(R+) for some n ≥ 2 and Φ(0) = 1, where the correlation timescale
χ−1
k is assumed not to grow too rapidly with |k|,

(2.18) lim
|k|→∞

χk|k|
−2 = 0.

Using the Cauchy–Schwarz inequality, we have

(2.19)
|Φ(h)| = |EVk(s)Vk(s+ h)|

≤ (E |Vk(s)|
2)1/2(E |Vk(s+ h)|2)1/2 = Φ(0) = 1.

We also assume that Vk(t) has sufficient smoothness in t for the usual Riemann
integral to be defined. As before, Vj(s) and Wk(t) are uncorrelated proper random
variables for any j, k ∈ Z3

+, s and t.
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3. Main Result and Discussion

As in the 2d case, it is both convenient and instructive to first consider the static
case

(3.1) u · ∇θ = ∆θ + g.

Here the time-independent random velocity is

(3.2) u(x) =
∑′

k |k|
β [UeekVk + UffkWk] e

ik·x

with Vk and Wk ∼ Rς i.i.d. satisfying the usual reality constraints.
The strategy, as in [14], is to solve (3.1) by a fixed-point iteration, showing that

the error from the first iterate ϑ to the solution is, at most, of the same order,
as κ → ∞ as E‖Pκ,2κϑ‖

2
L2 . The latter will satisfy the BHT spectrum and the

relative error can be made arbitrarily small by taking U/Umax small enough. We
put θ(0) = −∆−1g and

(3.3) θ(n+1) = ∆−1(u · ∇θ(n) − g).

We seek to prove that this iteration converges under some assumptions, and that
the limit θ(∞) asymptotes, dyad-wise as κ → ∞, probabilistically to the BHT
spectrum. Unlike in [14], however, here our source g may have a full spectrum, so
ϑ := θ(1) − θ(0) = −∆−1(u · ∇∆−1g) has a remainder arising from high-frequency
parts of g.

Denoting ‖f‖l1 :=
∑

k |fk| and putting Ue = Uf = U , we have the following:

Theorem 1. Let g be given by (2.5)–(2.6), gr by (2.7)–(2.6) with α < 2min{β,−d}−
1 and κg ≥ 16; and with β < −2, let u be given by (3.2) satisfying ε := U/Umax < 1
for some Umax(β, κg ,Ξ). Then for κ ≥ 4κ2

g the static problem (3.1) has a unique

solution θ = −∆−1g + ϑ+ δθ where

(3.4) E‖Pκ,2κϑ‖
2
L2 = κ2β−1 8πU

2

3

22β−1 − 1

2β − 1
‖P1,κ1/2∇−1g‖2L2 + E(κ)

and the remainder terms are bounded as,

|E(κ)| ≤ c2gU
2c(α, β)κα + c(β)U2‖∇−1g‖2L2κ2β−3/2,(3.5)

‖Pκ,2κδθ‖
2
L2 ≤ ε2c(g, α, β)U2Ξ2 κ2β−1.(3.6)

With finite-mode source, cg = 0 in (2.6), the variance is bounded from above as

(3.7) var‖Pκ,2κϑ‖
2
L2 . κ4β−5 16πU4 24β−5 − 1

4β − 5
‖∇−1g‖2L2

{

‖∇−1g‖2l1+(ς−1)‖∇−1g‖2L2

}

.

As noted after (2.14), E‖Pκ,2κu‖
2
L2 scales as κ2β+3 so that

E‖Pκ,2κϑ‖
2
L2/E‖Pκ,2κu‖

2
L2 ∝ |k|−4 .

As in [14], by f1(κ) ≃ f2(κ) we mean that limκ→∞ f1(κ)/f2(κ) = 1. Thus, “≃”
arises either from lattice effect, when we approximate sums over subsets of Zd by
the corresponding integrals over subsets of Rd, or from dropping terms of (relative)
order κg/κ. The same convention will be used for “.”. As a consequence, absolute
constants are included in such relations. We note that with finite-mode sources,
P1,κ1/2∇−1g = ∇−1g in (3.4), while in (3.5) the first term vanishes and the second

term can be improved to O(κ2β−2). These results are stated for the isotropic
case, Ue = Uf , but we have kept Ue and Uf when computing (the main part
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of) E‖Pκ,2κϑ‖
2 for readers interested in the effect of non-isotropic velocity. We

see no conceptual difficulty to extend (3.7) to sources with full spectra following
the approach for E‖Pκ,2κϑ‖

2, but did not attempt this in order to keep the proof
readable. The explicit expression for Umax is rather messy, given in (4.67).

For the time-dependent case, we write the solution θ(x, t) of (2.1) as the limit
of iterates θ(n)(x, t) defined by

θ(0) = −∆−1g,(3.8)

θ(n+1)(·, t) = −∆−1g −

∫ t

0

e(t−s)∆[u(·, s) · ∇θ(n)(·, s)] ds.(3.9)

Here e−t∆ is the heat kernel, i.e. θ(n+1) is the solution of

(3.10) (∂t −∆)θ(n+1) = g − u · ∇θ(n) with θ(n+1)(·, 0) = −∆−1g.

Our main result is that this iteration converges, and that the limit obeys the BHT
scaling in the following sense:

Theorem 2. Let the source g(x) be given by (2.5)–(2.6) or (2.7)–(2.6) with α <
2min{β,−d} − 1. Let the incompressible velocity u(x, t) be given by (2.12) and

(2.16) with β < −2 and U satisfying the hypotheses of Theorem 1 and, in addition,

(3.11) 8π3c3(d)U
3Ξ2 < |2β + d+ 1|

for an absolute constant c3(d). Then the solution of (2.1) can be written as θ(x, t) =
−∆−1g + ϑ+ δθ where ϑ(x, t) satisfies

(3.12)

lim
t→∞

E|ϑk(t)|
2 = |k|−4∑′

j

[

U2
e (ek−j · j)

2 + U2
f (fk−j · j)

2
]

|k − j|2β |γj |
2 ×

[

1 +
χk−j

|k|2
Φ′(0) + · · · +

χn−1
k−j

|k|2n

∫ ∞

0

e−s|k|2/χk−jΦ(n)(s) ds
]

.

When supk{χk}/κ
2 ≪ 1, this reduces to the static case in Theorem 1, up to further

lower-order remainders.

4. Proofs

Proof of Theorem 1. This consists of three main parts. In the first part, we compute
ϑ and show that it satisfies (3.4) and (3.5). We then bound var‖Pκ,2κϑ‖

2. In the

final part, we estimate θ(∞) − θ(1) to obtain (3.6).

4.1. Computing ϑ. We start with the computation of ϑ = θ(1) − θ(0) = −∆−1(u ·
∇∆−1g), which, when combined with the scaling in (2.14), shows that it satisfies
the BHT scaling up to small remainders. We use gr in (2.7), as will be apparent
shortly, with no loss of generality. In some expressions (notably as exponents), we
write d = 3 and ω3 = 4π, to give a hint of how the analogues would appear in two
dimensions. From (2.7) and (2.12), we have

(4.1) ϑk = i |k|−2
∑′

j
|k − j|βγj[Ue(ek−j · j)Vk−j + Uf (fk−j · j)Wk−j ]Zj .

In computing Eϑkϑk, we find factors of EVk−jVk−i, which is nonzero if and only if

k − j = k − i, i.e. j = i. An analogous reasoning applies to EWk−jWk±i, so we

have EVk−iVk−j = EWk−iWk−j = δij. Recalling that EVjWk = 0 ∀j, k and, by
independence of Vj and Zk, E|Vj |

2|Zk|
2 = E|Vj |

2E|Zk|
2, we arrive at

(4.2) Eϑkϑk = |k|−4∑
′

j |k − j|2β |γj |
2(U2

e ξ
2
kj + U2

fυ
2
kj)E|Zj |

2 =: |k|−4Sk
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where ξkj := ek−j · j and υki := fk−i · i. Since E|Zj |
2 = 1, it is clear that this

expression applies to both deterministic g and random gr.
We fix some r ∈ (0, 1); for concreteness, we put r = 1

2 in Theorem 1, but write
r in this proof to indicate possible optimisation. Consider any wavenumber dyad
[κ, 2κ) with κ > (2κg)

1/r. For any k within this dyad, κ ≤ |k| < 2κ, we split the
sum in (4.2) into (here and below Sk denotes a “temporary variable” with no global
significance),

(4.3) Sk =
∑

1≤|j|<κr +
∑

κr≤|j| =: S≪
k + S

&

k .

We start with the last sum S
&

k , where by (2.6) and ek−j and fk−j being unit vectors,

(4.4) |γj |
2 ≤ c2g|j|

2α, (ek−j · j)
2 ≤ |j|2 and (fk−j · j)

2 ≤ |j|2.

From |j| ≥ κr, we have |j|2α+2 ≤ κ(2α+2)r, so writing m := k − j, we then replace
the sum over |j| ≥ κr with one over m ∈ Z3\{0}, giving

(4.5)
∑

κr≤|j|

c2gU
2|j|2α+2|k−j|2β ≤ c2gU

2κ(2α+2)r
∑

m

′

|m|2β ≤ c2gU
2κ(2α+2)r ωd

|2β + d|

since 2β + d < 0. In the case of bandwidth-limited source, cg = 0 in (2.6), so this
remainder term is zero. For g with full spectrum, we sum over our dyad to obtain

(4.6)
∑

κ≤|k|<2κ|k|
−4S

&

k ≤ c2gU
2c(α, β, d)κ(2α+2)r−4+d.

For this to be dominated by κ2β−1, we need (2α + 2)r − 4 + d < 2β − 1. Putting
d = 3 and r = 1

2 gives the first term in (3.5).
The first sum in (4.3) is more delicate, requiring tight upper and lower bounds.

We start with a couple of preliminary estimates. Writing m := k − j again, we
bound

|j| < κr ≤ |k|r ≤ 1
2 |k|

⇒ |k − j| ≥ |k| − |j| ≥ 1
2 |k|

⇒ |j| ≤ |k|r ≤ (2|k − j|)r = 2r|m|r.(4.7)

We then bound |k|−4 = |m+ j|−4 from above and below subject to the constraints
on |j|. Noting that for x ∈ (0, 1), by convexity we can estimate

(4.8) (1 + x)−4 ≥ 1− 4x .

This and (4.7) give us

|m+ j|−4 ≥ (|m|+ |j|)−4 = |m|−4(1 + |j|/|m|)−4

≥ |m|−4(1− 4|j|/|m|) ≥ |m|−4(1− 22+r|m|r−1).

For the upper bound, we use the fact (readily seen by convexity), that for x ∈ (0, 12 ]

(4.9) (1− x)−4 ≤ 1 + 30x.

Analogous reasoning then gives us

(4.10)
|m+ j|−4 ≤ (|m| − |j|)−4 = |m|−4(1− |j|/|m|)−4

≤ |m|−4(1 + 30|j|/|m|) ≤ |m|−4(1 + 30 · 2r|m|r−1).
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From κ ≥ 4κ2
g, we have |j| < κr ≤ κ/4 ≤ 1

4 |k| < 1
3 |k|, so 3

2 |j| ≤ 1
2 |k| and

|j| ≤ 1
2(|k| − |j|) ≤ 1

2 |k − j| = 1
2 |m|, so we can use (4.9) in (4.10). We have thus

shown that

(4.11) |m|−4 − 8 |m|r−5 ≤ |k|−4 ≤ |m|−4 + 60 |m|r−5.

This can be improved slightly by taking r = (β − 1)/(α + 1) instead of 1
2 and

adjusting the constants. We note that with finite-mode sources, there is no need
to split Sk and |m+ j|−4 is bounded by |m|−4 ± 4κg|m|−5.

Instead of computing individual S≪
k , we proceed directly to the dyadic sum

(4.12)
∑

κ≤|k|<2κ

|k|−4S≪
k =

∑

1≤|j|<κr

|γj |
2

∑

κ≤|k|<2κ

|k|−4|k − j|2β(U2
e ξ

2
kj + U2

fυ
2
kj).

Defining spherical coordinates (ρ, ϕ, φ) w.r.t. m, i.e.

m = ρ(sinϕ cosφ, sinϕ sinφ, cosϕ) =: ρm̂,

we compute

(4.13) em ·j = jx sinφ−jy cosφ and fm ·j = jx cosϕ cosφ+jy cosϕ sinφ−jz sinϕ.

We approximate the k-sum by an integral over m, and in view of (4.10), replace
|k|−4 by |m|−4, so that

(4.14)

∑

κ≤|k|<2κ |k|
−4|k − j|2β [U2

e ξ
2
kj + U2

f υ
2
kj ] = E1(κ) +

∫ 2π

0

∫ π

0

∫ rj(2κ,ϕ,φ)

rj(κ,ϕ,φ)

[U2
f (jx cosϕ cosφ+ jy cosϕ sinφ− jz sinϕ)

2

+ U2
e (jx sinφ− jy cosφ)

2] ρ2β−2 dρ sinϕ dϕ dφ

=: E1(κ) + I1(κ)

where E1 is a remainder to be bounded below, and where the radial limit rj(λ, ϕ, φ),
with λ ∈ {κ, 2κ}, is determined by solving |m+ j|2 = λ2 for ρ = |m|,

(4.15)
rj(λ, ϕ, φ) = −j · m̂+

√

λ2 − |j⊥|2 with |j⊥|
2 = |j|2 − (j · m̂)2,

= λ− j · m̂− |j⊥|
2/(2λ) + · · · for λ ≫ |j|.

Finally, we modify the region of integration, replacing the ρ-limit rj(λ, ϕ, φ) by λ,

(4.16)

∫ 2π

0

∫ π

0

∫ 2κ

κ

[U2
f (jx cosϕ cosφ+ jy cosϕ sinφ− jz sinϕ)

2

+ U2
e (jx sinφ− jy cosφ)

2] ρ2β−2 dρ sinϕ dϕ dφ

= κ2β−1i2(2β − 1)
[

2π|jh|
2U2

e +
(2π

3
|j|2 + 2πj2z

)

U2
f

]

=: I2(κ)

where i2(s) := (2s − 1)/s. We write E2(κ) := I1(κ)− I2(κ).
Our approximation for E‖Pκ,2κϑ‖

2
L2 is obtained by using I2(κ) in (4.12),

(4.17)
∑

|j|<κr

|γj |
2I2 = κ2β−1i2(2β−1)

∑

|j|<κr

|γj |
2
[

2π|jh|
2U2

e +
(2π

3
|j|2+2πj2z

)

U2
f

]

.

In the isotropic case, Ue = Uf ≡ U , this reduces to

(4.18)
∑

κ≤|k|<2κ

|k|−4S≪
k = κ2β−1 U2

3π2
i2(2β−1)‖P1,κr∇−1g‖2L2+

∑

1≤|j|<κr

|γj |
2(E1+E2)
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We now bound the remainders E1 and E2. The remainder E2 was incurred by
replacing rj(λ, ϕ, φ) in (4.14) by λ in (4.16). Now from (4.15) since λ ≫ |j|, we can
bound

(4.19) |λ− rj | ≤ λ+ j · m̂−
√

λ2 + (j · m̂)2 − |j|2 ≤ λ+ |j| −
√

λ2 − |j|2 ≤ 2|j|,

so we can bound E2 by integrating (a bound on the integrand) over two spher-
ical shells of thickness 4|j| ≤ 4κr at λ = κ and 2κ. Bounding the integrand by
U2|j|2ρ2β−2, which is largest (since β − 1 < 0) for smallest ρ, we have

|E2(κ)| ≤ ωd

∑

λ∈{κ,2κ}

∫ λ+2κr

λ−2κr

U2|j|2ρ2β−2 dρ

≤ ωdU
2|j|24κr

[

(κ− 2κr)2β−2 + (2κ− 2κr)2β−2
]

≤ ωdU
2|j|28κr(κ− 2κr)2β−2

≤ 25−2βωdU
2|j|2κ2β−2+r.

Therefore, bounding ‖P1,κr∇−1g‖2L2 ≤ ‖∇−1g‖2L2 ,

(4.20)
∑

1≤|j|<κr |γj |
2|E2(κ)| ≤

22−2β

π3
ωdU

2κ2β−2+r‖∇−1g‖2L2 .

Next, the remainder E1 incurred in (4.14) is bounded by replacing |m|−4 there by
60|m|r−5, giving [cf. the first term in (4.18)]

(4.21)
∑′

|j|<κr |γj |
2E1(κ) ≤ c(β, d, r)κ2β+r−2U2‖∇−1g‖2L2 .

Together (4.20)–(4.21) give the second term in (3.5). We note that this took more
work than in two dimensions, where the simpler “geometric term” k∧j = kxjy−kyjx
in [14] allowed direct integration in k rather than having to shift to m = k − j.

4.2. Upper Bound for var‖Pκ,2κϑ‖
2. For this, we take Ue = Uf = U . To bound

the variance, we first compute

(4.22) E ‖Pκ,2κϑ‖
4
L2 = E

∑

kl |ϑk|
2|ϑl|

2 =: U4∑

kl |k|
−4|l|−4

E |ϕk|
2|ϕl|

2

where, here and in the rest of this subsection,
∑

kl is taken over |k|, |l| ∈ [κ, 2κ).
Assuming g is deterministic, we have

(4.23)

E |ϕk|
2|ϕl|

2 =
∑′

ijmn |k − i|β |l − j|β |l −m|β |k − n|β

{

ξkiξljξlmξkn EVk−iVl−jVl−mVk−n γiγjγmγn + (∗)′

+ ξkiξljυlmυkn EVk−iVl−jWl−mWk−n γiγjγmγn + (∗)′

+ ξkiυljξlmυkn EVk−iWl−jVl−mWk−n γiγjγmγn + (∗)′

+ ξkiυljυlmξkn EVk−iWl−jWl−mVk−n γiγjγmγn + (∗)′
}

where (∗)′ denotes the preceeding term with ξ ↔ υ and V ↔ W swapped (but not
their indices).

We start with the last term: here EVk−iWl−jWl−mVk−n = EVk−iVk−n EWl−jWk−n 6=
0 only when k − i = k − n and l − j = l −m ⇔ n = i and j = m. This last term
then contributes

(4.24) S
(p)
kl =

∑′
ij |k − i|2β|l − j|2βξ2kiυ

2
lj |γi|

2|γj |
2.
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To reduce clutter, we now write q := k − l and r := k + l. In the penultimate
term, E · · · = EVk−iVl−m EWl−jWk−n 6= 0 only if k − i = l −m ⇔ m = i− q and
l − j = k − n ⇔ n = j + q, thus contributing

(4.25) S
(o)
kl =

∑′
ij |k − i|2β|l − j|2βξkiξl,i−qυljυk,j+q γiγjγi−qγj+q.

Similarly, in the second term E · · · = EVk−iVl−j EWl−mWk−n 6= 0 only if j − l =
k − i ⇔ j = −i + r and n − k = l − m ⇔ n = −m + r, contributing (upon
relabelling m 7→ j)

(4.26) S
(h)
kl =

∑′
ij |k − i|2β|l − j|2βξkiξl,−i+rυljυk,−j+r γiγi−rγjγj−r.

The first term is the most involved. Denoting −y 6= x 6= y by x 6=± y, the factor
EVk−iVl−jVl−mVk−n 6= 0 only in the following cases:

k − i = k − n 6=± l − j = l −m ⇔ i = n 6= j + q = m+ q,(a)

k − i = l −m 6=± l − j = k − n ⇔ i = m+ q 6= n = j + q,(b)

k − i = j − l 6=± k − n = m− l ⇔ j = −i+ r 6= m = −n+ r,(c)

k − i = k − n = l − j = l −m ⇔ i = n = j + q = m+ q,(d)

k − i = j − l = k − n = m− l ⇔ j = m = −i+ r = −n+ r,(e)

k − i = l −m = j − l = n− k ⇒ m = i− q, j = −i+ r, n = −i+ 2k.(f)

In cases (a)–(c), the E · · · = 1, while in cases (d)–(f), the E · · · = ς . Imposing these

conditions in (4.23), the first term is S
(a)
kl +S

(b)
kl +S

(c)
kl + ςS

(d)
kl + ςS

(e)
kl + ςS

(f)
kl , where

(in all these sums, k, l, q = k − l and r = k + l are fixed)

S
(a)
kl =

∑′
|k−i|6=|l−j| |k − i|2β |l − j|2βξ2kiξ

2
lj |γi|

2|γj|
2(4.27)

S
(b)
kl =

∑′
|k−i|6=|l−j| |k − i|2β |l − j|2βξkiξk,j+qξljξl,i−q γiγjγi−qγj+q(4.28)

S
(c)
kl =

∑′
|k−i|6=|l−m| |k − i|2β|l −m|2βξkiξk,r−mξlmξl,r−i γiγr−iγmγr−m

=
∑′

|k−i|6=|l−j| |k − i|2β |l − j|2βξkiξl,r−iξk,r−jξlj γiγi−rγjγj−r,(4.29)

S
(d)
kl =

∑′
i |k − i|4βξ2kiξ

2
l,i−q |γi|

2|γi−q|
2(4.30)

S
(e)
kl =

∑′
i |k − i|4βξ2kiξ

2
l,r−i |γi|

2|γr−i|
2(4.31)

S
(f)
kl =

∑′
i |k − i|4βξkiξl,r−iξl,i−qξk,2k−i γiγi−2kγi−qγi−r.(4.32)

Analogously, the first (∗)′ in (4.23) is S
(a′)
kl + · · · + ςS

(f ′)
kl with υ replacing ξ.

Returning to the variance, we have

(4.33)
var‖Pκ,2κϑ‖

2
L2 = E ‖Pκ,2κϑ‖

4
L2 −

(

E ‖Pκ,2κϑ‖
2
L2

)2

= U4∑

kl |k|
−4|l|−4

(

E |ϕk|
2|ϕl|

2 − E|ϕk|
2
E|ϕl|

2
)

.

Now

(4.34) E|ϕk|
2
E|ϕl|

2 = S
(a)
kl + S

(d)
kl + S

(e)
kl + S

(a′)
kl + S

(d′)
kl + S

(e′)
kl + 2S

(p)
kl

where the factor of 2 on S
(p)
kl came from its (∗)′. This gives us

(4.35)

var‖Pκ,2κϑ‖
2
L2 = U4∑

kl |k|
−4|l|−4

(

S
(b)
kl + S

(c)
kl + S

(b′)
kl + S

(c′)
kl

+ (ς − 1)
[

S
(d)
kl + S

(e)
kl + S

(d′)
kl + S

(e′)
kl

]

+ ς
[

S
(f)
kl + S

(f ′)
kl

]

+ S
(h)
kl + S

(o)
kl + S

(h′)
kl + S

(o′)
kl

)
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where S
(h′)
kl is S

(h)
kl with ξ and υ (but not their indices) swapped, arising from the

(∗)′ of the (h) term in (4.23), and analogously for S
(o′)
kl . So far, no approximation

has been made, nor has the finite-mode source assumption been used.
We now invoke the assumption that γj = 0 whenever |j| ≥ κg. Since |k| ≫ κg,

only one of γi and γi−2k can be non-zero, so the factor γiγi−2k in S
(f)
kl vanishes,

killing the term; obviously S
(f ′)
kl = 0 as well.

Next, we treat the contribution of S
(d)
kl : due to the terms |γi|

2|γi−q|
2, we must

have |q| < 2κg for the terms containing it to be non-zero. Rewriting the l-sum over
q = k − l and using the fact that |k| ≫ κg, we approximate |k − q| ≃ |k| ≃ |k − i|
and bound |ξki| = |ek−i · i| ≤ |i| to get

(4.36)

∑

kl |k|
−4|l|−4 S

(d)
kl =

∑

kq |k|
−4|k − q|−4∑′

i |k − i|4βξ2kiξ
2
k−q,i−q |γi|

2|γi−q|
2

.
∑

k |k|
4β−8∑′

iq |i|
2|i− q|2|γi|

2|γi−q|
2

=
∑

k |k|
4β−8∑′

i |i|
2|γi|

2∑′
q|i− q|2|γi−q|

2

=
(

∑

k |k|
4β−8

)(

∑′
i |i|

2|γi|
2
)2

=
ω3

(2π)6
i2(4β + d− 8)κ4β+d−8‖∇−1g‖4L2 .

where for the penultimate equality we have changed the last
∑

q to go over n = i−q

and re-labelled. Since we can bound |υki| = |fk−i · i| ≤ |i| as with |ξki|, this bound

also holds for the contribution of S
(d′)
kl . An analogous argument gives us the bound

(4.37)
∑

kl |k|
−4|l|−4

(

S
(e)
kl + S

(e′)
kl

)

.
2ω3

(2π)6
i2(4β + d− 8)κ4β+d−8‖∇−1g‖4L2 .

We bound the contribution of S
(b)
kl as follows:

(4.38)

∑

kl |k|
−4|l|−4∑′

ij |k − i|2β|l − j|2βξkiξk,j+qξljξl,i−q γiγjγi−qγj+q

=
∑

kq |k|
−4|k − q|−4∑′

ij |k − i|2β|k − q − j|2β · · ·

.
∑

k |k|
4β−8 ∑′

ij |i| |γi| |j| |γj |
∑′

q|i− q| |γi−q| |j + q| |γj+q|

≤ 1
2

∑

k |k|
4β−8 ∑′

ij |i| |γi| |j| |γj |
∑′

q

(

|i− q|2|γi−q|
2 + |j + q|2|γj+q|

2
)

=
∑

k |k|
4β−8 ∑′

i |i| |γi|
∑′

j |j| |γj |
∑′

n |n|2|γn|
2

=
ω3

(2π)3
i2(4β + d− 8)κ4β+d−8 ‖∇−1g‖2l1‖∇

−1g‖2L2 .

Obviously this bound also applied to the contribution of S
(b′)
kl , and by inspection,

also to those of S
(o)
kl and S

(o′)
kl . Similarly, we bound

(4.39)

∑

kl |k|
−4|l|−4∑′

ij |k − i|2β|l − j|2βξkiξl,r−iξljξk,r−j γiγi−rγjγj−r

=
∑

kr |k|
−4|r − k|−4∑′

ij |k − i|2β|r − k − j|2β · · ·

.
∑

k |k|
4β−8 ∑′

ij |i| |γi| |j| |γj |
∑′

r|i− r| |γi−r| |j − r| |γj−r |

≤ 1
2

∑

k |k|
4β−8 ∑′

ij |i| |γi| |j| |γj |
∑′

r

(

|i− r|2|γi−r|
2 + |j − r|2|γj−r|

2
)

=
∑

k |k|
4β−8 ∑′

i |i| |γi|
∑′

j |j| |γj |
∑′

n |n|2|γn|
2

=
ω3

(2π)3
i2(4β + d− 8)κ4β+d−8 ‖∇−1g‖2l1‖∇

−1g‖2L2 ,
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with the same bound applying for S
(c′)
kl , S

(h)
kl and S

(h′)
kl . Putting everything together

gives

(4.40) var‖Pκ,2κϑ‖
2
L2 . U4 ω3

(2π)3
i2(4β−5)κ4β−5‖∇−1g‖2L2

{

8‖∇−1g‖2l1+
4

(2π)3
(ς−1)‖∇−1

whence follows (3.7).

4.3. Bounding θ(∞) − θ(1). Finally, we bound the remainder θ(∞) − θ(1) in each
dyad. As before, we write d = 3 and ωd = 4π to make it easier to adapt the proof
to two dimensions. We start by obtaining a bound for |ϑk|. From (4.1), we have

(4.41) |ϑk| ≤ 2UΞ|k|−2∑′
j |k − j|β |j| |γj | =: 2UΞ|k|−2Sk.

When |k| < 2κg, we have using (2.5) and bounding |k − j|β ≤ 1,

(4.42) Sk ≤
∑′

j |j| |γj | = ‖∇−1g‖l1 .

For the case |k| ≥ 2κg, we split the sum into four parts [cf. (4.3)]

(4.43) Sk =
∑′

|j|<κg
+
∑

κg≤|j|<|k|r+
∑

|k|r≤|j|<2|k|+
∑

2|k|≤|j| =: Sg
k+S≪

k +S≃
k +S>

k .

For Sg
k , since |j| < κg and |k| ≥ 2κg we have |k − j| ≥ |k| − |j| ≥ 1

2 |k| and thus

|k − j|β ≤ 2−β |k|β ; this gives

(4.44) Sg
k ≤ 2−β |k|β

∑′
|j|<κg

|j| |γj | ≤ 2−β |k|β‖∇−1g‖l1 .

Similarly for S≪
k , since |j| < |k|r ≤ 1

2 |k| (the latter holds since 2 ≤ κ1−r
g ), we again

have |k − j| ≥ |k| − |j| ≥ 1
2 |k| and, since α+ 1 + d < 0,

(4.45) S≪
k ≤ 2−β |k|βcg

∑

κg≤|j|<|k|r |j|
α+1 ≤ 2−β |k|βcgωdκ

α+1+d
g /|α+ 1 + d|.

For S≃
k , we use |j| < 2|k| to bound |k − j| ≤ |k| + |j| < 3|k| and change the sum

over j to (a larger) one over m = k− j; using |j| ≥ |k|r to bound |j|α+1 ≤ |k|(α+1)r,
we then get (assuming β + d 6= 0, a harmless special case)

(4.46) S≃
k ≤ cg|k|

(α+1)r
∑

1≤|m|<3|k|

|m|β ≤ cgωd|k|
(α+1)r (3|k|)

β+d − 1

β + d
.

If β + d > 0, the fraction is bounded by (3|k|)β+d/(β + d), and for the rhs to
be O(|k|β), we need (α + 1)r + d ≤ 0. If β + d < 0, the fraction is bounded by
1/|β+ d|, and for the rhs to be O(|k|β), we need (α+1)r ≤ β. Either way, we need
(α+1)r ≤ min{β,−d}. For S>

k , we use |j| ≥ 2|k| to bound |j−k| ≥ |j|− |k| ≥ 1
2 |j|

and |k − j|β ≤ 2−β |j|β , to get

(4.47) S>
k ≤ 2−βcg

∑

2|k|≤|j| |j|
α+β+1 ≤ 2−βcgωd (2|k|)

α+β+d+1/|α+ β + d+ 1|

since α+ β + d+ 1 < 0; for the rhs to be O(|k|β), we need α+ d+ 1 ≤ 0. Putting
these together, we can write

(4.48) |ϑk| ≤ UΞc1(g, β, d)|k|
−2Kβ(|k|)

where

(4.49) Kβ(|k|) := min{1, (2κg)
−β |k|β}

is continuous non-increasing for all |k| ≥ 0 and monotone decreasing for |k| ≥ 2κg.
Summing over k, this gives ‖Pκ,2κϑ‖

2
L2 ≤ c κ2β−4+dU2Ξ4‖∇−1g‖2l1 for large κ,
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i.e. the same κ2β−1 dependence as E‖Pκ,2κϑ‖
2
L2 albeit with a worse constant and

dependence on ‖∇−1g‖2l1 instead of ‖∇−1g‖2L2 .

Writing δθ(n) := θ(n) − θ(n−1) with δθ(1) = ϑ, we have from (3.3)

(4.50)
δθ(n+1) = ∆−1(u · ∇δθ(n))

⇒ |δθ
(n+1)
k | ≤ 2UΞ |k|−2∑′

j |k − j|β |j| |δθ
(n)
j |.

Therefore, since δθ(1) = ϑ is already bounded in (4.48), if we can show that

(4.51) Sk :=
∑′

j |k − j|β |j|−1Kβ(|j|) ≤ M1(β, κg)Kβ(|k|),

we can, by choosing

(4.52) 4UΞM1(β, κg) =: U/Umax(β, κg,Ξ) =: ε < 1,

ensure the mode-wise convergence

(4.53)
|θ

(1)
k − θ

(∞)
k | = |δθ

(2)
k + δθ

(3)
k + · · · | ≤ |δθ

(2)
k |+ |δθ

(3)
k |+ · · ·

≤
c1ε

2
|k|−2Kβ(|k|) +

c1ε
2

4
|k|−2Kβ(|k|) + · · · ≤ c1ε |k|

−2Kβ(|k|).

To show (4.51), we first consider |k| < 4κg. We split the sum as

(4.54)
∑′

j |k − j|β |j|−1Kβ(|j|) =
∑′

|j|<8κg
+

∑

8κg≤|j| =: Sg
k + S>

k .

For Sg
k , we first use |k − j|βKβ(|j|) ≤ 1 to get

(4.55) Sg
k ≤

∑′
|j|<8κg

|j|−1 ≤ ωd(8κg)
d−1/(d− 1) = 32ωdκ

2
g.

As for S>
k , |k| < 4κg and |j| ≥ 8κg implies that |j − k| ≥ |j| − |k| ≥ 1

2 |j| and thus

|k − j|β ≤ 2−β |j|β , leading to

(4.56)
S>
k ≤ 2−β∑

8κg≤|j| |j|
β−1

≤ 2−βωd(8κg)
2β+d−1/|2β + d− 1| = 25β+5κ2β+2

g ωd/|β + 1|

since 2β + d − 1 < 0. Since Kβ(·) is non-increasing, Kβ(s) ≥ Kβ(4κg) = 2β for
s ≤ 4κg, giving

Sk = Sg
k + S>

k ≤ 2ωd max
{

32κ2
g, 2

5β+5κ2β+2
g /|β + 1|

}

≤ 21−βωd max
{

32κ2
g, 2

5β+5κ2β+2
g /|β + 1|

}

Kβ(|k|) for all |k| < 4κg.(4.57)

For the case |k| ≥ 4κg, we split the sum four ways

(4.58)
Sk =

∑′
|j|<2κg

+
∑

2κg≤|j|< 1

2
|k| +

∑

1

2
|k|≤|j|<2|k| +

∑

2|k|≤|j|

=: S1
k + S<

k + S≃
k + S>

k .

For S1
k, since |j| < 2κg and |k| ≥ 4κg, we have |k − j| ≥ |k| − |j| ≥ 1

2 |k| and

|k − j|β ≤ 2−β |k|β , giving

(4.59) S1
k ≤ 2−β |k|β

∑′
|j|<2κg

|j|−1 ≤ 2−β |k|βωd(2κg)
d−1/|d− 1|.

Next, for S<
k , since |j| < 1

2 |k| and thus |k − j| ≥ |k| − |j| ≥ 1
2 |k|, we have

(4.60) S<
k ≤ (4κg)

−β |k|β
∑

2κg≤|j| |j|
β−1 ≤ (4κg)

−β |k|βωd(2κg)
β+d−1/|β + d− 1|
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assuming that β + d− 1 < 0. For S≃
k , we change the summation variable from j to

m = k − j as in (4.46) and use |j| ≥ 1
2 |k| and thus |j|β−1 ≤ 21−β|k|β−1, to obtain

(again assuming β + d 6= 0)

(4.61) S≃
k ≤ 2 (4κg)

−β |k|β−1∑′
|m|<3|k| |m|β ≤ 2 (4κg)

−β |k|β−1ωd
(3|k|)β+d − 1

β + d
.

If β + d > 0, the rhs is O(|k|β) if β + d− 1 ≤ 0. Finally, for S>
k , we use |j| ≥ 2|k|

to bound |j − k| ≥ |j| − |k| ≥ 1
2 |j| and |k − j|β ≤ 2−β |j|β ; this gives us

(4.62) S>
k ≤ (4κg)

−β∑

2|k|≤|j| |j|
2β−1 ≤ (4κg)

−βωd(2|k|)
2β+d−1/|2β + d− 1|.

For the rhs to be O(|k|β), we need β + d− 1 ≤ 0. We have thus established (4.51)
subject to the following assumptions:

4 ≤ κ1−r
g ,(4.63)

(α+ 1)r ≤ min{β,−d} (obviating α+ d+ 1 < 0),(4.64)

β + d− 1 < 0.(4.65)

After extracting Kβ(|k|), and dropping terms < 1. we have

M1(β, κg) := ωd max
{

21−β32κ2
g + 1/|β + 1| , 2d−1/|d− 1|

+ 2−β/|β + d− 1|+ 21−β3β+d/|β + d|+ 1/|2β + d− 1|
}

(4.66)

⇒ Umax(β, κg,Ξ) := 1/(4ΞM1).(4.67)

Summing (4.53), we have

(4.68) ‖Pκ,2κδθ‖
2
L2 ≤ 8π3ε2c21

∑

κ≤|k|<2κ |k|
−4K2

β(|k|)
2
≤ c2(· · · )|k|

2β+d−4

with the second inequality valid since |k| ≥ 2κg. �

Proof of Theorem 2. The proof of the theorem is similar to that of the 2d case [14],
with some improvements (e.g., requiring less regularity on u). As in the proof of
Theorem 1, we shall often write d = 3 to help possible adaptation to d = 2.

Thanks to the boundedness of Vk and Wk, we have from (2.12)

(4.69)
‖u(·, t)‖2H1/2 ≤ 8π3∑′

k |k|
2β+1(U2

e |Vk(t)|
2 + U2

f |Wk(t)|
2)

≤ 8π3U2Ξ2∑′
k |k|

2β+1 ≤ 8π3U2Ξ2/|2β + d+ 1|

for all t, assuming that 2β + d+ 1 < 0.
Considering the iteration (3.9) as a mapping T : θ(n) 7→ θ(n+1), convergence of

the iterations (3.8)–(3.9) would follow from the contractivity of T . To prove the
latter, we write δθ(n) := θ(n) − θ(n−1) and observe that it satisfies

(4.70) (∂t −∆)δθ(n) = −(u · ∇)δθ(n−1) with δθ(n)(·, 0) = 0.

Multiplying this by δθ(n) in L2(D), we find

(4.71)
1

2

d

dt
‖δθ(n)‖2L2 + ‖∇δθ(n)‖2L2 = −((u · ∇)δθ(n−1)), δθ(n))L2 .

We next bound the contribution from the advected term as

(4.72)

∣

∣(u · ∇δθ(n−1), δθ(n))L2

∣

∣ ≤ ‖u‖L3‖∇δθ(n−1)‖L2‖δθ(n)‖L6

≤ c ‖u‖H1/2‖∇δθ(n−1)‖L2‖∇δθ(n)‖L2

≤ 1
2‖∇δθ(n)‖2L2 + c ‖u‖2H1/2‖∇δθ(n−1)‖2L2 .
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Integrating (4.71) in time, we find

(4.73)

‖δθ(n)(t)‖2L2 +

∫ t

0

‖∇δθ(n)(s)‖2L2 ds

≤ c3 ‖u‖
2
L∞([0,t],H1/2(D))

∫ t

0

‖δθ(n−1)(s)‖2L2 ds

≤ c3 ‖u‖
2
L∞([0,t],H1/2(D))

∫ t

0

‖∇δθ(n−1)(s)‖2L2 ds,

so (pathwise) convergence of θ(n) in L2([0, t],H1(D)) would follow from

(4.74) c3 ‖u‖
2
L∞(0,∞;H1/2(D)) = 8π3c3U

2Ξ2/|2β + d+ 1| < 1.

We now turn our attention to ϑ, given by

(4.75) ϑ(t) = θ(1)(t) + ∆−1g =

∫ t

0

e(t−s)∆u(s) · ∇∆−1g ds,

and whose Fourier coefficients satisfy (taking the general deterministic g)

(4.76)

ϑk(t) =

∫ t

0

e(s−t)|k|2∑′
j |k − j|β [ξkjVk−j(s) + υkjWk−j(s)]γj ds

=
∑′

j |k − j|βγj

∫ t

0

e(s−t)|k|2 [UeξkjVk−j(s) + UfυkjWk−j(s)] ds

where, as in the proof of Theorem 1, ξkj := ek−j · j and υkj := fk−j · j. Since

EVj(s)Wk(r) = 0, for clarity we put Uf = 0 temporarily, restoring it in (4.80). We
compute

(4.77) Eϑk(t)ϑk(t) = U2
e

∑′
ij |k − i|β |k − j|βγjγi E

∫ t

0

{· · · }j ds

∫ t

0

{· · · }i dr.

Now

(4.78)

E

∫ t

0

{· · · }j ds

∫ t

0

{· · · }i dr =

∫ t

0

∫ t

0

e(s+r−2t)|k|2
EVk−j(s)Vk−i(r) dr ds

=

∫ t

0

∫ t

0

e(s+r−2t)|k|2Φk−j(s− r)δij dr ds.

As in the static case, the sum over i, j then collapses to one over j:

(4.79) E|ϑk(t)|
2 = U2

e

∑′
j |k − j|2βξ2kj |γj|

2

∫ t

0

∫ t

0

e(s+r−2t)|k|2Φk−j(s− r) dr ds.

We note that, except for the time integrals, the sum is exactly that in (4.2), having
not assumed stochastic g. Restoring Uf , we have

(4.80) E|ϑk(t)|
2 =

∑′
j |k−j|2β(U2

e ξ
2
kj+U2

f υ
2
kj)|γj |

2

∫ t

0

∫ t

0

e(s+r−2t)|k|2Φk−j(s−r) dr ds.

To handle the integrals, we recall the following result proved in [14, (3.20)–(3.26)]:
with Φ as in (2.17),

(4.81)

|k|4 lim
t→∞

∫ t

0

∫ t

0

e(s+r−2t)|k|2Φ(χ|s − r|) ds dr

= 1 +
χ

|k|2
Φ′(0) + · · ·+

χn−1

|k|2n

∫ ∞

0

e−s|k|2/χΦ(n)(s) ds.
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We note that there is a spurious factor of 1
2 in the last line of (3.24) in [14], but

(3.25) which we used here is correct.
Using this in (4.80), we thus have

(4.82) lim
t→∞

E|ϑk(t)|
2 = |k|−4∑′

j |k−j|2β |γj |
2(U2

e ξ
2
kj+U2

fυ
2
kj){1+χk−jΦ

′(0)/|k|2+· · · }.

The first term (the 1) of the bracket, being exactly (4.2), recovers the static case.
The higher-order terms, as in (4.81), give smaller remainders. �
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